RICOH R5323Z005B

R5323x SERIES
150mA 2ch LDO REGULATOR
NO.EA-089-0607
OUTLINE
The R5323x Series are CMOS-based voltage regulator ICs with high output voltage accuracy, low supply
current, low dropout, and high ripple rejection. Each of these voltage regulator ICs consists of a voltage
reference unit, an error amplifier, resistors for setting Output Voltage, a current limit circuit, and a chip enable
circuit.
These ICs perform with low dropout voltage due to built-in transistor with low ON resistance, and a chip enable
function prolongs the battery life of each system. The line transient response and load transient response of the
R5323x Series are excellent, thus these ICs are very suitable for the power supply for hand-held communication
equipment.
The output voltage of these ICs is internally fixed with high accuracy. Since the packages for these ICs are
SOT-23-6, PLP1820-6 and WL-CSP-6 package, 2ch LDO regulators are included in each package, high density
mounting of the ICs on boards is possible.
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
Low Supply Current ...................................................... Typ. 90µA (VR1, VR2)
Standby Mode ............................................................... Typ. 0.1µA (VR1, VR2)
Low Dropout Voltage..................................................... Typ. 0.22V (IOUT=150mA , Output Voltage Type)
High Ripple Rejection ...............................Typ. 75dB(VOUT <
= 2.4V) , Typ. 70dB(VOUT <
= 2.5V) (f=1kHz)
Typ. 65dB(VOUT <
= 2.4V) , Typ. 60dB(VOUT <
= 2.5V) (f=10kHz)
Low Temperature-drift Coefficient of Output Voltage .... Typ. ±100ppm/°C
Excellent Line Regulation ............................................. Typ.0.02%/V
High Output Voltage Accuracy ......................................±2.0%
Small Packages .......................................................... SOT-23-6, PLP1820-6, WL-CSP-6
Output Voltage ..............................................................Stepwise setting with a step of 0.1V in the range of
1.5V to 4.0V is possible
Built-in chip enable circuit (A/B: active high)
Built-in fold-back protection circuit ................................ Typ. 40mA (Current at short mode)
Ceramic Capacitor is recommended. (1.0µF or more)
APPLICATIONS
• Power source for handheld communication equipment.
• Power source for electrical appliances such as cameras, VCRs and camcorders.
• Power source for battery-powered equipment.
1
R5323x
BLOCK DIAGRAMS
R5323xxxxA
R1_1
Error Amp.
Vref
R2_1
Current Limit
R1_2
Error Amp.
Vref
R2_2
Current Limit
R5323xxxxB
R1_1
Error Amp.
Vref
R2_1
Current Limit
R1_2
Error Amp.
Vref
R2_2
Current Limit
2
R5323x
SELECTION GUIDE
The output voltage, mask option, and the taping type for the ICs can be selected at the user's request.
The selection can be made with designating the part number as shown below;
R5323xxxxx-xx-x ←Part Number
↑ ↑ ↑ ↑ ↑
a b c d e
Code
Contents
Designation of Package Type:
N : SOT-23-6
K : PLP1820-6
Z : WL-CSP-6
Setting combination of 2ch Output Voltage (VOUT) : Serial Number for Voltage Setting,
Stepwise setting with a step of 0.1V in the range of 1.5V to 4.0V is possible for each channel.
Designation of Mask Option:
A version: without auto discharge function at OFF state.
B version: with auto discharge function at OFF state.
Designation of Taping Type:
Ex. TR (refer to Taping Specifications; TR type is the standard direction.)
Designation of composition of plating:
−F : Lead free plating (SOT-23-5,WL-CSP-6)
None : Au plating (PLP1820-6)
a
b
c
d
e
PIN CONFIGURATION
SOT-23-6
PLP1820-6
Top View
6
CE1
5
GND
4
6
5
4
WLCSP-6
Bottom View
4
5
6
1
VDD
2
6
1
VOUT1
GND
5
2
VDD
CE2
4
3
VOUT2
CE2
(mark side)
VOUT1
CE1
VOUT2
3
1
2
3
3
2
1
3
R5323x
PIN DESCRIPTIONS
•
•
SOT-23-6
PLP1820-6
Pin No.
Symbol
1
VOUT1
2
VDD
3
Description
Pin No.
Symbol
Description
Output Pin 1
1
VOUT2
Input Pin
2
VDD
VOUT2
Output Pin 2
3
VOUT1
Output Pin 1
4
CE2
Chip Enable Pin 2
4
GND
Ground Pin
5
GND
Ground Pin
5
CE1
Chip Enable Pin 1
6
CE1
Chip Enable Pin 1
6
CE2
Chip Enable Pin 2
Output Pin 2
Input Pin
* Tab in the
parts have GND level.
(They are connected to the reverse side of this IC.)
Do not connect to other wires or land patterns.
WLCSP-6
Pin No.
Symbol
Description
1
VOUT1
2
VDD
3
VOUT2
Output Pin 2
4
CE2
Chip Enable Pin 2
5
GND
Ground Pin
6
CE1
Chip Enable Pin 1
Output Pin 1
Input Pin
ABSOLUTE MAXIMUM RATINGS
Symbol
Item
Rating
Unit
VIN
Input Voltage
6.5
V
VCE
Input Voltage (CE Pin)
6.5
V
VOUT
Output Voltage
−0.3 to VIN + 0.3
V
IOUT1
Output Current 1
200
mA
IOUT2
Output Current 2
200
mA
Power Dissipation (SOT-23-6)*1
420
Power Dissipation (PLP1820-6) *1
880
Power Dissipation (WL-CSP-6)
633
Topt
Operating Temperature Range
−40 to 85
°C
Tstg
Storage Temperature Range
−55 to 125
°C
PD
∗1 For Power Dissipation, please refer to PACKAGE INFORMATION to be described.
