STMICROELECTRONICS ST7GEME4M1

ST7GEME4
Full-speed USB MCU with smartcard firmware
and EMV/non-EMV interface
Features
24
■
Clock, reset and supply management
– Low voltage reset
– Halt power saving mode
– PLL for generating 48 MHz USB clock
using a 4 MHz crystal
■
USB (Universal Serial Bus) interface
– USB 2.0 compliant
– CCID V1.0
– Full speed, hubless
– Bus-powered, low consumption
■
Serial RS232 interface
– Transmission rate: 9.6 Kbps to 115 Kbps
– Format: 8-bit, no parity
– Auto baud rate
– CCID V1.0 on serial TTL link
■
ISO 7816-3 UART interface
– 4 Mhz clock generation
– Synchronous/Asynchronous protocols
(T=0, T=1)
– Automatic retry on parity error
– Programmable baud rate from 372 to
11.625 clock pulses (D=32/F=372)
– Card insertion/removal detection
Smartcard power supply
– Selectable card VCC: 1.8 V, 3 V, and 5 V
Table 1.
Device summary
■
1
VFQFPN24
SO24(9U)
– Internal Step-up converter for 5V supplied
Smartcards (with a current of up to 55mA)
using only two external components.
– Programmable smartcard internal voltage
regulator (1.8 to 3.0 V) with current
overload protection and 4 kV ESD
protection (Human Body Model) for all
smartcard interface I/Os
■
Development tools
– Application note on PCB recommendations
and component bill of materials
– Full hardware/software kit for performance
evaluation
Description
The ST7GEME4 is an 8-bit microcontroller
dedicated to smartcard reading applications. It
has been developed to be the core of smartcard
readers communicating through a serial or USB
link. It is pre-programmed using Gemplus
software, and offers a single integrated circuit
solution with very few external components.
Order codes
Features
ST7GEME4M1
ST7GEME4U1
Program memory
16K ROM
User RAM + USB data buffer (bytes)
512 + 256
Peripherals
USB Full-Speed (7 Ep), TBU, Watchdog timer, ISO 7816-3 Interface
Operating Supply
Package
4.0 to 5.5 V
SO24
VFQFPN24
CPU Frequency
4 or 8 MHz
Operating temperature
0 to +70 °C
September 2007
Rev 2.0
1/28
www.st.com
1
Contents
ST7GEME4
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3
ST7GEME4 implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4
3.1
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2
Smartcard interface features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3
EMV versus PC/SC-ISO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3
Supply and reset characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2/28
4.4.2
Crystal resonator oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6
Smartcard supply supervisor electrical characteristics . . . . . . . . . . . . . . 19
4.7
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.7.1
Functional EMS (electromagnetic susceptibility) . . . . . . . . . . . . . . . . . . 21
4.7.2
Electromagnetic interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7.3
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 23
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 24
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1
6
General timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5
4.8
5
4.4.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
ST7GEME4
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Technical features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Current injection on I/O port and control pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I/O port pins characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
LED pins characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Low voltage detector and supervisor characteristics (LVDS) . . . . . . . . . . . . . . . . . . . . . . . 16
General timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
External clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Crystal resonator oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Typical crystal resonator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Recommended values for 4 MHz crystal resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Smartcard supply supervisor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
USB full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
24-lead very thin fine pitch quad flat no-lead 5x5mm,0.65mm pitch, mechanical data. . . . 25
24-pin plastic small outline package- 300-mil width, mechanical data . . . . . . . . . . . . . . . . 26
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3/28
List of figures
ST7GEME4
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
4/28
ST7GEME4 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
24-lead VFQFPN package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
24-pin SO package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Smartcard interface reference application - 24-pin SO package . . . . . . . . . . . . . . . . . . . . . 9
Typical application with an external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Typical application with a crystal resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
USB data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
24-lead very thin fine pitch quad flat no-lead 5x5 mm 0.65 mm pitch, package outline . . . 25
24-pin plastic small outline package- 300-mil width, package outline. . . . . . . . . . . . . . . . . 26
ST7GEME4
1
Introduction
Introduction
The ST7GEME4 device is a member of the ST7 microcontroller family designed for USB
applications. All devices are based on a common industry-standard 8-bit core, featuring an
enhanced instruction set.
The ST7GEME4 is factory-programmed ROM devices and as such are not
reprogrammable.
It operates at a 4 MHz external oscillator frequency.
Under software control, all devices can be placed in Halt mode, reducing power
consumption when the application is in idle or stand-by state.
The enhanced instruction set and addressing modes of the ST7 offer both power and
flexibility to software developers, enabling the design of highly efficient and compact
application code. In addition to standard 8-bit data management, all ST7 microcontrollers
feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.
The ST7GEME4 includes an ST7 Core, up to 16 Kbytes of program memory, up to 512
bytes of user RAM and the following on-chip peripherals:
●
USB full speed interface with 7 endpoints, programmable in/out configuration and
embedded 3.3 V voltage regulator and transceivers (no external components are
needed).
