STMICROELECTRONICS TSA1203IFT-E

TSA1203
Dual-channel 12-bit 40Msps 215mW A/D converter
Features
Dual simultaneous sample and hold inputs
■
Multiplexed binary word outputs
■
Built-in reference voltage with external bias
capability
D1
■
VCCBE
Common clocking between channels
41 40 39 38 37
36 D2
AGND 1
2
35 D3
AGND 3
34 D4
INIB 4
33 D5
INI
■
44 43 42
D0(LSB)
1GHz analog bandwidth track-and-hold
48 47 46 45
GNDBE
■
index
corner
VCCBI
SFDR = -75 dBc @ Fin = 10 MHz
VCCBI
CLKD
■
OEB
Independent supply for CMOS output stage
with 2.5 V/3.3 V capability
AVCC
■
7x7mm TQFP48
AVCC
Single supply voltage: 2.5 V
INCMI
■
REFMI
Low power consumption: 215 mW@40 Msps
REFPI
■
AGND 5
32 D6
IPOL 6
31 D7
TSA1203
AVCCB 7
30 D8
29 D9
AGND 8
INQ 9
28 D10
27 D11(MSB)
AGND 10
Description
25 GNDBE
GNDBI
DVCC
DGND
SELECT
CLK
AVCC
DGND
23 24
DVCC
17 18 19 20 21 22
AGND
14 15 16
INCMQ
13
REFMQ
The TSA1203 is specifically designed for
applications requiring a very low noise floor, high
SFDR and good insulation between channels. It is
based on a pipeline structure and digital error
correction to provide high static linearity at
FS = 40 Msps, and Fin = 10 MHz.
26 VCCBE
AGND 12
REFPQ
The TSA1203 is a new generation high-speed,
dual-channel analog-to-digital converter
implemented in a mainstream 0.25 µm CMOS
technology that offers high performance and very
low power consumption.
INBQ 11
Applications
■
Medical imaging and ultrasound
■
3G base station
■
I/Q signal processing applications
■
High-speed data acquisition systems
■
Portable instrumentation
Each channel has an integrated voltage reference
to simplify the design and minimize external
components. It is nevertheless possible to use the
circuit with external references.
The ADC binary word outputs are multiplexed in a
common bus with a small number of pins.
A tri-state capability is available for the outputs,
allowing chip selection. The inputs of the ADC
must be differentially driven.
The TSA1203 is available in extended
temperature range (-40° C to +85° C), in a small
48-pin TQFP package.
December 2006
Rev 4
1/30
www.st.com
30
Contents
TSA1203
Contents
1
Schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
6
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
8
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.1
8.2
9
2/30
Additional functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.1.1
Output enable mode (OEB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.1.2
Select mode (SELECT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
References and common mode connection . . . . . . . . . . . . . . . . . . . . . . . 16
8.2.1
Internal reference and common mode . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.2.2
External reference and common mode . . . . . . . . . . . . . . . . . . . . . . . . . 16
8.3
Driving the differential analog inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.4
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.5
Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.6
Layout precautions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.7
EVAL1203/BA evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.7.1
Evaluation board operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8.7.2
Consumption adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.7.3
Single and differential inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.7.4
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Practical application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.1
Digital interface applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
9.2
Medical imaging applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
TSA1203
10
Contents
Definitions of specified parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Static parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Dynamic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
11
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
11.1
TQFP48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
12
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
13
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3/30
Schematic diagram
1
TSA1203
Schematic diagram
Figure 1.
TSA1203 block diagram
+2.5V/3.3V
SELECT OEB
CLK
VCCBE
Timing
VINI
VINBI
VINCMI
12
AD 12
I channel
common mode
VREFPI
REF I
VREFMI
IPOL
M
U
X
Polar.
VREFPQ
VREFMQ
VINCMQ
12
12
Buffers
REF Q
common mode
VINQ
12
AD 12
Q channel
VINBQ
GND
Figure 2.
D0
TO
D11
GNDBE
Timing diagram
Simultaneous sampling on
I/Q channels
N+4
N+3
N+11
N+7
N+2
N
N+13
N+12
N+6
I
N-1
N+5
N+1
N+8
N+9
Q
N+10
CLK
Tpd I + Tod
Tod
SELECT
CLOCK AND SELECT CONNECTED TOGETHER
OEB
sample N-8
I channel
sample N-6
Q channel
sample N
Q channel
sample N+1
Q channel
sample N+2
Q channel
DATA
OUTPUT
sample N-9
I channel
4/30
sample N-7
Q channel
sample N+1 sample N+2
I channel
I channel
sample N+3
I channel
TSA1203
Pin descriptions
2
Pin descriptions
Table 1.
Pin descriptions (TQFP48 package)
Pin
nb
Name
Description
1
AGND
2
INI
3
AGND
4
INBI
5
AGND
Analog ground
6
IPOL
Analog bias current
input
7
AVCC
Analog power supply
8
AGND
Analog ground
9
INQ
10
AGND
Analog ground
11
INBQ
Q channel inverted
analog input
12
AGND
Analog ground
13
14
15
16
Observation
Pin
nb
Name
Analog ground
I channel analog
input
0V
25
GNDBE
Analog ground
0V
26
I channel inverted
analog input
Digital buffer ground
Digital buffer power
VCCBE
supply
D11(MS Most significant bit
B)
output
28
D10
Digital output
29
D9
Digital output
30
D8
Digital output
2.5 V
31
D7
Digital output
0V
32
D6
Digital output
33
D5
Digital output
34
D4
Digital output
35
D3
Digital output
36
D2
Digital output
37
D1
Digital output
38
D0(LSB)
39
VCCBE
0V
40
GNDBE
0V
Q channel analog
input
Q channel top
reference voltage
Q channel bottom
REFMQ
reference voltage
Q channel input
INCMQ
common mode
AGND Analog ground
27
Description
0V
0V
REFPQ
0V
Least significant bit
output
Digital buffer power
supply
Digital buffer ground
Digital buffer power
supply
17
AVCC
Analog power supply
2.5 V
41
VCCBI
18
DVCC
Digital power supply
2.5 V
42
CLKD
Data clock input
19
DGND
Digital ground
0V
43
OEB
Output enable input
20
CLK
44
AVCC
45
AVCC
0V
46
INCMI
21
Clock input
SELECT Channel selection
2.5 V CMOS
input
2.5 V CMOS
input
22
DGND
Digital ground
23
DVCC
Digital power supply
2.5 V
47
REFMI
24
GNDBI
Digital buffer ground
0V
48
REFPI
Analog power
supply
Analog power
supply
I channel input
common mode
I channel bottom
reference voltage
I channel top
reference voltage
Observation
0V
2.5 V/3.3 V
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
CMOS output
(2.5 V/3.3 V)
2.5 V/3.3 V - see
Table 14.