4
mW
R5323x
ELECTRICAL CHARACTERISTICS
•
R5323xxxxA/B
Topt=25°C
Symbol
Item
Conditions
Min.
VOUT
×0.98
Typ.
Max.
Unit
VOUT
×1.02
V
VOUT
Output voltage
VIN=Set VOUT+1V
1mA <
= IOUT <
= 30mA
IOUT
Output Current
VIN−VOUT = 1.0V
∆VOUT/∆IOUT
Load regulation
VIN=Set VOUT+1V
1mA <
= IOUT <
= 150mA
VDIF
Dropout Voltage
ISS
Supply Current
VIN=Set VOUT+1V
90
120
µA
Supply Current(Standby)
VIN=Set VOUT+1V
VCE=GND
0.1
1.0
µA
Line regulation
Set VOUT+0.5V
IOUT=30mA
0.02
0.10
%/V
Ripple Rejection
Ripple 0.5Vp−p
VIN=Set VOUT+1V
IOUT=30mA
(In case that VOUT <
= 1.7V,
VIN=Set VOUT+1.2V)
Istandby
∆VOUT/∆VIN
RR
VIN
∆VOUT/
∆Topt
150
15
<
=
VIN
<
=
Input Voltage
6.0V
mV
75
∗Note1
∗Note2
2.0
Ilim
Short Current Limit
VOUT=0V
RPD
Pull-down resistance for CE pin
0.7
VCEH
CE Input Voltage “H”
VCEL
CE Input Voltage “L”
<
=
dB
65
IOUT=30mA
−40°C <
= Topt
RLOW
40
Refer to the Electrical Characteristics by Output Voltage
Output Voltage
Temperature Coefficient
en
mA
85°C
6.0
V
±100
ppm
/°C
40
mA
8.0
MΩ
1.5
6.0
V
0.0
0.3
V
2.0
Output Noise
BW=10Hz to 100kHz
30
µVrms
Low Output Nch Tr. ON
Resistance (of B version)
VCE=0V
60
Ω
∗Note1: f=1kHz, 70dB as to VOUT >
= 2.5V Output type.
∗Note2: f=10kHz, 60dB as to VOUT >
= 2.5V Output type.
5
R5323x
•
Electrical Characteristics by Output Voltage
Dropout Voltage VDIF (V)
Output Voltage
VOUT (V)
Typ.
Max.
VOUT=1.5
Condition
0.38
0.70
VOUT=1.6
0.35
0.65
0.33
0.60
0.32
0.55
VOUT=1.7
IOUT=150mA
1.8V
<
=
VOUT
<
=
2.0V
2.1V
<
=
VOUT
<
=
2.7V
0.28
0.50
2.8V
<
=
VOUT
<
=
4.0V
0.22
0.35
TYPICAL APPLIATION
VOUT2
CE2
R5323x
Series
VDD
GND
IN
C1
CE1
OUT2
C3
OUT1
VOUT1
C2
(External Components)
Ceramic Capacitor Type C1,C2,C3
Recommended Ceramic capacitor for Output: GRM219R61A105K (Murata)
General Example of External Components
Ceramic Capacitors: C1608X5R0J105K (TDK)
GRM188R60J105K (Murata)
6
R5323x
TEST CIRCUIT
CE2
VOUT2
R5323x
Series
VDD
GND
VOUT2
C3
CE2
VOUT2
R5323x
Series
VDD
GND
IOUT2
V
ISS
C3
A
CE1
C1
VOUT1
C2
V
VOUT1
IOUT1
Fig.1 Standard test Circuit
CE2
VOUT2
R5323x
Series
VDD
GND
C3
CE1
VOUT1
CE2
VOUT2
R5323x
Series
VDD
GND
IOUT2
C1
C2
VOUT1
C2
Fig.2 Supply Current Test Circuit
Pulse
Generator
PG
CE1
C1
IOUT1
Fig.3 Ripple Rejection, Line Transient Response
Test Circuit
CE1
VOUT1
C3
IOUT2a
IOUT2b
IOUT1b IOUT1a
C2
Fig.4 Load Transient Response Test Circuit
7
R5323x
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current (Topt=25°C)
1.5V (VR1)
1.5V (VR2)
1.6
VIN=3.5V
1.4
1.2
VIN=1.8V
VIN=2.0V
1
0.8
VIN=2.5V
0.6
0.4
0.2
Output Voltage VOUT(V)
Output Voltage VOUT(V)
1.6
VIN=3.5V
1.4
1.2
VIN=1.8V
VIN=2.0V
1
0.8
VIN=2.5V
0.6
0.4
0.2
0
0
0
100
200
300
0
400
200
2.8V (VR1)
2.5
VIN=3.1V
2
VIN=4.8V
1.5
1
0.5
Output Voltage VOUT(V)
3
0
2.5
VIN=3.1V
2
VIN=4.8V
1.5
1
0.5
0
0
100
200
300
400
0
100
200
300
400
Output Current IOUT(mA)
Output Current IOUT(mA)
4.0V (VR1)
4.0V (VR2)
5
5
VIN=6.0V
VIN=6.0V
Output Voltage VOUT(V)
Output Voltage VOUT(V)
400
2.8V (VR2)
3
4
VIN=4.3V
3
2
1
0
4
VIN=4.3V
3
2
1
0
0
100
200
300
Output Current IOUT(mA)
8
300
Output Current IOUT(mA)
Output Current IOUT(mA)
Output Voltage VOUT(V)
100
400
0
100
200
300
Output Current IOUT(mA)
400
R5323x
2) Output Voltage vs. Input Voltage (Topt=25°C)
1.5V (VR1)
1.5V (VR2)
1.6
Output Voltage VOUT(V)
Output Voltage VOUT(V)
1.6
1.5
1.4
1.3
1.2
1mA
30mA
50mA
1.1
1.5
1.4
1.3
1.2