●
ISO 7816-3 UART interface with programmable baud rate from 372 clock pulses up to
11.625 clock pulses
●
Smartcard supply block able to provide programmable supply voltage and I/O voltage
levels to the smartcards
●
Low voltage reset ensuring proper power-on or power-off of the device (selectable by
option)
●
8-bit timer (TBU)
5/28
Introduction
ST7GEME4
Figure 1.
ST7GEME4 block diagram
OSCIN
4MHz
OSCILLATOR
OSCOUT
PORT A
PA[1:0]
PLL
48 MHz
DIVIDER
USBDP
USBDM
USBVCC
USB
8-BIT TIMER
PA6
CONTROL
VPP
8-BIT CORE
ALU
ADDRESS AND DATA BUS
USB
DATA
BUFFER
(256 bytes)
8 MHz
or 4 MHz
LED
LED0
ISO 7816 UART
SUPPLY
MANAGER
DIODE
SELF
DC/DC
CONVERTER
CRDC4
RAM
(512 Bytes)
6/28
CRDDET
CRDIO
LVD
PROGRAM
MEMORY
(16K Bytes)
CRDVCC
CRDC8
3V/1.8V Vreg
CRDRST
CRDCLK
ST7GEME4
Pin description
DIODE
SELF
VDD
24
23
22
21
20
2
17
DP
CRDCLK
3
16
DM
C4
4
15
LED0
CRDIO
5
14
PA6
C8
6
13
VPP
9
10
11
USBVCC
12
OSCOUT
8
OSCIN
CRDRST
NC
19
18
ICCCLK/WAKUP2
1
ICCDATA/WAKUP2/
CRDVCC
7
Figure 3.
VDDA
GNDA
24-lead VFQFPN package pinout
GND
Figure 2.
CRDDET
2
Pin description
24-pin SO package pinout
DIODE
GNDA
GND
CRDVCC
CRDRST
CRDCLK
C4
CRDIO
C8
CRDDET
ICCDATA/WAKUP2/
ICCCLK/WAKUP2/P
1
2
3
4
5
6
7
8
9
10
11
12
24
23
22
21
20
19
18
17
16
15
14
13
SELF
VDD
VDDA
USBVcc
DP
DM
LED0
PA6
VPP
OSCOUT
OSCIN
NC
7/28
Pin description
ST7GEME4
Legend / Abbreviations
Type: I = input, O = output, S = supply
●
In/Output level: CT = CMOS 0.3VDD/0.7VDD with input trigger
●
Output level: HS = 10mA high sink (on N-buffer only)
●
Port and control configuration:
–
Input: float = floating, wpu = weak pull-up, int = interrupt, ana = analog
–
Output: OD = open drain, PP = push-pull
Pin description
Port / Control
Main
function
(after reset)
CT
X
X
Smartcard reset
3
6
CRDCLK
O
CT
X
X
Smartcard clock
4
7
C4
O
CT
X
X
Smartcard C4
5
8
CRDIO
I/O
6
9
C8
O
7
10
CRDDET
I
CT
CT
C
X
X
PP
int
Output
OD
O
Input
wpu
CRDRST
Output
5
Input
2
Pin name
Type
SO24
Level
VFQFPN24
Pin number
VCARD supplied
Table 2.
●
X
X
Alternate function
Smartcard I/O
X
X
Smartcard C8
Smartcard detection
T
8
11
PA0/WAKUP2/
ICCDATA
I/O
CT
X
X
X
X
Port A0
Interrupt, In-circuit
communication data input
9
12
PA1/WAKUP2/
ICCCLK
I/O
CT
X
X
X
X
Port A1
Interrupt, In-circuit
communication clock input
11
14
OSCIN
C
Input/output oscillator pins. These pins
connect a 4 MHz parallel-resonant crystal, or
an external source to the on-chip oscillator.
T
12
15
OSCOUT
CT
13
16
VPP
S
14
17
PA6
I
Must be held low in normal operating mode.
C
PA6
T
15
18
LED0
O
16
19
DM
I/O
CT
USB Data Minus line
17
20
DP
I/O
CT
USB Data Plus line
18
21
USBVCC
O
19
22
VDDA
S
Power Supply voltage 4-5.5 V
20
23
VDD
S
Power Supply voltage 4-5.5 V
21
24
SELF
O
CT
An external inductance must be connected to
these pins for the step up converter
22
1
DIODE
S
CT
An external diode must be connected to this
pin for the step up converter
8/28
HS
CT
X
Constant current output
3.3 V output for USB
ST7GEME4
3
GND
S
1
4
CDRVCC
O
Main
function
(after reset)
PP
24
Output
OD
S
Input
int
GNDA
Port / Control
wpu
2
Pin name
Output
23
Type
SO24
Level
VFQFPN24
Pin number
VCARD supplied
Pin description (continued)
Input
Table 2.