0V
2.5 V
Idle at high level
2.5 V or 3.3 V
2.5 V/3.3 V
CMOS input
2.5 V
2.5 V
0V
5/30
Dynamic characteristics
3
TSA1203
Dynamic characteristics
Dynamic characteristics are measured under the following conditions, unless otherwise
specified: AVCC = DVCC = VCCB = 2.5 V, FS = 40 Msps, Fin=10.13 MHz, Vin@ -1 dBFS,
VREFP=0.8 V, VREFM=0 V, Tamb = 25° C.
Table 2.
Dynamic characteristics
Symbol
SFDR
4
Parameter
Min
Spurious free dynamic range
SNR
Signal to noise ratio
THD
Total harmonics distortion
Typ
Max
Unit
-75
-59.5
dBc
60.7
67
dB
-73
-58
dBc
SINAD
Signal to noise and distortion ratio
56.5
66
dB
ENOB
Effective number of bits
9.1
10.8
bits
Timing characteristics
Timing characteristics are measured under the following conditions, unless otherwise
specified: AVCC = DVCC = VCCB = 2.5 V, FS = 40 Msps, Fin=10.13 MHz, Vin@ -1 dBFS,
VREFP=0.8 V, VREFM=0 V, Tamb = 25° C.
Table 3.
Symbol
6/30
Timing characteristics
Parameter
Test
conditions
Min
Typ
Max
Unit
40
MHz
55
%
FS
Sampling frequency
0.5
DC
Clock duty cycle
45
50
TC1
Clock pulse width (high)
22.5
25
ns
TC2
Clock pulse width (low)
22.5
25
ns
Tod
Data output delay (clock edge to data
valid)
9
ns
10 pF load
capacitance
Tpd I
Data pipeline delay for I channel
7
cycles
Tpd Q
Data pipeline delay for Q channel
7.5
cycles
Ton
Falling edge of OEB to digital output valid
data
1
ns
Toff
Rising edge of OEB to digital output tristate
1
ns
TSA1203
5
Absolute maximum ratings
Absolute maximum ratings
Table 4.
Absolute maximum ratings
Symbol
AVCC
DVCC
Parameter
Analog supply voltage (1)
Digital supply voltage
(1)
Values
Unit
0 to 3.3
V
0 to 3.3
V
VCCBE
Digital buffer supply voltage
(1)
0 to 3.6
V
VCCBI
Digital buffer supply voltage (1)
0 to 3.3
V
IDout
Digital output current
-100 to 100
mA
Tstg
Storage temperature
-65 to +150
°C
HBM: human body
ESD
Latch-up
model(2)
2
kV
CDM: charged device model(3)
1.5
Class(4)
A
1. All voltage values, except differential voltage, are with respect to network ground terminal. The magnitude
of input and output voltages must not exceed -0.3 V or VCC.
2. Electrostatic discharge pulse (ESD pulse) simulating a human body discharge of 100 pF through 1.5 kΩ..
3. Discharge to ground of a device that has been previously charged.
4. ST Microelectronics corporate procedure number 0018695.
6
Operating conditions
Table 5.
Symbol
Operating conditions
Parameter
Min
Typ
Max
Unit
AVCC
Analog supply voltage
2.25
2.5
2.7
V
DVCC
Digital supply voltage
2.25
2.5
2.7
V
VCCBE
External digital buffer supply voltage
2.25
2.5
3.5
V
VCCBI
Internal digital buffer supply voltage
2.25
2.5
2.7
V
VREFP I
VREFP Q
Forced top voltage reference
0.94
1.5
V
VREFM I
VREFM Q
Forced bottom reference voltage
0
0.4
V
VINCM I
VINCM Q
Forced input common mode voltage
0.2
1
V
7/30
Electrical characteristics
7
TSA1203
Electrical characteristics
Electrical characteristics, unless otherwise specified, are measured at
AVCC = DVCC = VCCB = 2.5 V, FS = 40 Msps, Rpol = 18 kΩ, Fin = 2 MHz, Vin@ -1 dBFS,
VREFP=0.8 V, VREFM=0 V, and Tamb = 25° C.
Table 6.
Analog inputs
Symbol
Test
conditions
Parameter
Min
Typ
Max
Unit
1.1
2.0
2.8
Vpp
Differential
inputs
mandatory
VIN-VINB Full scale reference voltage
Cin
Input capacitance
7.0
pF
Req
Equivalent input resistor
10
kΩ
BW
Analog input bandwidth
1000
MHz
ERB
Effective resolution bandwidth
70
MHz
Table 7.
Vin@full scale,
Fs=40 Msps
Digital inputs and outputs
Symbol
Parameter
Test
conditions
Min
Typ
Max
Unit
0
0.8
V
Clock and Select inputs
VIL
Logic "0" voltage
VIH
Logic "1" voltage
2.0
2.5
V
OEB input
VIL
Logic "0" voltage
VIH
Logic "1" voltage
0
0.75 x VCCBE
0.25 x VCCBE
VCCBE
V
V
Digital outputs
VOL
Logic "0" voltage
IOL=10 µA
VOH
Logic "1" voltage
IOH=10 µA
0.9 x VCCBE
VCCBE
IOZ
High impedance
leakage current
OEB set to
VIH
-1.67
0
CL
Output load
capacitance
Table 8.