1mA
30mA
50mA
1.1
1
1
1
2
3
4
5
1
6
2
Input Voltage VIN(V)
5
6
2.8V (VR2)
2.9
2.9
2.8
2.8
Output Voltage VOUT(V)
Output Voltage VOUT(V)
4
Input Voltage VIN(V)
2.8V (VR1)
2.7
2.6
2.5
2.4
2.3
1mA
30mA
50mA
2.2
2.1
2
2.7
2.6
2.5
2.4
2.3
1mA
30mA
50mA
2.2
2.1
2
1
2
3
4
5
6
1
2
Input Voltage VIN(V)
3
4
5
6
Input Voltage VIN(V)
4.0V (VR1)
4.0V (VR2)
4.2
Output Voltage VOUT(V)
4.2
Output Voltage VOUT(V)
3
4
3.8
3.6
3.4
1mA
30mA
50mA
3.2
4
3.8
3.6
3.4
1mA
30mA
50mA
3.2
3
3
1
2
3
4
Input Voltage VIN(V)
5
6
1
2
3
4
5
6
Input Voltage VIN(V)
9
R5323x
3) Dropout Voltage vs. Temperature
1.5V (VR1)
1.5V (VR2)
0.6
Topt= 85°C
25°C
-40°C
0.5
Dropout Voltage VDIF(V)
Dropout Voltage VDIF(V)
0.6
0.4
0.3
0.2
0.1
0
Topt= 85°C
25°C
-40°C
0.5
0.4
0.3
0.2
0.1
0
0
25
50
75
100
125
0
150
Output Current IOUT(mA)
25
50
2.8V (VR1)
Topt= 85°C
25°C
-40°C
0.35
0.3
Dropout Voltage VDIF(V)
Dropout Voltage VDIF(V)
125
150
0.4
0.25
0.2
0.15
0.1
0.05
0
Topt= 85°C
25°C
-40°C
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
0
25
50
75
100
125
150
0
Output Current IOUT(mA)
25
50
75
100
125
150
Output Current IOUT(mA)
4.0V (VR1)
4.0V (VR2)
0.4
0.4
Topt= 85°C
25°C
-40°C
0.35
0.3
Dropout Voltage VDIF(V)
Dropout Voltage VDIF(V)
100
2.8V (VR2)
0.4
0.25
0.2
0.15
0.1
0.05
0
Topt= 85°C
25°C
-40°C
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
0
25
50
75
100
125
Output Current IOUT(mA)
10
75
Output Current IOUT(mA)
150
0
25
50
75
100
125
Output Current IOUT(mA)
150
R5323x
4) Output Voltage vs. Temperature
1.5V (VR1)
1.54
1.53
1.52
1.51
1.50
1.49
1.48
1.47
1.46
-50
-25
0
25
50
75
VIN=2.5V, IOUT=30mA
1.54
Output Voltage VOUT(V)
Output Voltage VOUT(V)
1.5V (VR2)
VIN=2.5V, IOUT=30mA
1.53
1.52
1.51
1.50
1.49
1.48
1.47
1.46
-50
100
-25
Temperature Topt(°C)
2.80
2.78
2.76
0
25
50
75
2.82
2.80
2.78
2.76
2.74
-50
100
-25
4.04
4.02
4.00
3.98
3.96
3.94
25
50
75
100
50
Temperature Topt(°C)
75
100
VIN=5.0V, IOUT=30mA
4.08
Output Voltage VOUT(V)
Output Voltage VOUT(V)
4.06
0
25
4.0V (VR2)
VIN=5.0V, IOUT=30mA
-25
0
Temperature Topt(°C)
4.0V (VR1)
3.92
-50
100
2.84
Temperature Topt(°C)
4.08
75
VIN=3.8V, IOUT=30mA
2.86
Output Voltage VOUT(V)
Output Voltage VOUT(V)
2.82
-25
50
2.8V (VR2)
VIN=3.8V, IOUT=30mA
2.84
2.74
-50
25
Temperature Topt(°C)
2.8V (VR1)
2.86
0
4.06
4.04
4.02
4.00
3.98
3.96
3.94
3.92
-50
-25
0
25
50
75
100
Temperature Topt(°C)
11
R5323x
5) Supply Current vs. Input Voltage (Topt=25°C)
1.5V
2.8V
100
Supply Current ISS(µA)
Supply Current ISS(µA)
100
80
60
40
20
VR1
VR2
0
0
1
2
3
4
5
80
60
40
20
VR1
VR2
0
6
0
1
2
Input Voltage VIN(V)
3
4
5
6
Input Voltage VIN(V)
4.0V
Supply Current ISS(µA)
100
80
60
40
20
VR1
VR2
0
0
1
2
3
4
5
6
Input Voltage VIN(V)
6) Supply Current vs. Temperature
1.5V (VR1)
1.5V (VR2)
VIN=2.5V
80
60
40
20
0
-50
-25
0
25
50
Temperature Topt(°C)
12
75
100
VIN=2.5V
100
Supply Current ISS(µA)
Supply Current ISS(µA)
100
80
60
40
20
0
-50
-25
0
25
50
Temperature Topt(°C)
75
100
R5323x
2.8V (VR1)
2.8V (VR2)
VIN=3.8V
80
60
40
20
0
-50
-25
0
25
50
75
VIN=3.8V
100
Supply Current ISS(µA)
Supply Current ISS(µA)
100
80
60
40
20
0
-50
100
Temperature Topt(°C)
-25
80
60
40
20
25
75
100
50
75
VIN=5.0V
100
Supply Current ISS(µA)
Supply Current ISS(µA)
100
0
50
4.0V (VR2)
VIN=5.0V
-25
25
Temperature Topt(°C)
4.0V (VR1)
0
-50
0
80
60
40
20
0
-50
100
Temperature Topt(°C)
-25
0