Pin description
Alternate function
Ground
Figure 4.
CT
X
Smartcard supply pin
Smartcard interface reference application - 24-pin SO package
VDD
C1
L1
D1
C3
C4
C5
C6
SELF
DIODE
VDD
GNDA
VDDA
GND
CRDVCC USBVcc
DP
CRDRST
DM
CRDCLK
LED0
C4
CRDIO
PA6
C8
VPP
CRDDET OSCOUT
PA0
OSCIN
NC
PA1
VDD
C2
R
LED
D+
DVDD
CL1
CL2
1. Mandatory values for the external components:
C1 = 4.7 µF; C2 = 100 nF. C1 and C2 must be located close to the chip (refer to Section 4.4.2.).
C3 = 1 nF;
C4 = 4.7 µF ESR 0.5 Ω.
C5 : 470 pF;
C6 : 100 pF;
R : 1.5kΩ;
L1 : 10 µH, 2 Ω;
Crystal 4.0 MHz; Impedance max100 Ω
D1: BAT42 SHOTTKY.
9/28
ST7GEME4 implementation
3
ST7GEME4
ST7GEME4 implementation
The ST7GEME4 has been developed to offer a complete ready-to-use firmware solution
which allows fast development and rapid time-to-market of smartcard reader applications.
It offers a single IC solution and simplifies the integration of smartcard interfaces into
electronic devices such as computers, POS terminals, mobile phones, PDAs, home routers,
and set-top boxes. Pre-programmed with communication software from our partner
GEMPLUS, the ST7GEME4 is a complete firmware solution controlling the communication
between ISO 7816 1-2-3-4 cards and a host system. An evaluation kit and reference design
with a complete bill of materials and PCB recommendations are available. The ST7GEME4
complies with EMVCo/EMV2000 standards. Software support and engineering expertise in
system integration and PCB design are available as additional services.
3.1
Functionality
The core functionality of ST7GEME4 resides in its pre-programmed software embedded in
ROM memory. GemCoreTM technology manages the communication protocol to/from the
host computer and the external card. Basic features and compliance are described in the
features section and in Table 3 on page 11.
A dedicated analog block provides smartcard power supplies 1.8 V, 3 V, and 5 V necessary
to interface with different card voltages available on the market. Voltages are selected by
software. External LEDs can also be directly connected to dedicated I/Os.
A dedicated UART interface provides an ISO 7816 communication port for connection with
the smartcard connector. A full-speed USB interface port allows external connection to a
host computer. An optional RS232 connection is also available on dedicated I/Os.
3.2
Smartcard interface features
The ST7GEME4 firmware includes the following features:
●
Compatibility with asynchronous cards
●
Compatibility with T=0 and T=1 protocols
●
Compatibility with EMV and PC/SC modes.
●
Compatibility with ISO 7816-3 and 4 and ability to supply the cards with 5V, 3V or 1.8V
(class A, B or C cards, respectively)
●
Resume/wake-up mode upon smartcard insertion/removal
Further details on smartcard management can be found in "Gemcore USB Pro reference
manual" from Gemplus.
The reader is able to communicate with smartcards up to the maximum baud rate allowed,
namely 344 086 bps (TA1=16) for a clock frequency of 4 MHz. Because the size of the
smartcard buffer is 261 bytes, care must be taken not to exceed this size during APDU
exchanges when the protocol in use is T=1.
10/28
ST7GEME4
3.3
ST7GEME4 implementation
EMV versus PC/SC-ISO mode
The ST7GEME4 supports two operating modes:
●
An EMV mode, based on the EMV4.1 specifications
●
A PC/SC-ISO mode which allows to manage of a smartcard according to the PC/SC
and ISO 7816-3 standards
The default mode is PC/SC, however, the reader can switch between EMV and PC/SC-ISO
modes.
GemCore2000 is a utility in charge of managing the switching between the two modes.
When the utility is activated, the reader attempts EMV mode management whenever a
smartcard is inserted. If reading is successful, PC/SC mode will not be available.
Caution:
The activation of the GemCore2000 utility must be done before any card command. Any
activation of the GemCore2000 utility is not recommended unless the reader is reset.
The EMV mode fails if:
●
The smartcard has not sent an EMV-compliant answer to reset (ATR)
●
Negotiation of the buffer size with a T=1 card has failed
Using PC/SC-ISO mode with GemCore2000
The reader switches to PC/SC mode after the application or the driver has sent the
appropriate dedicated command to the reader (with a proprietary Escape command). In this
case, the reader remains in PC/SC mode as long as the card remains in the reader.
Whenever the EMV mode fails, the smartcard is powered off. After the host application has
sent the PC/SC switch (proprietary) Escape command, the application must send a new
Card Power On command.
When the reader deals with an EMV card, the data exchanged between the reader and the
host consists of short APDU messages. When the card is not EMV-compliant and the reader
is set to PC/SC-ISO mode, the reader exchanges TPDU messages with the host.