0.1 x VCCBE
V
V
1.67
µA
15
pF
Reference voltage
Symbol
8/30
0
Parameter
Min
Typ
Max
Unit
VREFP I
VREFP Q
Top internal reference voltage
0.81
0.88
0.94
V
VINCM I
VINCM Q
Input common mode voltage
0.41
0.46
0.50
V
TSA1203
Electrical characteristics
Table 9.
Power consumption
Symbol
Parameter
Min
Typ
Max
Unit
ICCA
Analog supply current
76
96.5
mA
ICCD
Digital supply current
3.5
4.9
mA
ICCBE
Digital buffer supply current (10 pF load)
6
9.4
mA
ICCBI
Digital buffer supply current
100
440
µA
Power consumption in normal operation mode
215
271
mW
Thermal resistance (TQFP48)
80
Pd
Rthja
Table 10.
°C/W
Accuracy
Symbol
Parameter
Min
Typ
Max
Unit
OE
Offset error
2.97
LSB
GE
Gain error
0.1
%
DNL
Differential non linearity
±0.52
LSB
INL
Integral non linearity
±3
LSB
Monotonicity and no missing codes
Guaranteed
-
Table 11.
Matching between channels
Symbol
Parameter
Min
Typ
Max
Unit
1
%
GM
Gain match
0.04
OM
Offset match
0.88
LSB
PHM
Phase match
1
dg
XTLK
Crosstalk rejection
85
dB
9/30
Electrical characteristics
Figure 3.
TSA1203
Static parameter: integral non linearity(a)
FS = 40 Msps, ICCA = 60 mA, Fin = 2 MHz
2.5
2
INL (LSBs)
1.5
1
0.5
0
-0.5
-1
-1.5
-2
-2.5
0
500
1000
1500
2000
2500
3000
3500
4000
Output Code
Figure 4.
Static parameter: differential non linearity(a)
Fs = 40 Msps, ICCA = 60 mA, Fin = 2 MH
0.6
DNL (LSBs)
0.4
0.2
0
-0.2
-0.4
-0.6
0
500
1000
1500
2000
2500
3000
3500
Output Code
a. For parameter definitions, see Section 10: Definitions of specified parameters on page 25.
10/30
4000
TSA1203
Electrical characteristics
Figure 5.
Linearity vs. FS
Fin = 5MHz
Figure 6.
12
ENOB_I
-40
11.5
11
75
10.5
70
10
SNR_I
9.5
SNR_Q
65
9
8.5
60
SINAD_I
8
SINAD_Q
7.5
55
Dynamic parameters (dBc)
ENOB_Q
ENOB (bits)
Dynamic parameters (dB)
80
7
35
40
45
Distortion vs. FS
Fin = 5MHz
-50
THD_Q
SFDR_Q
-60
-70
-80
THD_I
-90
SFDR_I
-100
50
35
40
Fs (MHz)
Linearity vs. Fin
FS= 40MHz, ICCA = 60mA
Figure 8.
ENOB_Q
85
11
80
10
75
SNR_Q
SNR_I
70
9
ENOB_I
65
8
60
SINAD_I
7
SINAD_Q
55
50
6
0
20
40
60
-60
-70
-80
THD_I
SFDR_I
-90
0
SINAD_I
SNR_I
8
65
7
60
6
SINAD_Q
SNR_Q
55
5
50
-40
10
60
Temperature (°C)
4
110
Dynamic parameters (dBc)
9
ENOB (bits)
Dynamic parameters (dB)
10
ENOB_Q
70
60
80
100
11
75
40
Figure 10. Distortion vs. temperature
FS=40Msps, ICCA=60mA, Fin=2MHz
12
80
20
Fin (MHz)
ENOB_I
85
SFDR_Q
THD_Q
-100
80
Linearity vs. temperature
FS=40MHz, ICCA=60mA, Fin=2MHz
90
Distortion vs. Fin
FS= 40MHz, ICCA = 60mA
-50
Fin (MHz)
Figure 9.
50
-40
12
ENOB (bits)
Dynamic parameters
(dB)
90
Dynamic parameters (dBc)
Figure 7.