25
50
75
100
Temperature Topt(°C)
7) Dropout Voltage vs. Set Output Voltage (Topt=25°C)
VR1
VR2
0.6
10mA
30mA
50mA
150mA
0.5
0.4
Dropout Voltage VDIF(V)
Dropout Voltage VDIF(V)
0.6
0.3
0.2
0.1
0
1
2
3
Set Output Voltage Vreg(V)
4
10mA
30mA
50mA
150mA
0.5
0.4
0.3
0.2
0.1
0
1
2
3
4
Set Output Voltage Vreg(V)
13
R5323x
8) Ripple Rejection vs. Frequency (Topt=25°C)
1.5V (VR1)
80
70
60
50
40
30
IOUT=1mA
IOUT=30mA
IOUT=150mA
20
10
0
0.1
1
90
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
90
1.5V (VR2)
VIN=2.5V+0.5Vp-p, COUT=Ceramic 1.0µF
10
VIN=2.5V+0.5Vp-p, COUT=Ceramic 1.0µF
80
70
60
50
40
30
IOUT=1mA
IOUT=30mA
IOUT=150mA
20
10
0
0.1
100
Frequency f(kHz)
60
50
40
30
90
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
70
IOUT=1mA
IOUT=30mA
IOUT=150mA
0
0.1
1
10
70
60
50
40
30
IOUT=1mA
IOUT=30mA
IOUT=150mA
20
10
1
10
Frequency f(kHz)
2.8V (VR1)
2.8V (VR2)
70
60
50
40
30
10
80
Frequency f(kHz)
80
20
VIN=2.5V+0.5Vp-p, COUT=Ceramic 2.2µF
0
0.1
100
VIN=3.8V+0.5Vp-p, COUT=Ceramic 1.0µF
0
0.1
IOUT=1mA
IOUT=30mA
IOUT=150mA
1
10
Frequency f(kHz)
14
90
90
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
80
10
100
1.5V (VR2)
VIN=2.5V+0.5Vp-p, COUT=Ceramic 2.2µF
20
10
Frequency f(kHz)
1.5V (VR1)
90
1
100
100
VIN=3.8V+0.5Vp-p, COUT=Ceramic 1.0µF
80
70
60
50
40
30
20
10
0
0.1
IOUT=1mA
IOUT=30mA
IOUT=150mA
1
10
Frequency f(kHz)
100
R5323x
2.8V (VR1)
70
60
50
40
30
IOUT=1mA
IOUT=30mA
IOUT=150mA
20
10
0
0.1
90
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
80
1
90
10
60
50
40
30
IOUT=1mA
IOUT=30mA
IOUT=150mA
20
10
50
40
30
IOUT=1mA
IOUT=30mA
IOUT=150mA
1
90
10
80
70
60
50
40
30
IOUT=1mA
IOUT=30mA
IOUT=150mA
20
10
0
0.1
100
4.0V (VR1)
90
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
70
60
50
40
30
IOUT=1mA
IOUT=30mA
IOUT=150mA
1
10
100
4.0V (VR2)
80
0
0.1
1
Frequency f(kHz)
VIN=5.0V+0.5Vp-p, COUT=Ceramic 2.2µF
10
100
VIN=5.0V+0.5Vp-p, COUT=Ceramic 1.0µF
Frequency f(kHz)
20
10
4.0V (VR2)
60
90
1
4.0V (VR1)
70
0
0.1
70
Frequency f(kHz)
80
10
80
Frequency f(kHz)
VIN=5.0V+0.5Vp-p, COUT=Ceramic 1.0µF
20
VIN=3.8V+0.5Vp-p, COUT=Ceramic 2.2µF
0
0.1
100
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
90
2.8V (VR2)
VIN=3.8V+0.5Vp-p, COUT=Ceramic 2.2µF
10
Frequency f(kHz)
100
VIN=5.0V+0.5Vp-p, COUT=Ceramic 2.2µF
80
70
60
50
40
30
20
10
0
0.1
IOUT=1mA
IOUT=30mA
IOUT=150mA
1
10
100
Frequency f(kHz)
15
R5323x
9) Ripple Rejection vs. Input Voltage (DC bias) COUT = Ceramic 1.0µF (Topt=25°C)
2.8V (VR1)
2.8V (VR2)
IOUT=1mA
90
80
70
60
50
40
30
f=1kHz
f=10kHz
f=100kHz
20
10
0
2.9
3
3.1
3.2
90
80
70
60
50
40
30
0
2.9
3.3
70
60
50
40
30
f=1kHz
f=10kHz
f=100kHz
3.1
3.2
80
70
60
50
40
30
0
2.9
3.3
70
60
50
40
30
f=1kHz
f=10kHz
f=100kHz
3.2
Input Voltage VIN(V)
16
3.2
3.3
3.3
IOUT=50mA
100
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
80
3.1
3.1
2.8V (VR2)
IOUT=50mA
3
3
Input Voltage VIN(V)
90
0
2.9
f=1kHz
f=10kHz
f=100kHz
20
10
2.8V (VR1)
20
10
3.3
90
Input Voltage VIN(V)
100
3.2
IOUT=30mA
100
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
80
3
3.1
2.8V (VR2)
IOUT=30mA
90
0
2.9
3
Input Voltage VIN(V)
2.8V (VR1)
20
10
f=1kHz
f=10kHz
f=100kHz
20
10
Input Voltage VIN(V)
100
IOUT=1mA
100
Ripple Rejection RR(dB)
Ripple Rejection RR(dB)
100
90
80
70
60
50
40
30
f=1kHz
f=10kHz
f=100kHz
20
10
0
2.9
3
3.1
3.2
Input Voltage VIN(V)
3.3
R5323x
