STMICROELECTRONICS TSH341IDT

TSH341
300MHz Single Supply Video Amplifier with Low In/Out Rail
■
■
■
■
■
■
■
■
■
Pin Connections (top view)
Bandwidth: 300MHz
Single supply operation down to 3V
Low input & output rail
Very low harmonic distortion
Slew rate: 400V/µs
Voltage Input noise: 7nV/√Hz
Specified for 150Ω load and 100Ω load
Tested on 5V power supply
Data min. and max. are tested during
production (Table 3)
OUT 1
5 +VCC
-VCC 2
+-
+IN 3
4 -IN
SOT23-5
Description
The TSH341 is a single supply operational
amplifier featuring a large bandwidth of 300MHz
at unity gain for only 9.8mA of quiescent current.
An advantage of this circuit is its low input and
output rail feature which is very close to GND in
single supply. This rail is tested and guaranteed
during production at 60mV (max.) from GND on a
150Ω load. This allows a good output swing which
fits perfectly when driving a video signal on a 75Ω
video line. Chapter 5 gives technical support
when using the TSH341 as a driver for video DAC
output on a video line. In particular, this chapter
focuses on applying a video signal DC shift to
avoid any clamping of the synchronization tip.
The TSH341 is available in the tiny SOT23-5 and
SO8 plastic packages.
8 NC
NC 1
-IN 2
_
7 +VCC
+IN 3
+
6 OUT
5 NC
-VCC 4
SO8
Applications
■
■
■
■
High-end video systems
High Definition TV (HDTV)
Broadcast video
Multimedia products
Order Codes
Part Number
Temperature Range
TSH341ILT
TSH341ID
TSH341IDT
-40°C to +85°C
March 2005
Package
Packaging
Marking
SOT23-5
Tape & Reel
Tube
Tape & Reel
K307
H341I
H341I
SO-8
Revision 2
1/13
TSH341
Absolute Maximum Ratings
1 Absolute Maximum Ratings
Table 1. Key parameters and their absolute maximum ratings
Symbol
VCC
Vid
Vin
Parameter
Supply voltage
1
Differential Input Voltage
2
3
Value
Unit
6
V
+/-0.5
V
-0.2 to +3
V
°C
Toper
Input Voltage Range
Operating Free Air Temperature Range
-40 to +85
Tstd
Storage Temperature
-65 to +150
°C
150
°C
80
28
°C/W
250
175
°C/W
500
715
mW
2
1.5
200
kV
Tj
Rthjc
Rthja
Pmax.
ESD
Maximum Junction Temperature
Thermal Resistance Junction to Case
SOT23-5
SO8
Thermal Resistance Junction to Ambient Area
SOT23-5
SO8
Maximum Power Dissipation (@Ta=25°C) for Tj=150°C
SOT23-5
SO8
CDM: Charged Device Model
HBM: Human Body Model
MM: Machine Model
Output Short Circuit
kV
V
4
1)
All voltage values, except differential voltage are with respect to network terminal.
2)
Differential voltage are non-inverting input terminal with respect to the inverting input terminal.
3)
The magnitude of input and output voltage must never exceed VCC +0.3V.
4)
An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating.
Destructive dissipation can result from short circuit on amplifiers.