45
Fs (MHz)
95
90
85
80
SFDR_Q
75
THD_Q
70
65
THD_I
60
SFDR_I
55
50
-40
10
60
110
Temperature (°C)
11/30
Electrical characteristics
TSA1203
12
68
66
11.5
SNR_Q
SINAD_Q
64
11
62
60
SINAD_I
SNR_I
10.5
58
10
56
ENOB_I
ENOB (bits)
Dynamic parameters (dB)
70
ENOB_Q
54
9.5
52
50
2.25
Dynamic Parameters (dBc)
Figure 11. Linearity vs. AVCC
Figure 12. Distortion vs. AVCC
FS=40Msps, ICCA=60mA, Fin=10MHz
FS=40Msps, ICCA=60mA, Fin=10MHz
2.45
2.55
-55
-60
2.65
SFDR_I
-65
SFDR_Q
-70
-75
THD_I
-80
-85
-90
-95
-100
2.25
9
2.35
-50
THD_Q
2.35
2.45
2.55
2.65
AVCC (V)
AVCC (V)
12
68
66
11.5
SNR_Q
SINAD_Q
64
11
62
60
SINAD_I
10.5
SNR_I
58
10
56
ENOB_I
ENOB (bits)
Dynamic parameters (dB)
70
ENOB_Q
54
9.5
52
50
2.25
Dynamic Parameters (dBc)
Figure 13. Linearity vs. DVCC
Figure 14. Distortion vs. DVCC
FS=40Msps, ICCA=60mA, Fin=10MHz
FS=40Msps, ICCA=60mA, Fin=10MHz
2.45
2.55
-55
-60
2.65
SFDR_I
-65
SFDR_Q
-70
-75
-80
THD_Q
THD_I
-85
-90
2.25
9
2.35
-50
2.35
2.45
2.55
2.65
DVCC (V)
DVCC (V)
12
68
66
11.5
SNR_Q
SINAD_Q
64
11
62
60
SINAD_I
SNR_I
10.5
58
10
56
ENOB_I
ENOB_Q
54
9.5
52
50
2.25
9
2.35
2.45
2.55
VCCBI (V)
12/30
2.65
ENOB (bits)
Dynamic parameters (dB)
70
Dynamic Parameters (dBc)
Figure 15. Linearity vs. VCCBI
Figure 16. Distortion vs.VCCBI
FS=40Msps, ICCA=60mA, Fin=10MHz
FS=40Msps, ICCA=60mA, Fin=10MHz
-50
-55
-60
SFDR_I
-65
SFDR_Q
-70
-75
-80
THD_I
THD_Q
-85
-90
2.25
2.35
2.45
VCCBI (V)
2.55
2.65
TSA1203
Electrical characteristics
12
69
11.5
68
ENOB_I
ENOB_Q
11
67
10.5
66
SNR_Q
65
SNR_I
10
64
9.5
63
SINAD_Q
62
ENOB (bits)
Dynamic parameters (dB)
70
9
SINAD_I
8.5
61
60
2.25
Figure 18. Distortion vs. VCCBE
FS=40Msps, ICCA=60mA, Fin=5MHz
Dynamic Parameters (dBc)
Figure 17. Linearity vs. VCCBE
FS=40Msps, ICCA=60mA, Fin=5MHz
-50
-60
SFDR_Q
3.25
-80
-90
-100
2.75
Figure 20. Distortion vs. duty cycle
FS=40MHz, ICCA=60mA, Fin=5MHz
12
11
90
10
80
9
ENOB_Q
SNR_I SINAD_I
8
7
60
SNR_Q
6
SINAD_Q
5
40
4
49
50
51
Positive Duty Cycle (%)
52
Dynamic parameters (dBc)
-40
ENOB_I
ENOB (bits)
Dynamic parameters (dB)
100
48
3.25
VCCBE (V)
Figure 19. Linearity vs. duty cycle
FS=40MHz, ICCA=60mA, Fin=5MHz
50
THD_Q
THD_I
VCCBE (V)
70
SFDR_I
-70
-110
2.25
8
2.75
-40
-50
SFDR_Q
THD_Q
-60
-70
THD_I
-80
SFDR_I
-90
-100
48
49
50
51
52
Positive Duty Cycle (%)
13/30
Electrical characteristics
TSA1203
Figure 21. Single-tone 8K FFT at 40 Msps - Channel Q
Fin = 5MHz, ICCA = 60mA, Vin@-1dBFS
Power spectrum (dB)
0
-20
-40
-60
-80
-100
-120
-140
2
4
6
8
10
12
14
16
18
20
Frequency (MHz)
Figure 22. Dual-tone 8K FFT at 40Msps - Channel Q
Fin1 = 0.93MHz, Fin2 = 1.11MHz, ICCA = 70mA, Vin1@-7dBFS, Vin2@-7dBFS,
IMD = -69dBc
Power spectrum (dB)
0
-20
-40
-60
-80
-100
-120
2.5
5
7.5
10
12.5
Frequency (MHz)
14/30
15
17.5
20
TSA1203
8
Application information
Application information
The TSA1203 is a dual-channel, 12-bit resolution high speed analog-to-digital converter
based on a pipeline structure and deep sub-micron CMOS process to achieve the best
performance in terms of linearity and power consumption.
Each channel achieves 12-bit resolution through the pipeline structure which consists of 12
internal conversion stages in which the analog signal is fed and sequentially converted into
digital data. A latency time of 7 clock periods is necessary to obtain the digitized data on the
output bus.
The input signals are simultaneously sampled, for both channels, on the rising edge of the
clock. The output data is delivered on the rising edge of the clock for channel I, and on the
falling edge of the clock for channel Q, as shown in Figure 2: Timing diagram on page 4. The
digital data produced at the various stages must be time-delayed according to the order of
conversion. Finally, a digital data correction completes the processing and ensures the
validity of the ending codes on the output bus.
The TSA1203 is pin-to-pin compatible with the dual 10 bits/20 Msps TSA1005-20, the dual
10 bits /40 Msps TSA1005-40 and the dual 12 bits/ 20 Msps TSA1204.
8.1
Additional functions
To simplify the application board as much as possible, the following operating modes are
provided:
8.1.1
●
Output enable (OEB) mode
●
Select mode
Output enable mode (OEB)
When set to low level (VIL), all digital outputs remain active and are in low impedance state.
When set to high level (VIH), all digital output buffers are in high impedance state while the
converter goes on sampling. When OEB is set to a low level again, the data arrives on the
output with a very short Ton delay. This mechanism allows the chip select of the device.
Figure 2: Timing diagram on page 4 summarizes this functionality.
If you do not want to use OEB mode, the OEB pin should be grounded through a low value
resistor.
8.1.2
Select mode (SELECT)
The digital data output from each of the ADC cores is multiplexed to share the same output
bus. This prevents an increase in the number of pins and allows to use the same package as
for a single-channel ADC like the TSA1201.
The information channel is selected with the "SELECT" pin. When set to high level (VIH), the
channel I data is present on the D0-D11 output bus. When set to low level (VIL), the channel
Q data is delivered on D0-D11.
By connecting SELECT to CLK, channel I and channel Q are simultaneously present on D0D11, channel I on the rising edge of the clock and channel Q on the falling edge of the clock.
