STMICROELECTRONICS TDA7563ASMTR

TDA7563A
4 x 50W multifunction quad power amplifier
with built-in diagnostics feature
Features
■
Multipower BCD technology
■
MOSFET output power stage
■
DMOS power output
■
New high efficiency (class SB)
■
High output power capability 4x28W/4Ω @
14.4V, 1kHz, 10% THD, 4x50W max power
■
Max. output power 4x72W/2Ω
■
Full I2C bus driving:
– Standby
– Independent front/rear soft play/mute
– Selectable gain 26dB /12dB (for low noise
line output function)
– High efficiency enable/disable
– I2C bus digital diagnostics (including DC
and AC load detection)
PowerSO36
(Slug up)
Flexiwatt27 (Vertical)
■
Full fault protection
■
DC offset detection
■
Four independent short circuit protection
■
Clipping detector pin with selectable threshold
(2%/10%)
■
Standby/mute pin
■
Linear thermal shutdown with multiple thermal
warning
■
ESD protection
Table 1.
Flexiwatt27 (Horizontal)
Flexiwatt27 (SMD)
Description
The TDA7563A is a new BCD technology Quad
Bridge type of car radio amplifier in Flexiwatt27 &
PowerSO36 packages specially intended for car
radio applications.
Thanks to the DMOS output stage the TDA7563A
has a very low distortion allowing a clear powerful
sound. Among the features, its superior efficiency
performance coming from the internal exclusive
structure, makes it the most suitable device to
simplify the thermal management in high power sets.
The dissipated output power under average
listening condition is in fact reduced up to 50%
when compared to the level provided by
conventional class AB solutions.
This device is equipped with a full diagnostics
array that communicates the status of each
speaker through the I2C bus.
Device summary
Order code
Package
Packing
TDA7563A
Flexiwatt27 (vertical)
Tube
TDA7563AH
Flexiwatt27 (horizontal)
Tube
TDA7563ASM
Flexiwatt27 (SMD)
Tube
TDA7563ASMTR
Flexiwatt27 (SMD)
Tape and reel
TDA7563APD
PowerSO36 (slug up)
Tube
February 2008
Rev 1
1/35
www.st.com
1
Contents
TDA7563A
Contents
1
Block, pins connection and application diagrams . . . . . . . . . . . . . . . . . 5
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3
4
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Diagnostics functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1
Turn-on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2
Permanent diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output DC offset detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1
AC diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2
Multiple faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3
Faults availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6
Fast muting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7
I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.1
I2C programming/reading sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2
I2C bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.3
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.4
Start and stop conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.5
Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.6
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8
Software specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9
Examples of bytes sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2/35
TDA7563A
List of tables
List of tables
Table 1.
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Double fault table for turn on diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Chip address: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
IB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
IB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DB1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
DB2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
DB3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DB4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3/35
List of figures
TDA7563A
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
4/35
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connections - Flexiwatt27 (Top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin connections - PowerSO36 (Top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Quiescent current vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output power vs. supply voltage (4W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output power vs. supply voltage (2W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Distortion vs. output power (4W, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Distortion vs. output power (4Ω, HI-EFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Distortion vs. output power (2Ω, STD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Distortion vs. frequency (4W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Distortion vs. frequency (2W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Crosstalk vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Supply voltage rejection vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Power dissipation and efficiency vs. output power (4W, STD, SINE) . . . . . . . . . . . . . . . . . 12
Power dissipation and efficiency vs. output power (4Ω, HI-EFF, SINE) . . . . . . . . . . . . . . . 12
Power dissipation vs. average output power (audio program simulation, 4W) . . . . . . . . . . 12
Power dissipation vs. average output power (audio program simulation, 2W) . . . . . . . . . . 12
Turn-on diagnostic: working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SVR and output behavior (case 1: without turn-on diagnostic). . . . . . . . . . . . . . . . . . . . . . 14
SVR and output pin behavior (case 2: with turn-on diagnostic) . . . . . . . . . . . . . . . . . . . . . 14
Thresholds for short to GND/VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Thresholds for short across the speaker/open speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Thresholds for line-drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Restart timing without diagnostic enable (permanent) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Restart timing with diagnostic enable (permanent). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Current detection: Load impedance |Z| vs. output peak voltage. . . . . . . . . . . . . . . . . . . . . 18
Thermal foldback diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Data validity on the I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Timing diagram on the I2C bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Timing acknowledge clock pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PowerSO36 (slug up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . 30
Flexiwatt27 (SMD) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . 31
Flexiwatt27 (vertical) mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . 32
Flexiwatt27 (horizontal) mechanical data and package dimensions. . . . . . . . . . . . . . . . . . 33
TDA7563A
1
Block, pins connection and application diagrams
Block, pins connection and application diagrams
Figure 1.
Block diagram
CLK
DATA
VCC1
VCC2
ST-BY/MUTE
Thermal
Protection
& Dump
I2CBUS
Mute1 Mute2
IN RF
Reference
CD_OUT
Clip
Detector
F
OUT RF+
Short Circuit
Protection &
Diagnostic
IN RR
OUT RF-
R
OUT RR+
OUT RR-
Short Circuit
Protection &
Diagnostic
IN LF
F
IN LR
OUT LF+
Short Circuit
Protection &
Diagnostic
R
OUT LFOUT LR+
Short Circuit
Protection &
Diagnostic
AC_GND
SVR
RF RR
OUT LR-
S_GND
TAB
LF LR
PW_GND
Figure 2.
Application circuit
C8
0.1μF
C7
2200μF
Vcc1
V(4V .. VCC)
2
DATA
26
CLK
23
Vcc2
7
21
18
+
19
20
I2C BUS
22
OUT RF
+
25
C1 0.22μF
IN RF
16
24
10
C2 0.22μF
IN RR
+
9
15
8
C3 0.22μF
IN LF
OUT RR
6
12
OUT LF
+
3
C4 0.22μF
IN LR
4
13
S-GND
14
17
11
5
1, 27
OUT LR
TAB
47K
C5
1μF
C6
10μF
V
D00AU1231A
CD OUT
5/35
Block, pins connection and application diagrams
Figure 3.