Restriction: character level and the extended APDU are not implemented in ST7GEME4
solution.
Table 3.
Technical features
Features
Supported
smartcards
Smartcard
electrical interface
Description
Characteristics
Asynchronous
– Microprocessor cards
– T=0, T=1 protocols
– Transmission rate: 2 Kbps to 344 Kbps
Synchronous
– Through a comprehensive API
Smartcard power supply
– 5V/55mA and 3V/50mA and 1.8V/20mA
– Short circuit current limitation
– Power up/power down control sequences
Smartcard management
– Card insertion/extraction detection
ESD protection on card I/O
– 4 kV Human Body Model
11/28
ST7GEME4 implementation
Table 3.
ST7GEME4
Technical features (continued)
USB and serial versions
Drivers
Microsoft Windows 2000/XP/Server 2003
Microsoft Windows CE 4.1/4.2/5.0
Linux Red Hat/SUSE/Debian
Microsoft Windows XP 64-bit on AMD64 and
EMT64
– Microsoft Windows Server 2003 64-bit
– Mac OS 10.3/10.4
Compliance with class drivers
– Microsoft Windows 2000/XP/Server 2003
– Microsoft Windows Vista (beta version)
– Mac OS 10.3/10.4
USB interface
USB 2.0 compliant
– CCID V1.0
– Full speed, hubless
– Bus powered, low consumption
Serial host
interface
Serial asynchronous link
– Transmission rate: 9.6 Kbps to 115 Kbps
– Format: 8-bit, no parity
– Auto baud rate
Communication protocol
– CCID V1.0 on serial TTL link
Temperature range
– Operating range: 0 to +70°C
– Storage: -65 to +150°C
Environmental standard
– RoHS compliant
Other features
12/28
–
–
–
–
ST7GEME4
Electrical characteristics
4
Electrical characteristics
4.1
Absolute maximum ratings
The ST7GEME4 contains circuitry to protect the inputs against damage due to high static
voltages. However it is advisable to take normal precautions to avoid applying any voltage
higher than the specified maximum rated voltages.
For proper operation it is recommended that VI and VO be higher than VSS and lower than
VDD. Reliability is enhanced if unused inputs are connected to an appropriate logic voltage
level (VDD or VSS).
Power considerations
The average chip-junction temperature, TJ, in Celsius can be obtained by the following
equation:
T J = T A + PD × RthJA
where:
TA = Ambient temperature
RthJA = Package thermal resistance (junction-to ambient)
PD = PINT + PPORT
PINT = IDD x VDD (chip internal power)
PPORT = Port power dissipation determined by the user
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device at these
conditions is not implied. Exposure to maximum rating for extended periods may affect
device reliability.
Table 4.
Absolute maximum ratings
Symbol
VDD - VSS
Ratings
Supply voltage
Value
Unit
6.0
V
Input voltage
VSS - 0.3 to VDD + 0.3
V
VOUT
Output voltage
VSS - 0.3 to VDD + 0.3
V
ESD
ESD susceptibility
2000
V
ESDCard
ESD susceptibility for card pads
4000
V
IVDD_i
Total current into VDD_i (source)
250
IVSS_i
Total current out of VSS_i (sink)
250
VIN
Warning:
mA
Direct connection to VDD or VSS of the I/O pins could damage
the device in case of program counter corruption (due to
unwanted change of the I/O configuration). To guarantee safe
conditions, this connection has to be done through a typical
10kΩ pull-up or pull-down resistor.
13/28
Electrical characteristics
Table 5.
ST7GEME4
Thermal characteristics
Symbol
Value
Unit
VFQFPN24
42
°C/W
SO24
80
°C/W
RthJA
Package thermal resistance
TJmax
Max. junction temperature
150
°C
TSTG
Storage temperature range
-65 to +150
°C
VFQFPN24
600
mW
SO24
500
mW
PDmax
4.2
Ratings
Power dissipation
Recommended operating conditions
Table 6.
Symbol
General operating conditions
Parameter
VDD
Supply voltage
fOSC
External clock source
TA
Conditions
Min
Typ
4.0
Max
Unit
5.5
V
4
Ambient temperature range
0
MHz
70
°C
Operating conditions are given for TA = 0 to +70 °C unless otherwise specified.
Table 7.
Symbol
Current injection on I/O port and control pins(1)
Parameter
Conditions
Min Typ Max Unit
VEXTERNAL>VDD (Standard I/Os)
IINJ+
Total positive injected
current(2)(3)
IINJ-
Total negative injected current VEXTERNAL<VSS
(4)(5)
VEXTERNAL<VSS
VEXTERNAL>VCRDVCC (Smartcard
I/Os)
Digital pins
Analog pins
20
mA
20
mA
1. When several inputs are submitted to a current injection, the maximum injected current is the sum of the
positive (resp. negative) currents (instantaneous values).
2. Positive injection. The IINJ+ is done through protection diodes insulated from the substrate of the die.
3.
