FREESCALE SPXN4040VVU264R

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: PXR40
Rev. 1, 09/2011
PXR40
PXR40 Microcontroller Data
Sheet
• Dual issue, 32-bit CPU core complex (e200z7)
– Compliant with the Power Architecture embedded
category
– 16 KB I-Cache and 16 KB D-Cache
– Includes an instruction set enhancement allowing
variable length encoding (VLE), optional encoding of
mixed 16-bit and 32-bit instructions, for code size
footprint reduction
– Includes signal processing extension (SPE2) instruction
support for digital signal processing (DSP) and
single-precision floating point operations
• 4 MB on-chip flash
– Supports read during program and erase operations, and
multiple blocks allowing EEPROM emulation
• 256 KB on-chip general-purpose SRAM including 32 KB
of standby RAM
• Two direct memory access controller (eDMA2) blocks
– One supporting 64 channels
– One supporting 32 channels
• Interrupt controller (INTC)
• Frequency modulated phase-locked loop (FMPLL)
• Crossbar switch architecture for concurrent access to
peripherals, flash, or RAM from multiple bus masters
• External bus interface (EBI) for calibration and application
development (not available on all packages)
• System integration unit (SIU)
• Error correction status module (ECSM)
• Boot assist module (BAM) supports serial bootload via
CAN or SCI
• Two second-generation enhanced time processor units
(eTPU2) that share code and data RAM.
– 32 standard channels per eTPU2
– 24 KB code RAM
– 6 KB parameter (data) RAM
• Enhanced modular input output system supporting 32
unified channels (eMIOS) with each channel capable of
© Freescale Semiconductor, Inc., 2011. All rights reserved.
TEPBGA–416
27mm x 27mm
•
•
•
•
•
•
•
•
single action, double action, pulse width modulation
(PWM) and modulus counter operation
Four enhanced queued analog-to-digital converters
(eQADC)
– Support for 64 analog channels
– Includes one absolute reference ADC channel
– Includes eight decimation filters
Four deserial serial peripheral interface (SPI) modules
Three enhanced serial communication interface (UART)
modules
Four controller area network (CAN) modules
Dual-channel FlexRay controller
Nexus development interface (NDI) per IEEE-ISTO
5001-2003/5001-2008 standard
Device and board test support per Joint Test Action Group
(JTAG) (IEEE 1149.1)
On-chip voltage regulator controller regulates supply
voltage down to 1.2 V for core logic
Table of Contents
1
2
3
4
5
PXR40 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
PXR40 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Pin assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
3.1 416-ball TEPBGA pin assignments. . . . . . . . . . . . . . . . .6
Signal properties and muxing . . . . . . . . . . . . . . . . . . . . . . . . .11
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
5.1 Maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
5.2 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .53
5.2.1 General notes for specifications at maximum junction
temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 EMI (Electromagnetic Interference) characteristics . . .55
5.4 ESD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . .56
5.5 PMC/POR/LVI electrical specifications . . . . . . . . . . . . .56
5.6 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . .59
5.6.1 Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
5.6.2 Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
5.6.3 Power sequencing and POR dependent on VDDA60
5.7 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . .61
5.7.1 I/O pad current specifications . . . . . . . . . . . . . .64
5.7.2 I/O pad VDD33 current specifications . . . . . . . . .64
5.7.3 LVDS pad specifications . . . . . . . . . . . . . . . . . .65
5.8 Oscillator and FMPLL electrical characteristics . . . . . .66
5.9
6
7
8
9
eQADC electrical characteristics . . . . . . . . . . . . . . . . .
5.9.1 ADC internal resource measurements . . . . . . .
5.10 C90 flash memory electrical characteristics . . . . . . . .
5.11 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11.1 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11.2 Pad AC specifications. . . . . . . . . . . . . . . . . . . .
5.12 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.12.1 Generic timing diagrams . . . . . . . . . . . . . . . . .
5.12.2 Reset and configuration pin timing . . . . . . . . . .
5.12.3 IEEE 1149.1 interface timing . . . . . . . . . . . . . .
5.12.4 Nexus timing. . . . . . . . . . . . . . . . . . . . . . . . . . .
5.12.5 External Bus Interface (EBI) timing . . . . . . . . .
5.12.6 External interrupt timing (IRQ pin) . . . . . . . . . .
5.12.7 eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.12.8 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . .
5.12.9 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 416-pin package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
68
69
71
73
73
74
77
77
78
78
81
84
88
88
89
90
96
96
97
97
99
99
PXR40 Microcontroller Data Sheet, Rev. 1
2
Freescale Semiconductor
PXR40 features
1
PXR40 features
Table 1 displays the PXR40 feature set.
Table 1. PXR40 feature set
Feature
Core
SIMD
VLE
Cache
Non-maskable interrupt (NMI)
MMU
MPU
XBAR
Windowing software watchdog
Nexus
SRAM
Flash
Flash fetch accelerator
External bus
Calibration bus
DMA
DMA Nexus
Serial
UART_A
UART_B
UART_C
Microsecond bus uplink
CAN
CAN_A
CAN_B
CAN_C
CAN_D
CAN_E
SPI
SPI_A
SPI_B
SPI_C
SPI_D
FlexRay
Ethernet
System timers
eMIOS
eTPU
eTPU_A
eTPU_B
PXR40
e200z7
Yes
Yes
32 KB
(16 KB Instruction/16 KB Data)
NMI & Critical Interrupt
64 entry
Yes
5×5
Yes
3+
256 KB
4 MB
4 × 256 bit
(first 1 MB of memory is 4 × 128; last 3 MB are 4 × 256)
Yes
16 bit non-muxed
32 bit muxed
96 channel
Class 3
3
Yes
Yes
Yes
Yes
4
64 message buffers
64 message buffers
64 message buffers
64 message buffers
No
4
Yes
Yes
Yes
Yes
Yes
No
4 PIT chan
4 SWT
1 Watchdog
32 channel
64 channel
Yes (eTPU2)
Yes (eTPU2)
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
3
PXR40 features
Table 1. PXR40 feature set (continued)
Feature
Code memory
Data memory
Interrupt controller
ADC
eQADC_A
eQADC_B
Temperature sensor
Variable gain amp.
Decimation filter
Sensor diagnostics
PLL
VRC
Supplies
Low Power Modes
PXR40
24 KB
6 KB
448
64 channel
Yes
Yes
Yes
Yes
Yes (8 on eQADC_B)
Yes
FM
Yes
5V
Stop Mode
Slow Mode
Note: 3.3 V is required for certain IO segments only during debug/development (e.g., Nexus 3 trace and bus)
PXR40 Microcontroller Data Sheet, Rev. 1
4
Freescale Semiconductor
PXR40 block diagram
2
PXR40 block diagram
Figure 1 shows a top-level block diagram of the PXR40 microcontrollers.
PXR40 Block Diagram
System
Integration
Data and Instruction System
Debug
SPE2
JTAG
2 x eDMA
64- and
32-ch
Osc/PLL
Interrupt
Controller
e200z7
Superscalar
CPU
FlexRay™
Controller
Nexus
IEEE
ISTO
5001™-2003
Crossbar Switch (XBAR)
Memory Protection Unit (MPU)
PBRIDGE A
256 KB
SRAM
w/ECC
(32 KB S/B)
4 MB
Flash
w/ECC
PBRIDGE B
Main Memory System
SIU
Communications
Timed I/O System
eMIOS
32-ch
Boot Assist
Module
(BAM)
eTPU2
32-ch
6K
Data
24K
Code
RAM
eTPU2
32-ch
ADC
– Analog-to-digital converter
ADCi – ADC interface
AIPS – Peripheral I/O bridge
AMux – Analog multiplexer
CAN
– Controller area network
DECFIL– Decimation filter
EBI
– External bus interface
ECSM – Error correction status module
eDMA2 – Enhanced direct memory access
eMIOS – Enhanced modular I/O system
eQADC – Enhanced queued A/D converter module
eTPU2 – Enhanced time processing unit 2
4x
CAN
3x
UART/
LIN
MMU
MPU
PBRIDGE
S/B
SIU
SPE2
SPI
SRAM
UART/LIN
VLE
4x
SPI
4x
Dec
Fil
64-ch
QUAD
ADCi
– Memory management unit
– Memory protection unit
– Peripheral I/O bridge
– Stand-by
– System integration unit
– Signal processing engine 2
– Serial peripheral interface controller
– General-purpose static RAM
– Universal asynchronous receiver/transmitter/
local interconnect network
– Variable length instruction encoding
Figure 1. Block diagram
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
5
Pin assignments
3
Pin assignments
The figures in this section show the primary pin function. For the full signal properties and muxing table, see Table 4.
3.1
416-ball TEPBGA pin assignments
Figure 2 shows the 416-ball TEPBGA pin assignments in one figure. The same information is shown in Figure 3 through
Figure 6.
1
A
VSS
2
3
4
VDD RSTOUT ANA0
5
6
ANA4
ANA8
ANA11 ANA15 VDDA_A0
7
8
9
10
11
12
15
16
17
18
19
20
21
22
23
25
14
AN32
AN36 VDDA_B0 REF– VRL_B VRH_B ANB7
BYPCB1
ANB11 ANB14 ANB17 ANB21 ANB23
AN24
AN27
AN29
AN33 VDDA_B1 VSSA_B0 REF– ANB6
BYPCB
ANB8
ANB10 ANB15 ANB18 ANB22
VDD
TEST
ANA1
ANA5
REF–
ANA10 ANA14 VDDA_A1 VSSA_A1 BYPCA
C ETPUA30 ETPUA31 VSS
VDD
ANA2
ANA6
ANA9
ANA13 ANA17 ANA19 ANA21 ANA23
AN26
AN30
AN34
AN37
AN38
ANB0
ANB4
ANB5
ANB12 ANB16 ANB19
D ETPUA27 ETPUA28 ETPUA29 VSS
VDD
ANA3
ANA7
ANA12 ANA16 ANA18 ANA20 ANA22
AN25
AN31
AN35
AN39
ANB1
ANB2
ANB3
ANB9
ANB13 ANB20
B VDDEH1 VSS
24
13
AN28
REF–
VRL_A VRH_A
BYPCA1
VSS
26
VSS
A
VSS TCRCLKC B
ETPUC0 ETPUC1 C
VSS VDDEH7 ETPUC2 ETPUC3 D
VDDEH7 ETPUC4 ETPUC5 ETPUC6 E
E ETPUA23 ETPUA24 ETPUA25 ETPUA26
ETPUC7 ETPUC8 ETPUC9 ETPUC10 F
F ETPUA19 ETPUA20 ETPUA21 ETPUA22
PXR40 416-ball TEPBGA
G ETPUA15 ETPUA16 ETPUA17 ETPUA18
ETPUC11 ETPUC12 ETPUC13 ETPUC14 G
(as viewed from top through the package)
H ETPUA11 ETPUA12 ETPUA14 ETPUA13
ETPUC15 ETPUC16 ETPUC17 ETPUC18 H
J ETPUA7 ETPUA8 ETPUA9 ETPUA10
ETPUC19 ETPUC20 ETPUC21 ETPUC22 J
K ETPUA3 ETPUA4 ETPUA5 ETPUA6
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
ETPUC23 ETPUC24 ETPUC25 ETPUC26 K
L TCRCLKA ETPUA0 ETPUA1 ETPUA2
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
ETPUC27 ETPUC28 ETPUC29 ETPUC30 L
M VDD33_1 TXDA
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
ETPUC31 ETPUB15 ETPUB14 VDDEH7 M
BOOT–
N RXDB CFG1 WKPCFG VDD
VDDE2
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDDEH6 ETPUB11 ETPUB12 ETPUB13 N
P TXDB PLLCFG1 PLLCFG2 VDDEH1
VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
VSS
ETPUB7 ETPUB8 ETPUB9 ETPUB10 P
R JCOMP RESET PLLCFG0 RDY
VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
VSS
ETPUB3 ETPUB4 ETPUB5 ETPUB6 R
RXDA VSTBY
T VDDE2 MCKO MSEO1
EVTI
VDDE2 VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
TCRCLKB ETPUB0 ETPUB1 ETPUB2 T
U EVTO MSEO0 MDO0
MDO1
VDDE2 VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