10) Input Transient Response
R5323N001x(2.8V, VR1)
6
2.84
5
VIN
2.83
4
2.82
3
2.81
2
VOUT
2.80
Input Voltage VIN(V)
Output Voltage VOUT(V)
IOUT=30mA, tr=tf=5µs, COUT=Ceramic 1.0µF
2.85
1
2.79
0
0
10
20
30
40
50
60
70
80
90
100
Time T(µs)
R5323N001x(2.8V, VR1)
6
2.84
5
VIN
2.83
4
2.82
3
2.81
2
VOUT
2.80
Input Voltage VIN(V)
Output Voltage VOUT(V)
Topt=25°C, COUT=Ceramic 2.2µF
2.85
1
2.79
0
0
10
20
30
40
50
60
70
80
90
100
Time T(µs)
R5323N001x(2.8V, VR1)
6
2.84
5
VIN
2.83
4
2.82
3
2.81
2
VOUT
2.80
Input Voltage VIN(V)
Output Voltage VOUT(V)
Topt=25°C, COUT=Ceramic 4.4µF
2.85
1
2.79
0
0
10
20
30
40
50
60
70
80
90
100
Time T(µs)
17
R5323x
R5323N001x(2.8V, VR2)
6
2.84
5
VIN
2.83
4
2.82
3
2.81
2
VOUT
2.80
Input Voltage VIN(V)
Output Voltage VOUT(V)
Topt=25°C, COUT=Ceramic 1.0µF
2.85
1
2.79
0
0
10
20
30
40
50
60
70
80
90
100
Time T(µs)
R5323N001x(2.8V, VR2)
6
2.84
5
VIN
2.83
4
2.82
3
2.81
2
VOUT
2.80
Input Voltage VIN(V)
Output Voltage VOUT(V)
Topt=25°C, COUT=Ceramic 2.2µF
2.85
1
2.79
0
0
10
20
30
40
50
60
70
80
90
100
Time T(µs)
R5323N001x(2.8V, VR2)
6
2.84
5
VIN
2.83
4
2.82
3
2.81
2
VOUT
2.80
1
2.79
0
0
10
20
30
40
50
Time T(µs)
18
60
70
80
90
100
Input Voltage VIN(V)
Output Voltage VOUT(V)
Topt=25°C, COUT=Ceramic 4.4µF
2.85
R5323x
11) Load Transient Response
2.8V (VR2)
150
50
0
VOUT1
2.80
2.75
VOUT2
2.75
IOUT2=30mA
0
5
10
15
50
2.85
2.80
2.75
IOUT1=30mA
2.85
2.80
VOUT2
2.75
20
0
5
2.8V (VR1)
2.95
50
2.85
0
VOUT1
2.80
2.75
2.70
VOUT2
IOUT2=30mA
0
5
10
15
Output Voltage VOUT(V)
3.00
100
Output Current IOUT1(mA)
Output Voltage VOUT(V)
150
2.90
2.75
2.70
50
2.85
2.80
2.75
IOUT1=30mA
2.70
2.85
2.80
VOUT2
0
5
10
15
20
Time T(µs)
2.8V (VR2)
CIN=Ceramic 1.0µF, COUT=Ceramic 4.4µF
150
3.00
100
2.95
50
2.90
0
VOUT1
2.80
2.75
IOUT1=30mA
2.70
2.85
2.80
VOUT2
0
5
10
Time T(µs)
15
20
Output Voltage VOUT(V)
IOUT2
Output Current IOUT2(mA)
Output Voltage VOUT(V)
0
VOUT1
2.8V (VR2)
2.85
150
100
2.90
2.75
2.70
20
IOUT2
CIN=Ceramic 1.0µF, COUT=Ceramic 2.2µF
2.95
2.75
2.70
20
CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF
Time T(µs)
3.00
15
2.8V (VR2)
IOUT1
2.85
2.80
10
Time T(µs)
CIN=Ceramic 1.0µF, COUT=Ceramic 4.4µF
2.95
0
VOUT1
Time T(µs)
3.00
100
Output Current IOUT2(mA)
2.85
2.80
150
IOUT2
100
50
2.90
2.85
0
VOUT1
2.80
2.75
IOUT1=30mA
2.70
2.85
2.80
2.75
2.70
150
VOUT2
0
5
10
15
Output Current IOUT2(mA)
2.85
IOUT2
Output Voltage VOUT(V)
100
Output Current IOUT1(mA)
Output Voltage VOUT(V)
IOUT1
CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF
Output Current IOUT2(mA)
2.8V (VR1)
CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF
20
Time T(µs)
19
R5323x
12) Minimum Operating Voltage
1.5V Minimum Operating Voltage Range
2.3
2.2
VDD(V)
2.1
2
1.9
1.8
1.7
VDD
VIN(MIN)
1.6
1.5
0
75
150
Output Current IOUT(mA)
TECHNICAL NOTES
When using these ICs, consider the following points:
In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For
this purpose, be sure to use a 1.0µF or more capacitance COUT with good frequency characteristics and ESR
(Equivalent Series Resistance) of which is in the range described as follows:
The relations between IOUT (Output Current) and ESR of Output Capacitor are shown in the typical
characteristics above. The conditions when the white noise level is under 40µV (Avg.) are marked as the
hatched area in the graph.