For SmartCard I/Os, VCRDVCC has to be considered.
4. The negative injected current, IINJ-, passes through protection diodes which are NOT INSULATED from the
substrate of the die. The drawback is a small leakage (few µA) induced inside the die when a negative
injection is performed. This leakage is tolerated by the digital structure. The effect depends on the pin
which is submitted to the injection. Of course, external digital signals applied to the component must have
a maximum impedance close to 50kΩ.
5. Location of the negative current injection: Pure digital pins can tolerate 1.6mA. In addition, the best choice
is to inject the current as far as possible from the analog input pins.
14/28
ST7GEME4
Electrical characteristics
Table 8 characteristics are measured at TA=0 to +70oC, and VDD-VSS=5.5V unless
otherwise specified.
Table 8.
Symbol
Current consumption(1)
Parameter
Supply current in RUN mode
IDD
Conditions
(2)
Min
Typ.
Max
Unit
10
15
mA
fOSC = 4MHz
External ILOAD = 0mA
Supply current in suspend mode (USB transceiver
enabled)
Supply current in Halt mode
500
µA
External ILOAD = 0mA
(USB transceiver
disabled)
50
100
1. All I/O pins are in input mode with a static value at VDD or VSS; clock input (OSCIN) driven by external
square wave.
2. CPU running with memory access, all I/O pins in input mode with a static value at VDD or VSS; clock input
(OSCIN) driven by external square wave.
Table 9 characteristics are measured at TA=0 to +70oC. Voltage are referred to VSS unless
otherwise specified.
Table 9.
Symbol
I/O port pins characteristics
Parameter
Conditions
VIL
Input low level voltage
VDD=5V
VIH
Input high level voltage
VDD=5V
VHYS
Schmidt trigger voltage
hysteresis(1)
VOL
VOH
IL
Output low level voltage for
Standard I/O port pins
Output high level voltage
Input leakage current
Min
Typ
Max
0.3VDD
mV
I=-5mA
1.3
I=-2mA
0.4
1
µA
kΩ
RPU
Pull-up equivalent resistor
50
90
170
tOHL
Output high to low level fall time
for high sink I/O port pins (Port
D)(2)
6
8
13
tOHL
Output high to low level fall time
for standard I/O port pins (Port A,
B or C)(2)
tOLH
Output L-H rise time (Port D)(2)
7
tOLH
Output L-H rise time for standard
I/O port pins (Port A, B or C)(2)
19
External interrupt pulse time
1
tITEXT
V
VDD0.8
VSS<VPIN<VDD
Cl=50pF
V
0.7VDD
400
I=3mA
Unit
18
23
9
ns
14
28
tCPU
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
2. Guaranteed by design, not tested in production.
15/28
Electrical characteristics
Table 10.
Symbol
4.3
ST7GEME4
LED pins characteristics
Parameter
Conditions
Min
ILsink
Low current
VPAD > VDD-2.4
2
ILsink
High current
VPAD > VDD-2.4 for ROM
5
Typ
Max
Unit
4
mA
6
8.4
Supply and reset characteristics
Table 11 characteristics are measured at T = 0 to +70 oC, VDD - VSS = 5.5 V unless
otherwise specified.
Table 11.
Symbol
Low voltage detector and supervisor characteristics (LVDS)
Parameter
VIT+
Reset release threshold
(VDD rising)
VIT-
Reset generation threshold
(VDD falling)
Vhys
Hysteresis VIT+ - VIT-(1)
VtPOR
VDD rise time rate
Conditions
Min
3.3
1)
Typ
Max
Unit
3.7
3.9
V
3.5
V
200
mV
20
ms/V
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4.4
Clock and timing characteristics
4.4.1
General timings
Table 12 characteristics are measured at T = 0 to +70 oC unless otherwise specified.
Table 12.
General timings
Symbol
Parameter
tc(INST)
Instruction cycle time
tv(IT)
Conditions
fCPU=4 MHz
Interrupt reaction time(2)
tv(IT) = ∆tc(INST) + 10(3)
fCPU=4 MHz
Min
Typ(1)
Max
Unit
2
3
12
tCPU
500
750
3000
ns
10
22
tCPU
2.5
5.5
µs
1. Data based on typical application software.
2. Time measured between interrupt event and interrupt vector fetch. ∆tc(INST) is the number of tCPU cycles
needed to finish the current instruction execution.
3. ∆tINST is the number of tCPU to finish the current instruction execution.
16/28
ST7GEME4
Electrical characteristics
Table 13.
External clock source
Symbol
Parameter
Conditions
VOSCINH
OSCIN input pin high level
voltage
VOSCINL
OSCIN input pin low level voltage
IL
Typ
Max
0.7VDD
VDD
VSS
0.3VDD
Unit
V
see Figure 5
tw(OSCINH)
OSCIN high or low time(1)
tw(OSCINL)
tr(OSCIN)
tf(OSCIN)
Min
15
ns
OSCIN rise or fall time(1)
15
VSS≤VIN≤VDD
OSCx Input leakage current
±1
µA
1. Data based on design simulation and/or technology characteristics, not tested in production.
Figure 5.