ETPUB19 ETPUB18 ETPUB17 ETPUB16 U
V MDO2
MDO3
MDO4
MDO5
ETPUB26 ETPUB22 ETPUB21 ETPUB20 V
W MDO6
MDO7
MDO8 VDDE2
REGSEL ETPUB25 ETPUB24 ETPUB23 W
Y MDO9 MDO10 MDO11 MDO15
ETPUB29 ETPUB28 ETPUB27 REGCTL Y
AA MDO12 MDO13 MDO14 VDD33_2
VDD33_3 ETPUB30 VDDREG VSSSYN AA
TDO
TCK
TMS
VDD
TDI
VDD
VSS
AD ENGCLK VDD
VSS
AB
AC VDDE2
AE
VDD
AF
VSS
1
VSS
VDD ETPUB31 VSSFL EXTAL AB
VDDE2 PCSA1 PCSA2 PCSB4 PCSB1 VDDEH3 VDDEH4 VDD
FR_A_ FR_B_
EMIOS5 EMIOS9 EMIOS15 EMIOS19 EMIOS23 EMIOS26 EMIOS30 CNTXB CNTXD SCKC
TX
TX PCSA5 SOUTA SCKA PCSB0 PCSB3 EMIOS2
FR_A_ FR_B_
PCSA4 PCSA0 PCSA3 SCKB
RX
RX
FR_A_ FR_B_
VDDE2 TX_EN TX_EN VDDEH3 PCSB5
2
3
EMIOS8 EMIOS14 EMIOS18 EMIOS22 EMIOS27 EMIOS31 CNRXB CNRXD VDDEH5 PCSC1
4
5
6
SINA
7
SINB EMIOS0 EMIOS3 EMIOS6 EMIOS10 EMIOS13 EMIOS17 EMIOS21 EMIOS25 EMIOS29 CNRXA CNRXC PCSC0
VSS
RXDC PCSC3
SINC
VDD VDDEH6 XTAL AC
VSS
PCSC2 PCSC5
VDD VDDSYN AD
VSS
VDD
AE
PCSB2 SOUTB EMIOS1 EMIOS4 EMIOS7 EMIOS11 EMIOS12 EMIOS16 EMIOS20 EMIOS24 EMIOS28 CNTXA CNTXC SOUTC VDDEH4 TXDC PCSC4 VDDEH5 VSS
AF
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Figure 2. PXR40 416-ball TEPBGA (full diagram)
PXR40 Microcontroller Data Sheet, Rev. 1
6
Freescale Semiconductor
Pin assignments
A
1
2
3
4
5
6
7
VSS
VDD
RSTOUT
ANA0
ANA4
ANA8
ANA11
ANA15 VDDA_A0
VSS
VDD
TEST
ANA1
ANA5
ANA10
VSS
VDD
ANA2
ANA6
VSS
VDD
ANA3
B VDDEH1
C ETPUA30 ETPUA31
D ETPUA27 ETPUA28 ETPUA29
8
9
10
11
12
13
REFBYPCA1
VRL_A
VRH_A
AN28
A
ANA14 VDDA_A1 VSSA_A1 REFBYPCA
AN24
AN27
B
ANA9
ANA13
ANA17
ANA19
ANA21
ANA23
AN26
C
ANA7
ANA12
ANA16
ANA18
ANA20
ANA22
AN25
D
E ETPUA23 ETPUA24 ETPUA25 ETPUA26
E
F ETPUA19 ETPUA20 ETPUA21 ETPUA22
F
PXR40 416-ball TEPBGA
G ETPUA15 ETPUA16 ETPUA17 ETPUA18
G
(as viewed from top through the package)
(1 of 4)
H ETPUA11 ETPUA12 ETPUA14 ETPUA13
H
J ETPUA7 ETPUA8 ETPUA9 ETPUA10
J
K ETPUA3 ETPUA4 ETPUA5 ETPUA6
VSS
VSS
VSS
VSS
K
L TCRCLKA ETPUA0 ETPUA1 ETPUA2
VSS
VSS
VSS
VSS
L
M VDD33_1
VSTBY
VSS
VSS
VSS
VSS
M
VDD
VDDE2
VSS
VSS
VSS
N
10
11
12
13
N
TXDA
RXDA
RXDB BOOTCFG1 WKPCFG
1
2
3
4
5
6
7
8
9
Figure 3. PXR40 416-ball TEPBGA (1 of 4)
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
7
Pin assignments
14
15
16
17
18
19
20
21
22
23
24
25
26
A
AN32
AN36
VDDA_B0
REFBYPCB1
VRL_B
VRH_B
ANB7
ANB11
ANB14
ANB17
ANB21
ANB23
VSS
B
AN29
AN33
VDDA_B1 VSSA_B0 REFBYPCB ANB6
ANB8
ANB10
ANB15
ANB18
ANB22
VSS
C
AN30
AN34
AN37
AN38
ANB0
ANB4
ANB5
ANB12
ANB16
ANB19
VSS
D
AN31
AN35
AN39
ANB1
ANB2
ANB3
ANB9
ANB13
ANB20
VSS
A
TCRCLKC B
ETPUC0 ETPUC1 C
VDDEH7 ETPUC2 ETPUC3 D
E
VDDEH7 ETPUC4 ETPUC5 ETPUC6 E
F
ETPUC7 ETPUC8 ETPUC9 ETPUC10 F
PXR40 416-ball TEPBGA
G
ETPUC11 ETPUC12 ETPUC13 ETPUC14 G
(as viewed from top through the package)
(2 of 4)
H
ETPUC15 ETPUC16 ETPUC17 ETPUC18 H
J
ETPUC19 ETPUC20 ETPUC21 ETPUC22 J
K
VSS
VSS
VSS
VSS
ETPUC23 ETPUC24 ETPUC25 ETPUC26 K
L
VSS
VSS
VSS
VSS
ETPUC27 ETPUC28 ETPUC29 ETPUC30 L
M
VSS
VSS
VSS
VSS
ETPUC31 ETPUB15 ETPUB14 VDDEH7 M
N
VSS
VSS
VSS
VSS
VDDEH6 ETPUB11 ETPUB12 ETPUB13 N
14
15
16
17
18
19
20
21
22
23
24
25
26
Figure 4. PXR40 416-ball TEPBGA (2 of 4)
PXR40 Microcontroller Data Sheet, Rev. 1
8
Freescale Semiconductor
Pin assignments
1
2
3
4
5
6
7
8
9
10
11
12
13
PLLCFG1 PLLCFG2 VDDEH1
VDDE2
VDDE2
VSS
VSS
P
RDY
VDDE2
VDDE2
VSS
VSS
R
P
TXDB
R
JCOMP
RESET PLLCFG0
T
VDDE2
MCKO
MSEO1
EVTI
VDDE2
VDDE2
VDDE2
VSS
T
U
EVTO
MSEO0
MDO0
MDO1
VDDE2
VDDE2
VDDE2
VSS
U
V
MDO2
MDO3
MDO4
MDO5
V
W
MDO6
MDO7
MDO8
VDDE2
W
Y
MDO9
MDO10
MDO11
MDO15
AA
MDO12
MDO13
MDO14 VDD33_2
AB
TDO
TCK
TMS
VDD
AC
VDDE2
TDI
VDD
VSS
VDD
VSS
PXR40 416-ball TEPBGA
AD ENGCLK
Y
(as viewed from top through the package)
(3 of 4)
AA
AB
VDDE2
PCSA2
PCSB4
PCSB1 VDDEH3 VDDEH4
FR_A_TX FR_B_TX PCSA5
SOUTA
SCKA
PCSB0
PCSA0
PCSA3
SCKB
SINB
EMIOS0 EMIOS3 EMIOS6 EMIOS10 AE
EMIOS1 EMIOS4 EMIOS7 EMIOS11 AF
AE
VDD
VSS
AF
VSS
VDDE2
FR_A_
TX_EN
FR_B_
TX_EN
VDDEH3
PCSB5
SINA
PCSB2
SOUTB
1
2
3
4
5
6
7
8
9
FR_A_RX FR_B_RX PCSA4
PCSB3
10
VDD
EMIOS8 AC
PCSA1
EMIOS2 EMIOS5 EMIOS9 AD
11
12
13
Figure 5. PXR40 416-ball TEPBGA (3 of 4)
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
9
Pin assignments
14
15
16
17
18
19
20
21
22
23
24
25
26
P
VSS
VSS
VSS
VSS
ETPUB7 ETPUB8 ETPUB9 ETPUB10 P
R
VSS
VSS
VSS
VSS
ETPUB3 ETPUB4 ETPUB5 ETPUB6 R
T
VSS
VSS
VSS
VSS
TCRCLKB ETPUB0 ETPUB1 ETPUB2 T
U
VSS
VSS
VSS
VSS
ETPUB19 ETPUB18 ETPUB17 ETPUB16 U
V
ETPUB26 ETPUB22 ETPUB21 ETPUB20 V
W
REGSEL ETPUB25 ETPUB24 ETPUB23 W
PXR40 416-ball TEPBGA
Y
ETPUB29 ETPUB28 ETPUB27 REGCTL Y
(as viewed from top through the package)
(4 of 4)
VDD33_3 ETPUB30 VDDREG VSSSYN AA
AA
AB
VDD
AC EMIOS14 EMIOS18 EMIOS22 EMIOS27 EMIOS31 CNRXB
CNRXD VDDEH5 PCSC1
AD EMIOS15 EMIOS19 EMIOS23 EMIOS26 EMIOS30 CNTXB
CNTXD
SCKC
AE EMIOS13 EMIOS17 EMIOS21 EMIOS25 EMIOS29 CNRXA
CNRXC
PCSC0
AF EMIOS12 EMIOS16 EMIOS20 EMIOS24 EMIOS28 CNTXA
CNTXC
SOUTC VDDEH4
14
15
16
17
18
19
20
21
ETPUB31 VSSFL
VSS
VDD
VDDEH6
RXDC
PCSC3
VSS
VDD
SINC
PCSC2
PCSC5
VSS
TXDC
PCSC4 VDDEH5
22
23
24
25
EXTAL
AB
XTAL
AC
VDDSYN AD
VDD
AE
VSS
AF
26
Figure 6. PXR40 416-ball TEPBGA (4 of 4)
PXR40 Microcontroller Data Sheet, Rev. 1
10
Freescale Semiconductor
Signal properties and muxing
4
Signal properties and muxing
Table 2 shows the signals properties for each pin on the PXR40. For each port pin that has an associated SIU_PCRn register to
control its pin properties, the supported functions column lists the functions associated with the programming of the
SIU_PCRn[PA] bit in the order: Primary function (P), Function 2 (F2), Function 3 (F3), and GPIO (G). See Figure 7.
Table 2. Signal Properties Summary
Primary Functions
are listed First
GPIO/
PCR1
113
Signal Name2
P/
F/
G
TCRCLKA_IRQ7_GPIO113 P
Function3
Function Summary
I/O
Pad
Type
5V M
TCRCLKA
eTPU A TCR clock
I
I
Secondary Functions
are alternate functions
A1
IRQ7
External interrupt request
A2
—
—
—
GPIO Functions are
listed Last
G
GPIO113
GPIO
I/O
Function not implemented on this device
Figure 7. Supported functions example
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
11
12
Voltage6
Function Summary
Pad Type5
Function4
Direction
Signal Name2
P/A/G3
GPIO/PCR1
Table 2. Signal Properties and Muxing Summary
State
during
RESET7
I
MH
VDDEH1
—/Up
—/Up
L1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
L2
MH
VDDEH1
—/WKPCFG
—/WKPCFG
L3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
L4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
K1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
K2
State
after
RESET8
Package
Location
(416)
eTPU_A
113
PXR40 Microcontroller Data Sheet, Rev. 1
114
115
116
117
Freescale Semiconductor
118
TCRCLKA_IRQ7_
GPIO113
ETPUA0_ETPUA12_
GPIO114
ETPUA1_ETPUA13_
GPIO115
ETPUA2_ETPUA14_
GPIO116
ETPUA3_ETPUA15_
GPIO117
ETPUA4_ETPUA16_
GPIO118
P
TCRCLKA
eTPU A TCR clock
A1
IRQ7
External interrupt request
I
A2
—
—
—
G
GPIO113
GPIO
I/O
P
ETPUA0
eTPU A channel
I/O
A1
ETPUA12
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO114
GPIO
I/O
P
ETPUA1
eTPU A channel
I/O
A1
ETPUA13
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO115
GPIO
I/O
P
ETPUA2
eTPU A channel
I/O
A1
ETPUA14
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO116
GPIO
I/O
P
ETPUA3
eTPU A channel
I/O
A1
ETPUA15
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO117
GPIO
I/O
P
ETPUA4
eTPU A channel
I/O
A1
ETPUA16
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO118
GPIO
I/O
122
123
124
ETPUA7_ETPUA19_
GPIO121
ETPUA8_ETPUA20_
GPIO122
ETPUA9_ETPUA21_
GPIO123
ETPUA10_ETPUA22_
GPIO124
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
121
ETPUA6_ETPUA18_
GPIO120
Function Summary
Pad Type5
120
ETPUA5_ETPUA17_
GPIO119
Function4
Direction
119
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
K3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
K4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
J1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
J2
MH
VDDEH1
—/WKPCFG
—/WKPCFG
J3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
J4
P
ETPUA5
eTPU A channel
A1
ETPUA17
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO119
GPIO
I/O
P
ETPUA6
eTPU A channel
I/O
A1
ETPUA18
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO120
GPIO
I/O
P
ETPUA7
eTPU A channel
I/O
A1
ETPUA19
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO121
GPIO
I/O
P
ETPUA8
eTPU A channel
I/O
A1
ETPUA20
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO122
GPIO
I/O
P
ETPUA9
eTPU A channel
I/O
A1
ETPUA21
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO123
GPIO
I/O
P
ETPUA10
eTPU A channel
I/O
A1
ETPUA22
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO124
GPIO
I/O
State
after
RESET8
Package
Location
(416)
13
128
129
Freescale Semiconductor
130
ETPUA13_PCSB3_
GPIO127
ETPUA14_PCSB4_
GPIO128
ETPUA15_PCSB5_
GPIO129
ETPUA16_PCSD1_
GPIO130
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
127
ETPUA12_PCSB1_
GPIO126
Function Summary
Pad Type5
126
ETPUA11_ETPUA23_
GPIO125
Function4
Direction
125
Signal Name2
P/A/G3
GPIO/PCR1
14
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
H1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
H2
MH
VDDEH1
—/WKPCFG
—/WKPCFG
H4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
H3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
G1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
G2
P
ETPUA11
eTPU A channel
A1
ETPUA23
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO125
GPIO
I/O
P
ETPUA12
eTPU A channel
I/O
A1
PCSB1
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO126
GPIO
I/O
P
ETPUA13
eTPU A channel
I/O
A1
PCSB3
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO127
GPIO
I/O
P
ETPUA14
eTPU A channel
I/O
A1
PCSB4
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO128
GPIO
I/O
P
ETPUA15
eTPU A channel
I/O
A1
PCSB5
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO129
GPIO
I/O
P
ETPUA16
eTPU A channel
I/O
A1
PCSD1
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO130
GPIO
I/O
State
after
RESET8
Package
Location
(416)
134
135
136
ETPUA19_PCSD4_
GPIO133
ETPUA20_IRQ8_
GPIO134
ETPUA21_IRQ9_
GPIO135
ETPUA22_IRQ10_
GPIO136
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
133
ETPUA18_PCSD3_
GPIO132
Function Summary
Pad Type5
132
ETPUA17_PCSD2_
GPIO131
Function4
Direction
131
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
G3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
G4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
