STMICROELECTRONICS TS914AIN

TS914
Rail-to-rail CMOS quad operational amplifier
Features
■
Rail-to-rail input and output voltage ranges
■
Single (or dual) supply operation from 2.7V to
16V
■
Extremely low input bias current: 1pA typ
■
Low input offset voltage: 5mV max.
■
Specified for 600Ω and 100Ω loads
■
Low supply current: 200μA/ampli (VCC = 3V)
■
Latch-up immunity
■
Spice macromodel included in this specification
N
DIP-14
(Plastic package)
D
SO-14
(Plastic micropackage)
Description
Pin connections (top view)
The TS914 is a rail-to-rail CMOS quad
operational amplifier designed to operate with a
single or dual supply voltage.
The input voltage range Vicm includes the two
supply rails VCC+ and VCC-.
The output reaches:
■
VCC- +50mV, VCC+ -50mV, with RL = 10kΩ
■
VCC- +350mV, VCC+ -350mV, with RL = 600Ω
This product offers a broad supply voltage
operating range from 2.7V to 16V and a supply
current of only 200μA/amp (VCC = 3V).
Output 1
1
Inverting Input 1
2
-
-
14 Output 4
13 Inverting Input 4
Non-inverting Input 1
3
+
+
12 Non-inverting Input 4
V CC +
4
Non-inverting Input 2
5
+
+
10 Non-inverting Input 3
Inverting Input 2
6
-
-
9
Inverting Input 3
Output 2
7
8
Output 3
11 VCC -
Source and sink output current capability is
typically 40mA (at VCC = 3V), fixed by an internal
limitation circuit.
Order codes
Part number
Temperature
range
Package
Packing
Marking
TS914IN
DIP14
Tube
TS914IN
TS914ID/IDT
SO-14
Tube or tape & reel
914I
DIP14
Tube
TS914AIN
SO-14
Tube or tape & reel
914AI
SO-14
(automotive grade level)
Tube or tape & reel
TS914AIN
TS914AID/AIDT
TS914IYD/IYDT
TS914AIYD/AIYDT
January 2007
-40, +125°C
Rev 5
914IY
914AIY
1/19
www.st.com
19
Contents
TS914
Contents
1
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3
2
Typical application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
Macromodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5
6
2/19
4.1
Important note concerning this macromodel . . . . . . . . . . . . . . . . . . . . . . 12
4.2
Macromodel code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1
DIP-14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2
SO-14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
TS914
1
Absolute maximum ratings and operating conditions
Absolute maximum ratings and operating conditions
Table 1.
Symbol
VCC
Vid
Absolute maximum ratings
Parameter
Test conditions
Supply voltage (1)
Differential input voltage
(2)
(3)
Value
Unit
18
V
±18
V
-0.3 to 18
V
Vi
Input voltage
Iin
Current on inputs
±50
mA
Io
Current on outputs
±130
mA
Tj
Maximum junction temperature
150
°C
-65 to +150
°C
Tstg
Storage temperature
Rthja
Thermal resistance junction to
ambient (4)
DIP-14
83
SO-14
103
Rthjc
Thermal resistance junction to
case
DIP-14
°C/W
33
SO-14
HBM: human body model
ESD
31
(5)
(6)
MM: machine model
CDM: charged device
°C/W
model(7)
1
kV
50
V
1.5
kV
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V.
4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous shortcircuit on all amplifiers. These are typical values.
5. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a
1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations
while the other pins are floating.
6. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between
two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of
connected pin combinations while the other pins are floating.
7. Charged device model: all pins and the package are charged together to the specified voltage and then
discharged directly to the ground through only one pin. This is done for all pins.
Table 2.
Operating conditions
Symbol
VCC
Parameter
Value
Supply voltage
Vicm
Common mode input voltage range
Toper
Operating free air temperature range
Unit
2.7 to 16
-
V
+
VCC -0.2 to VCC +0.2
V
-40 to + 125
°C
3/19
Typical application information
2
TS914
Typical application information
Figure 1.
Typical application information
VCC
Non-inverting
Input
Internal
Vref
Inverting
Input
Output
VCC
4/19
TS914
Electrical characteristics
3
Electrical characteristics
Table 3.
VCC+ = 3V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Vio
Input offset voltage
(Vicm = Vo = VCC/2)
ΔVio
Input offset voltage drift
Test conditions
Min.