Typical application with an external clock source
90%
VOSCINH
10%
VOSCINL
tr(OSCIN)
tf(OSCIN)
tw(OSCINH)
tw(OSCINL)
OSCOUT
fOSC
EXTERNAL
CLOCK SOURCE
OSCIN
IL
ST7XXX
17/28
Electrical characteristics
4.4.2
ST7GEME4
Crystal resonator oscillators
The ST7 internal clock is supplied with one Crystal resonator oscillator. All the information
given in this paragraph are based on characterization results with specified typical external
components. In the application, the resonator and the load capacitors have to be placed as
close as possible to the oscillator pins in order to minimize output distortion and start-up
stabilization time. Refer to the crystal resonator manufacturer for more details (frequency,
package, accuracy...).
Table 14.
Crystal resonator oscillator characteristics
Symbol
Parameter
Conditions
Oscillator Frequency(1)
fOSC
Feedback resistor
CL1
CL2
Recommended load
capacitances versus equivalent
serial resistance of the crystal
resonator (RS)
OSCOUT driving current
Typ
MP: Medium power oscillator
RF
i2
Min
Max
Unit
4
MHz
90
150
kΩ
(MP oscillator)
22
56
pF
VDD=5V, VIN=VSS (MP oscillator)
1.5
3.5
mA
See Table 16
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value.
Refer to crystal resonator manufacturer for more details.
Table 15.
Typical crystal resonator characteristics
Crystal
Oscillator
MP
Reference
JAUCH
SS3-400-3030/30
Freq.
Characteristic(1)
CL1
[pF]
CL2
[pF]
tSU(osc)
[ms](2)
4 MHz
∆fOSC=[±30ppm25°C,±30ppm∆Ta],
Typ. RS=60Ω
33
33
7~10
1. Resonator characteristics given by the crystal resonator manufacturer.
2. tSU(OSC) is the typical oscillator start-up time measured between VDD=2.8 V and the fetch of the first instruction (with a quick
VDD ramp-up from 0 to 5 V (<50 µs).
Table 16.
Recommended values for 4 MHz crystal resonator
Symbol
Min
Typ
Max
Unit
RSMAX(1)
20
25
70
Ω
COSCIN
56
47
22
pF
COSCOUT
56
47
22
1. RSMAX is the equivalent serial resistor of the crystal (see crystal specification).
18/28
ST7GEME4
Electrical characteristics
Figure 6.
Typical application with a crystal resonator
WHEN RESONATOR WITH
INTEGRATED CAPACITORS
i2
fOSC
CL1
OSCIN
RESONATOR
CL2
4.5
RF
OSCOUT
ST7XXX
Memory characteristics
Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified.
Table 17.
RAM and hardware registers
Symbol
VRM
Parameter
Data retention
Conditions
mode(1)
Min
Halt mode (or Reset)
Typ
Max
2
Unit
V
1. Minimum VDD supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in
hardware registers (only in Halt mode). Not tested in production.
4.6
Smartcard supply supervisor electrical characteristics
Table 18 characteristics are measured at TA = 0 to +70 oC, 4.0 V < VDD - VSS < 5.5 V unless
otherwise specified.
Table 18.
Symbol
Smartcard supply supervisor characteristics
Parameter
Conditions
Min
Typ
Max
Unit
4.6
5.00
5.4
V
5 V regulator output (for IEC 7816-3 Class A Cards)
VCRDVCC
SmartCard power supply
voltage
ISC
SmartCard supply current
55
mA
IOVDET
Current overload detection
120(1)
mA
tIDET
Detection time on current
overload
1400(1)
µs
tOFF
VCRDVCC turn-off time
CLOADmax ≤ 4.7µF
750
µs
tON
VCRDVCC turn-on time
CLOADmax ≤ 4.7µF
500
µs
4.76(1)
V
100
mA
VCRDVCC
IVDD
170(1)
VCARD above minimum supply
voltage
VDD supply current
150
4.52(1)
(2)
19/28
Electrical characteristics
Table 18.