F1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
F2
MH
VDDEH1
—/WKPCFG
—/WKPCFG
F3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
F4
P
ETPUA17
eTPU A channel
A1
PCSD2
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO131
GPIO
I/O
P
ETPUA18
eTPU A channel
I/O
A1
PCSD3
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO132
GPIO
I/O
P
ETPUA19
eTPU A channel
I/O
A1
PCSD4
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO133
GPIO
I/O
P
ETPUA20
eTPU A channel
I/O
A1
IRQ8
External interrupt request
A2
—
—
—
G
GPIO134
GPIO
I/O
P
ETPUA21
eTPU A channel
I/O
A1
IRQ9
External interrupt request
A2
—
—
—
G
GPIO135
GPIO
I/O
P
ETPUA22
eTPU A channel
I/O
A1
IRQ10
External interrupt request
A2
—
—
—
G
GPIO136
GPIO
I/O
State
after
RESET8
Package
Location
(416)
I
I
I
15
140
141
Freescale Semiconductor
142
ETPUA25_IRQ13_
GPIO139
ETPUA26_IRQ14_
GPIO140
ETPUA27_IRQ15_
GPIO141
ETPUA28_PCSC1_
GPIO142
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
139
ETPUA24_IRQ12_
GPIO138
Function Summary
Pad Type5
138
ETPUA23_IRQ11_
GPIO137
Function4
Direction
137
Signal Name2
P/A/G3
GPIO/PCR1
16
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
E1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
E2
MH
VDDEH1
—/WKPCFG
—/WKPCFG
E3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
E4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
D1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
D2
P
ETPUA23
eTPU A channel
A1
IRQ11
External interrupt request
A2
—
—
—
G
GPIO137
GPIO
I/O
P
ETPUA24
eTPU A channel
I/O
A1
IRQ12
External interrupt request
A2
—
—
—
G
GPIO138
GPIO
I/O
P
ETPUA25
eTPU A channel
I/O
A1
IRQ13
External interrupt request
A2
—
—
—
G
GPIO139
GPIO
I/O
P
ETPUA26
eTPU A channel
I/O
A1
IRQ14
External interrupt request
A2
—
—
—
G
GPIO140
GPIO
I/O
P
ETPUA27
eTPU A channel
I/O
A1
IRQ15
External interrupt request
A2
—
—
—
G
GPIO141
GPIO
I/O
P
ETPUA28
eTPU A channel
I/O
A1
PCSC1
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO142
GPIO
I/O
State
after
RESET8
Package
Location
(416)
I
I
I
I
I
ETPUA31_PCSC4_
GPIO145
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
145
ETPUA30_PCSC3_
GPIO144
Function Summary
Pad Type5
144
ETPUA29_PCSC2_
GPIO143
Function4
Direction
143
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
D3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
C1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
C2
MH
VDDEH6
—/Up
—/Up
T23
MH
VDDEH6
—/WKPCFG
—/WKPCFG
T24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
T25
P
ETPUA29
eTPU A channel
A1
PCSC2
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO143
GPIO
I/O
P
ETPUA30
eTPU A channel
I/O
A1
PCSC3
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO144
GPIO
I/O
P
ETPUA31
eTPU A channel
I/O
A1
PCSC4
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO145
GPIO
I/O
State
after
RESET8
Package
Location
(416)
eTPU_B
146
147
148
TCRCLKB_IRQ6_
GPIO146
ETPUB0_ETPUB16_
GPIO147
ETPUB1_ETPUB17_
GPIO148
17
P
TCRCLKB
eTPU B TCR clock
I
A1
IRQ6
External interrupt request
I
A2
—
—
—
G
GPIO146
GPIO
I/O
P
ETPUB0
eTPU B channel
I/O
A1
ETPUB16
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO147
GPIO
I/O
P
ETPUB1
eTPU B channel
I/O
A1
ETPUB17
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO148
GPIO
I/O
152
153
Freescale Semiconductor
154
ETPUB4_ETPUB20_
GPIO151
ETPUB5_ETPUB21_
GPIO152
ETPUB6_ETPUB22_
GPIO153
ETPUB7_ETPUB23_
GPIO154
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
151
ETPUB3_ETPUB19_
GPIO150
Function Summary
Pad Type5
150
ETPUB2_ETPUB18_
GPIO149
Function4
Direction
149
Signal Name2
P/A/G3
GPIO/PCR1
18
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH6
—/WKPCFG
—/WKPCFG
T26
MH
VDDEH6
—/WKPCFG
—/WKPCFG
R23
MH
VDDEH6
—/WKPCFG
—/WKPCFG
R24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
R25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
R26
MH
VDDEH6
—/WKPCFG
—/WKPCFG
P23
P
ETPUB2
eTPU B channel
A1
ETPUB18
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO149
GPIO
I/O
P
ETPUB3
eTPU B channel
I/O
A1
ETPUB19
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO150
GPIO
I/O
P
ETPUB4
eTPU B channel
I/O
A1
ETPUB20
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO151
GPIO
I/O
P
ETPUB5
eTPU B channel
I/O
A1
ETPUB21
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO152
GPIO
I/O
P
ETPUB6
eTPU B channel
I/O
A1
ETPUB22
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO153
GPIO
I/O
P
ETPUB7
eTPU B channel
I/O
A1
ETPUB23
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO154
GPIO
I/O
State
after
RESET8
Package
Location
(416)
158
159
160
ETPUB10_ETPUB26_
GPIO157
ETPUB11_ETPUB27_
GPIO158
ETPUB12_ETPUB28_
GPIO159
ETPUB13_ETPUB29_
GPIO160
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
157
ETPUB9_ETPUB25_
GPIO156
Function Summary
Pad Type5
156
ETPUB8_ETPUB24_
GPIO155
Function4
Direction
155
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH6
—/WKPCFG
—/WKPCFG
P24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
P25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
P26
MH
VDDEH6
—/WKPCFG
—/WKPCFG
N24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
N25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
N26
P
ETPUB8
eTPU B channel
A1
ETPUB24
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO155
GPIO
I/O
P
ETPUB9
eTPU B channel
I/O
A1
ETPUB25
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO156
GPIO
I/O
P
ETPUB10
eTPU B channel
I/O
A1
ETPUB26
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO157
GPIO
I/O
P
ETPUB11
eTPU B channel
I/O
A1
ETPUB27
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO158
GPIO
I/O
P
ETPUB12
eTPU B channel
I/O
A1
ETPUB28
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO159
GPIO
I/O
P
ETPUB13
eTPU B channel
I/O
A1
ETPUB29
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO160
GPIO
I/O
State
after
RESET8
Package
Location
(416)
19
164
165
Freescale Semiconductor
166
ETPUB16_PCSA1_
GPIO163
ETPUB17_PCSA2_
GPIO164
ETPUB18_PCSA3_
GPIO165
ETPUB19_PCSA4_
GPIO166
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
163
ETPUB15_ETPUB31_
GPIO162
Function Summary
Pad Type5
162
ETPUB14_ETPUB30_
GPIO161
Function4
Direction
161
Signal Name2
P/A/G3
GPIO/PCR1
20
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH6
—/WKPCFG
—/WKPCFG
M25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
M24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
U26
MH
VDDEH6
—/WKPCFG
—/WKPCFG
U25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
U24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
U23
P
ETPUB14
eTPU B channel
A1
ETPUB30
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO161
GPIO
I/O
P
ETPUB15
eTPU B channel
I/O
A1
ETPUB31
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO162
GPIO
I/O
P
ETPUB16
eTPU B channel
I/O
A1
PCSA1
DSPI A peripheral chip select
O
A2
—
—
—
G
GPIO163
GPIO
I/O
P
ETPUB17
eTPU B channel
I/O
A1
PCSA2
DSPI A peripheral chip select
O
A2
—
—
—
G
GPIO164
GPIO
I/O
P
ETPUB18
eTPU B channel
I/O
A1
PCSA3
DSPI A peripheral chip select
O
A2
—
—
—
G
GPIO165
GPIO
I/O
P
ETPUB19
eTPU B channel
I/O
A1
PCSA4
DSPI A peripheral chip select
O
A2
—
—
—
G
GPIO166
GPIO
I/O
State
after
RESET8
Package
Location
(416)
170
171
172
ETPUB22_
GPIO169
ETPUB23_
GPIO170
ETPUB24_
GPIO171
ETPUB25_
GPIO172
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
169
ETPUB21_
GPIO168
Function Summary
Pad Type5
168
ETPUB20_
GPIO167
Function4
Direction
167
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH6
—/WKPCFG
—/WKPCFG
V26
MH
VDDEH6
—/WKPCFG
—/WKPCFG
V25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
V24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
W26
MH
VDDEH6
—/WKPCFG
—/WKPCFG
W25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
W24
P
ETPUB20
eTPU B channel
A1
—
—
—
A2
—
—
—
G
GPIO167
GPIO
I/O
P
ETPUB21
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO168
GPIO
I/O
P
ETPUB22
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO169
GPIO
I/O
P
ETPUB23
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO170
GPIO
I/O
P
ETPUB24
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO171
GPIO
I/O
P
ETPUB25
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO172
GPIO
I/O
State
after
RESET8
Package
Location
(416)
21
176
177
Freescale Semiconductor
178
ETPUB28_
GPIO175
ETPUB29_
GPIO176
ETPUB30_
GPIO177
ETPUB31_
GPIO178
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
175
ETPUB27_
GPIO174
Function Summary
Pad Type5
174
ETPUB26_
GPIO173
Function4
Direction
173
Signal Name2
P/A/G3
GPIO/PCR1
22
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH6
—/WKPCFG
—/WKPCFG
V23
MH
VDDEH6
—/WKPCFG
—/WKPCFG
Y25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
Y24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
Y23
MH
VDDEH6
—/WKPCFG
—/WKPCFG
AA24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
AB24
P
ETPUB26
eTPU B channel
A1
—
—
—
A2
—
—
—
G
GPIO173
GPIO
I/O
P
ETPUB27
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO174
GPIO
I/O
P
ETPUB28
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO175
GPIO
I/O
P
ETPUB29
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO176
GPIO
I/O
P
ETPUB30
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO177
GPIO
I/O
P
ETPUB31
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO178
GPIO
I/O
State
after
RESET8
Package
Location
(416)
Voltage6
Function Summary
Pad Type5
Function4
Direction
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
—
MH
VDDEH7
—/Up
—/Up
B26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
C25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
C26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
D25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
D26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
E24
State
after
RESET8
Package
Location
(416)
GPIO, IRQ, FlexRay
440
PXR40 Microcontroller Data Sheet, Rev. 1
441
442
443
444
445
TCRCLKC_
GPIO4409
ETPUC0_
GPIO4419
ETPUC1_
GPIO4429
ETPUC2_
GPIO4439
ETPUC3_
GPIO4449
ETPUC4_
GPIO4459
23
P
—
—
A1
—
—
—
A2
—
—
—
G
GPIO440
GPIO
I/O
P
—
—
—
A1
—
—
—
A2
—
—
—
G
GPIO441
GPIO
I/O
P
—
—
—
A1
—
—
—
A2
—
—
—
G
GPIO442
GPIO
I/O
P
—
—
—
A1
—
—
—
A2
—
—
—
G
GPIO443
GPIO
I/O
P
—
—
—
A1
—
—
—
A2
—
—
—
G
GPIO444
GPIO
I/O
P
—
—
—
A1
—
—
—
A2
—
—
—
G
GPIO445
GPIO
I/O
449
450
Freescale Semiconductor
451
ETPUC7_
GPIO4489
ETPUC8_
GPIO4499
ETPUC9_IRQ0_
GPIO4509