Typ.
Tamb TS914
Tamb TS914A
Tmin ≤ Tamb ≤ Tmax, TS914
Tmin ≤ Tamb ≤ Tmax, TS914A
Max.
Unit
10
5
12
7
mV
μV/°C
5
Iio
Input offset current (1)
Tamb
Tmin ≤ Tamb ≤ Tmax
1
100
200
pA
Iib
Input bias current (1)
Tmin ≤ Tamb ≤ Tmax
Tamb
Tmin. ≤ Tamb ≤ Tmax
1
150
300
pA
ICC
Supply current
per amplifier, AVCL = 1, no load
Tamb
Tmin ≤ Tamb ≤ Tmax
200
300
400
μA
Common mode rejection ratio
Vic = 0 to 3 V, Vo = 1.5 V
70
dB
SVR
Supply voltage rejection ratio
VCC+
80
dB
Avd
Large signal voltage gain
RL = 10 kΩ, Vo = 1.2 V to 1.8 V
Tamb
Tmin ≤ Tamb ≤ Tmax
3
2
10
V/mV
2.9
2.2
High level output voltage
Vid = 1 V, Tamb
RL = 10 kΩ
RL = 600 Ω
RL = 100 Ω
Vid = 1V, Tmin ≤ Tamb ≤ Tmax
RL = 10 kΩ
RL = 600 Ω
2.97
2.7
2
V
CMR
VOH
VOL
Low level output voltage
= 2.7 to 3.3 V, Vo = VCC/2
Vid = -1V, Tamb
RL = 10 kΩ
RL = 600 Ω
RL = 100 Ω
Vid = -1V, Tmin ≤ Tamb ≤ Tmax
RL = 10 kΩ
RL = 600 Ω
Output short circuit current
Vid = ±1 V
Source (Vo = VCC)
Sink (Vo = VCC+)
Gain bandwith product
SR
Slew rate
φm
Phase margin
en
Equivalent input noise voltage
Io
GBP
VO1/VO2 Channel separation
2.8
2.1
50
300
900
100
600
mV
150
900
40
40
mA
AVCL = 100, RL = 10kΩ, CL = 100pF,
f = 100kHz
0.8
MHz
AVCL = 1, RL = 10kΩ, CL = 100pF,
Vi = 1.3V to 1.7V
0.5
V/μs
30
°
Rs = 100 Ω, f = 1 kHz
30
nV/√Hz
f = 1 kHz
120
dB
1. Maximum values include unavoidable inaccuracies of the industrial tests.
5/19
Electrical characteristics
Table 4.
TS914
VCC+ = 5V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Vio
Input offset voltage
(Vicm = Vo = VCC/2)
ΔVio
Input offset voltage drift
Test conditions
Min.
Typ.
Tamb, TS914
Tamb, TS914A
Tmin ≤ Tamb ≤ Tmax, TS914
Tmin ≤ Tamb ≤ Tmax, TS914A
Max.
Unit
10
5
12
7
mV
μV/°C
5
Iio
Input offset current (1)
Tamb
Tmin ≤ Tamb ≤ Tmax
1
100
200
pA
Iib
Input bias current (1)
Tamb
Tmin ≤ Tamb ≤ Tmax
1
150
300
pA
ICC
Supply current
per amplifier, AVCL = 1, no load
Tamb
Tmin ≤ Tamb ≤ Tmax
230
350
450
Common mode rejection ratio
Vic = 1.5 to 3V, Vo = 2.5V
85
dB
SVR
Supply voltage rejection ratio
VCC+
80
dB
Avd
Large signal voltage gain
RL = 10kΩ, Vo = 1.5V to 3.5V
Tamb
Tmin ≤ Tamb ≤ Tmax
10
7
40
V/mV
4.85
4.20
High level output voltage
Vid = 1V, Tamb
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Vid = 1V, Tmin ≤ Tamb ≤ Tmax
RL = 10kΩ
RL = 600Ω
4.95
4.65
3.7
V
CMR
VOH
VOL
Low level output voltage
= 3 to 5V, Vo = VCC/2
Vid = -1V, Tamb
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Vid = -1V, Tmin ≤ Tamb ≤ Tmax
RL = 10kΩ
RL = 600Ω
Output short circuit current
Vid = ±1V
Source (Vo = VCC)
Sink (Vo = VCC+)