(refer to Figure 2: Timing diagram on page 4).
15/30
Application information
8.2
TSA1203
References and common mode connection
VREFM must always be connected directly to ground externally for most applications.
8.2.1
Internal reference and common mode
In the default configuration, the ADC operates with its own reference and common mode
voltages generated by its internal bandgap. It is recommended to decouple the VREFP and
INCM pins in order to minimize low and high frequency noise (see Figure 23).
Figure 23. Internal reference and common mode setting
0.89V
VIN
TSA1203
VINB
330pF 10nF 4.7μF
VREFP
INCM
0.46V
330pF 10nF 4.7μF
VREFM
8.2.2
External reference and common mode
Each of the voltages VREFP, VREFM and INCM can be fixed externally to better fit the
application needs (refer to Table 5: Operating conditions on page 7 for min/max values). It is
possible to use an external reference voltage device for specific applications requiring even
better linearity, accuracy or enhanced temperature behavior.
The VREFP and VREFM voltages set the analog dynamic range at the input of the converter
that has a full scale amplitude of 2*(VREFP-VREFM).
The INCM voltage is half the value of VREFP-VREFM.
The best signal-to-noise performance is achieved with a dynamic range at its maximum
value. To obtain this, VREFM can be connected to GND, and VREFP can be set up to 1.5 V
maximum. However, signal to noise performance is a trade-off with the THD, with a
possibility of degraded THD under these conditions.
To obtain the highest performance from the TSA1203 device, we recommend implementing
the configuration shown in Figure 24 with the STMicroelectronics TS821 or TS4041-1.2
Vref.
16/30
TSA1203
Application information
Figure 24. External reference setting
1kΩ
1.2V
330pF 10nF 4.7μF
VCCA VREFP
VIN
TSA1203
VINB
VREFM
8.3
TS821
TS4041
external
reference
Driving the differential analog inputs
The TSA1203 is designed to deliver optimum performance when driven on differential
inputs. An RF transformer is an efficient way of achieving this high performance.
Figure 25 describes the schematics. The input signal is fed to the primary of the transformer,
while the secondary drives both ADC inputs. The common mode voltage of the ADC (INCM)
is connected to the center-tap of the secondary of the transformer in order to bias the input
signal around this common voltage, internally set to 0.46V. It determines the DC component
of the analog signal. Being a high-impedance input, it acts as an I/O and can be externally
driven to adjust this DC component. The INCM is decoupled to maintain a low noise level on
this node. Our evaluation board is mounted with a 1:1 ADT1-1WT transformer from Mini
circuits. You might also use a higher impedance ratio (1:2 or 1:4) to reduce the driving
requirement on the analog source.
Each analog input can drive a 1.4 Vpp amplitude input signal, so the resulting differential
amplitude is 2.8 Vpp.
Figure 25. Differential input configuration with transformer
Analog source
50Ω
ADT1-1
1:1
VIN
TSA1203
channels
VINB I or Q
33pF
INCM
330pF
10nF
470nF
17/30
Application information
TSA1203
Figure 26. AC-coupled differential input
50Ω
VIN
10nF
100kΩ
33pF
common
mode
50Ω
INCM
100kΩ
TSA1203
VINB
10nF
Figure 26 represents the biasing of a differential input signal in an AC-coupled differential
input configuration. Both inputs VIN and VINB are centered around the common mode
voltage, which can be left internal, or fixed externally.
Figure 27. DC-coupled 2 Vpp differential analog input
analog
AC+DC
VREFP
VIN
DC
TSA1203
VINB
analog
VREFM
INCM
DC
VREFP-VREFM = 1 V
330pF
10nF
4.7µF
VINCM = 0.5 V
Figure 27 shows a DC-coupled configuration with forced VREFP and INCM to the 1V DC
analog input while VREFM is connected to ground; the differential amplitude obtained is
2 Vpp.
8.4
Clock input
The quality of your TSA1203 converter is very dependent on your clock input accuracy, in
terms of aperture jitter; the use of a low jitter crystal controlled oscillator is recommended.
Further points to consider in your implementation are:
18/30
●
The duty cycle must be between 45% and 55%.
●
The clock power supplies must be independent from the ADC output supplies to avoid
digital noise modulation on the output.
●
When powered-on, the circuit needs several clock periods to reach its normal operating
conditions. Therefore, it is recommended to keep the circuit clocked to avoid random
states before applying the supply voltages.
TSA1203
8.5
Application information
Power consumption optimization
The internal architecture of the TSA1203 makes it possible to optimize power consumption
according to the sampling frequency of the application. For this purpose, an external resistor
is placed between IPOL and the analog ground pins. Therefore, the total dissipation can be
optimized over the full sampling range (0.5 Msps to 40 Msps).
The TSA1203 combines the highest performance with the lowest consumption at 40 Msps
when Rpol is equal to 18 kΩ. This value is nevertheless dependent on the application and the
environment.
In the lower sampling frequency range, this value of resistor may be adjusted in order to
decrease the analog current without any degradation of dynamic performance.
Table 12 gives some values to illustrate this.
Table 12.
8.6
Total power consumption optimization depending on Rpol value
FS (Msps)
30
35
40
Rpol (kΩ)
38
28
18
Optimized power (mW)
145
180
215
Layout precautions
To use the ADC circuits most efficiently at high frequencies, some precautions have to be
taken for power supplies:
●
The implementation of 4 proper separate supplies and ground planes (analog, digital,
internal and external buffer ones) on the PCB is mandatory for high speed circuit
applications to provide low inductance and low resistance common return.
The separation of the analog signal from the digital output part is essential to prevent
noise from coupling onto the input signal. The best compromise is to connect AGND,
DGND, GNDBI in a common point whereas GNDBE must be isolated. Similarly, the
AVCC, DVCC and VCCBI power supplies must be separate from the VCCBE power
supply.