ETPUC10__IRQ1_
GPIO4519
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
448
ETPUC6_
GPIO4479
Function Summary
Pad Type5
447
ETPUC5_
GPIO4469
Function4
Direction
446
Signal Name2
P/A/G3
GPIO/PCR1
24
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH7
—/WKPCFG
—/WKPCFG
E25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
E26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
F23
MH
VDDEH7
—/WKPCFG
—/WKPCFG
F24
MH
VDDEH7
—/WKPCFG
—/WKPCFG
F25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
F26
P
—
—
A1
—
—
—
A2
—
—
—
G
GPIO446
GPIO
I/O
P
—
—
I/O
A1
—
—
—
A2
—
—
—
G
GPIO447
GPIO
I/O
P
—
—
I/O
A1
—
—
—
A2
—
—
—
G
GPIO448
GPIO
I/O
P
—
—
I/O
A1
—
—
—
A2
—
—
—
G
GPIO449
GPIO
I/O
P
—
—
—
A1
IRQ0
External interrupt request
A2
—
—
—
G
GPIO450
GPIO
I/O
P
—
—
—
A1
IRQ1
External interrupt request
A2
—
—
—
G
GPIO451
GPIO
I/O
State
after
RESET8
Package
Location
(416)
I
I
455
456
457
ETPUC13_3_IRQ4_
GPIO4549
ETPUC14_4_IRQ5_
GPIO4559
ETPUC15__
GPIO4569
ETPUC16_FR_A_TX_
GPIO4579
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
454
ETPUC12_IRQ3_
GPIO4539
Function Summary
Pad Type5
453
ETPUC11_IRQ2_
GPIO4529
Function4
Direction
452
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
—
MH
VDDEH7
—/WKPCFG
—/WKPCFG
G23
MH
VDDEH7
—/WKPCFG
—/WKPCFG
G24
MH
VDDEH7
—/WKPCFG
—/WKPCFG
G25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
G26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
H23
MH
VDDEH7
—/WKPCFG
—/WKPCFG
H24
P
—
—
A1
IRQ2
External interrupt request
A2
—
—
—
G
GPIO452
GPIO
I/O
P
—
—
—
A1
IRQ3
External interrupt request
A2
—
—
—
G
GPIO453
GPIO
I/O
P
—
—
—
A1
IRQ4
External interrupt request
A2
—
—
—
G
GPIO454
GPIO
I/O
P
—
—
—
A1
IRQ5
External interrupt request
A2
—
—
—
G
GPIO455
GPIO
I/O
P
—
—
—
A1
—
—
—
A2
—
—
—
G
GPIO456
GPIO
I/O
P
—
—
—
A1
FR_A_TX
FlexRay A transfer
O
A2
—
—
—
G
GPIO457
GPIO
I/O
State
after
RESET8
Package
Location
(416)
I
I
I
I
25
461
462
Freescale Semiconductor
463
ETPUC19_TXDA_
GPIO4609
ETPUC20_RXDA _
GPIO4619
ETPUC21_TXDB_
GPIO4629
ETPUC22_RXDB_
GPIO4639
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
460
ETPUC18_FR_A_TX_EN_
GPIO4599
Function Summary
Pad Type5
459
ETPUC17_FR_A_RX_
GPIO4589
Function4
Direction
458
Signal Name2
P/A/G3
GPIO/PCR1
26
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
—
MH
VDDEH7
—/WKPCFG
—/WKPCFG
H25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
H26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
J23
MH
VDDEH7
—/WKPCFG
—/WKPCFG
J24
MH
VDDEH7
—/WKPCFG
—/WKPCFG
J25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
J26
P
—
—
A1
FR_A_RX
FlexRay A receive
A2
—
—
—
G
GPIO458
GPIO
I/O
P
—
—
—
A1
FR_A_TX_EN
FlexRay A transfer enable
O
A2
—
—
—
G
GPIO459
GPIO
I/O
P
—
—
—
A1
TXDA
eSCI A transmit
O
A2
—
—
—
G
GPIO460
GPIO
I/O
P
—
—
—
A1
RXDA
eSCI A receive
A2
—
—
—
G
GPIO461
GPIO
I/O
P
—
—
—
A1
TXDB
eSCI B transmit
O
A2
—
—
—
G
GPIO462
GPIO
I/O
P
—
—
—
A1
RXDB
eSCI B receive
A2
—
—
—
G
GPIO463
GPIO
I/O
State
after
RESET8
Package
Location
(416)
I
I
I
467
468
ETPUC25_PCSD3_
GPIO4669
ETPUC26_PCSD2_
GPIO4679
ETPUC27_PCSD1_
GPIO4689
Voltage6
466
ETPUC24_PCSD4_
GPIO4659
Function Summary
Pad Type5
PXR40 Microcontroller Data Sheet, Rev. 1
465
ETPUC23_PCSD5_
GPIO4649
Function4
Direction
464
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
—
MH
VDDEH7
—/WKPCFG
—/WKPCFG
K23
MH
VDDEH7
—/WKPCFG
—/WKPCFG
K24
MH
VDDEH7
—/WKPCFG
—/WKPCFG
K25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
K26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
L23
P
—
—
A1
PCSD5
DSPI D peripheral chip select
O
A2
MAA0
ADC A Mux Address 0
O
A3
MAB0
ADC B Mux Address 0
O
G
GPIO464
GPIO
I/O
P
—
—
—
A1
PCSD4
DSPI D peripheral chip select
O
A2
MAA1
ADC A Mux Address 1
O
A4
MAB1
ADC B Mux Address 1
O
G
GPIO465
GPIO
I/O
P
—
—
—
A1
PCSD3
DSPI D peripheral chip select
O
A2
MAA2
ADC A Mux Address 2
O
A3
MAB2
ADC B Mux Address 2
O
G
GPIO466
GPIO
I/O
P
—
—
—
A1
PCSD2
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO467
GPIO
I/O
P
—
—
—
A1
PCSD1
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO468
GPIO
I/O
State
after
RESET8
Package
Location
(416)
27
472
ETPUC30_SOUTD_
GPIO4719
ETPUC31_SIND_
GPIO4729
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
471
ETPUC29_SCKD_
GPIO4709
Function Summary
Pad Type5
470
ETPUC28_PCSD0_
GPIO4699
Function4
Direction
469
Signal Name2
P/A/G3
GPIO/PCR1
28
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
—
MH
VDDEH7
—/WKPCFG
—/WKPCFG
L24
MH
VDDEH7
—/WKPCFG
—/WKPCFG
L25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
L26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
M23
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE10
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF10
P
—
—
A1
PCSD0
DSPI D peripheral chip select
I/O
A2
—
—
—
G
GPIO469
GPIO
I/O
P
—
—
—
A1
SCKD
DSPI D clock
I/O
A2
—
—
—
G
GPIO470
GPIO
I/O
P
—
—
—
A1
SOUTD
DSPI D data output
O
A2
—
—
—
G
GPIO471
GPIO
I/O
P
—
—
—
A1
SIND
DSPI D data input
A2
—
—
—
G
GPIO472
GPIO
I/O
State
after
RESET8
Package
Location
(416)
I
eMIOS
179
Freescale Semiconductor
180
EMIOS0_ETPUA0_
GPIO179
EMIOS1_ETPUA1_
GPIO180
P
EMIOS0
eMIOS channel
I/O
A1
ETPUA0
eTPU A channel
O
A2
—
—
—
G
GPIO179
GPIO
I/O
P
EMIOS1
eMIOS channel
I/O
A1
ETPUA1
eTPU A channel
O
A2
—
—
—
G
GPIO180
GPIO
I/O
184
185
186
EMIOS4_ETPUA4_
GPIO183
EMIOS5_ETPUA5_
GPIO184
EMIOS6_ETPUA6_
GPIO185
EMIOS7_ETPUA7_
GPIO186
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
183
EMIOS3_ETPUA3_
GPIO182
Function Summary
Pad Type5
182
EMIOS2_ETPUA2_
GPIO181
Function4
Direction
181
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD11
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE11
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF11
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD12
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE12
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF12
P
EMIOS2
eMIOS channel
A1
ETPUA2
eTPU A channel
O
A2
—
—
—
G
GPIO181
GPIO
I/O
P
EMIOS3
eMIOS channel
I/O
A1
ETPUA3
eTPU A channel
O
A2
—
—
—
G
GPIO182
GPIO
I/O
P
EMIOS4
eMIOS channel
I/O
A1
ETPUA4
eTPU A channel
O
A2
—
—
—
G
GPIO183
GPIO
I/O
P
EMIOS5
eMIOS channel
I/O
A1
ETPUA5
eTPU A channel
O
A2
—
—
—
G
GPIO184
GPIO
I/O
P
EMIOS6
eMIOS channel
I/O
A1
ETPUA6
eTPU A channel
O
A2
—
—
—
G
GPIO185
GPIO
I/O
P
EMIOS7
eMIOS channel
I/O
A1
ETPUA7
eTPU A channel
O
A2
—
—
—
G
GPIO186
GPIO
I/O
State
after
RESET8
Package
Location
(416)
29
190
191
Freescale Semiconductor
192
EMIOS10_SCKD_
GPIO189
EMIOS11_SIND_
GPIO190
EMIOS12_SOUTC_
GPIO191
EMIOS13_SOUTD_
GPIO192
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
189
EMIOS9_ETPUA9_
GPIO188
Function Summary
Pad Type5
188
EMIOS8_ETPUA8_
GPIO187
Function4
Direction
187
Signal Name2
P/A/G3
GPIO/PCR1
30
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC13
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD13
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE13
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF13
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF14
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE14
P
EMIOS8
eMIOS channel
A1
ETPUA8
eTPU A channel
O
A2
—
—
—
G
GPIO187
GPIO
I/O
P
EMIOS9
eMIOS channel
I/O
A1
ETPUA9
eTPU A channel
O
A2
—
—
—
G
GPIO188
GPIO
I/O
P
EMIOS10
eMIOS channel
I/O
A1
SCKD
DSPI D clock
O
A2
—
—
—
G
GPIO189
GPIO
I/O
P
EMIOS11
eMIOS channel
I/O
A1
SIND
DSPI D data input
A2
—
—
—
G
GPIO190
GPIO
I/O
P
EMIOS12
eMIOS channel
O
A1
SOUTC
DSPI C data output
O
A2
—
—
—
G
GPIO191
GPIO
I/O
P
EMIOS13
eMIOS channel
O
A1
SOUTD
DSPI D data output
O
A2
—
—
—
G
GPIO192
GPIO
I/O
State
after
RESET8
Package
Location
(416)
I
196
197
198
EMIOS16_ETPUB0_
GPIO195
EMIOS17_ETPUB1_
GPIO196
EMIOS18_ETPUB2_
GPIO197
EMIOS19_ETPUB3_
GPIO198
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
195
EMIOS15_IRQ1_
GPIO194
Function Summary
Pad Type5
194
EMIOS14_IRQ0_
GPIO193
Function4
Direction
193
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
O
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC14
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD14
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF15
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE15
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC15
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD15
P
EMIOS14
eMIOS channel
A1
IRQ0
External interrupt request
I
A2
CNTXD
FlexCAN D transmit
O
G
GPIO193
GPIO
I/O
P
EMIOS15
eMIOS channel
O
A1
IRQ1
External interrupt request
I
A2
CNRXD
FlexCAN D receive
I
G
GPIO194
GPIO
I/O
P
EMIOS16
eMIOS channel
I/O
A1
ETPUB0
eTPU B channel
O
A2
FR_DBG[3]
FlexRay debug
O
G
GPIO195
GPIO
I/O
P
EMIOS17
eMIOS channel
I/O
A1
ETPUB1
eTPU B channel
O
A2
FR_DBG[2]
FlexRay debug
O
G
GPIO196
GPIO
I/O
P
EMIOS18
eMIOS channel
I/O
A1
ETPUB2
eTPU B channel
O
A2
FR_DBG[1]
FlexRay debug
O
G
GPIO197
GPIO
I/O
P
EMIOS19
eMIOS channel
I/O
A1
ETPUB3
eTPU B channel
O
A2
FR_DBG[0]
FlexRay debug
O
G
GPIO198
GPIO
I/O
State
after
RESET8
Package
Location
(416)
31
202
203
Freescale Semiconductor
204
EMIOS22_ETPUB6_
GPIO201
EMIOS23_ETPUB7_
GPIO202
EMIOS24_PCSB0_
GPIO203
EMIOS25_PCSB1_
GPIO204
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
201
EMIOS21_ETPUB5_
GPIO200
Function Summary
Pad Type5
200
EMIOS20_ETPUB4_
GPIO199
Function4
Direction
199
Signal Name2
P/A/G3
GPIO/PCR1
32
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF16
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE16
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC16
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD16
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF17
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE17
P
EMIOS20
eMIOS channel
A1
ETPUB4
eTPU B channel
O
A2
—
—
—
G
GPIO199
GPIO
I/O
P
EMIOS21
eMIOS channel
I/O
A1
ETPUB5
eTPU B channel
O
A2
—
—
—
G
GPIO200
GPIO
I/O
P
EMIOS22
eMIOS channel
I/O
A1
ETPUB6
eTPU B channel
O
A2
—
—
—
G
GPIO201
GPIO
I/O
P
EMIOS23
eMIOS channel
I/O
A1
ETPUB7
eTPU B channel
O
A2
—
—
—
G
GPIO202
GPIO
I/O
P
EMIOS24
eMIOS channel
I/O
A1
PCSB0
DSPI B peripheral chip select
I/O
A2
—
—
—
G
GPIO203
GPIO
I/O
P
EMIOS25
eMIOS channel
I/O
A1
PCSB1
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO204
GPIO
I/O
State
after
RESET8
Package
Location
(416)
435
436
437
EMIOS28_PCSC0_
GPIO434
EMIOS29_PCSC1_
GPIO435
EMIOS30_PCSC2_
GPIO436
EMIOS31_PCSC5_
GPIO437