Test these ICs with as same external components as ones to be used on the PCB.
⋅ Make VDD and GND lines sufficient. When their impedance is high, the noise pick-up or incorrect operation may
result.
⋅ Connect the capacitor with a capacitance of 1µF or more between VDD and GND as close as possible.
⋅ Set external components, especially Output Capacitor, as close as possible to the ICs and make wiring as
short as possible.
20
R5323x
ESR vs. Output Current
R5323N/K 1.5V (VR1)
R5323N/K 1.5V (VR2)
Topt=25°C, CIN=COUT=Ceramic 1.0µF,
VIN=25V, f=10Hz to 2MHz(BW=30Hz)
100
100
10
ESR(Ω)
10
ESR(Ω)
Topt=25°C, CIN=COUT=Ceramic 1.0µF,
VIN=25V, f=10Hz to 2MHz(BW=30Hz)
1
0.1
1
0.1
0.01
0.01
0
50
100
150
0
Output Current IOUT(mA)
CIN=COUT=Ceramic 1.0µF, VIN=2.5V,
f=10Hz to 2MHz(BW=30Hz)
10
ESR(Ω)
ESR(Ω)
CIN=COUT=Ceramic 1.0µF, VIN=2.5V,
f=10Hz to 2MHz(BW=30Hz)
100
1
0.1
1
0.1
0.01
0.01
0
50
100
150
0
Output Current IOUT(mA)
50
100
150
Output Current IOUT(mA)
R5323Z 1.5V (VR1/VR2)
R5323Z 2.8V (VR1/VR2)
CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF
CIN=Ceramic 1.0µF, COUT=Ceramic 1.0µF
100
10
ESR(Ω)
10
ESR(Ω)
150
R5323N/K 2.8V (VR2)
10
100
100
Output Current IOUT(mA)
R5323N/K 2.8V (VR1)
100
50
1
0.1
1
0.1
0.01
0.01
0
50
100
Output Current IOUT(mA)
150
0
50
100
150
Output Current IOUT(mA)
21
PACKAGE INFORMATION
•
PE-SOT-23-6-0510
SOT-23-6 (SC-74)
Unit: mm
PACKAGE DIMENSIONS
2.9±0.2
+0.2
1.1 −0.1
1.9±0.2
(0.95)
(0.95)
6
5
0.8±0.1
0 to 0.1
2
+0.1
0.15 −0.05
+0.1
0.4−0.2
0.2 MIN.
1
2.8±0.3
+0.2
1.6 −0.1
4
TAPING SPECIFICATION
+0.1
φ1.5 0
4.0±0.1
2.0±0.05
4
1
2
3
2.0MAX.
3.5±0.05
5
3.2
6
8.0±0.3
1.75±0.1
0.3±0.1
3.3
4.0±0.1
∅1.1±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
21±0.8
+1
60 0
2±0.5
0
180 −1.5
13±0.2
11.4±1.0
9.0±0.3
PACKAGE INFORMATION
PE-SOT-23-6-0510
POWER DISSIPATION (SOT-23-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.5mm × 44pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Free Air
Power Dissipation
420mW
250mW
Thermal Resistance
θja=(125−25°C)/0.42W=263°C/W
400°C/W
500
40
On Board
420
400
300
200
40
Power Dissipation PD(mW)
600
100
0
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Power Dissipation
Measurement Board Pattern
IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN
2.4
1.0
0.7 MAX.
0.95 0.95
1.9
(Unit: mm)
PACKAGE INFORMATION
•
PE-PLP1820-6-0611
PLP1820-6
Unit: mm
PACKAGE DIMENSIONS
1.6±0.1
1.80
0.20±0.1
B
A
4
0.05 M AB
6
0.25±0.1
×4
0.25±0.1
2.00
1.0±0.1
0.05
INDEX
3
1
0.5
0.6Max.
0.1NOM.
0.3±0.1
Bottom View
Attention: Tabs or Tab suspension leads in the
parts have VDD or GND level.(They are
connected to the reverse side of this IC.)
Refer to PIN DISCRIPTION.