●
Power supply bypass capacitors must be placed as close as possible to the IC pins in
order to improve high frequency bypassing and reduce harmonic distortion.
●
All inputs and outputs must be properly terminated with output termination resistors;
thus, the amplifier load is resistive only and the stability of the amplifier is improved. All
leads must be wide and as short as possible especially for the analog input in order to
decrease parasitic capacitance and inductance.
●
To keep the capacitive loading as low as possible at digital outputs, short lead lengths
of routing are essential to minimize currents when the output changes. To minimize this
output capacitance, use buffers or latches close to the output pins.
●
Choose component sizes as small as possible (SMD).
19/30
Application information
8.7
TSA1203
EVAL1203/BA evaluation board
The EVAL1203/BA is a 4-layer board with high decoupling and grounding level. The
schematic of the board is shown in Figure 30 and its top overlay view in Figure 29. The
board has been characterized with a fully devoted ADC test bench as shown in Figure 28.
All characterization measurements are made with:
■
SFSR=1 dB for static parameters,
■
SFSR=-1 dB for dynamic parameters.
Figure 28. Analog to digital converter characterization bench
HP8644
Sine Wave
Generator
Data
Vin
ADC
evaluation
board
Logic
Analyzer
PC
Clk
Clk
Note:
HP8133
Pulse
Generator
HP8644
Sine Wave
Generator
The analog input signal must be filtered to be very pure. The dataready signal is the
acquisition clock of the logic analyzer. The ADC digital outputs are latched by the octal
buffers 74LCX573.
Figure 29. Evaluation board printed circuit
20/30
1
Q
JQ1B
InQB
JI1B
InIB
0
RQ19
50
RQ1
50
3
3
RSQ61
0
RI19
50
RI1
50
RSI6 1
0
0 NC
RSQ9
4 RSQ8
T2-AT1-1WT
0
0 NC RSQ7
TQ2
6
0
2
RSQ5
ANALOGIC
VCC
GND
JA
AVCC
0 NC
RSI9
4 RSI8
T2-AT1-1WT0
2
RSI7
+
0NM
0NM
0 NC
TI2
6
RSI5
R22
R21
C42
47µF10µF
C41
0NM
R23
CI9
C4
470nF 10nF
JQ2
VREFQ
330pF
CQ8
NM
33pF
CQ10 CQ9
CQ6
CQ1
330pF
C2
NM
33pF
470nF 10nF
C3
CI6
330pF
CI8
CI1
470nF 10nF
CI10
0NM
R24
CI31
1K
R2
330pF
CI30
470nF 10nF
330pF
CI12
AGND
INI
AGND
INBI
AGND
IPOL
AVCC
AGND
INQ
AGND
INBQ
AGND
ADC DUAL12B
8-14bits ADC
C36 47µF
C23 10µF
C22 470nF
C21 10nF
C20 330pF
AVCC
DVCC
C32 47µF
C31 10µF
C13 470nF
C11 10nF
C10 330pF
J27
2
1
DIGITAL
JD
CON2
C5
CLK
100nF
J4
50
R3
DVCC
SW1
CD3 330pF
CD2 10nF
330pF
CD1 470nF
DVcc
J9
10µF
R5
50
J25
CKDATA
C35
VCCB2
47µF
C19 470nF
C18 10nF
C17 330pF
C29
36
35
34
33
32
31
30
29
28
27
26
25
330pF
10nF
C25
470nF
C27
C28
VCCB2
CON2
VCCB2
2
1
J26
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11(MSB)
VCCBE
GNDBE
470nF 10nF
1
2
3
4
5
6
7
8
9
10
11
12
330pF
CI11
C52 10nF
C14 330pF
C51 330pF
C53 470nF
C43 10µF
47µF
STG719
IN S2
Vcc D
GNDS1
U1
VCCB1
C44
AVCC
R12
47K
S5
SW-SPST
C15 10nF
C16 470nF
47K
R11
S4
SW-SPST
VCCB1
VCCB2
CQ13 CQ12 CQ11
470nF 10nF
CI13
REFP
REFM
INCM
CQ32 CQ31 CQ30
Raj1
47K
470nF 10nF
CI32
JI2
VREFI
48
47
46
45
44
43
42
41
40
39
38
37
REFPI
REFMI
INCMI
AVCC
AVCC
OEB
CLKD
VCCBI
VCCBI
GNDBE
VCCBE
D0(LSB)
D1
REFPQ
REFMQ
INCMQ
AGND
AVCC
DVCC
DGND
CLK
SELECT
DGND
DVCC
GNDBI
NM: non soudé
+
+
REFP
REFM
INCM
+
13
14
15
16
17
18
19
20
21
22
23
24
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
10
10nF
330pF
C26
OEB VCC
D0
Q0
D1
Q1
U3
D2
Q2
D3
Q3
D4
Q4
D5
Q5
D6
Q6
D7
Q7
GND
LE
74LCX573
OEB VCC
D0
Q0
D1
Q1
D2
Q2
D3
Q3
D4
Q4
U2
D5
Q5
D6
Q6
D7
Q7
GND
LE
470nF
C39
47µF
C37
C34
VCCB3
C33
C40
C38
330pF
10nF
470nF
74LCX573
VCCB2
GndB1
VccB1
GndB2
VccB2
GndB3
VccB3
VCCB1
J17
BUFPOW
+
VCC
GND
20
19
18
17
16
15
14
13
12
11
20
19
18
17
16
15
14
13
12
11
Normal mode
Test mode
Switch S5
Open
Short
VCCB3
OEB Mode
Normal mode
High Impedance output mode
Switch S4
Open
Short
analog input with transformer (default)
single input
differential input
CLK
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
DO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
RS5 RS6 RS7 RS8 RS9
C C C
C
C
C
C
J6
CLK GND
D11 GND
D10 GND
D9 GND
D8 GND
D7 GND
D6 GND
D5 GND
D4 GND
D3 GND
D2 GND
D1 GND
D0 GND
TSA1203
Application information
Figure 30. TSA1203 evaluation board schematic
+
+
21/30
Application information
Table 13.