TDA7563A
Pin connections - Flexiwatt27 (Top view)
27
TAB
27
TAB
26
DATA
26
DATA
25
PW_GND RR
25
PW_GND RR
24
OUT RR-
24
OUT RR-
23
CK
23
CK
22
OUT RR+
22
OUT RR+
21
VCC2
21
VCC2
20
OUT RF-
20
OUT RF-
19
PW_GND RF
19
PW_GND RF
18
OUT RF+
18
OUT RF+
17
AC GND
17
AC GND
16
IN RF
16
IN RF
15
IN RR
15
IN RR
14
S_GND
14
S_GND
13
IN LR
13
IN LR
12
IN LF
12
IN LF
11
SVR
11
SVR
10
OUT LF+
10
OUT LF+
9
PW_GND LF
9
PW_GND LF
8
OUT LF-
8
OUT LF-
7
VCC1
7
VCC1
6
OUT LR+
6
OUT LR+
5
CD-OUT
5
CD-OUT
4
OUT LR-
4
OUT LR-
3
PW_GND LR
3
PW_GND LR
2
STBY
2
STBY
1
TAB
1
TAB
D00AU1416
D00AU1230
Flexiwatt 27 (vertical)
Flexiwatt 27 (horizontal/SMD)
Figure 4.
Pin connections - PowerSO36 (Top view)
VCC
36
1
TAB
OUT3-
35
2
CK
N.C.
34
3
N.C.
N.C.
33
4
OUT4+
PWGND
32
5
N.C.
OUT3+
31
6
PWGND
ACGND
30
7
VCC
IN3
29
8
DATA
IN4
28
9
OUT4-
SGND
27
10
OUT2-
IN2
26
11
STBY
IN1
25
12
VCC
SVR
24
13
PWGND
OUT1+
23
14
N.C.
PWGND
22
15
OUT2+
N.C.
21
16
N.C.
OUT1-
20
17
N.C.
VCC
19
18
CD
D04AU1547A
6/35
TDA7563A
Electrical specifications
2
Electrical specifications
2.1
Absolute maximum ratings
Table 1.
Absolute maximum ratings
Symbol
Parameter
Value
Unit
Vop
Operating supply voltage
18
V
VS
DC supply voltage
28
V
Peak supply voltage (for t = 50ms)
50
V
CK pin voltage
6
V
Data pin voltage
6
V
IO
Output peak current (not repetitive t = 100ms)
8
A
IO
Output peak current (repetitive f > 10Hz)
6
A
Power dissipation Tcase = 70°C
85
W
-55 to 150
°C
Vpeak
VCK
VDATA
Ptot
Tstg, Tj
Storage and junction temperature
2.2
Thermal data
Table 2.
Thermal data
Symbol
Rth j-case
Parameter
Thermal resistance junction to case
PowerSO36
Flexiwatt 27
Unit
1
1
°C/W
Max
2.3
Electrical characteristics
Table 3.
Electrical characteristics
(Refer to the test circuit, VS = 14.4V; f=1kHz; RL=4Ω; Tamb= 25°C unless otherwise specified)
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
18
V
300
mA
Power amplifier
VS
Supply voltage range
Id
Total quiescent drain current
8
170
Max. power (VS = 15.2V, square
wave input (2Vrms))
PO
Output power
50
W
THD = 10%
THD = 1%
25
20
28
22
W
W
RL = 2Ω; EIAJ (VS = 13.7V)
RL = 2Ω; THD 10%
RL = 2Ω; THD 1%
RL = 2Ω; max power
55
40
32
60
68
50
40
75
W
W
W
W
7/35
Electrical specifications
Table 3.
Electrical characteristics (continued)
(Refer to the test circuit, VS = 14.4V; f=1kHz; RL=4Ω; Tamb= 25°C unless otherwise specified)
Symbol
THD
TDA7563A
Parameter
Total harmonic distortion
CT
Cross talk
RIN
GV1
Test condition
Typ.
Max.
Unit
PO = 1 to 10W; STD MODE
HE MODE; PO = 1.5W
HE MODE; PO = 8W
0.015
0.01
0.1
0.1
0.1
0.5
%
%
%
PO = 1-10W, f = 10kHz; STD mode
0.15
0.5
%
RL = 2Ω; HE MODE; Po = 3W
0.02
0.5
%
GV = 12dB; STD mode
VO = 0.1 to 5 VRMS
0.015
0.1
%
50
60
Input impedance
60
100
130
KΩ
Voltage gain 1 (default)
25
26
27
dB
Voltage gain match 1
-1
1
dB
Voltage gain 2
11
13
dB
ΔGV2
Voltage gain match 2
-1
1
dB
EIN1
Output noise voltage 1
Rg = 600Ω;
filter 20 Hz to 22 kHz
35
µV
EIN2
Output noise voltage 2
Rg = 600Ω; GV = 12dB
filter 20 Hz to 22 kHz
11
µV
SVR
Supply voltage rejection
f = 100Hz to 10kHz; Vr = 1Vpk;
Rg = 600Ω
70
dB
BW
Power bandwidth
100
ASB
Standby attenuation
90
ISB
Standby current
AM
Mute attenuation
VOS
Offset voltage
VAM
Min. supply mute threshold
TON
Turn on delay
TOFF
Turn off delay
VSBY
Standby/mute pin for standby
VMU
Standby/mute pin for mute
ΔGV1
GV2
CMRR
Input CMRR
VOP
Standby/mute pin for operating
IMU
Standby/mute pin current
f = 1kHz to 10kHz, Rg = 600Ω
Min.
Vstandby = 0
kHz
110
1
dB
10
µA
80
100
-60
0
60
mV
7
7.5
8
V
D2/D1 (IB1) 0 to 1
5
20
ms
D2/D1 (IB1) 1 to 0
5
20
ms
0
1.5
V
3.5
5
V
Mute & Play
VCM = 1Vpk-pk; Rg = 0 Ω
dB
55
7
dB
VS
V
Vstandby/mute = 8.5V
20
40
μA
Vstandby/mute < 1.5V
0
5
μA
0
5
μA
300
mV
CDLK
Clip det. high leakage current
CD off / VCD = 6V
CDSAT
Clip det. saturation voltage
CD on; ICD = 1mA
8/35
50
12
dB
TDA7563A
Table 3.