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
434
EMIOS27_PCSB3_
GPIO433
Function Summary
Pad Type5
433
EMIOS26_PCSB2_
GPIO432
Function4
Direction
432
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD17
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC17
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF18
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE18
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD18
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC18
P
EMIOS26
eMIOS channel
A1
PCSB2
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO432
GPIO
I/O
P
EMIOS27
eMIOS channel
I/O
A1
PCSB3
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO433
GPIO
I/O
P
EMIOS28
eMIOS channel
I/O
A1
PCSC0
DSPI C peripheral chip select
I/O
A2
—
—
—
G
GPIO434
GPIO
I/O
P
EMIOS29
eMIOS channel
I/O
A1
PCSC1
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO435
GPIO
I/O
P
EMIOS30
eMIOS channel
I/O
A1
PCSC2
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO436
GPIO
I/O
P
EMIOS31
eMIOS channel
I/O
A1
PCSC5
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO437
GPIO
I/O
33
eQADC
State
after
RESET8
Package
Location
(416)
Voltage6
State
during
RESET7
—
ANA0
P
ANA010
eQADC A analog input
I
AE/updown
VDDA_A1
ANA0
ANA0
A4
—
ANA1
P
ANA110
eQADC A analog input
I
AE/updown
VDDA_A1
ANA1
ANA1
B5
—
ANA2
P
ANA210
eQADC A analog input
I
AE/updown
VDDA_A1
ANA2
ANA2
C5
—
ANA3
P
ANA310
eQADC A analog input
I
AE/updown
VDDA_A1
ANA3
ANA3
D6
—
ANA4
P
ANA410
eQADC A analog input
I
AE/updown
VDDA_A1
ANA4
ANA4
A5
—
ANA5
P
ANA510
eQADC A analog input
I
AE/updown
VDDA_A1
ANA5
ANA5
B6
—
ANA6
P
ANA610
eQADC A analog input
I
AE/updown
VDDA_A1
ANA6
ANA6
C6
—
ANA7
P
ANA710
eQADC A analog input
I
AE/updown
VDDA_A1
ANA7
ANA7
D7
—
ANA8
P
ANA8
eQADC A analog input
I
AE
VDDA_A1
ANA8
ANA8
A6
—
ANA9
P
ANA9
eQADC A analog input
I
AE
VDDA_A1
ANA9
ANA9
C7
—
ANA10
P
ANA10
eQADC A analog input
I
AE
VDDA_A1
ANA10
ANA10
B7
—
ANA11
P
ANA11
eQADC A analog input
I
AE
VDDA_A1
ANA11
ANA11
A7
—
ANA12
P
ANA12
eQADC A analog input
I
AE
VDDA_A1
ANA12
ANA12
D8
—
ANA13
P
ANA13
eQADC A analog input
I
AE
VDDA_A1
ANA13
ANA13
C8
—
ANA14
P
ANA14
eQADC A analog input
I
AE
VDDA_A1
ANA14
ANA14
B8
—
ANA15
P
ANA15
eQADC A analog input
I
AE
VDDA_A1
ANA15
ANA15
A8
—
ANA16
P
ANA16
eQADC A analog input
I
AE
VDDA_A1
ANA16
ANA16
D9
—
ANA17
P
ANA17
eQADC A analog input
I
AE
VDDA_A1
ANA17
ANA17
C9
—
ANA18
P
ANA18
eQADC A analog input
I
AE
VDDA_A1
ANA18
ANA18
D10
—
ANA19
P
ANA19
eQADC A analog input
I
AE
VDDA_A1
ANA19
ANA19
C10
Signal Name2
P/A/G3
Pad Type5
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Direction
GPIO/PCR1
34
Table 2. Signal Properties and Muxing Summary (continued)
Function4
Function Summary
State
after
RESET8
Package
Location
(416)
Voltage6
State
during
RESET7
—
ANA20
P
ANA20
eQADC A analog input
I
AE
VDDA_A1
ANA20
ANA20
D11
—
ANA21
P
ANA21
eQADC A analog input
I
AE
VDDA_A1
ANA21
ANA21
C11
—
ANA22
P
ANA22
eQADC A analog input
I
AE
VDDA_A1
ANA22
ANA22
D12
—
ANA23
P
ANA23
eQADC A analog input
I
AE
VDDA_A1
ANA23
ANA23
C12
—
AN24
P
AN24
eQADC A and B shared analog input
I
AE
VDDA_A0
AN24
AN24
B12
—
AN25
P
AN25
eQADC A and B shared analog input
I
AE
VDDA_A0
AN25
AN25
D13
—
AN26
P
AN26
eQADC A and B shared analog input
I
AE
VDDA_A0
AN26
AN26
C13
—
AN27
P
AN27
eQADC A and B shared analog input
I
AE
VDDA_A0
AN27
AN27
B13
—
AN28
P
AN28
eQADC A and B shared analog input
I
AE
VDDA_A0
AN28
AN28
A13
—
AN29
P
AN29
eQADC A and B shared analog input
I
AE
VDDA_A0
AN29
AN29
B14
—
AN30
P
AN30
eQADC A and B shared analog input
I
AE
VDDA_B1
AN30
AN30
C14
—
AN31
P
AN31
eQADC A and B shared analog input
I
AE
VDDA_B1
AN31
AN31
D14
—
AN32
P
AN32
eQADC A and B shared analog input
I
AE
VDDA_B1
AN32
AN32
A14
—
AN33
P
AN33
eQADC A and B shared analog input
I
AE
VDDA_B0
AN33
AN33
B15
—
AN34
P
AN34
eQADC A and B shared analog input
I
AE
VDDA_B0
AN34
AN34
C15
—
AN35
P
AN35
eQADC A and B shared analog input
I
AE
VDDA_B0
AN35
AN35
D15
—
AN36
P
AN36
eQADC A and B shared analog input
I
AE
VDDA_B1
AN36
AN36
A15
—
AN37
P
AN37
eQADC A and B shared analog input
I
AE
VDDA_B0
AN37
AN37
C16
—
AN38
P
AN38
eQADC A and B shared analog input
I
AE
VDDA_B0
AN38
AN38
C17
—
AN39
P
AN39
eQADC A and B shared analog input
I
AE
VDDA_B0
AN39
AN39
D16
—
ANB0
P
ANB0
eQADC B analog input
I
AE/updown
VDDA_B0
ANB0
ANB0
C18
—
ANB1
P
ANB1
eQADC B analog input
I
AE/updown
VDDA_B0
ANB1
ANB1
D17
—
ANB2
P
ANB2
eQADC B analog input
I
AE/updown
VDDA_B0
ANB2
ANB2
D18
Signal Name2
P/A/G3
Pad Type5
PXR40 Microcontroller Data Sheet, Rev. 1
Direction
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
Function4
Function Summary
State
after
RESET8
Package
Location
(416)
35
Voltage6
State
during
RESET7
—
ANB3
P
ANB3
eQADC B analog input
I
AE/updown
VDDA_B0
ANB3
ANB3
D19
—
ANB4
P
ANB4
eQADC B analog input
I
AE/updown
VDDA_B0
ANB4
ANB4
C19
—
ANB5
P
ANB5
eQADC B analog input
I
AE/updown
VDDA_B0
ANB5
ANB5
C20
—
ANB6
P
ANB6
eQADC B analog input
I
AE/updown
VDDA_B0
ANB6
ANB6
B19
—
ANB7
P
ANB7
eQADC B analog input
I
AE/updown
VDDA_B0
ANB7
ANB7
A20
—
ANB8
P
ANB8
eQADC B analog input
I
AE
VDDA_B0
ANB8
ANB8
B20
—
ANB9
P
ANB9
eQADC B analog input
I
AE
VDDA_B0
ANB9
ANB9
D20
—
ANB10
P
ANB10
eQADC B analog input
I
AE
VDDA_B0
ANB10
ANB10
B21
—
ANB11
P
ANB11
eQADC B analog input
I
AE
VDDA_B0
ANB11
ANB11
A21
—
ANB12
P
ANB12
eQADC B analog input
I
AE
VDDA_B0
ANB12
ANB12
C21
—
ANB13
P
ANB13
eQADC B analog input
I
AE
VDDA_B0
ANB13
ANB13
D21
—
ANB14
P
ANB14
eQADC B analog input
I
AE
VDDA_B0
ANB14
ANB14
A22
—
ANB15
P
ANB15
eQADC B analog input
I
AE
VDDA_B0
ANB15
ANB15
B22
—
ANB16
P
ANB16
eQADC B analog input
I
AE
VDDA_B0
ANB16
ANB16
C22
—
ANB17
P
ANB17
eQADC B analog input
I
AE
VDDA_B0
ANB17
ANB17
A23
—
ANB18
P
ANB18
eQADC B analog input
I
AE
VDDA_B0
ANB18
ANB18
B23
—
ANB19
P
ANB19
eQADC B analog input
I
AE
VDDA_B0
ANB19
ANB19
C23
—
ANB20
P
ANB20
eQADC B analog input
I
AE
VDDA_B0
ANB20
ANB20
D22
—
ANB21
P
ANB21
eQADC B analog input
I
AE
VDDA_B0
ANB21
ANB21
A24
—
ANB22
P
ANB22
eQADC B analog input
I
AE
VDDA_B0
ANB22
ANB22
B24
—
ANB23
P
ANB23
eQADC B analog input
I
AE
VDDA_B0
ANB23
ANB23
A25
—
VRH_A
P
VRH_A
ADC A Voltage reference high
I
VDDINT
VRH_A
VRH_A
VRH_A
A12
Signal Name2
P/A/G3
Pad Type5
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
Direction
GPIO/PCR1
36
Table 2. Signal Properties and Muxing Summary (continued)
Function4
Function Summary
State
after
RESET8
Package
Location
(416)
Voltage6
State
during
RESET7
—
VRL_A
P
VRL_A
ADC A Voltage reference low
I
VSSINT
VRL_A
VRL_A
VRL_A
A11
—
VRH_B
P
VRH_B
ADC B Voltage reference high
I
VDDINT
VRH_B
VRH_B
VRH_B
A19
—
VRL_B
P
VRL_B
ADC B Voltage reference low
I
VSSINT
VRL_B
VRL_B
VRL_B
A18
—
REFBYPCB
P
REFBYPCB
ADC B Reference bypass capacitor
I
AE
VDDA_B0
REFBYPCB
REFBYPCB
B18
—
REFBYPCA
P
REFBYPCA
ADC A Reference bypass capacitor
I
AE
VDDA_A1
REFBYPCA
REFBYPCA
B11
—
VDDA_A0
P
VDDA_A
Internal logic supply input
I
VDDE
VDDA_A0
VDDA_A0
VDDA_A0
A9
—
VDDA_A1
P
VDDA_A
Internal logic supply input
I
VDDE
VDDA_A1
VDDA_A1
VDDA_A1
B9
—
REFBYPCA1
P
REFBYPCA1
ADC A Reference bypass capacitor
I
AE
VDDA_A1
REFBYPCA1
REFBYPCA1
A10
—
VSSA_A1
P
VSSA_A
Ground
I
VSSE
VSSA_A1
VSSA_A1
VSSA_A1
B10
—
VDDA_B0
P
VDDA_B
Internal logic supply input
I
VDDE
VDDA_B0
VDDA_B0
VDDA_B0
A16
—
VDDA_B1
P
VDDA_B
Internal logic supply input
I
VDDE
VDDA_B1
VDDA_B1
VDDA_B1
B16
—
VSSA_B0
P
VSSA_B
Ground
I
VSSE
VSSA_B0
VSSA_B0
VSSA_B0
B17
—
REFBYPCB1
P
REFBYPCB1
ADC B Reference bypass capacitor
I
AE
VDDA_B0
REFBYPCB1
REFBYPCB1
A17
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AD4
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AE3
Signal Name2
P/A/G3
Pad Type5
PXR40 Microcontroller Data Sheet, Rev. 1
Direction
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
Function4
Function Summary
State
after
RESET8
Package
Location
(416)
FlexRay
248
249
FR_A_TX_
GPIO248
FR_A_RX_
GPIO249
P
FR_A_TX
FlexRay A transfer
O
A1
—
—
—
A2
—
—
—
G
GPIO248
GPIO
I/O
P
FR_A_RX
FlexRay A receive
A1
—
—
—
A2
—
—
—
G
GPIO249
GPIO
I/O
I
37
253
FR_B_RX_
GPIO252
FR_B_TX_EN_
GPIO253
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
252
FR_B_TX_
GPIO251
Function Summary
Pad Type5
251
FR_A_TX_EN_
GPIO250
Function4
Direction
250
Signal Name2
P/A/G3
GPIO/PCR1
38
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
O
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AF3
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AD5
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AE4
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AF4
MH
VDDEH4
—/Up
—/Up
AF19
MH
VDDEH4
—/Up
—/Up
AE19
P
FR_A_TX_EN
FlexRay A transfer enable
A1
—
—
—
A2
—
—
—
G
GPIO250
GPIO
I/O
P
FR_B_TX
FlexRay B transfer
O
A1
—
—
—
A2
—
—
—
G
GPIO251
GPIO
I/O
P
FR_B_RX
FlexRay B receive
A1
—
—
—
A2
—
—
—
G
GPIO252
GPIO
I/O
P
FR_B_TX_EN
FlexRay B transfer enable
O
A1
—
—
—
A2
—
—
—
G
GPIO253
GPIO
I/O
I
State
after
RESET8
Package
Location
(416)
FlexCAN
83
Freescale Semiconductor
84
CNTXA_TXDA_
GPIO83
CNRXA_RXDA_
GPIO84
P
CNTXA
FlexCAN A transmit
O
A1
TXDA
eSCI A transmit
O
A2
—
—
—
G
GPIO83
GPIO
I/O
P
CNRXA
FlexCAN A receive
I
A1
RXDA
eSCI A receive
I
A2
—
—
—
G
GPIO84
GPIO
I/O
88
246
247
CNTXC_PCSD3_
GPIO87
CNRXC_PCSD4_
GPIO88
CNTXD_
GPIO246
CNRXD_
GPIO247
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
87
CNRXB_PCSC4_
GPIO86
Function Summary
Pad Type5
86
CNTXB_PCSC3_
GPIO85
Function4
Direction
85
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
O
MH
VDDEH4
—/Up
—/Up
AD19
MH
VDDEH4
—/Up
—/Up
AC19
MH
VDDEH4
—/Up
—/Up
AF20
MH
VDDEH4
—/Up
—/Up
AE20
MH
VDDEH4
—/Up
—/Up
AD20
MH
VDDEH4
—/Up
—/Up
AC20
P
CNTXB
FlexCAN B transmit
A1
PCSC3
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO85
GPIO
I/O
P
CNRXB
FlexCAN B receive
I
A1
PCSC4
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO86
GPIO
I/O
P
CNTXC
FlexCAN C transmit
O
A1
PCSD3
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO87
GPIO
I/O
P
CNRXC
FlexCAN C receive
I
A1
PCSD4
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO88
GPIO
I/O
P
CNTXD
FlexCAN D transmit
O
A1
—
—
—
A2
—
—
—
G
GPIO246
GPIO
I/O
P
CNRXD
FlexCAN D receive
A1
—
—
—
A2
—
—
—
G
GPIO247
GPIO
I/O
I
39
eSCI
State
after
RESET8
Package
Location
(416)
92
244
Freescale Semiconductor
245
TXDB_PCSD1_
GPIO91
RXDB_PCSD5_
GPIO92
TXDC_ETRIG0_
GPIO244
RXDC_
GPIO245
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