ST7GEME4
Smartcard supply supervisor characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
3.3
V
50
mA
3 V regulator output (for IEC 7816-3 Class B Cards)
VCRDVCC
SmartCard power supply
voltage
ISC
SmartCard supply current
2.7
(1)
IOVDET
Current overload detection
tIDET
Detection time on current
overload
tOFF
VCRDVCC turn-off time
CLOADmax ≤ 4.7µF
tON
VCRDVCC turn-on time
CLOADmax ≤ 4.7µF
170(1)
150
100
mA
1400(1)
µs
750
µs
500
µs
1.95
V
1.8V regulator output (for IEC 7816-3 Class C Cards)
VCRDVCC
SmartCard power supply
voltage
ISC
SmartCard supply current
20
mA
IOVDET
Current overload detection
100(1)
mA
tIDET
Detection time on current
overload
1400(1)
µs
tOFF
VCRDVCC turn-off time
CLOADmax ≤ 4.7µF
750
µs
tON
VCRDVCC turn-on time
CLOADmax ≤ 4.7µF
150
500
µs
-
0.4(3)
V
-
-
V
1.65
170(1)
Smartcard CLKPin
VOL
Output low level voltage
I = -50 µA
VOH
Output high level voltage
TOHL
Output high to low fall time(1)
TOLH
FVAR
FDUTY
I = 50 µA
(1)
Output low to high rise time
Frequency
Duty
VCRDVCC
-0.5(3)
Cl = 30 pF
-
20
ns
Cl = 30 pF
-
20
ns
-
1
%
45
55
%
variation(1)
cycle(1)
POL
Signal low perturbation(1)
-0.25
0.4
V
POH
Signal high perturbation(1)
VCRDVCC-0.5
VCRDVCC
+0.25
V
ISGND
Short-circuit to ground(1)
15
mA
Smartcard I/O Pin
VIL
Input low level voltage
-
-
0.5(3)
V
VIH
Input high level voltage
0.6VCRDVCC(3)
-
-
V
-
0.4(3)
V
-
VCRDVCC(3)
V
-
10
µA
24
30
kΩ
VOL
VOH
IL
IRPU
20/28
Output low Level Voltage
Output high level voltage
Input leakage
current(1)
Pull-up equivalent resistance
I = -0.5 mA
I = 20 µA
VSS<VIN<VSC_PWR
VIN=VSS
0.8VCRDVCC
-10
(3)
ST7GEME4
Table 18.
Electrical characteristics
Smartcard supply supervisor characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
TOHL
Output high to low fall time
Cl = 30 pF
-
0.8
µs
TOLH
Output low to high rise time(1)
Cl = 30 pF
-
0.8
µs
ISGND
(1)
Short-circuit to ground
(1)
15
mA
Smartcard RST C4 and C8 Pin
VOL
Output low Level Voltage
I = -0.5 mA
-
-
0.4 (3)
V
VOH
Output high level voltage
I = 20 µA
VCRDVCC-0.5(3)
-
VCRDVCC(3)
V
Cl = 30 pF
-
0.8
µs
Cl = 30 pF
-
0.8
µs
TOHL
TOLH
ISGND
(1)
Output high to low fall time
Output low to high rise
Short-circuit to
time(1)
ground(1)
15
mA
1. Guaranteed by design.
2. VDD = 4.75 V, Card consumption = 55mA, CRDCLK frequency = 4MHz, LED with a 3mA current, USB in reception mode
and CPU in WFI mode.
3. Data based on characterization results, not tested in production.
4.7
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
4.7.1
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two electromagnetic events until a failure occurs (indicated by the
LEDs).
●
ESD: electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 1000-4-2
standard.
●
FTB: a burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 1000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
21/28
Electrical characteristics
ST7GEME4
Software recommendations
The software flowchart must include the management of runaway conditions such as:
●
Corrupted program counter
●
Unexpected reset
●
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 19.
EMS characteristics
Symbol
4.7.2
Parameter
Level/
Class
Conditions
VFESD
Voltage limits to be applied on any I/O pin to VDD=5 V, TA=+25 °C, fOSC=8 MHz
induce a functional disturbance
conforms to IEC 1000-4-2
2B
VFFTB
Fast transient voltage burst limits to be
VDD=5 V, TA=+25 °C, fOSC=8 MHz
applied through 100 pF on VDD and VDD pins
conforms to IEC 1000-4-4
to induce a functional disturbance
4B
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm SAE J 1752/3 which specifies the board and the loading of each pin.
Table 20.
Symbol
EMI characteristics
Parameter
Conditions
Monitored
frequency band
Max vs.
[fOSC/fCPU](1)
Unit
4/8 MHz 4/4 MHz
0.1 MHz to
30 MHz
SEMI
Peak level
30 MHz to
VDD=5 V, TA=+25 °C,
130 MHz
conforming to SAE J 1752/3
130 MHz to
1 GHz
SAE EMI Level
1. Data based on characterization results, not tested in production.
22/28
19
18
32
27
31
26
4
3.5
dBµ
V
-
ST7GEME4
4.7.3
Electrical characteristics
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU and DLU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). The Human
Body Model is simulated. This test conforms to the JESD22-A114A standard.
Table 21.
Symbol
VESD(HBM)
Absolute maximum ratings
Ratings
Electrostatic discharge voltage
(Human Body Model)
Conditions
TA=+25 °C
Maximum
value(1)
Unit
2000
V
1. Data based on characterization results, not tested in production.
Static and dynamic latch-up
●
LU: 3 complementary static tests are required on 10 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output and configurable I/O pin) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,
refer to the application note AN1181.