Symbol
CDTHD
Electrical specifications
Electrical characteristics (continued)
(Refer to the test circuit, VS = 14.4V; f=1kHz; RL=4Ω; Tamb= 25°C unless otherwise specified)
Parameter
Clip det. THD level
Test condition
Min.
Typ.
Max.
Unit
D0 (IB1) = 1
5
10
15
%
D0 (IB1) = 0
1
2
3
%
1.2
V
Turn on diagnostics 1 (Power amplifier mode)
Pgnd
Short to GND det. (below this
limit, the output is considered in
short circuit to GND)
Pvs
Short to Vs det. (above this
limit, the output is considered in
short circuit to VS)
Pnop
Normal operation thresholds.
(within these limits, the output
is considered without faults).
Vs -1.2
V
Power amplifier in standby
1.8
Lsc
Shorted load det.
Lop
Open load det.
130
Lnop
Normal load det.
1.5
Vs -1.8
V
0.5
Ω
Ω
70
Ω
1.2
V
Turn on diagnosticS 2 (Line driver mode)
Pgnd
Short to GND det. (below this
limit, the output is considered in Power amplifier in standby
short circuit to GND)
Pvs
Short to Vs det. (above this
limit, the output is considered in
short circuit to VS)
Vs -1.2
Pnop
Normal operation thresholds.
(within these limits, the output
is considered without faults).
1.8
Lsc
Shorted load det.
Lop
Open load det.
400
Lnop
Normal load det.
4.5
V
Vs -1.8
V
1.5
Ω
Ω
200
Ω
1.2
V
Permanent diagnostics 2 (Power amplifier mode or line driver mode)
Pgnd
Pvs
Pnop
LSC
Short to GND det. (below this
limit, the output is considered in
short circuit to GND)
Short to Vs det. (above this
Power amplifier in mute or play,
limit, the output is considered in one or more short circuits
short circuit to Vs)
protection activated
Normal operation thresholds.
(within these limits, the output
is considered without faults).
Shorted load det.
Vs -1.2
1.8
V
Vs -1.8
V
Power amplifier mode
0.5
Ω
Line driver mode
1.5
Ω
9/35
Electrical specifications
Table 3.
TDA7563A
Electrical characteristics (continued)
(Refer to the test circuit, VS = 14.4V; f=1kHz; RL=4Ω; Tamb= 25°C unless otherwise specified)
Symbol
Parameter
VO
Offset detection
INL
Normal load current detection
IOL
Open load current detection
Test condition
Min.
Typ.
Max.
Unit
Power amplifier in play, STD mode
AC input signals = 0
±1.5
±2
±2.5
V
500
VO < (VS-5)pk
mA
250
mA
I2C bus interface
SCL
Clock frequency
400
kHz
VIL
Input low voltage
1.5
V
VIH
Input high voltage
2.3
2.4
Electrical characteristics curves
Figure 5.
Quiescent current vs. supply voltage
Figure 6.
Id (mA)
V
Output power vs. supply voltage (4Ω)
Po (W)
250
70
65
230
210
Po-max
60
Vin = 0
NO LOADS
RL = 4 Ohm
f = 1 KHz
55
50
190
THD = 10 %
45
170
40
150
35
30
130
25
110
20
90
15
THD = 1 %
10
70
8
10
12
14
16
18
5
8
Vs (V)
Figure 7.
9
Output power vs. supply voltage (2Ω) Figure 8.
Po (W)
10
11
12
13
Vs (V)
14
15
17
18
Distortion vs. output power (4Ω, STD)
THD (%)
100
16
AC00251
10
90
Po-max
80
1
RL = 2 Ohm
f = 1 KHz
70
f = 10 KHz
THD = 10 %
60
STANDARD MODE
VS = 14.4 V
RL = 4Ω
0.1
50
40
0.01
30
f = 1 KHz
THD = 1 %
20
10
10/35
8
9
10
11
12
Vs (V)
13
14
15
16
0.001
0.1
1
10
Po (W)
100
TDA7563A
Figure 9.
Electrical specifications
Distortion vs. output power (4Ω, HI- Figure 10. Distortion vs. output power (2Ω,
EFF)
STD)
THD (%)
THD (%)
AC00252
AC00253
10
10
HI - EFF MODE
VS = 14.4 V
RL = 4 Ω
1
STANDARD MODE
VS = 14.4 V
RL = 2 Ω
1
f = 10 KHz
f = 10 KHz
0.1
0.1
f = 1 KHz
0.01
0.01
0.001
0.1
1
10
100
f = 1 KHz
0.001
0.1
1
Figure 11. Distortion vs. frequency (4Ω)
THD (%)
10
100
Figure 12. Distortion vs. frequency (2Ω)
THD (%)
AC00254
AC00255
10
STANDARD MODE
VS = 14.4 V
RL = 4 Ω
Po = 4 W
1
STANDARD MODE
VS = 14.4 V
RL = 2 Ω
Po = 8 W
1
0.1
0.1
0.01
0.01
0.001
10
100
1000
10000
100000
0.001
10
100
f (Hz)
Figure 13. Crosstalk vs. frequency
-20
10
Po (W)
Po (W)
-30
-40
-20
-40
-50
-60
-60
-70
-70
-80
-80
-90
-90
100
1000
f (Hz)
10000
100000
100000
AC00257
SVR (dB)
-30
STANDARD MODE
RL = 4 Ω
Po = 4 W
Rg = 600Ω
-50
-100
10
10000
Figure 14. Supply voltage rejection vs.
frequency
AC00256
CROSSTALK (dB)
1000
f (Hz)
-100
10
STD & HE MODE
Rg = 600Ω
Vripple = 1 Vrms
100
1000
10000
100000
f (Hz)
11/35
Electrical specifications
TDA7563A
Figure 15. Power dissipation and efficiency vs. Figure 16. Power dissipation and efficiency vs.