Gain bandwith product
AVCL = 100, RL = 10kΩ, CL = 100pF,
f = 100kHz
SR
Slew rate
AVCL = 1, RL = 10kΩ, CL = 100pF,
Vi = 1V to 4V
φm
Phase margin
en
Equivalent input noise voltage
Io
GBP
VO1/VO2 Channel separation
4.8
4.1
50
350
1400
100
680
mV
150
900
60
60
mA
1
MHz
0.8
V/μs
30
°
Rs = 100Ω, f = 1kHz
30
nV/√Hz
f = 1kHz
120
dB
1. Maximum values include unavoidable inaccuracies of the industrial tests.
6/19
μA
TS914
Table 5.
Symbol
Electrical characteristics
VCC+ = 10V, VDD = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Parameter
Vio
Input offset voltage (Vicm =
Vo = VCC/2)
ΔVio
Input offset voltage drift
Test Conditions
Min.
Typ.
Max.
Unit
10
5
12
7
mV
Tamb, TS914
Tamb, TS914A
Tmin ≤ Tamb ≤ Tmax, TS914
Tmin ≤ Tamb ≤ Tmax, TS914A
μV/°C
5
Iio
Input offset current (1)
Tamb
Tmin ≤ Tamb ≤ Tmax
1
100
200
pA
Iib
Input bias current (1)
Tamb
Tmin ≤ Tamb ≤ Tmax
1
150
300
pA
Vicm
Common mode input voltage
range
Per amplifier, AVCL = 1, no load
Tamb
Tmin ≤ Tamb ≤ Tmax
CMR
Common mode rejection
ratio
Vic = 3 to 7V, Vo = 5V
Vic = 0 to 10V, Vo = 5V
SVR
Supply voltage rejection ratio VCC+ = 5 to 10V, Vo = VCC/2
Avd
Large signal voltage gain
RL = 10kΩ, Vo = 2.5V to 7.5V
Tamb
Tmin ≤ Tamb ≤ Tmax
High level output voltage
Vid = 1V, Tamb
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Vid = 1V, Tmin ≤ Tamb ≤ Tmax
RL = 10kΩ
RL = 600Ω
VOH
VOL
Low level output voltage
Vid = -1V, Tamb
RL = 10kΩ
RL = 600Ω
RL = 100Ω
Vid = -1V, Tmin ≤ Tamb ≤ Tmax
RL = 10kΩ
RL = 600Ω
Output short circuit current
Vid = ±1V
Supply current
Per amplifier, AVCL = 1, no load, Tamb
Per amp., AVCL = 1, no load,
Tmin ≤ Tamb ≤ Tmax
Gain bandwith product
AVCL = 100, RL = 10kΩ, CL = 100pF,
f = 100kHz
SR
Slew rate
φm
en
Io
ICC
GBP
VDD - 0.2 to
VCC + 0.2
V
90
75
dB
90
dB
15
10
60
V/mV
9.85
9
9.95
9.35
7.8
V
9.8
9
50
650
2300
180
800
mV
150
900
60
400
mA
600
700
μA
1.4
MHz
AVCL = 1, RL = 10kΩ, CL = 100pF,
Vi =2.5V to 7.5V
1
V/μs
Phase margin
Rs = 100Ω, f = 1kHz
40
°
Equivalent input noise
voltage
Rs = 100Ω, f = 1kHz
30
nV/√Hz
7/19
Electrical characteristics
Table 5.
Symbol
THD
TS914
VCC+ = 10V, VDD = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Parameter
Total harmonic distortion
Test Conditions
AVCL = 1, RL = 10kΩ, CL = 100pF,
Vo = 4.75 to 5.25V, f = 1kHz
Min.
Typ.
Max.
Unit
0.02
%
Cin
Input capacitance
1.5
pF
Rin
Input resistance
>10
Tera Ω
120
dB
VO1/VO2
Channel separation
f = 1kHz
1. Maximum values include unavoidable inaccuracies of the industrial tests.
8/19
TS914
Electrical characteristics
Figure 2.
Supply current (each amplifier)
vs. supply voltage
Figure 3.