Table 2. Operating conditions
Symbol
1)
Parameter
VCC
Power Supply Voltage
Vicm
Common Mode Input Voltage
Tested in full production at 0V/5V single power supply
2/13
Value
Unit
1
3 to 5.5
-0.4 to 3
V
V
Electrical Characteristics
TSH341
2 Electrical Characteristics
Table 3. VCC = +5V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
-15
-3
15
Unit
DC Performance
Vio
∆Vio
Iib
AVD
CMR
SVR
PSR
Input Offset Voltage
Tamb, Vicm=0.6V
-40°C < Tamb < +85°C
-5
Vio drift vs. Temperature
-40°C < Tamb < +85°C
-30
Input Bias Current
Tamb, Vicm=0.6V
6
-40°C < Tamb < +85°C
mV
µV/°C
16
7.2
µA
Open Loop Gain
∆VOUT=2V, RL=150Ω
70
100
Common Mode Rejection Ratio
∆Vicm = 2V
-60
-85
20 log (∆Vicm/∆Vio)
-40°C < Tamb < +85°C
Supply Voltage Rejection Ratio
∆Vcc=4V to 5V, Vicm=0.6V
20 log (∆Vcc/∆Vio)
-40°C < Tamb < +85°C
-84
Power Supply Rejection Ratio
20 log (∆Vcc/∆Vout)
∆Vcc=200mVp-p, F=1MHz
-77
dB
8.2
MΩ
RIN
Input Resistance
CIN
Input Capacitance
ICC
Total Supply Current
dB
dB
-83
-60
-85
dB
3.5
No Load, Vicm=0.6V
9.8
pF
12.7
mA
Dynamic Performance and Output Characteristics
-3dB Bandwidth
Bw
Gain Flatness @ 0.1dB
FPBW
SR
Small Signal VOUT=20mVp
Vicm=0.6V, RL=150Ω
Gain=+1
Gain=+2
Small Signal VOUT=20mVp
Gain=+2, Vicm=0.6V,
RL=150Ω
Full Power Bandwidth
Vicm=2V, VOUT = 2Vp-p,
Gain=1, RL = 150Ω
Slew Rate
VOUT=2Vp-p, RL=150Ω,
Gain=+2,
VOH
High Level Output Voltage
RL = 150Ω
VOL
Low Level Output Voltage
RL = 150Ω
Output Short Circuit Current
Tamb
IOUT
90
-40°C < Tamb < +85°C
300
150
MHz
65
70
3.7
100
MHz
400
V/µs
3.9
40
70
100
90
V
60
mV
mA
Noise and Distortion
eN
Equivalent Input Noise Voltage
F = 100kHz
7
nV/√Hz
iN
Equivalent Input Noise Current (+)
F = 100kHz
1.5
pA/√Hz
2nd Harmonic Distortion
VOUT= 2Vp-p, RL = 150Ω
Gain=+2, F= 10MHz,
-57
dBc
3rd Harmonic Distortion
VOUT= 2Vp-p, RL = 150Ω
Gain=+2, F= 10MHz,
-63
dBc
HD2
HD3
3/13
TSH341
Electrical Characteristics
Figure 1. Frequency response
Figure 4. Frequency response on capa-load
20
16
14
Gain=+4
C=47pF
Riso=10Ω
12
Frequency Response (dB)
10
8
6
Gain=+2
Gain (dB)
4
2
0
-2
Gain=+1
-4
-6
-8
-10
-12
-14
Vcc=5V
Load=100Ω or 150Ω
SO8 and SOT23-5
-16
1M
10M
C=10pF
Riso=0
10
0
C=22pF
Riso=10Ω
-10
Vcc=5V
Gain=+2
Load=Riso + C//1kΩ (to ground)
-20
1M
100M
10M
Figure 2. Gain flatness - SOT23-5L
Figure 5. Gain flatness - SO8
6,4
6,4
Load=150Ω
6,0
5,8
5,8
5,6
5,4
Load=100Ω
5,2
Load=150Ω
6,2
6,0
Gain (dB)
Gain (dB)
6,2
5,6
5,4
Load=100Ω
5,2
5,0
5,0
4,6
100M
Frequency (Hz)
Frequency (Hz)
4,8
C=0 or
10pF
Riso=0
4,8
Vcc=5V
Gain=+2
4,6
1M
10M
Vcc=5V
1M
100M
10M
100M
Frequency (Hz)
Frequency (Hz)
Figure 3. Total input noise vs. frequency
Figure 6. Positive and negative slew rate
3,0
2,5
Output Response (V)
Input Noise (nV/VHz)
non-inverting input in short-circuit
Vcc=5V
100
Vcc=5V
G=+2
Load=100Ω or 150Ω
SR+
2,0
1,5
SR-
1,0
0,5
10
100
1k
10k
100k
Frequency (Hz)
4/13
1M
10M
0,0
-5ns
-4ns
-3ns
-2ns