TSA1203
Printed circuit board — list of components
Name Part
Type
RSQ6 0
RSQ7 0
RSQ8 0
RSI6 0
RSI7 0
RSI8 0
47
R3
47
R5
RQ19 47
47
RI1
RQ1 47
RI19 47
RSI9 0NC
RSQ5 0NC
RSQ9 0NC
RSI5 0NC
0NC
R24
0NC
R23
0NC
R21
0NC
R22
1K
R2
47K
R12
47K
R11
Raj1 200K
C23
C41
C29
8.7.1
Footprint Name Part
Type
805
CD2
10nF
805
C40
10nF
805
C39
10nF
805
CQ12 10nF
805
CQ9
10nF
805
C52
10nF
603
C18
10nF
603
C21
10nF
603
C4
10nF
603
C15
10nF
603
C27
10nF
603
C11
10nF
805
CI9
10nF
805
CI12
10nF
805
CI31
10nF
805
CQ31 10nF
805
CQ30 330pF
805
CI11
330pF
805
C51
330pF
805
C2
330pF
603
C17
330pF
603
CD3
330pF
603
C10
330pF
CQ8
330pF
VR5
CQ11 330pF
trimmer
10µF 1210
CI8
330pF
10µF 1210
C14
330pF
10µF 1210
CI30
330pF
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
603
Name Part
Type
C26
330pF
C20
330pF
C33
330pF
C25
330pF
CI1
33pF
CQ1
33pF
C34
47µF
C42
47µF
C35
47µF
C44
47µF
C36
47µF
C32
47µF
C37
470nF
CQ10 470nF
C28
470nF
CI10
470nF
CQ32 470nF
CQ13 470nF
CI32
470nF
C13
470nF
C53
470nF
C16
470nF
C3
470nF
C22
470nF
CI13
470nF
C38
470nF
CD1
470nF
C19
470nF
Footprint Name Part
Footprint
Type
603
CQ6
NC
805
603
CI6
NC
805
603
U2
74LCX573
TSSOP20
603
U3
74LCX573
TSSOP20
603
U1
STG719
SOT23-6
603
JA
ANALOGIC connector
RB.1
J17
BUFPOW
connector
RB.1
J25
CKDATA
SMA
RB.1
J4
CLK
SMA
RB.1
J27
CON2
SIP2
RB.1
J26
CON2
SIP2
RB.1
JD
DIGITAL
connector
805
JI1
InI
SMA
805
JI1B
InIB
SMA
805
JQ1
InQ
SMA
805
JQ1B InQB
SMA
805
SW1 SWITCH
connector
805
S5
SW-SPST
connector
805
S4
SW-SPST
connector
805
TI2
T2-AT1-1WT ADT
805
TQ2
T2-AT1-1WT ADT
805
JI2
VREFI
connector
805
JQ2
VREFQ
connector
805
J6
32Pin
IDC-32
805
connector
805
805
NC: non soldered
805
Evaluation board operating conditions
Table 14.
22/30
Footprint
Board connections for power supplies and other pins
Board marking
Connection
Internal voltage (V)
AV
AVCC
2.5
AG
AGND
0
RPI
REFPI
RMI
REFMI
CMI
INCMI
0.46
<1
RPQ
REFPQ
0.89
<1.4
RMQ
REFMQ
CMQ
INCMQ
DV
DVCC
2.5
DG
DGND
0
GB1
GNDBI
0
VB1
VCCBI
2.5
GB2
GNDBE
0
0.89
External voltage (V)
<1.4
<0.4
<0.4
0.46
<1
TSA1203
Application information
Table 14.
Board connections for power supplies and other pins (continued)
Board marking
Connection
Internal voltage (V)
External voltage (V)
VB2
VCCBE
2.5/3.3
GB3
GNDB3
0
VB3
VCCB3
2.5
Caution:
Do not use the VB3 power supply (5 V) dedicated to the 74LCX573 external buffers to
supply the VB2 of the TSA1203 which cannot exceed 3.3 V.
8.7.2
Consumption adjustment
Before beginning characterization tests, make sure to adjust the Rpol (Raj1), and therefore
Ipol value, according to your sampling frequency.
8.7.3
Single and differential inputs
The test board can be driven on a single analog input, or on differential inputs. With a single
analog input, you must use the ADT1-1WT transformer to generate a differential signal. In
this configuration, the resistors RSI6, RSI7, RSI8 for channel I (respectively RSQ6, RSQ7,
RSQ8 for channel Q) are connected as short-circuits whereas RSI5, RSI9 (respectively
RSQ5, RSQ9 for channel Q) are open circuits.
Alternatively, you can use the JI1 and JI1B differential inputs. In this case, the resistances
RSI5, RSI9 for channel I (respectively RSQ5, RSQ9 for channel Q) are connected as shortcircuits whereas RSI6, RSI7, RSI8 (respectively RSQ6, RSQ7, RSQ8 for channel Q) are
open circuits.
8.7.4
Mode selection
In order to select the channel you want to evaluate, you must set a jumper on the board in
the relevant position for the SELECT pin (see Figure 31).
The channels selected depend on the position of the jumper:
●
With the jumper connected to the upper connectors, channel I at the output is selected.
●
With the jumper connected horizontally, channel Q at the output is selected.
●
With the jumper connected to the lower connectors, both channels are selected,
relative to the clock edge.
Figure 31. Mode selection
SELECT
I channel
SELECT
Q channel
I/Q channels
CLK
DGND DVCC
23/30
Practical application examples
TSA1203
9
Practical application examples
9.1
Digital interface applications
The wide external buffer power supply range of the TSA1203 makes it a perfect choice for
plugging into 2.5 V or 3.3 V low voltage DSPs or digital interfaces.