91
RXDA _
GPIO90
Function Summary
Pad Type5
90
TXDA_
GPIO89
Function4
Direction
89
Signal Name2
P/A/G3
GPIO/PCR1
40
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
O
MH
VDDEH1
—/Up
—/Up
M2
MH
VDDEH1
—/Up
—/Up
M3
MH
VDDEH1
—/Up
—/Up
P1
MH
VDDEH1
—/Up
—/Up
N1
MH
VDDEH4
—/Up
—/Up
AF23
MH
VDDEH5
—/Up
—/Up
AD22
P
TXDA
eSCI A transmit
A1
—
—
—
A2
—
—
—
G
GPIO89
GPIO
I/O
P
RXDA
eSCI A receive
A1
—
—
—
A2
—
—
—
G
GPIO90
GPIO
I
P
TXDB
eSCI B transmit
O
A1
PCSD1
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO91
GPIO
I/O
P
RXDB
eSCI B receive
I
A1
PCSD5
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO92
GPIO
I/O
P
TXDC
eSCI C transmit
O
A1
ETRIG0
eQADC trigger input
I
A2
—
—
—
G
GPIO244
GPIO
I/O
P
RXDC
eSCI C receive
A1
—
—
—
A2
—
—
—
G
GPIO245
GPIO
I/O
I
I
State
after
RESET8
Package
Location
(416)
Voltage6
Function Summary
Pad Type5
Function4
Direction
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH3
—/Up
—/Up
AD8
MH
VDDEH3
—/Up
—/Up
AF7
MH
VDDEH3
—/Up
—/Up
AD7
MH
VDDEH3
—/Up
—/Up
AE6
MH
VDDEH3
—/Up
—/Up
AC6
MH
VDDEH3
—/Up
—/Up
AC7
State
after
RESET8
Package
Location
(416)
DSPI
93
PXR40 Microcontroller Data Sheet, Rev. 1
94
95
96
97
98
SCKA_PCSC1_
GPIO93
SINA_PCSC2_
GPIO94
SOUTA_PCSC5_
GPIO95
PCSA0_PCSD2_
GPIO96
PCSA1_
GPIO97
PCSA2_
GPIO98
41
P
SCKA
DSPI A clock
A1
PCSC1
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO93
GPIO
I/O
P
SINA
DSPI A data input
I
A1
PCSC2
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO94
GPIO
I/O
P
SOUTA
DSPI A data output
O
A1
PCSC5
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO95
GPIO
I/O
P
PCSA0
DSPI A peripheral chip select
I/O
A1
PCSD2
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO96
GPIO
I/O
P
PCSA1
DSPI A peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO97
GPIO
I/O
P
PCSA2
DSPI A peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO98
GPIO
I/O
102
103
Freescale Semiconductor
104
PCSA5_ETRIG1_
GPIO101
SCKB_
GPIO102
SINB_
GPIO103
SOUTB_
GPIO104
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
101
PCSA4_
GPIO100
Function Summary
Pad Type5
100
PCSA3_
GPIO99
Function4
Direction
99
Signal Name2
P/A/G3
GPIO/PCR1
42
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
O
MH
VDDEH3
—/Up
—/Up
AE7
MH
VDDEH3
—/Up
—/Up
AE5
MH
VDDEH3
—/Up
—/Up
AD6
MH
VDDEH3
—/Up
—/Up
AE8
MH
VDDEH3
—/Up
—/Up
AE9
MH
VDDEH3
—/Up
—/Up
AF9
P
PCSA3
DSPI A peripheral chip select
A1
—
—
—
A2
—
—
—
G
GPIO99
GPIO
I/O
P
PCSA4
DSPI A peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO100
GPIO
I/O
P
PCSA5
DSPI A peripheral chip select
O
A1
ETRIG1
eQADC trigger input
I
A2
—
—
—
G
GPIO101
GPIO
I/O
P
SCKB
DSPI B clock
I/O
A1
—
—
—
A2
—
—
—
G
GPIO102
GPIO
I/O
P
SINB
DSPI B data input
A1
—
—
—
A2
—
—
—
G
GPIO103
GPIO
I/O
P
SOUTB
DSPI B data output
O
A1
—
—
—
A2
—
—
—
G
GPIO104
GPIO
I/O
I
State
after
RESET8
Package
Location
(416)
108
109
110
PCSB2_SOUTC_
GPIO107
PCSB3_SINC_
GPIO108
PCSB4_SCKC_
GPIO109
PCSB5_PCSC0_
GPIO110
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
107
PCSB1_PCSD0_
GPIO106
Function Summary
Pad Type5
106
PCSB0_PCSD2_
GPIO105
Function4
Direction
105
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH
VDDEH3
—/Up
—/Up
AD9
MH
VDDEH3
—/Up
—/Up
AC9
MH
VDDEH3
—/Up
—/Up
AF8
MH
VDDEH3
—/Up
—/Up
AD10
MH
VDDEH3
—/Up
—/Up
AC8
MH
VDDEH3
—/Up
—/Up
AF6
P
PCSB0
DSPI B peripheral chip select
A1
PCSD2
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO105
GPIO
I/O
P
PCSB1
DSPI B peripheral chip select
O
A1
PCSD0
DSPI D peripheral chip select
I/O
A2
—
—
—
G
GPIO106
GPIO
I/O
P
PCSB2
DSPI B peripheral chip select
O
A1
SOUTC
DSPI C data output
O
A2
—
—
—
G
GPIO107
GPIO
I/O
P
PCSB3
DSPI B peripheral chip select
O
A1
SINC
DSPI C data input
I
A2
—
—
—
G
GPIO108
GPIO
I/O
P
PCSB4
DSPI B peripheral chip select
O
A1
SCKC
DSPI C clock
I/O
A2
—
—
—
G
GPIO109
GPIO
I/O
P
PCSB5
DSPI B peripheral chip select
O
A1
PCSC0
DSPI C peripheral chip select
I/O
A2
—
—
—
G
GPIO110
GPIO
I/O
State
after
RESET8
Package
Location
(416)
43
238
239
SOUTC_SOUT_C_LVDSP_
GPIO237
PCSC0_SOUT_C_LVDSM_
GPIO238
Freescale Semiconductor
PCSC1_
GPIO239
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
237
SINC_SCK_C_LVDSM_
GPIO236
Function Summary
Pad Type5
236
SCKC_SCK_C_LVDSP_
GPIO235
Function4
Direction
235
Signal Name2
P/A/G3
GPIO/PCR1
44
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I/O
MH+
LVDS
VDDEH4
—/Up
—/Up
AD21
MH+
LVDS
VDDEH4
—/Up
—/Up
AE22
MH+
LVDS
VDDEH4
—/Up
—/Up
AF21
MH+
LVDS
VDDEH4
—/Up
—/Up
AE21
MH
VDDEH4
—/Up
—/Up
AC22
P
SCKC
DSPI C clock
A1
SCK_C_LVDSP
LVDS+ downstream signal positive
output clock
O
A2
—
—
—
G
GPIO235
GPIO
I/O
P
SINC
DSPI C data input
I
A1
SCK_C_LVDSM
LVDS– downstream signal negative
output clock
O
A2
—
—
—
G
GPIO236
GPIO
I/O
P
SOUTC
DSPI C data output
O
A1
SOUT_C_LVDSP
LVDS+ downstream signal positive
output data
O
A2
—
—
—
G
GPIO237
GPIO
I/O
P
PCSC0
DSPI C peripheral chip select
I/O
A1
SOUT_C_LVDSM
LVDS– downstream signal negative
output data
O
A2
—
—
—
G
GPIO238
GPIO
I/O
P
PCSC1
DSPI C peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO239
GPIO
I/O
State
after
RESET8
Package
Location
(416)
243
PCSC4_GPIO242
PCSC5_GPIO243
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
242
PCSC3_GPIO241
Function Summary
Pad Type5
241
PCSC2_GPIO240
Function4
Direction
240
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
O
MH
VDDEH5
—/Up
—/Up
AE23
MH
VDDEH5
—/Up
—/Up
AD23
MH
VDDEH5
—/Up
—/Up
AF24
MH
VDDEH5
—/Up
—/Up
AE24
P
PCSC2
DSPI C peripheral chip select
A1
—
—
—
A2
—
—
—
G
GPIO240
GPIO
I/O
P
PCSC3
DSPI C peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO241
GPIO
I/O
P
PCSC4
DSPI C peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO242
GPIO
I/O
P
PCSC5
DSPI C peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO243
GPIO
I/O
State
after
RESET8
Package
Location
(416)
Reset and Clocks
—
RESET
P
RESET
External reset input
I
MH
VDDEH1
RESET/Up
RESET/Up
R2
230
RSTOUT
P
RSTOUT
External reset output
O
MH
VDDEH1
RSTOUT/Low
RSTOUT/
High
A3
212
BOOTCFG1_IRQ3_
GPIO212
P
BOOTCFG1
Boot configuration
I
MH
VDDEH1
Input/Down
N2
A1
IRQ3
External interrupt request
I
BOOTCFG/
Down
A2
—
—
—
G
GPIO212
GPIO
I/O
45
PLLCFG1_IRQ5_
GPIO209
WKPCFG
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
209
PLLCFG0_IRQ4_
GPIO208
P
Function Summary
Pad Type5
208
WKPCFG_NMI_
GPIO213
Function4
Direction
213
Signal Name2
P/A/G3
GPIO/PCR1
46
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
I
MH
VDDEH1
WKPCFG/Up
Input/Up
N3
MH
VDDEH1
PLLCFG/Up
Input/Up
R3
MH
VDDEH1
PLLCFG/Up
Input/Up
(for Rev2 of
the device:
—/Up)
P2
Weak pull configuration input
core11
A1
NMI
Critical interrupt to
A2
—
—
G
GPIO213
GPIO
I
P
PLLCFG0
FMPLL mode configuration input
I
A1
IRQ4
External interrupt request
I
A2
—
—
—
G
GPIO208
GPIO
I/O
P
PLLCFG1
FMPLL mode configuration input
I
A1
IRQ5
External interrupt request
I
A2
SOUTD
DSPI D data output
O
G
GPIO209
GPIO
I/O
State
after
RESET8
Package
Location
(416)
I
—
—
PLLCFG2
P
PLLCFG2
FMPLL mode configuration input
I
MH
VDDEH1
PLLCFG/
Down
PLLCFG/
Down
P3
—
XTAL
P
XTAL
Crystal oscillator output
O
AE
VDD33
XTAL
XTAL
AC26
—
EXTAL
P
EXTAL
Crystal oscillator input
I
AE
VDD33
EXTAL
EXTAL
AB26
ENGCLK
P
ENGCLK
EBI engineering clock output
Note: EXTCLK (External clock input)
selected through SIU register)
O
F
VDDE2
ENGCLK/
Enabled
ENGCLK/
Enabled
AD1
214
JTAG and Nexus
(see footnote12 about resets)
Freescale Semiconductor
—
EVTI
–13
13
227
EVTO
(the BAM uses this pin to
select if auto baud rate is on
or off)
–
219
MCKO
–13
EVTI
Nexus event in
I
F
VDDE2
—/Up
EVTI/Up
T4
EVTO
Nexus event out
O
F
VDDE2
ABS/Up
EVTO/HI
U1
MCKO
Nexus message clock out
O
F
VDDE2
O/Low
Disabled14
T2
223
75
76
MDO2_GPIO222
(GPIO function on this pin is
only available on Rev.2 of the
device)
MDO3_GPIO223
(GPIO function on this pin is
only available on Rev.2 of the
device)
MDO4_GPIO75
(GPIO function on this pin is
only available on Rev.2 of the
device)
MDO5_GPIO76
(GPIO function on this pin is
only available on Rev.2 of the
device)
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
222
MDO1_GPIO221
(GPIO function on this pin is
only available on Rev.2 of the
device)
Function Summary
Pad Type5
221
MDO0_GPIO220
(GPIO function on this pin is
only available on Rev.2 of the
device)
Function4
Direction
220
Signal Name2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
O
F
VDDE2
O/Low
MDO0/Low
U3
F
VDDE2
O/Low
—/Down
U4
F
VDDE2
O/Low
—/Down
V1
F
VDDE2
O/Low
—/Down
V2
F
VDDE2
O/Low
—/Down
V3
F
VDDE2
O/Low
—/Down
V4
–13
MDO015
Nexus message data out
A1
—
—
—
A2
—
—
—
G
GPIO220
GPIO
I/O
–13
MDO115
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO221
GPIO
I/O
–13
MDO215
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO222
GPIO
I/O
–13
MDO315
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO223
GPIO
I/O
–13
MDO415
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO75
GPIO
I/O
–13
MDO515
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO76
GPIO
I/O
State
after
RESET8
Package
Location
(416)
47
80
81
Freescale Semiconductor
82
MDO8_GPIO79
(GPIO function on this pin is
only available on Rev.2 of the
device)
MDO9_GPIO80
(GPIO function on this pin is
only available on Rev.2 of the
device)
MDO10_GPIO81
(GPIO function on this pin is
only available on Rev.2 of the
device)
MDO11_GPIO82
(GPIO function on this pin is
only available on Rev.2 of the
device)
Voltage6
PXR40 Microcontroller Data Sheet, Rev. 1
79
MDO7_GPIO78
(GPIO function on this pin is
only available on Rev.2 of the
device)
Function Summary
Pad Type5
78
MDO6_GPIO77
(GPIO function on this pin is
only available on Rev.2 of the
device)
Function4
Direction
77
Signal Name2
P/A/G3
GPIO/PCR1
48
Table 2. Signal Properties and Muxing Summary (continued)
State
during
RESET7
O
F
VDDE2
O/Low
—/Down
W1
F
VDDE2
O/Low
—/Down
W2
F
VDDE2
O/Low
—/Down
W3
F
VDDE2
O/Low
—/Down
Y1
F
VDDE2
O/Low
—/Down
Y2
F
VDDE2
O/Low
—/Down
Y3
–13
MDO615
Nexus message data out
A1
—
—
—
A2
—
—
—
G
GPIO77
GPIO
I/O
–13
MDO715
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO78
GPIO
I/O
–13
MDO815
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO79
GPIO
I/O
–13
MDO915
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO80
GPIO
I/O
–13
MDO1015
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO81
GPIO
I/O
–13
MDO1115
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO82
GPIO