output power (4Ω, STD, SINE)
output power (4Ω, HI-EFF, SINE)
n (%)
Ptot (W)
Ptot (W)
90
90
n
STANDARD MODE
Vs = 14.4 V
RL = 4 x 4 Ohm
f = 1 KHz SINE
80
80
n (%)
90
90
HI-EFF MODE
Vs = 14.4 V
RL = 4 x 4 Ohm
f = 1 KHz SINE
80
80
n
70
70
60
60
60
50
50
50
40
40
30
30
30
30
20
20
20
20
10
10
10
10
70
40
Ptot
0
0
2
4
6
8
Figure 17. Power dissipation vs. average
output power (audio program
simulation, 4Ω)
Ptot (W)
60
50
Ptot
0
0.1
0
10 12 14 16 18 20 22 24 26 28 30
Po (W)
70
40
0
1
10
Po (W)
Figure 18. Power dissipation vs. average
output power (audio program
simulation, 2Ω)
AC00258
45
Ptot (W )
AC00259
90
80
40
STD MODE
Vs = 14 V
RL = 4 x 4 Ohm
GAUSSIAN NOISE
35
Vs = 14 V
RL = 4 x 2 Ohm
GAUSSIAN NOISE
70
STD MODE
60
30
CLIP
START
25
50
HI-EFF MODE
20
CLIP
START
40
15
30
10
20
5
10
HI-EFF MODE
0
0
0
1
2
3
Po (W)
12/35
4
5
0
1
2
3
4
5
Po (W )
6
7
8
9
TDA7563A
Diagnostics functional description
3
Diagnostics functional description
3.1
Turn-on diagnostic
It is activated at the turn-on (standby out) under I2C bus request. Detectable output faults
are:
–
SHORT TO GND
–
SHORT TO Vs
–
SHORT ACROSS THE SPEAKER
–
OPEN SPEAKER
To verify if any of the above misconnections are in place, a subsonic (inaudible) current
pulse (Figure 19) is internally generated, sent through the speaker(s) and sunk back.The
Turn On diagnostic status is internally stored until a successive diagnostic pulse is
requested (after a I2C reading).
If the "standby out" and "diagnostic enable" commands are both given through a single
programming step, the pulse takes place first (power stage still in standby mode, low,
outputs = high impedance).
Afterwards, when the amplifier is biased, the PERMANENT diagnostic takes place. The
previous Turn On state is kept until a short appears at the outputs.
Figure 19. Turn-on diagnostic: working principle
Vs~5V
Isource
I (mA)
Isource
CH+
Isink
CHIsink
~100mS
t (ms)
Measure time
Figure 20 and 21 show SVR and OUTPUT waveforms at the turn-on (standby out) with and
without TURN-ON DIAGNOSTIC.
13/35
Diagnostics functional description
TDA7563A
Figure 20. SVR and output behavior (case 1: without turn-on diagnostic)
Vsvr
Out
Permanent diagnostic
acquisition time (100mS Typ)
t
Diagnostic Enable
(Permanent)
Bias (power amp turn-on)
I2CB DATA
FAULT
event
Read Data
Permanent Diagnostics data (output)
permitted time
Figure 21. SVR and output pin behavior (case 2: with turn-on diagnostic)
Vsvr
Out
Turn-on diagnostic
acquisition time (100mS Typ)
Diagnostic Enable
(Turn-on)
Permanent diagnostic
acquisition time (100mS Typ)
Turn-on Diagnostics data (output)
permitted time
Bias (power amp turn-on)
permitted time
Diagnostic Enable
(Permanent)
Read Data
FAULT
event
t
Permanent Diagnostics data (output)
permitted time
I2CB DATA
The information related to the outputs status is read and memorized at the end of the
current pulse top. The acquisition time is 100 ms (typ.). No audible noise is generated in the
process. As for SHORT TO GND / VS the fault-detection thresholds remain unchanged from
26 dB to 12 dB gain setting. They are as follows:TDA7563A
Figure 22. Thresholds for short to GND/VS
S.C. to GND
0V
14/35
1.2V
x
Normal Operation
1.8V
VS-1.8V
x
S.C. to Vs
VS-1.2V
D01AU1253
VS
TDA7563A
Diagnostics functional description
Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies
from 26 dB to 12 dB gain setting, since different loads are expected (either normal speaker's
impedance or high impedance). The values in case of 26 dB gain are as follows:
Figure 23. Thresholds for short across the speaker/open speaker
S.C. across Load
0V
x
0.5Ω
Normal Operation
1.5Ω
x
Open Load
130Ω
70Ω
Infinite
D01AU1254
If the Line-Driver mode (Gv= 12 dB and Line Driver Mode diagnostic = 1) is selected, the
same thresholds will change as follows:
Figure 24. Thresholds for line-drivers
S.C. across Load
0Ω
x
1.5Ω
Normal Operation
4.5Ω
200Ω
x
Open Load
400Ω
infinite
D01AU1252
3.2
Permanent diagnostics
Detectable conventional faults are:
–
Short to GND
–
Short to Vs
–
Short across the speaker
The following additional features are provided:
–
Output offset detection
The TDA7563A has 2 operating statuses:
1.
RESTART mode. The diagnostic is not enabled. Each audio channel operates
independently from each other. If any of the a.m. faults occurs, only the channel(s)
interested is shut down. A check of the output status is made every 1 ms (Figure 25).
Restart takes place when the overload is removed.
2.
DIAGNOSTIC mode. It is enabled via I2C bus and self activates if an output overload
(such to cause the intervention of the short-circuit protection) occurs to the speakers
outputs. Once activated, the diagnostics procedure develops as follows (Figure 26):
–
To avoid momentary re-circulation spikes from giving erroneous diagnostics, a
check of the output status is made after 1ms: if normal situation (no overloads) is
detected, the diagnostic is not performed and the channel returns back active.
–
Instead, if an overload is detected during the check after 1 ms, then a diagnostic
cycle having a duration of about 100 ms is started.