●
DLU: Electrostatic discharges (one positive then one negative test) are applied to each
pin of 3 samples when the micro is running to assess the latch-up performance in
dynamic mode. Power supplies are set to the typical values, the oscillator is connected
as near as possible to the pins of the micro and the component is put in reset mode.
This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details,
refer to the application note AN1181.
Table 22.
Symbol
LU
DLU
Electrical sensitivities
Parameter
Static latch-up class
Dynamic latch-up class
Conditions
Class(1)
TA=+25 °C
A
VDD=5.5 V, fOSC=4 MHz,
TA=+25 °C
A
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B
Class strictly covers all the JEDEC criteria (international standard).
23/28
Electrical characteristics
4.8
ST7GEME4
Communication interface characteristics
USB DC electrical characteristics(1)
Table 23.
Parameter
Symbol
Conditions
Min.
Max.
Unit
Differential input sensitivity
VDI
I(D+, D-)
0.2
Differential common mode
range
VCM
Includes VDI range
0.8
2.5
V
Single ended receiver
threshold
VSE
1.3
2.0
V
0.3
V
Input Levels
V
Output levels
Static output low
VOL
RL of 1.5 kΩ to 3.6 V
Static Output high
VOH
RL of 15 kΩ to VSS
2.8
3.6
V
USBVCC: voltage level
USBV
VDD=5 V
3.00
3.60
V
1. RL is the load connected on the USB drivers. All the voltages are measured from the local ground
potential.
Figure 7.
USB data signal rise and fall time
Differential
Data Lines
Crossover
points
VCRS
VSS
tr
tf
Table 24.
USB full speed electrical characteristics
Parameter
Symbol
Conditions
Min
Max
Unit
tr
CL = 50 pF(1)
4
20
ns
Fall time
tf
(1)
4
20
ns
Rise/ fall time
matching
trfm
90
110
%
Output signal
crossover Voltage
VCRS
1.3
2.0
V
Driver characteristics:
Rise time
CL = 50 pF
tr/tf
1. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to Chapter 7
(Electrical) of the USB specification (version 1.1).
24/28
ST7GEME4
Package characteristics
5
Package characteristics
5.1
Package mechanical data
Figure 8.
24-lead very thin fine pitch quad flat no-lead 5x5 mm 0.65 mm pitch, package outline
D
C
e
24
19
1
b
E2
E
e
18
13
L
6
12
7
b
A1
L
A
D2
Table 25.
24-lead very thin fine pitch quad flat no-lead 5x5mm,0.65mm pitch, mechanical data
inches(1)
mm
Dim.
A
Min
Typ
Max
Min
Typ
Max
0.80
0.90
1.00
0.031
0.035
0.039
0.02
0.05
0.001
0.002
0.30
0.35
0.012
0.014
A1
b
0.25
D
D2
5.00
3.50
E
E2
ddd
3.60
0.197
3.70
0.138
5.00
3.50
e
L
0.010
3.60
0.45
0.146
0.197
3.70
0.138
0.65
0.35
0.142
0.142
0.146
0.026
0.55
0.014
0.08
0.018
0.022
0.003
Number of pins
N
24
1. Values in inches are converted from mm and rounded to 3 decimal digits.
25/28
Package characteristics
Figure 9.
ST7GEME4
24-pin plastic small outline package- 300-mil width, package outline
D
12
1
h x 45˚
C
E
13
H
28
A
B
A1
e
ddd
A1
α
L
9U_ME
Table 26.
24-pin plastic small outline package- 300-mil width, mechanical data
mm
inches
Dim.
Min
Typ
Max
Min
Max
A
2.35
2.65
0.093
0.104
A1
0.10
0.30
0.004
0.012
B
0.33
0.51
0.013
0.020
C
0.23
0.32
0.009
0.020
D
15.20
15.60
0.599
0.619
E
7.40
7.60
0.291
0.299
e
1.27
0.050
H
10.00
10.65
0.394
0.419
h
0.25
0.75
0.010
0.030
α
0°
8°
0°
8°
L
0.40
1.27
0.016
0.050
ddd
0.10
0.004
Number of pins
N
26/28
Typ
24
ST7GEME4
6
Revision history
Revision history
Table 27.
Document revision history
Date
Revision
01-Aug-06
0.1
10-May-2007
1
Root part number changed from ST7GEM to ST7GEME4.
2
Document reformatted.
Modified Figure 1 title.
USB host interface replaced by USB interface in Section 1:
Introduction and Table 3: Technical features.
Updated Figure 9: 24-pin plastic small outline package- 300-mil
width, package outline. ddd tolerance and maximum values in inched
added in Table 26: 24-pin plastic small outline package- 300-mil
width, mechanical data.
QFN24 package renamed VFQFPN24. Figure 8: 24-lead very thin
fine pitch quad flat no-lead 5x5 mm 0.65 mm pitch, package outline
updated to remove A2 and A3 dimensions.
21-Sep-2007
Changes
Initial release
27/28
ST7GEME4
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
28/28