I/O
State
after
RESET8
Package
Location
(416)
Pad Type5
Voltage6
O
F
VDDE2
O/Low
—/Down
AA1
F
VDDE2
O/Low
—/Down
AA2
F
VDDE2
O/Low
—/Down
AA3
F
VDDE2
O/Low
—/Down
Y4
O
F
VDDE2
O/Low
MSEO/HI
U2
Nexus message start/end out
O
F
VDDE2
O/Low
MSEO/HI
T3
RDY
Nexus ready output
O
F
VDDE2
O/Low
RDY/HI
R4
TCK
JTAG test clock input
I
F
VDDE2
TCK/Down
TCK/Down
AB2
–13
TDI
JTAG test data input
I
F
VDDE2
TDI/Up
TDI/Up
AC2
TDO
–13
TDO
JTAG test data output
O
F
VDDE2
TDO/Up
TDO/Up
AB1
TMS
–
13
TMS
JTAG test mode select input
I
F
VDDE2
TMS/Up
TMS/Up
AB3
–
13
JCOMP
JTAG TAP controller enable
I
F
VDDE2
JCOMP/Down
JCOMP/Down
R1
P/A/G3
State
during
RESET7
Signal Name2
Function4
Function Summary
–13
MDO1215
Nexus message data out
A1
—
—
—
A2
—
—
—
G
GPIO231
GPIO
I/O
–13
MDO1315
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO232
GPIO
I/O
–13
MDO1415
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO233
GPIO
I/O
–13
MDO1515
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO234
GPIO
I/O
MSEO0
–13
MSEO015
Nexus message start/end out
MSEO1
–
13
MSEO115
RDY
–13
—
TCK
–
13
—
TDI
231
232
PXR40 Microcontroller Data Sheet, Rev. 1
Direction
GPIO/PCR1
Freescale Semiconductor
Table 2. Signal Properties and Muxing Summary (continued)
233
234
224
225
226
228
—
—
MDO12_GPIO231
MDO13_GPIO232
MDO14_GPIO233
MDO15_GPIO234
JCOMP
State
after
RESET8
Package
Location
(416)
49
2
3
4
5
6
Freescale Semiconductor
7
8
Voltage6
State
during
RESET7
—
TEST
—
TEST
Test mode select (not for customer
use)
I
F
VDDEH1
TEST/Down
TEST/Down
B4
—
VDDSYN
—
VDDSYN
Clock synthesizer power input
I
VDDE
VDDSYN
VDDSYN
VDDSYN
AD26
—
VSSSYN
—
VSSSYN
Clock synthesizer ground input
I
VSSE
VDDSYN
VSSSYN
VSSSYN
AA26
—
VSTBY
—
VSTBY
SRAM standby power input
I
VHV
VDDEH1
VSTBY
VSTBY
M4
—
REGSEL
—
REGSEL
Selects regulator mode
(Linear/Switch mode)
I
AE
VDDREG
REGSEL
REGSEL
W23
—
REGCTL
—
REGCTL
Regulator controller output to
base/gate of power transistor
O
AE
VDDREG
REGCTL
REGCTL
Y26
—
VSSFL
—
VSSFL
Tie to VSS
I
VSS
VDDREG
VSSFL
VSSFL
AB25
—
VDDREG
—
VDDREG
Source voltage for on-chip regulators
and Low voltage detect circuits
I
VDDINT
VDDREG
VDDREG
VDDREG
AA25
Signal Name2
P/A/G3
Pad Type5
PXR40 Microcontroller Data Sheet, Rev. 1
1
Direction
GPIO/PCR1
50
Table 2. Signal Properties and Muxing Summary (continued)
Function4
Function Summary
State
after
RESET8
Package
Location
(416)
The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number in pins that have GPIO functionality. For pins that do not
have GPIO functionality, this number is the PCR number.
The primary signal name is used as the pin label on the BGA map for identification purposes. However, the primary signal function is not available on all devices
and is indicated by a dash in the following table columns: Signal Functions, P/F/G, and I/O Type.
P/A/G stands for Primary/Alternate/GPIO. This column indicates which function on a pin is Primary, Alternate 1, Alternate 2, (Alternate n) and GPIO.
Each line in the Function column corresponds to a separate signal function on the pin. For all device I/O pins, the primary, alternate, or GPIO signal functions
are designated in the PA field of the SIU_PCRn registers except where explicitly noted.
MH = High voltage, medium speed
F = Fast speed
FS = Fast speed with slew
AE = Analog with ESD protection circuitry (up/down = pull up and pull down circuits included in the pad)
VHV = Very high voltage
VDDE (fast I/O) and VDDEH (slow I/O) power supply inputs are grouped into segments. Each segment of VDDEH pins can connect to a separate 3.3–5.0 V
(+5%/–10%) power supply input. Each segment of VDDE pins can connect to a separate 1.8–3.3 V (±10%) power supply.
The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. The terminology used in
this column is: O – output, I – input, Up – weak pull up enabled, Down – weak pulldown enabled, Low – output driven low, High – output driven high, ABS —
Auto Baud Select (during Reset or until JCOMP assertion). A dash on the left side of the slash denotes that both the input and output buffers for the pin are
off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin. The signal name to the left or right of the slash indicates
the pin is enabled.
The Function After Reset of a GPI function is general purpose input. A dash on the left side of the slash denotes that both the input and output buffers for the
pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin.
9
Freescale Semiconductor
This signal name includes eTPU_C functionality that this device does not have. This is for forward compatibility with devices that have an eTPU_C.
During and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are disabled when
the system clock propagates through the device.
11 NMI does not have a PCR PA configuration; it is enabled when NMI is enabled through the SIU_IREER and SIU_IFEER registers.
12
Nexus reset is different than system reset; MDO 1-11 are enabled when trace (RPM or FPM) is enabled, and MDO 12-15 when FPM trace is enabled. MSEO
and MCKO are also dependent on trace (RPM or FPM) being enabled.
13 The Nexus pins don’t have a “primary” function as they are not configured by the SIU. The pins are selected by asserting JCOMP and configuring the NPC.
SIU values have no effect on the function of these pins once enabled.
14 MCKO is disabled from reset; it can be enabled from the tool (controlled by Nexus NPC_PCR register).
15 Do not connect pin directly to a power supply or ground.
10
PXR40 Microcontroller Data Sheet, Rev. 1
51
Electrical characteristics
5
Electrical characteristics
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing
specifications for the PXR40.
The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These
specifications may not be fully tested or guaranteed at this stage of the product life cycle, however for production silicon these
specifications will be met. Finalized specifications will be published after complete characterization and device qualifications
have been completed.
5.1
Maximum ratings
Table 3. Absolute maximum ratings1
Spec
Characteristic
Symbol
Min
Max
Unit
VDD
–0.3
2.0 2
V
VSTBY
–0.3
6.4 3,4
V
VDDSYN
–0.3
5.3 4,5
V
1
1.2 V Core Supply Voltage
2
SRAM Standby Voltage
3
Clock Synthesizer Voltage
4
I/O Supply Voltage (I/O buffers and predrivers)
VDD33
–0.3
5.3 4,5
V
5
Analog Supply Voltage (reference to VSSA6)
VDDA7
–0.3
6.4 3,4
V
6
I/O Supply Voltage (fast I/O pads)
VDDE
–0.3
5.3 4,5
V
3,4
V
7
I/O Supply Voltage (medium I/O pads)
VDDEH
–0.3
6.4
8
Voltage Regulator Input Supply Voltage
VDDREG
–0.3
6.4 3,4
V
9
Analog Reference High Voltage (reference to VRL8)
VRH9
–0.3
6.4 3,4
V
10
VSS to VSSA8 Differential Voltage
VSS – VSSA
–0.1
0.1
V
11
VREF Differential Voltage
VRH – VRL
–0.3
6.4 3,4
V
12
VRL to VSSA Differential Voltage
VRL – VSSA
–0.3
0.3
V
13
VDD33 to VDDSYN Differential Voltage
VDD33 – VDDSYN
–0.1
0.1
V
14
VSSSYN to VSS Differential Voltage
VSSSYN – VSS
–0.1
0.1
V
15
Maximum Digital Input Current 10 (per pin, applies to all
digital pins)
IMAXD
–3 11
3 11
mA
16
Maximum Analog Input Current 12 (per pin, applies to all
analog pins)
IMAXA
–37
3 7,11
mA
17
Maximum Operating Temperature Range 13 – Die Junction
Temperature
TJ
–40.0
150.0
oC
18
Storage Temperature Range
Tstg
–55.0
150.0
oC
19
Maximum Solder Temperature 14
Pb-free package
SnPb package
Tsdr
—
—
260.0
245.0
Moisture Sensitivity Level 15
MSL
—
3
20
o
C
—
PXR40 Microcontroller Data Sheet, Rev. 1
52
Freescale Semiconductor
Electrical characteristics
1
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only,
and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or
cause permanent damage to the device.
2
2.0 V for 10 hours cumulative time, 1.32 V +10% for time remaining.
3
6.4 V for 10 hours cumulative time, 5.25 V +10% for time remaining.
4 Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.
5
5.3 V for 10 hours cumulative time, 3.60 V +10% for time remaining.
6
PXR40 has two analog power supply pins on the pinout: VDDA_A and VDDA_B.
7
PXR40 has two analog ground supply pins on the pinout: VSSA_A and VSSA_B.
8
PXR40 has two analog low reference voltage pins on the pinout: VRL_A and VRL_B.
9
PXR40 has two analog high reference voltage pins on the pinout: VRH_A and VRH_B.
10
Total injection current for all pins must not exceed 25 mA at maximum operating voltage.
11
Injection current of ±5 mA allowed for limited duration for analog (ADC) pads and digital 5 V pads. The maximum accumulated
time at this current shall be 60 hours. This includes an assumption of a 5.25 V maximum analog or VDDEH supply when under
this stress condition.
12 Total injection current for all analog input pins must not exceed 15 mA.
13 Lifetime operation at these specification limits is not guaranteed.
14 Solder profile per CDF-AEC-Q100.
15 Moisture sensitivity per JEDEC test method A112.
5.2
Thermal characteristics
Table 4. Thermal characteristics, 416-pin TEPBGA package1
Characteristic
Symbol
Value
Unit
RJA
24
°C/W
RJA
18
°C/W
Junction to Ambient (@200 ft./min., Single layer board)
RJMA
19
°C/W
Junction to Ambient (@200 ft./min., Four layer board 2s2p)
RJMA
14
°C/W
RJB
9
°C/W
RJC
6
°C/W
JT
2
°C/W
Junction to Ambient 2,3 Natural Convection (Single layer board)
Junction to Ambient
2,4
Natural Convection (Four layer board 2s2p)
Junction to Board 5
Junction to Case
6
7
Junction to Package Top Natural Convection
1
2
3
4
5
6
7
Thermal characteristics are targets based on simulation that are subject to change per device
characterization. This data is PRELIMINARY based on similar package used on other devices.
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting
site (board) temperature, ambient temperature, air flow, power dissipation of other components on the
board, and board thermal resistance.
Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
Per JEDEC JESD51-6 with the board horizontal.
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board
temperature is measured on the top surface of the board near the package.
Indicates the average thermal resistance between the die and the case top surface as measured by the
cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case
temperature.
Thermal characterization parameter indicating the temperature difference between package top and the
junction temperature per JEDEC JESD51-2.