–
After a diagnostic cycle, the audio channel interested by the fault is switched to
RESTART mode. The relevant data are stored inside the device and can be read
by the microprocessor. When one cycle has terminated, the next one is activated
15/35
Diagnostics functional description
TDA7563A
by an I2C reading. This is to ensure continuous diagnostics throughout the carradio operating time.
–
To check the status of the device a sampling system is needed. The timing is
chosen at microprocessor level (over half a second is recommended).
Figure 25. Restart timing without diagnostic enable (permanent) - Each 1ms time, a
sampling of the fault is done
Out
1-2mS
1mS
1mS
1mS
1mS
t
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
Short circuit removed
Figure 26. Restart timing with diagnostic enable (permanent)
1-2mS
100/200mS
1mS
1mS
t
Overcurrent and short
circuit protection intervention
(i.e. short circuit to GND)
16/35
Short circuit removed
TDA7563A
4
Output DC offset detection
Output DC offset detection
Any DC output offset exceeding +/- 2 V are signalled out. This inconvenient might occur as a
consequence of initially defective or aged and worn-out input capacitors feeding a DC
component to the inputs, so putting the speakers at risk of overheating.
This diagnostic has to be performed with low-level output AC signal (or Vin = 0).
The test is run with selectable time duration by microprocessor (from a "start" to a "stop"
command):
–
START = Last reading operation or setting IB1 - D5 - (OFFSET enable) to 1
–
STOP = Actual reading operation
Excess offset is signalled out if persistent throughout the assigned testing time. This feature
is disabled if any overloads leading to activation of the short-circuit protection occurs in the
process.
4.1
AC diagnostic
It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more
in general, presence of capacitively (AC) coupled loads.
This diagnostic is based on the notion that the overall speaker's impedance (woofer +
parallel tweeter) will tend to increase towards high frequencies if the tweeter gets
disconnected, because the remaining speaker (woofer) would be out of its operating range
(high impedance). The diagnostic decision is made according to peak output current
thresholds, as follows:
Iout > 500mApk = NORMAL STATUS
Iout < 250mApk = OPEN TWEETER
To correctly implement this feature, it is necessary to briefly provide a signal tone (with the
amplifier in "play") whose frequency and magnitude are such to determine an output current
higher than 500mApk with in normal conditions and lower than 250mApk should the parallel
tweeter be missing.
The test has to last for a minimum number of 3 sine cycles starting from the activation of the
AC diagnostic function IB2<D2>) up to the I2C reading of the results (measuring period). To
confirm presence of tweeter, it is necessary to find at least 3 current pulses over 500mA
over all the measuring period, else an "open tweeter" message will be issued.
The frequency / magnitude setting of the test tone depends on the impedance
characteristics of each specific speaker being used, with or without the tweeter connected
(to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals
are recommended for their negligible acoustic impact and also to maximize the impedance
module's ratio between with tweeter-on and tweeter-off.
Figure 27 shows the Load Impedance as a function of the peak output voltage and the
relevant diagnostic fields.
This feature is disabled if any overloads leading to activation of the short-circuit protection
occurs in the process.
17/35
Output DC offset detection
TDA7563A
Figure 27. Current detection: Load impedance |Z| vs. output peak voltage
Load |z| (Ohm)
50
Iout (peak) <250mA
Low current detection area
(Open load)
D5 = 1 of the DBx byres
30
20
Iout (peak) >500mA
10
High current detection area
(Normal load)
D5 = 0 of the DBx bytes
5
3
2
1
1
2
3
4
5
6
7
8
Vout (Peak)
4.2
Multiple faults
When more misconnections are simultaneously in place at the audio outputs, it is
guaranteed that at least one of them is initially read out. The others are notified after
successive cycles of I2C reading and faults removal, provided that the diagnostic is enabled.
This is true for both kinds of diagnostic (Turn on and Permanent).
The table below shows all the couples of double-fault possible. It should be taken into
account that a short circuit with the 4 ohm speaker unconnected is considered as double
fault.
Table 4.
Double fault table for turn on diagnostic
S. GND (so)
S. GND (sk)
S. Vs
S. Across L.
Open L.
S. GND (so)
S. GND
S. GND
S. Vs + S. GND
S. GND
S. GND
S. GND (sk)
/
S. GND
S. Vs
S. GND
Open L. (*)
S. Vs
/
/
S. Vs
S. Vs
S. Vs
S. Across L.
/
/
/
S. Across L.
N.A.
Open L.
/
/
/
/
Open L. (*)
S. GND (so) / S. GND (sk) in the above table make a distinction according to which of the 2
outputs is shorted to ground (test-current source side= so, test-current sink side = sk). More
precisely, in Channels LF and RR, so = CH+, sk = CH-; in Channels LR and RF, so = CH-, sk
= CH+.
In Permanent Diagnostic the table is the same, with only a difference concerning Open
Load(*), which is not among the recognizable faults. Should an Open Load be present
during the device's normal working, it would be detected at a subsequent Turn on Diagnostic
cycle (i.e. at the successive Car Radio Turn on).
18/35
TDA7563A
4.3
Output DC offset detection
Faults availability
All the results coming from I2C bus, by read operations, are the consequence of
measurements inside a defined period of time. If the fault is stable throughout the whole
period, it will be sent out.
To guarantee always resident functions, every kind of diagnostic cycles (Turn on,
Permanent, Offset) will be reactivate after any I2C reading operation. So, when the micro
reads the I2C, a new cycle will be able to start, but the read data will come from the previous
diag. cycle (i.e. The device is in Turn On state, with a short to Gnd, then the short is
removed and micro reads I2C. The short to Gnd is still present in bytes, because it is the
result of the previous cycle. If another I2C reading operation occurs, the bytes do not show
the short). In general to observe a change in Diagnostic bytes, two I2C reading operations
are necessary.
19/35
Thermal protection
5
TDA7563A
Thermal protection
Thermal protection is implemented through thermal foldback (Figure 28).
Thermal foldback begins limiting the audio input to the amplifier stage as the junction
temperatures rise above the normal operating range. This effectively limits the output power
capability of the device thus reducing the temperature to acceptable levels without totally
interrupting the operation of the device.