Do not connect to other wires or land patterns.
0.05
4.0±0.1
2.4
3.5±0.05
2.0±0.05
8.0±0.3
1.5 +0.1
0
0.25±0.1
1.75±0.1
TAPING SPECIFICATION
1.1±0.1
2.2
1.1Max.
4.0±0.1
TR
User Direction of Feed
TAPING REEL DIMENSIONS
REUSE REEL (EIAJ-RRM-08Bc)
(1reel=5000pcs)
(R5323K,R5325K : 1reel=3000pcs)
11.4±1.0
2±0.5
21±0.8
∅60 +1
0
0
∅180 −1.5
∅13±0.2
9.0±0.3
PACKAGE INFORMATION
PE-PLP1820-6-0611
POWER DISSIPATION (PLP1820-6)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
φ0.54mm × 30pcs
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Power Dissipation
880mW
Thermal Resistance
θja=(125−25°C)/0.88W=114°C/W
40
On Board
1000
880
800
600
40
Power Dissipation PD(mW)
1200
400
200
0
0
25
50
75 85 100
Ambient Temperature (°C)
125
150
Power Dissipation
Measurement Board Pattern
IC Mount Area Unit : mm
RECOMMENDED LAND PATTERN
0.35
0.75 0.45
1.00
0.5 0.5
1.60
0.25
(Unit: mm)
PACKAGE INFORMATION
•
PE-WLCSP-6-P1-0606
WLCSP-6-P1
Unit: mm
PACKAGE DIMENSIONS
B
1.29
0.5
0.5
A
X4
INDEX
0.06
S
∅0.16±0.03
Bottom View
0.08±0.03
0.10
0.40±0.02
0.5
0.79
0.05
S
S
2.0
1.38
1.0
2.0±0.05
3.5±0.05
2.0±0.05
∅0.5±0.1
Dummy Pocket
0.7
0.95
4.0±0.1
1.2MAX.
User Direction of Feed
TAPING REEL DIMENSIONS
(1reel=3000pcs)
+1
60 0
2±0.5
21±0.8
0
180 –1.5
13±0.2
11.4±1.0
9.0±0.3
8.0±0.3
4.0±0.1
+0.1
∅1.5 0
0.88
0.18±0.1
1.75±0.1
TAPING SPECIFICATION(TR: Standard Type)
∅0.05 M S AB
PACKAGE INFORMATION
PE-WLCSP-6-P1-0606
POWER DISSIPATION (WLCSP-6-P1)
This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board.
This specification is based on the measurement at the condition below:
Measurement Conditions
Standard Land Pattern
Environment
Mounting on Board (Wind velocity=0m/s)
Board Material
Glass cloth epoxy plactic (Double sided)
Board Dimensions
40mm × 40mm × 1.6mm
Copper Ratio
Top side : Approx. 50% , Back side : Approx. 50%
Through-hole
−
Measurement Result
(Topt=25°C,Tjmax=125°C)
Standard Land Pattern
Power Dissipation
633mW
Thermal Resistance
θja=(125−25°C)/0.633W=158°C/W
40
On Board
500
400
300
40
Power Dissipation PD(mW)
633
600
200
100
0
0
25
50
75 85 100
Ambient Temperature (°C)
Power Dissipation
125
150
Measurement Board Pattern
IC Mount Area (Unit : mm)
PACKAGE INFORMATION
PE-WLCSP-6-P1-0606
RECOMMENDED LAND PATTERN (WLCSP)
Solder Mask
(resist)
Copper Pad
Substrate
NSMD
SMD
(Unit : mm)
NSMD and SMD Pad Definition
Pad definition
NSMD (Non-Solder Mask defined)
SMD (Solder Mask defined)
*
*
*
*
Copper Pad
0.20mm
Min. 0.30mm
Solder Mask Opening
Min. 0.30mm
0.20mm
Pad layout and size can be modified by customers material, equipment, method.
Please adjust pad layout according to your conditions.
Recommended Stencil Aperture Size....ø0.3mm
Since lead free WL-CSP components are not compatible with the tin/lead solder process, you shall not mount lead free WL-CSP
components using the tin/lead solder paste.