-1ns
0s
Time
1ns
2ns
3ns
4ns
5ns
Electrical Characteristics
TSH341
Figure 7. Distortion on 100Ω load
Figure 10. Distortion on 150Ω load
-20
-10
-25
-15
HD2
(30MHz)
-30
-20
-25
HD3
(30MHz)
-40
HD2 & HD3 (dBc)
HD2 & HD3 (dBc)
-35
-45
-50
-55
-60
HD2
(10MHz)
-65
-70
-75
-30
HD2
(30MHz)
HD3
(30MHz)
-35
-40
-45
-50
-55
HD3
(10MHz)
-60
-65
-80
HD3
(10MHz)
-85
-70
Vcc=5V
Load=100Ω
-90
Vcc=5V
Load=150Ω
HD2
(10MHz)
-75
-80
0
1
2
3
4
0
1
Output Amplitude (Vp-p)
2
3
4
Output Amplitude (Vp-p)
Figure 8. Output lower rail vs. frequency
Figure 11. Output voltage swing vs. Vcc
500
5
Vcc=5V
Load=100Ω or 150Ω
4
Vout max (Vp-p)
VOL (mV)
400
300
200
100
3
2
1
F=30MHz
Load=100Ω or 150Ω
0
10k
100k
1M
10M
0
3,00
100M
3,25
3,50
3,75
Frequency (Hz)
4,00
4,25
4,50
4,75
5,00
Vcc (V)
Figure 9. Output voltage swing vs. frequency
Figure 12. Quiescent current vs. Vcc
20
5
no load
15
3
Icc (mA)
Vout max. (Vp-p)
4
2
10
5
1
Vcc=5V
Gain=+2
Load=100Ω or Load=150Ω
0
1M
10M
Frequency (Hz)
0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
5,0
Vcc (V)
5/13
TSH341
Electrical Characteristics
Figure 13. Isource
Figure 16. Reverse isolation vs. frequency
0
0
-10
+5V
-20
VOH
without load
-20
Isource
-40
V
+3V
-50
-40
Gain (dB)
Isource (mA)
-30
0V
-60
-70
-60
-80
-90
-80
-100
Small Signal
Vcc=5V
Load=100Ω
-110
-120
0,0
0,5
1,0
1,5
2,0
2,5
3,0
3,5
4,0
4,5
-100
1M
5,0
10M
V (V)
100M
1G
Frequency (Hz)
Figure 14. Bandwidth vs. temperature
Figure 17. Ibias vs. temperature
11,0
300
10,5
250
IBIAS (µA)
Bw (MHz)
10,0
200
9,5
9,0
150
Vcc=5V
Gain=+1
Load=150Ω
100
-40
8,5
-20
0
20
40
60
8,0
-40
80
Vcc=5V
Load=150Ω
-20
0
20
40
60
80
Temperature (°C)
Temperature (°C)
Figure 15. Input offset vs. temperature
Figure 18. Supply current vs. temperature
12
0
11
ICC (mA)
Vio (mV)
-1
-2
10
9
-3
8
-4
Vcc=5V
Load=150Ω
-5
-40
-20
0
20
40
Temperature (°C)
6/13
60
80
7
-40
Vcc=5V
no Load
-20
0
20
40
Temperature (°C)
60
80
Electrical Characteristics
TSH341
Figure 19. Output lower rail vs. temperature
Figure 21. Output higher rail vs. temperature
4,50
0,10
Vcc=5V
Gain=+2
Load=150Ω
4,25
0,06
VOH (V)
VOL (V)
0,08
4,00
0,04
3,75
0,02
0,00
-40
Vcc=5V
Gain=+2
Load=150Ω
-20
0
20
40
60
3,50
-40
80
-20
0
20
40
60
80
60
80
Temperature (°C)
Temperature (°C)
Figure 20. SVR vs. temperature
Figure 22. CMR vs. temperature
86,0
88
85,8
85,6
86
85,2
CMR (dB)
SVR (dB)
85,4
85,0
84,8
84
84,6
82
84,4
84,2
84,0
-40
Vcc=5V
Vcc=5V
-20
0
20
40
Temperature (°C)
60
80
80
-40
-20
0
20
40
Temperature (°C)
7/13
TSH341
Evaluation Boards
3 Evaluation Boards
An evaluation board kit optimized for high speed operational amplifiers is available (order code:
KITHSEVAL/STDL). The kit includes the following evaluation boards, as well as a CD-ROM containing
datasheets, articles, application notes and a user manual:
z
SOT23_SINGLE_HF BOARD: Board for the evaluation of a single high-speed op-amp in SOT23-5
package.