The output power will decrease to the point at which thermal equilibrium is reached.
Thermal equilibrium will be reached when the reduction in output power reduces the
dissipated power such that the die temperature falls below the thermal foldback threshold.
Should the device cool, the audio level will increase until a new thermal equilibrium is
reached or the amplifier reaches full power. Thermal foldback will reduce the audio output
level in a linear manner.
Three Thermal warning are available through the I2C bus data.
Figure 28. Thermal foldback diagram
Vout
Vout
TH. WARN. TH. WARN. TH. WARN.
ON
ON
ON
125°
140°
< TSD
CD out
155°
TH. SH.
START
TH. SH.
END
> TSD (with same input
signal)
Tj ( °C)
Tj ( °C)
Tj ( °C)
20/35
TDA7563A
6
Fast muting
Fast muting
The muting time can be shortened to less than 1.5ms by setting (IB2) D5 = 1. This option
can be useful in transient battery situations (i.e. during car engine cranking) to quickly
turnoff the amplifier for avoiding any audible effects caused by noise/transients being
injected by preamp stages. The bit must be set back to “0” shortly after the mute transition.
21/35
I2C bus
TDA7563A
7
I2C bus
7.1
I2C programming/reading sequences
A correct turn on/off sequence respectful of the diagnostic timings and producing no audible
noises could be as follows (after battery connection):
TURN-ON: PIN2 > 7V --- 10ms --- (STANDBY OUT + DIAG ENABLE) --- 500 ms (min) --MUTING OUT
TURN-OFF: MUTING IN --- 20 ms --- (DIAG DISABLE + STANDBY IN) --- 10ms --- PIN2 = 0
Car Radio Installation: PIN2 > 7V --- 10ms DIAG ENABLE (write) --- 200 ms --- I2C read
(repeat until All faults disappear).
OFFSET TEST: Device in Play (no signal) -- OFFSET ENABLE - 30ms - I2C reading (repeat
I2C reading until high-offset message disappears).
7.2
I2C bus interface
Data transmission from microprocessor to the TDA7563A and vice versa takes place
through the 2 wires I2C BUS interface, consisting of the two lines SDA and SCL (pull-up
resistors to positive supply voltage must be connected).
7.3
Data validity
As shown by Figure 29, the data on the SDA line must be stable during the high period of
the clock.
The HIGH and LOW state of the data line can only change when the clock signal on the SCL
line is LOW.
7.4
Start and stop conditions
As shown by Figure 30 a start condition is a HIGH to LOW transition of the SDA line while
SCL is HIGH.
The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.
7.5
Byte format
Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an
acknowledge bit. The MSB is transferred first.
22/35
TDA7563A
7.6
I2C bus
Acknowledge
The transmitter(*) puts a resistive HIGH level on the SDA line during the acknowledge clock
pulse (see Figure 31). The receiver(**) the acknowledges has to pull-down (LOW) the SDA
line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock
pulse.
(*) Transmitter
–
master (µP) when it writes an address to the TDA7563A
–
slave (TDA7563A) when the µP reads a data byte from TDA7563A
(**) Receiver
–
slave (TDA7563A) when the µP writes an address to the TDA7563A
–
master (µP) when it reads a data byte from TDA7563A
Figure 29. Data validity on the I2C bus
SDA
SCL
DATA LINE
STABLE, DATA
VALID
CHANGE
DATA
ALLOWED
D99AU1031
Figure 30. Timing diagram on the I2C bus
SCL
I2CBUS
SDA
D99AU1032
START
STOP
Figure 31. Timing acknowledge clock pulse
SCL
1
2
3
7
8
9
SDA
MSB
START
D99AU1033
ACKNOWLEDGMENT
FROM RECEIVER
23/35
Software specifications
8
TDA7563A
Software specifications
All the functions of the TDA7563A are activated by I2C interface.
The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from μP to
TDA7563A) or read instruction (from TDA7563A to µP).
Table 5.
Chip address:
D7
D0
1
1
0
1
1
0
X = 0 Write to device
X = 1 Read from device
If R/W = 0, the µP sends 2 "Instruction Bytes": IB1 and IB2.
Table 6.
24/35
IB1
D7
0
D6
Diagnostic enable (D6 = 1)
Diagnostic defeat (D6 = 0)
D5
Offset Detection enable (D5 = 1)
Offset Detection defeat (D5 = 0)
D4
Front Channel
Gain = 26dB (D4 = 0)
Gain = 12dB (D4 = 1)
D3
Rear Channel
Gain = 26dB (D3 = 0)
Gain = 12dB (D3 = 1)
D2
Mute front channels (D2 = 0)
Unmute front channels (D2 = 1)
D1
Mute rear channels (D1 = 0)
Unmute rear channels (D1 = 1)
D0
CD 2% (D0 = 0)
CD 10% (D0 = 1)
0
X
D8 Hex
TDA7563A
Software specifications
Table 7.
IB2
D7
0
D6
0
D5
Normal muting time (D5 = 0)
Fast muting time (D5 = 1)
D4
Standby on - Amplifier not working - (D4 = 0)
Standby off - Amplifier working - (D4 = 1)
D3
Power amplifier mode diagnostic (D3 = 0)
Line driver mode diagnostic (D3 = 1)
D2
Current Detection Diagnostic Enabled (D2 =1)
Current Detection Diagnostic Defeat (D2 =0)
D1
Right Channel Power amplifier working in standard mode (D1 = 0)
Power amplifier working in high efficiency mode (D1 = 1)
D0
Left Channel Power amplifier working in standard mode (D0 = 0)
Power amplifier working in high efficiency mode (D0 = 1)
If R/W = 1, the TDA7563A sends 4 "Diagnostics Bytes" to µP: DB1, DB2, DB3 and DB4.
Table 8.