5
Tamb = 25°C
A VCL = 1
V O = VCC / 2
500
OUTPUT VOLTAGE, VOH (V)
SUPPLY CURRENT, I CC ( m A)
600
400
300
200
100
0
High level output voltage vs. high
level output current
4
8
12
T amb = 25 ° C
V id = 100mV
4
3
2
VCC = +3V
1
0
16
-70
SUPPLY VOLTAGE, V CC (V)
Figure 4.
Low level output voltage vs. low
level output current
Figure 5.
T amb = 25 ° C
V id = -100mV
VCC = +5V
VCC = +3V
2
1
0
30
50
70
90
V CC = 10V
V i = 5V
No load
10
1
25
50
High level output voltage vs. high
level output current
T amb = 25° C
Vid = 100mV
16
12
75
100
125
TEMPERATURE, T amb ( °C)
Figure 7.
Low level output voltage vs. low
level output current
10
OUTPUT VOLTAGE, VOL (V)
OUTPUT VOLTAGE, VOH (V)
20
0
Input bias current vs. temperature
OUTPUT CURRENT, I OL (mA)
Figure 6.
-20
100
INPUT BIAS CURRENT, I ib (pA)
OUTPUT VOLTAGE, V OL (V)
3
-40
OUTPUT CURRENT, I OH (mA)
5
4
VCC = +5V
VCC = +16V
VCC = +10V
8
4
8
T amb = 25 ° C
V id = -100mV
6
4
V CC = 16V
V CC = 10V
2
0
-70
-40
-20
OUTPUT CURRENT, I OH (mA)
0
0
30
50
70
90
OUTPUT CURRENT, I OL (mA)
9/19
Electrical characteristics
GAIN
40
GAIN (dB)
30
PHASE
20
0
45
Phase
Margin
Tamb = 25°C
VCC = 10V
R L = 10k W
C L = 100pF
A VCL = 100
10
0
90
135
Gain
Bandwidth
Product
180
-10
10
2
10
3
4
5
6
10
10
10
FREQUENCY, f (Hz)
10
7
1800
Tamb = 25°C
R L = 10kW
C L = 100pF
1400
1000
600
200
0
4
8
50
Tamb = 25°C
R L = 10kW
C L = 100pF
GAIN (dB)
30
8
12
30
16
10
10
SUPPLY VOLTAGE, VCC (V)
Phase
Margin
Tamb = 25°C
V CC = 10V
R L = 600W
C L = 100pF
A VCL = 100
20
2
10
3
0
45
PHASE
0
10
20
4
GAIN
40
40
0
16
Figure 11. Gain and phase vs. frequency
60
50
12
SUPPLY VOLTAGE, VCC (V)
Figure 10. Phase margin vs. supply voltage
PHASE MARGIN, f m (Degrees)
Gain bandwidth product vs. supply
voltage
135
Gain
Bandwidth
Product
4
5
10
10
10
FREQUENCY, f (Hz)
90
180
6
10
PHASE (Degrees)
50
Figure 9.
GAIN BANDW. PROD., GBP (kHz)
Gain and phase vs. frequency
PHASE (Degrees)
Figure 8.
TS914
7
1800
PHASE MARGIN, fm (Degrees)
GAIN BANDW. PROD., GBP (kHz)
Figure 12. Gain bandwidth product vs. supply Figure 13. Phase margin vs. supply voltage
voltage
Tamb = 25°C
R L = 600W
C L = 100pF
1400
1000
600
200
0
4
8
12
SUPPLY VOLTAGE, VCC (V)
10/19
16
60
Tamb = 25°C
R L = 600W
C L = 100pF
50
40
30
20
0
4
8
12
SUPPLY VOLTAGE, VCC (V)
16
TS914
Electrical characteristics
EQUIVALENT INPUT
VOLTAGE NOISE (nV/VHz)
Figure 14. Input voltage noise vs. frequency
150
VCC = 10V
Tamb = 25°C
RS = 100W
100
50
0
10
100
1000
10000
FREQUENCY (Hz)
11/19
Macromodels
TS914
4
Macromodels
4.1
Important note concerning this macromodel
Please consider the following remarks before using this macromodel:
●
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute for breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
●
A macromodel emulates the nominal performance of a typical device within specified
operating conditions (such as temperature or supply voltage, etc). Thus, the
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the
main parameters of the product.
●
Data derived from macromodels used outside of the specified conditions (such as VCC,
or temperature) or even worse, outside of the device’s operating conditions (such as
VCC or Vicm) is not reliable in any way.