z
SO8_SINGLE_HF: Board for the evaluation of a single high-speed op-amp in SO8 package.
z
SO8_DUAL_HF: Board for the evaluation of a dual high-speed op-amp in SO8 package.
z
SO8_S_MULTI: Board for the evaluation of a single high-speed op-amp in SO8 package in inverting
and non-inverting configuration, dual and signle supply.
z
SO14_TRIPLE: Board for the evaluation of a triple high-speed op-amp in SO14 package with video
application considerations.
Board material:
z
2 layers
z
FR4 (εr=4.6)
z
epoxy 1.6mm
z
copper thickness: 35µm
Figure 23: Evaluation kit for high speed op-amps
8/13
Power Supply Considerations
TSH341
4 Power Supply Considerations
Correct power supply bypassing is very important for optimizing performance in high-frequency ranges.
Bypass capacitors should be placed as close as possible to the IC pins to improve high-frequency
bypassing. A capacitor greater than 10µF is necessary to minimize the distortion. For better quality
bypassing, a capacitor of 10nF is added using the same implementation conditions. Bypass capacitors
must be incorporated for both the negative and the positive supply. On the SO8_SINGLE_HF board,
these capacitors are C8 and C6.
Figure 24: Circuit for power supply bypassing
+VCC
10microF
+
10nF
+
+VCC
TSH341
_
GND
9/13
TSH341
Using the TSH341 to Drive Video Signals
5 Using the TSH341 to Drive Video Signals
Figure 25. Implementation of the video driver on output video DACs
Volt
Video
Signal
2.250V
Volt
250mV
+5V
Reconstruction
Filtering
Video
DAC
LPF
Video
Signal
time
125mV
time
75Ω
+
75Ω Cable
1Vpp
_
1Vpp
1.125V
75Ω
2Vpp
Rg
Rfb
VOL(50MHz) = 150mV (Figure 8)
To drive the video signal properly, the output of the driver must be at least equal to
250mV (assuming Vio and VOL variations).
z
1st solution:
Set the video DAC 0-IRE output level to 125mV.
White Level
100 IRE
Image Content
Black Level
30 IRE
1Vp-p
300mV
0 IRE
150mV
0V
Synchronization Tip
z
2nd solution:
Implementation of a DC component in the input of the driver.
Volt
Video
Signal
2.250V
Volt
250mV
33uF
Video
DAC
LPF
1Vpp
DC component
=125mV
10/13
Reconstruction
Filtering
1k
+5V
Video
Signal
time
75Ω Cable
1Vpp
_
75Ω
2Vpp
Rg
125mV
time
75Ω
+
1.125V
Rfb
Package Mechanical Data
TSH341
6 Package Mechanical Data
6.1 SO-8 Package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
0.157
e
1.27
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
11/13
TSH341
Package Mechanical Data
6.2 SOT23-5L (5-pin) package
SOT23-5L MECHANICAL DATA
mm.
mils
DIM.
MIN.
MAX.
MIN.
TYP.
MAX.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.0
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0 .95
37.4
e1
1.9
74.8
L
12/13
TYP
0.35
0.55
13.7
21.6
TSH341
7 Revision History
Date
Revision
Description of Changes
01 Jan. 2005
1
First release corresponding to Preliminary Data version of datasheet.
23 Mar. 2005
2
Datasheet of mature, full-specification product
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
13/13