DB1
D7
Thermal warning active (D7 = 1), TJ = 155°C
D6
Diag. cycle not activated or not terminated (D6 = 0)
Diag. cycle terminated (D6 = 1)
D5
Channel LF
Current Detection
Output peak current <250mA - Output load (D5 = 1)
Output peak current >500mA - Output load (D5 = 0)
D4
Channel LF
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel LF
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel LF
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Offset diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel LF
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel LF
No short to GND (D1 = 0)
Short to GND (D1 = 1)
25/35
Software specifications
Table 9.
26/35
TDA7563A
DB2
D7
Offset detection not activated (D7 = 0)
Offset detection activated (D7 = 1)
D6
0
D5
Channel LR
Current Detection
Output peak current <250mA - Output load (D5 = 1)
Output peak current >500mA - Output load (D5 = 0)
D4
Channel LR
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel LR
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel LR
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel LR
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel LR
No short to GND (D1 = 0)
Short to GND (D1 = 1)
TDA7563A
Software specifications
Table 10.
DB3
D7
Standby status (= IB2 - D4)
D6
Diagnostic status (= IB1 - D6)
D5
Channel RF
Current Detection
Output peak current <250mA - Output load (D5 = 1)
Output peak current >500mA - Output load (D5 = 0)
D4
Channel RF
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel RF
Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel RF
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel RF
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel RF
No short to GND (D1 = 0)
Short to GND (D1 = 1)
27/35
Software specifications
Table 11.
28/35
TDA7563A
DB4
D7
Thermal warning 2 active (D7 = 1), TJ = 140°C
D6
Thermal warning 3 active (D6 = 1), TJ = 120°C
D5
Channel RR
Current Detection
Output peak current <250mA - Output load (D5 = 1)
Output peak current >500mA - Output load (D5 = 0)
D4
Channel RR
Turn-on diagnostic (D4 = 0)
Permanent diagnostic (D4 = 1)
D3
Channel R
R Normal load (D3 = 0)
Short load (D3 = 1)
D2
Channel RR
Turn-on diag.: No open load (D2 = 0)
Open load detection (D2 = 1)
Permanent diag.: No output offset (D2 = 0)
Output offset detection (D2 = 1)
D1
Channel RR
No short to Vcc (D1 = 0)
Short to Vcc (D1 = 1)
D0
Channel RR
No short to GND (D1 = 0)
Short to GND (D1 = 1)
TDA7563A
9
Examples of bytes sequence
Examples of bytes sequence
1 - Turn-On diagnostic - Write operation
Start
Address byte with D0 = 0
ACK
IB1 with D6 = 1
ACK
IB2
ACK
STOP
2 - Turn-On diagnostic - Read operation
Start
●
Address byte with D0 = 1
ACK
DB1
ACK
DB2
ACK
DB3
ACK
DB4
ACK
STOP
The delay from 1 to 2 can be selected by software, starting from 1ms
3a - Turn-On of the power amplifier with 26dB gain, mute on, diagnostic defeat, CD = 2%.
Start
Address byte with D0 = 0
ACK
IB1
ACK
X0000000
IB2
ACK
STOP
ACK
STOP
ACK
STOP
XXX1XX11
3b - Turn-Off of the power amplifier
Start
Address byte with D0 = 0
ACK
IB1
ACK
X0XXXXXX
IB2
XXX0XXXX
4 - Offset detection procedure enable
Start
Address byte with D0 = 0
ACK
IB1
ACK
XX1XX11X
IB2
XXX1XXXX
5 - Offset detection procedure stop and reading operation (the results are valid only for the offset
detection bits (D2 of the bytes DB1, DB2, DB3, DB4).
Start
Address byte with D0 = 1
ACK
DB1
ACK
DB2
ACK
DB3
ACK
DB4
ACK
STOP
●
The purpose of this test is to check if a D.C. offset (2V typ.) is present on the outputs, produced by
input capacitor with anomalous leakage current or humidity between pins.
●
The delay from 4 to 5 can be selected by software, starting from 1ms
29/35
Package information
10
TDA7563A
Package information
In order to meet environmental requirements, ST (also) offers these devices in ECOPACK®
packages. ECOPACK® packages are lead-free. The category of second Level Interconnect
is marked on the package and on the inner box label, in compliance with JEDEC Standard
JESD97. The maximum ratings related to soldering conditions are also marked on the inner
box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 32. PowerSO36 (slug up) mechanical data and package dimensions
DIM.
A
A2
A4
A5
a1
b
c
D
D1
D2
E
E1
E2
E3
E4
e
e3
G
H
h
L
N
s
MIN.
3.25
3.1
0.8
mm
TYP.
MAX.
3.43
3.2
1
MIN.
0.128
0.122
0.031
-0.040
0.38
0.32
16
9.8
0.0011
0.008
0.009
0.622
0.37
14.5
11.1
2.9
6.2
3.2
0.547
0.429
0.2
0.030
0.22
0.23
15.8
9.4
5.8
2.9
0.8
OUTLINE AND
MECHANICAL DATA
-0.0015
0.015
0.012
0.630
0.38
0.039
0.57
0.437
0.114
0.244
1.259
0.228
0.114
0.65
11.05
0
15.5
MAX.
0.135
0.126
0.039
0.008
1
13.9
10.9
inch
TYP.
0.026
0.435
0.075
15.9
1.1
1.1
10˚
8˚
0
0.61
0.031
0.003
0.625
0.043
0.043
10˚
8˚
PowerSO36 (SLUG UP)
(1) “D and E1” do not include mold flash or protusions.
Mold flash or protusions shall not exceed 0.15mm (0.006”)
(2) No intrusion allowed inwards the leads.
7183931 D
30/35
TDA7563A
Package information
Figure 33. Flexiwatt27 (SMD) mechanical data and package dimensions
DIM.
A
B
MIN.
mm
TYP.
MAX.
MIN.
inch
TYP.
MAX.