MARK INFORMATION
ME-R5323N-0610
R5323N SERIES MARK SPECIFICATION
• SOT-23-6 (SC-74)
1
•
2
3
1
,
2
: Product Code (refer to Part Number vs. Product Code)
3
,
4
: Lot Number
4
Part Number vs. Product Code
Part Number
Product Code
Part Number
Product Code
Part Number
Product Code
1
2
1
2
1
2
R5323N001B
N
0
R5323N030B
N
Z
R5323N001A
U
G
R5323N002B
N
1
R5323N031B
U
0
R5323N002A
N
9
R5323N003B
N
2
R5323N032B
U
1
R5323N003A
N
A
R5323N004B
N
3
R5323N033B
U
2
R5323N013A
N
C
R5323N005B
N
4
R5323N034B
U
3
R5323N019A
N
J
R5323N006B
N
5
R5323N035B
U
4
R5323N020A
N
L
R5323N007B
N
6
R5323N036B
U
5
R5323N023A
N
Q
R5323N008B
N
7
R5323N037B
U
7
R5323N024A
N
S
R5323N009B
N
8
R5323N038B
U
8
R5323N030A
N
Y
R5323N010B
N
B
R5323N039B
U
9
R5323N011B
U
6
R5323N040B
U
A
R5323N012B
N
W
R5323N041B
U
B
R5323N013B
N
T
R5323N042B
U
C
R5323N014B
N
D
R5323N043B
U
H
R5323N015B
N
E
R5323N044B
U
J
R5323N016B
N
F
R5323N017B
N
G
R5323N018B
N
H
R5323N019B
N
K
R5323N020B
N
M
R5323N021B
N
N
R5323N022B
N
P
R5323N023B
N
R
R5323N024B
U
D
R5323N025B
U
E
R5323N026B
N
X
R5323N027B
N
U
R5323N028B
U
F
R5323N029B
N
V
MARK INFORMATION
ME-R5323K-0610
R5323K SERIES MARK SPECIFICATION
• PLP1820-6
to
1
5
•
1
2
3
4
5
6
,
4
6
: Product Code (refer to Part Number vs. Product Code)
: Lot Number
Part Number vs. Product Code
Part Number
Product Code
Part Number
Product Code
Part Number
Product Code
1
2
3
4
1
2
3
4
1
2
3
4
R5323K001B
C
0
0
1
R5323K030B
C
0
3
4
R5323K001A
C
0
5
1
R5323K002B
C
0
0
2
R5323K031B
C
0
3
5
R5323K002A
C
0
1
0
R5323K003B
C
0
0
3
R5323K032B
C
0
3
6
R5323K003A
C
0
1
1
R5323K004B
C
0
0
4
R5323K033B
C
0
3
7
R5323K013A
C
0
1
3
R5323K005B
C
0
0
5
R5323K034B
C
0
3
8
R5323K019A
C
0
1
9
R5323K006B
C
0
0
6
R5323K035B
C
0
3
9
R5323K020A
C
0
2
1
R5323K007B
C
0
0
7
R5323K036B
C
0
4
0
R5323K023A
C
0
2
5
R5323K008B
C
0
0
8
R5323K037B
C
0
4
2
R5323K024A
C
0
2
7
R5323K009B
C
0
0
9
R5323K038B
C
0
4
3
R5323K030A
C
0
3
3
R5323K010B
C
0
1
2
R5323K039B
C
0
4
4
R5323K011B
C
0
4
1
R5323K040B
C
0
4
5
R5323K012B
C
0
3
1
R5323K041B
C
0
4
6
R5323K013B
C
0
2
8
R5323K042B
C
0
4
7
R5323K014B
C
0
1
4
R5323K043B
C
0
5
2
R5323K015B
C
0
1
5
R5323K044B
C
0
5
3
R5323K016B
C
0
1
6
R5323K017B
C
0
1
7
R5323K018B
C
0
1
8
R5323K019B
C
0
2
0
R5323K020B
C
0
2
2
R5323K021B
C
0
2
3
R5323K022B
C
0
2
4
R5323K023B
C
0
2
6
R5323K024B
C
0
4
8
R5323K025B
C
0
4
9
R5323K026B
C
0
3
2
R5323K027B
C
0
2
9
R5323K028B
C
0
5
0
R5323K029B
C
0
3
0
MARK INFORMATION
ME-R5323Z-0505
R5323Z SERIES MARK SPECIFICATION
• WLCSP-6-P1
: G (Fixed)
1
1
•
2
3
2
,
3
: Lot Number
Product Code vs. Marking
Part Number
Product Code
Part Number
1
Product Code
Part Number
1
Product Code
Part Number
1
Product Code
1
R5323Z001A
G
R5323Z021A
G
R5323Z001B
G
R5323Z021B
G
R5323Z002A
G
R5323Z022A
G
R5323Z002B
G
R5323Z022B
G
R5323Z003A
G
R5323Z023A
G
R5323Z003B
G
R5323Z023B
G
R5323Z004A
G
R5323Z024A
G
R5323Z004B
G
R5323Z024B
G
R5323Z005A
G
R5323Z025A
G
R5323Z005B
G
R5323Z025B
G
R5323Z006A
G
R5323Z026A
G
R5323Z006B
G
R5323Z026B
G
R5323Z007A
G
R5323Z027A
G
R5323Z007B
G
R5323Z027B
G
R5323Z008A
G
R5323Z028A
G
R5323Z008B
G
R5323Z028B
G
R5323Z009A
G
R5323Z029A
G
R5323Z009B
G
R5323Z029B
G
R5323Z010A
G
R5323Z030A
G
R5323Z010B
G
R5323Z030B
G
R5323Z011A
G
R5323Z031A
G
R5323Z011B
G
R5323Z031B
G
R5323Z012A
G
R5323Z032A
G
R5323Z012B
G
R5323Z032B
G
R5323Z013A
G
R5323Z033A
G
R5323Z013B
G
R5323Z033B
G
R5323Z014A
G
R5323Z034A
G
R5323Z014B
G
R5323Z034B
G
R5323Z015A
G
R5323Z035A
G
R5323Z015B
G
R5323Z035B
G
R5323Z016A
G
R5323Z036A
G
R5323Z016B
G
R5323Z036B
G
R5323Z017A
G
R5323Z037A
G
R5323Z017B
G
R5323Z037B
G
R5323Z018A
G
R5323Z038A
G
R5323Z018B
G
R5323Z038B
G
R5323Z019A
G
R5323Z039A
G
R5323Z019B
G
R5323Z039B
G
R5323Z020A
G
R5323Z040A
G
R5323Z020B
G
R5323Z040B
G
R5323Z041A
G
R5323Z041B
G