The values provided in Table 6 are derived from this macromodel.
Table 6.
VCC+ = 3V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless
otherwise specified)
Symbol
Conditions
Vio
Unit
0
mV
Avd
RL = 10kΩ
10
V/mV
ICC
No load, per operator
100
μA
-0.2 to 3.2
V
Vicm
12/19
Value
VOH
RL = 600Ω
2.96
V
VOL
RL = 60Ω
300
mV
Isink
VO = 3V
40
mA
Isource
VO = 0V
40
mA
GBP
RL = 10kΩ, CL = 100pF
0.8
MHz
SR
RL = 10kΩ, CL = 100pF
0.3
V/μs
φm
Phase margin
30
Degrees
TS914
4.2
Macromodels
Macromodel code
* Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
*
.SUBCKT TS914 1 2 3 4 5
*************************************************
.MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 6.500000E+00
RIN 15 16 6.500000E+00
RIS 11 15 7.322092E+00
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 4.000000E-05
CPS 11 15 2.498970E-08
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 0.000000E+00
FCP 4 5 VOFP 5.750000E+00
FCN 5 4 VOFN 5.750000E+00
* AMPLIFYING STAGE
FIP 5 19 VOFP 4.400000E+02
FIN 5 19 VOFN 4.400000E+02
RG1 19 5 4.904961E+05
RG2 19 4 4.904961E+05
CC 19 29 2.200000E-08
HZTP 30 29 VOFP 1.8E+03
HZTN 5 30 VOFN 1.8E+03
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 3800
VIPM 28 4 230
HONM 21 27 VOUT 3800
VINM 5 27 230
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 82
COUT 3 5 1.000000E-12
DOP 19 68 MDTH 400E-12
VOP 4 25 1.724
13/19
Macromodels
HSCP 68 25 VSCP1 0.8E+8
DON 69 19 MDTH 400E-12
VON 24 5 1.7419107
HSCN 24 69 VSCN1 0.8E+8
VSCTHP 60 61 0.0875
DSCP1 61 63 MDTH 400E-12
VSCP1 63 64 0
ISCP 64 0 1.000000E-8
DSCP2 0 64 MDTH 400E-12
DSCN2 0 74 MDTH 400E-12
ISCN 74 0 1.000000E-8
VSCN1 73 74 0
DSCN1 71 73 MDTH 400E-12
VSCTHN 71 70 -0.55
ESCP 60 0 2 1 500
ESCN 70 0 2 1 -2000
.ENDS
14/19
TS914
TS914
5
Package mechanical data
Package mechanical data
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
15/19
Package mechanical data
5.1
TS914
DIP-14 package
Dimensions
Ref.
Millimeters
Min.
a1
0.51
B
1.39
Typ.
Max.
Min.
Typ.
Max.
0.020
1.65
0.055
0.065
b
0.5
0.020
b1
0.25
0.010
D
20
0.787
E
8.5
0.335
e
2.54
0.100
e3
15.24
0.600
F
7.1
0.280
I
5.1
0.201
L
Z
16/19
Inches
3.3
1.27
0.130
2.54
0.050
0.100
TS914
5.2
Package mechanical data
SO-14 package
Dimensions
Ref.
Millimeters
Min.
Typ.
A
a1
Inches
Max.
Min.
Typ.
1.75
0.1
0.2
a2
Max.
0.068
0.003
0.007
1.65
0.064
b
0.35
0.46
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.5
0.019
c1
45° (typ.)
D
8.55
8.75
0.336
0.344
E
5.8
6.2
0.228
0.244
e
1.27
0.050
e3
7.62
0.300
F
3.8
4.0
0.149
0.157
G
4.6
5.3
0.181
0.208
L
0.5
1.27
0.019
0.050
M
S
0.68
0.026
8° (max.)
17/19
Revision history
6
TS914
Revision history
Date
Revision
1-Dec-2001
1
First release.
1-Nov-2004
2
Vio max on 1st page from 2mV to 5mV.
1-Jun-2005
3
PIPAP references inserted in the datasheet see order code table
on cover page.
1-Feb-2006
4
Parameters added in Table 1. on page 3 (Tj, ESD, Rthja, Rthjc).
5
Correction to package name in order code table on cover page.
Addition of a table of contents.
Corrections to macromodel.
8-Jan-2007
18/19
Changes
TS914
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
19/19