4.45
2.12
4.50
2.22
4.65
2.32
0.1752
0.0835
0.1772
0.0874
0.1831
0.0913
C
1.40
0.0551
D
E
0.36
2.00
0.40
0.44
0.0142
0.0787
0.0157
0.0173
F**
0.47
0.51
0.57
0.0185
0.0201
0.0224
G(*)
0.75
1.00
1.25
0.0295
0.0394
0.0492
G1
G2(*)
25.70
1.75
26.00
2.00
26.30
2.25
1.0118
0.0689
1.0236
0.0787
1.0354
0.0886
H(**)
H1
28.85
29.23
17.00
29.40
1.1358
1.1508
0.6693
1.1575
H2
H3
L(**)
15.50
12.80
0.80
15.70
15.90
0.6102
0.5039
0.0315
0.6181
0.6260
L1
L2
7.70
14.00
7.85
14.20
7.95
14.40
0.3031
0.5512
0.3091
0.5591
0.3130
0.5669
L3
L4
11.80
1.30
12.00
1.48
12.20
1.66
0.4646
0.0512
0.4724
0.0583
0.4803
0.0654
L5
L6
2.42
0.42
2.50
0.50
2.58
0.58
0.0953
0.0165
0.0984
0.0197
0.1016
0.0228
M
1.50
N
N1
N2(*)
P(*)
R
R1
R2
R3
V
V1
V2
V3
V4
V5
1.48
2.83
4.83
0.0866
1.66
2.93
4.93
0.0512
0.1075
0.1862
1.70
0.30
0.35
0.35
R4
T(*)
aaa(*)
0.0591
2.20
1.30
2.73
4.73
0.40
0.40
0.45
0.45
0.0138
0.0138
0.10
12˚
45˚
3˚
5˚
15˚
5˚
0.0654
0.1154
0.1941
0.0157
0.0157
0.0177
0.0177
0.0197
-0.0031
0.1
3˚
0.0583
0.1114
0.1902
0.0669
0.0118
0.50
-0.08
OUTLINE AND
MECHANICAL DATA
0.0039
0.0039
7˚
3˚
18˚
12˚
20˚
45˚
3˚
5˚
15˚
5˚
7˚
18˚
Flexiwatt27
(SMD)
20˚
(*) Golden parameters
(**) – Dimension “F” doesn’t include dam-bar protrusion.
– Dimensions "H” and “L" include mold flash or protrusions.
7993733 B
31/35
Package information
TDA7563A
Figure 34. Flexiwatt27 (vertical) mechanical data and package dimensions
DIM.
MIN.
4.45
1.80
A
B
C
D
E
F (1)
G
G1
H (2)
H1
H2
H3
L (2)
L1
L2 (2)
L3
L4
L5
M
M1
N
O
R
R1
R2
R3
R4
V
V1
V2
V3
0.75
0.37
0.80
25.75
28.90
22.07
18.57
15.50
7.70
3.70
3.60
mm
TYP.
4.50
1.90
1.40
0.90
0.39
1.00
26.00
29.23
17.00
12.80
0.80
22.47
18.97
15.70
7.85
5
3.5
4.00
4.00
2.20
2
1.70
0.5
0.3
1.25
0.50
MAX.
4.65
2.00
MIN.
0.175
0.070
1.05
0.42
0.57
1.20
26.25
29.30
0.029
0.014
0.031
1.014
1.139
22.87
19.37
15.90
7.95
0.869
0.731
0.610
0.303
4.30
4.40
0.145
0.142
inch
TYP.
0.177
0.074
0.055
0.035
0.015
0.040
1.023
1.150
0.669
0.503
0.031
0.884
0.747
0.618
0.309
0.197
0.138
0.157
0.157
0.086
0.079
0.067
0.02
0.12
0.049
0.019
MAX.
0.183
0.079
OUTLINE AND
MECHANICAL DATA
0.041
0.016
0.022
0.047
1.033
1.153
0.904
0.762
0.626
0.313
0.169
0.173
5˚ (Typ.)
3˚ (Typ.)
20˚ (Typ.)
45˚ (Typ.)
Flexiwatt27 (vertical)
(1): dam-bar protusion not included
(2): molding protusion included
V
C
B
V
H
H1
V3
A
H2
O
H3
R3
L4
R4
V1
R2
L2
N
L3
R
L
L1
V1
V2
R2
D
R1
L5
Pin 1
R1
R1
E
G
G1
F
FLEX27ME
M
M1
7139011
32/35
TDA7563A
Package information
Figure 35. Flexiwatt27 (horizontal) mechanical data and package dimensions
DIM.
A
B
C
D
E
F (1)
G
G1
H (2)
H1
H2
H3
L (2)
L1
L2 (2)
L3
L4
L5
L6
M
M1
M2
N
P
R
R1
R2
R3
R4
V
V1
V2
V3
MIN.
4.45
1.80
0.37
0.80
25.75
28.90
21.64
10.15
15.50
7.70
5.15
1.80
2.75
3.20
mm
TYP.
4.50
1.90
1.40
2.00
0.39
1.00
26.00
29.23
17.00
12.80
0.80
22.04
10.5
15.70
7.85
5
5.45
1.95
3.00
4.73
5.61
2.20
3.50
1.70
0.50
0.30
1.25
0.50
MAX.
4.65
2.00
MIN.
0.175
0.070
0.42
0.57
1.20
26.25
29.30
0.014
0.031
1.014
1.139
22.44
10.85
15.90
7.95
0.852
0.40
0.610
0.303
5.85
2.10
3.50
0.203
0.070
0.108
3.80
0.126
inch
TYP.
0.177
0.074
0.055
0.079
0.015
0.040
1.023
1.150
0.669
0.503
0.031
0.868
0.413
0.618
0.309
0.197
0.214
0.077
0.118
0.186
0.220
0.086
0.138
0.067
0.02
0.12
0.049
0.02
MAX.
0.183
0.079
OUTLINE AND
MECHANICAL DATA
0.016
0.022
0.047
1.033
1.153
0.883
0.427
0.626
0.313
0.23
0.083
0.138
0.15
5˚ (Typ.)
3˚ (Typ.)
20˚ (Typ.)
45˚ (Typ.)
Flexiwatt27
(Horizontal)
(1): dam-bar protusion not included; (2): molding protusion included
7399738 A
33/35
Revision history
11
TDA7563A
Revision history
Table 12.
34/35
Document revision history
Date
Revision
07-Feb-2008
1
Changes
Initial release.
TDA7563A
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
35/35