9.2
Medical imaging applications
Driven by the increasing demand for applications requiring either portability or a high degree
of parallelism (or both), this product satisfies the requirements of medical imaging and
telecom infrastructures.
The typical system diagram in Figure 32, shows how a narrow input beam of acoustic
energy is sent into a living body via the transducer, and how the energy reflected back is
analyzed.
Figure 32. Medical imaging application
HV TX amps
TX beam
former
Mux and
T/R
switches
ADC
RX beam
former
TGC amplifier
Processing
and display
The transducer is a piezoelectric ceramic such as zirconium titanate. The whole array can
reach up to 512 channels. The TX beam former, amplified by the HV TX amps, delivers up to
100 V amplitude excitation pulses with phase and amplitude shifts. The mux and T/R switch
is a two way input signal transmitter/ output receiver.
To compensate for skin and tissues attenuation effects, the time gain compensation (TGC)
amplifier is an exponential amplifier that amplifies low voltage signals to the ADC input
range. A differential output structure with low noise and very high linearity are essential
factors.
These applications need high speed, low power and high performance ADCs. 10-12 bit
resolution is necessary to lower the quantification noise. As multiple channels are used, a
dual converter is a must for room saving issues.
The input signal is in the range of 2 to 20 MHz (mainly 2 to 7 MHz) and the application uses
mostly a 4 over-sampling ratio for spurious free dynamic range (SFDR) optimization.
The next RX beam former and processing blocks enable the analysis of the output channels
versus the input beam.
24/30
TSA1203
10
Definitions of specified parameters
Definitions of specified parameters
Static parameters
Static measurements are performed using the histograms method on a 2 MHz input signal,
sampled at 50 Msps, which is high enough to fully characterize the test frequency response.
The input level is +1 dBFS to saturate the signal.
Differential non linearity (DNL)
The average deviation of any output code width from the ideal code width of 1 LSB.
Integral non linearity (INL)
An ideal converter exhibits a transfer function which is a straight line from the starting code
to the ending code. The INL is the deviation from this ideal line for each transition.
Dynamic parameters
Dynamic measurements are performed by spectral analysis, applied to an input sine wave
of various frequencies sampled at 40 Msps.
The input level is -1dBFS to measure the linear behavior of the converter. All the parameters
are given without correction for the full scale amplitude performance except the calculated
ENOB parameter.
Spurious free dynamic range (SFDR)
The ratio between the power of the worst spurious signal (not always an harmonic) and the
amplitude of fundamental tone (signal power) over the full Nyquist band. It is expressed in
dBc.
Total harmonic distortion (THD)
The ratio of the rms sum of the first five harmonic distortion components to the rms value of
the fundamental line. It is expressed in dB.
Signal to noise ratio (SNR)
The ratio of the rms value of the fundamental component to the rms sum of all other spectral
components in the Nyquist band (fs/ 2) excluding DC, fundamental and the first five
harmonics. SNR is reported in dB.
Signal to noise and distortion ratio (SINAD)
Similar ratio as for SNR but including the harmonic distortion components in the noise figure
(not DC signal). It is expressed in dB.
The effective number of bits (ENOB) is easily deduced from the SINAD, using the formula:
SINAD= 6.02 × ENOB + 1.76 dB.
When the applied signal is not full scale (FS), but has an A0 amplitude, the SINAD
expression becomes:
SINAD2Ao=SINADFull Scale+ 20 log (2A0/FS)
25/30
Definitions of specified parameters
TSA1203
SINAD2Ao=6.02 × ENOB + 1.76 dB + 20 log (2A0/FS)
The ENOB is expressed in bits.
Analog input bandwidth
The maximum analog input frequency at which the spectral response of a full power signal
is reduced by 3 dB. Higher values can be achieved with smaller input levels.
Effective resolution bandwidth (ERB)
The band of input signal frequencies that the ADC is intended to convert without loosing
linearity i.e. the maximum analog input frequency at which the SINAD is decreased by 3dB
or the ENOB by 1/2 bit.
Pipeline delay
Delay between the initial sample of the analog input and the availability of the corresponding
digital data output, on the output bus. Also called data latency. It is expressed as a number
of clock cycles.
26/30
TSA1203
11
Package mechanical data
Package mechanical data
In order to meet environmental requirements, STMicroelectronics offers these devices in
ECOPACK® packages. These packages have a Lead-free second level interconnect. The
category of second level interconnect is marked on the package and on the inner box label,
in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics
trademark. ECOPACK specifications are available at: www.st.com.
11.1
TQFP48 package
TQFP48 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
1.6
A1
0.05
0.15
0.002
A2
1.35
1.40
1.45
0.053
0.055
B
0.17
0.22
0.27
0.007
0.009
C
0.09
0.20
0.0035
0.006
D
9.00
0.354
7.00
0.276
D3
5.50
0.216
e
0.50
0.020
E
9.00
0.354
E1
7.00
0.276
L
5.50
0.45
L1
K
0.60
3.5˚
0.011
0.216
0.75
0.018
1.00
0˚
0.057
0.0079
D1
E3
MAX.
0.063
0.024
0.030
0.039
7˚
0˚
3.5˚
7˚
0110596/C
27/30
Ordering information
12
Ordering information
Part number
Temperature range
Package
Packing
Marking
TSA1203IFT-E
-40° C to +85° C
TQFP48
Tape & reel
SA1203I
TSA1203IF
-40° C to +85° C
TQFP48
Tray
SA1203I
EVAL1203/BA
28/30
TSA1203
Evaluation board
TSA1203
13
Revision history
Revision history
Date
Revision
Changes
1-Feb-2003
1
Initial release.
2-Jan-2006
2
Update of dynamic performance measurements in Table 2 on
page 6.
26-Sep-2006
3
Editorial updates. Reorganized document structure. No technical
changes.
12-Dec-2006
4
Pin 42 renamed to CLKD.
29/30
TSA1203
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
30/30