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
53
Electrical characteristics
5.2.1
General notes for specifications at maximum junction temperature
An estimation of the chip junction temperature, TJ, can be obtained from the equation:
TJ = TA + (RJA * PD)
Eqn. 1
where:
TA = ambient temperature for the package (oC)
RJA = junction to ambient thermal resistance (oC/W)
PD = power dissipation in the package (W)
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value
obtained on a board with two planes. For packages such as the TEPBGA, these values can be different by a factor of two. Which
value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a
single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal
planes is usually appropriate if the board has low power dissipation and the components are well separated.
When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case thermal resistance and a case to
ambient thermal resistance:
RJA = RJC + RCA
Eqn. 2
where:
RJA = junction to ambient thermal resistance (oC/W)
RJC = junction to case thermal resistance (oC/W)
RCA = case to ambient thermal resistance (oC/W)
RJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to
ambient thermal resistance, RCA. For instance, the user can change the size of the heat sink, the air flow around the device, the
interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit
board surrounding the device.
To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal
Characterization Parameter (JT) can be used to determine the junction temperature with a measurement of the temperature at
the top center of the package case using the following equation:
TJ = TT + (JT x PD)
Eqn. 3
where:
TT = thermocouple temperature on top of the package (oC)
JT = thermal characterization parameter (oC/W)
PD = power dissipation in the package (W)
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm. of wire extending from the
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects
of the thermocouple wire.
References:
Semiconductor Equipment and Materials International
3081 Zanker Road
PXR40 Microcontroller Data Sheet, Rev. 1
54
Freescale Semiconductor
Electrical characteristics
San Jose, CA 95134
(408) 943-6900
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or
303-397-7956.
JEDEC specifications are available on the WEB at http://www.jedec.org.
•
•
•
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications,” Electronic
Packaging and Production, pp. 53-58, March 1998.
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.
5.3
EMI (Electromagnetic Interference) characteristics
To find application notes that provide guidance on designing your system to minimize interference from radiated emissions, go
to www.freescale.com and perform a keyword search for “radiated emissions.” The following tables list the values of the
device's radiated emissions operating behaviors.
Table 5. EMC radiated emissions operating behaviors: 416 BGA
Symbol
VRE_TEM
VRE_TEM
1
2
3
4
5
Description
Radiated emissions,
electric field and
magnetic field
Radiated emissions,
electric field and
magnetic field
fOSC
fSYS
Frequency
band (MHz)
Level
(max.)
VDD = 1.2 V
VDDE = 3.3 V
VDDEH = 5 V
TA = 25 °C
416 BGA
EBI off
CLK on
FM off
40 MHz crystal
264 MHz
(fEBI_CAL = 66
MHz)
0.15–50
26
50–150
30
150–500
34
500–1000
30
IEC and SAE level
VDD = 1.2 V
VDDE = 3.3 V
VDDEH = 5 V
TA = 25 °C
416 BGA
EBI off
CLK off
FM on4
40 MHz crystal
264 MHz
(fEBI_CAL = 66
MHz)
Conditions
Unit Notes
dBV
1
I2
—
1, 3
0.15–50
24
dBV
1
50–150
25
150–500
25
500–1000
21
IEC and SAE level
K5
—
1,3
Determined according to IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell
Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM
(GTEM) Cell Method.
I = 36 dBV
Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated
Circuits—TEM/Wideband TEM (GTEM) Cell Method.
“FM on” = FM depth of ±2%
K = 30 dBV
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
55
Electrical characteristics
5.4
ESD characteristics
Table 6. ESD ratings1,2
Spec
Characteristic
Symbol
Value
Unit
1
ESD for Human Body Model (HBM)
VHBM
2000
V
2
ESD for Charged Device Model (CDM)
VCDM
750 (corners)
500 (other)
V
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade
Integrated Circuits.
2
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification requirements. Complete DC parametric and functional testing shall be performed per applicable
device specification at room temperature followed by hot temperature, unless specified otherwise in the
device specification.
5.5
PMC/POR/LVI electrical specifications
Note: For ADC internal resource measurements, see Table 18 in Section 5.9.1 ADC internal resource measurements.
Table 7. PMC operating conditions
Name
Parameter
Condition
Min
Typ
Max
Unit
Note
VDDREG
Supply voltage VDDREG
5V nominal
LDO5V / SMPS5V mode
4.5
5
5.5
V
1
VDDREG
Supply voltage VDDREG
3V nominal
LDO3V mode
3.0
3.3
3.6
V
1
VDD33
Supply voltage VDDSYN /
VDD33 3.3V nominal
LDO3V mode
3.0
3.3
3.6
V
2
VDD
Supply voltage VDD
1.2V nominal
—
1.14
1.2
1.32
V
3
1
Voltage should be higher than maximum VLVDREG to avoid LVD event
Applies to both VDD33 (flash supply) and VDDSYN (PLL supply) pads. Voltage should be higher than maximum VLVD33 to avoid
LVD event
3 Voltage should be higher than maximum V
LVD12 to avoid LVD event
2
NOTE
In the following table, “untrimmed” means “at reset” and “trimmed” means “after reset”.
Table 8. PMC electrical specifications
ID
Name
Parameter
1
VBG
Nominal bandgap reference voltage
1a
—
Untrimmed bandgap reference voltage
2
VDD12OUT
Nominal VRC regulated 1.2V output VDD
Min
Typ
Max
Unit
0.608
0.620
0.632
V
VBG – 5%
VBG
VBG + 5%
V
—
1.2
—
V
PXR40 Microcontroller Data Sheet, Rev. 1
56
Freescale Semiconductor
Electrical characteristics
Table 8. PMC electrical specifications (continued)
ID
Name
Parameter
Min
Typ
Max
Unit
2a
—
Untrimmed VRC 1.2V output variation before
band gap trim (unloaded)
Note: Voltage should be higher than maximum
VLVD12 to avoid LVD event
VDD12OUT – 8% VDD12OUT VDD12OUT + 17%
V
2b
—
Trimmed VRC 1.2V output variation after band
gap trim (REGCTL load max. 20mA, VDD load
max. 1A)1
VDD12OUT – 5% VDD12OUT VDD12OUT + 10%
V
2c
VSTEPV12
Trimming step VDD12OUT
—
10
—
mV
3
VPORC
POR rising VDD 1.2V
—
0.7
—
V
3a
—
POR VDD 1.2V variation
VPORC – 30%
VPORC
VPORC + 30%
3b
—
POR 1.2V hysteresis
—
75
—
mV
4
VLVD12
Nominal rising LVD 1.2V
Note: ~VDD12OUT × 0.87
—
1.100
—
V
4a
—
Untrimmed LVD 1.2V variation before band gap
trim
Note: Rising VDD
VLVD12 – 6%
VLVD12
VLVD12 + 6%
V
4b
—
Trimmed LVD 1.2V variation after band gap trim
Rising VDD
VLVD12 – 3%
VLVD12
VLVD12 + 3%
V
4c
—
LVD 1.2V Hysteresis
15
20
25
mV
4d
VLVDSTEP12
Trimming step LVD 1.2V
—
10
—
mV
5
IREGCTL
VRC DC current output on REGCTL
—
—
20
mA
6
—
Voltage regulator 1.2V current consumption
VDDREG
—
3
—
mA
7
VDD33OUT
Nominal VREG 3.3V output
—
3.3
—
V
7a
—
Untrimmed VREG 3.3V output variation before
band gap trim (unloaded)
Note: Rising VDDSYN
VDD33OUT – 6% VDD33OUT VDD33OUT + 10%
V
7b
—
Trimmed VREG 3.3V output variation after band
gap trim (max. load 80mA)
VDD33OUT – 5% VDD33OUT VDD33OUT + 10%
V
7c
VSTEPV33
Trimming step VDDSYN
—
30
—
mV
8
VLVD33
Nominal rising LVD 3.3V
Note: ~VDD33OUT × 0.872
—
2.950
—
V
8a
—
Untrimmed LVD 3.3V variation before band gap
trim
Note: Rising VDDSYN
VLVD33 – 5%
VLVD33
VLVD33 + 5%
V
8b
—
Trimmed LVD 3.3V variation after bad gap trim
Note: Rising VDDSYN
VLVD33 – 3%
VLVD33
VLVD33 + 3%
V
8c
—
LVD 3.3V Hysteresis
—
30
—
mV
8d
VLVDSTEP33
Trimming step LVD 3.3V
—
30
—
mV
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
57
Electrical characteristics
Table 8. PMC electrical specifications (continued)
ID
Name
Parameter
Min
Typ
Max
Unit
9
IDD33
VREG = 4.5 V, max DC output current
VREG = 4.25 V, max DC output current, crank
condition
Note: Max current supplied by VDDSYN that
does not cause it to drop below VLVD33
—
—
—
—
80
40
mA
mA
10
—
Voltage regulator 3.3V current consumption
VDDREG
Note: Except IDD33
—
2
—
mA
11
VPORREG
POR rising on VDDREG
—
2.00
—
V
VPORREG + 30%
V
11a —
POR VDDREG variation
11b —
POR VDDREG hysteresis
—
250
—
mV
12
Nominal rising LVD VDDREG
(LDO3V / LDO5V mode)
—
2.950
—
V
VLVDREG
VPORREG – 30% VPORREG
12a —
Untrimmed LVD VDDREG variation before band
gap trim
Note: Rising VDDREG
VLVDREG – 5%
VLVDREG
VLVDREG + 5%
V
12b —
Trimmed LVD VDDREG variation after band gap
trim
Note: Rising VDDREG
VLVDREG – 3%
VLVDREG
VLVDREG + 3%
V
12c —
LVD VDDREG Hysteresis
(LDO3V / LDO5V mode)
—
30
—
mV
12d VLVDSTEPREG Trimming step LVD VDDREG
(LDO3V / LDO5V mode)
—
30
—
mV
13
—
4.360
—
V
VLVDREG
Nominal rising LVD VDDREG
(SMPS5V mode)
13a —
Untrimmed LVD VDDREG variation before band
gap trim
Note: Rising VDDREG
VLVDREG – 5%
VLVDREG
VLVDREG + 5%
V
13b —
Trimmed LVD VDDREG variation after band gap
trim
Note: Rising VDDREG
VLVDREG – 3%
VLVDREG
VLVDREG + 3%
V
13c —
LVD VDDREG Hysteresis
(SMPS5V mode)
—
50
—
mV
13d VLVDSTEPREG Trimming step LVD VDDREG
(SMPS5V mode)
—
50
—
mV
14
—
4.60
—
V
VLVDA
Nominal rising LVD VDDA
14a —
Untrimmed LVD VDDA variation before band
gap trim
VLVDA – 5%
VLVDA
VLVDA + 5%
V
14b —
Trimmed LVD VDDA variation after band gap
trim
VLVDA – 3%
VLVDA
VLVDA + 3%
V
14c —
LVD VDDA Hysteresis
—
150
—
mV
PXR40 Microcontroller Data Sheet, Rev. 1
58
Freescale Semiconductor
Electrical characteristics
Table 8. PMC electrical specifications (continued)
ID
Name
Parameter
Min
Typ
Max
Unit
14d VLVDASTEP
Trimming step LVD VDDA
—
20
—
mV
15
—
SMPS regulator output resistance
Note: Pullup to VDDREG when high, pulldown
to VSSREG when low.
—
15
25
Ohm
16
—
SMPS regulator clock frequency (after reset)
1.0
1.5
2.4
MHz
—
1.32
1.4
V
—
1.0
—
A
—
—
0.1
V
17
—
SMPS regulator overshoot at start-up
18
—
SMPS maximum output current
19
2
2
—
Voltage variation on current step (20% to 80%
of maximum current with 4 µsec constant time)
1
VRC linear regulator is capable of sourcing a current up to 20 mA and sinking a current up to 500 µA. When using the
recommended ballast transistor the maximum output current provided by the voltage regulator VRC/ballast to the VDD core
voltage is up to 1A.
2 Parameter cannot be tested; this value is based on simulation and characterization.
5.6
Power up/down sequencing
There is no power sequencing required among power sources during power up and power down in order to operate within
specification as long as the following two rules are met:
•
•
When VDDREG is tied to a nominal 3.3V supply, VDD33 and VDDSYN must be both shorted to VDDREG.
When VDDREG is tied to a 5V supply, VDD33 and VDDSYN must be tied together and shall be powered by the
internal 3.3V regulator.
The recommended power supply behavior is as follows: Use 25 V/millisecond or slower rise time for all supplies. Power up
each VDDE/VDDEH first and then power up VDD. For power down, drop VDD to 0 V first, and then drop all VDDE/VDDEH
supplies. There is no limit on the fall time for the power supplies.
Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive current spikes, etc.,
the state of the I/O pins during power up/down varies according to Table 9 and Table 10.
Table 9. Power sequence pin states for MH and AE pads
1
VDD
VDD33
VDDE
MH Pad
MH+LVDS Pads1
AE/up-down Pads
High
High
High
Normal operation
Normal operation
Normal operation
—
Low
High
Pin is tri-stated (output buffer,
input buffer, and weak pulls
disabled)
Outputs driven high
Pull-ups enabled,
pull-downs disabled
Low
High
Low
Output low,
pin unpowered
Outputs disabled
Output low,
pin unpowered
Low
High
High
Pin is tri-stated (output buffer,
input buffer, and weak pulls
disabled)
Outputs disabled
Pull-ups enabled,
pull-downs disabled
MH+LVDS pads are output-only.
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
59
Electrical characteristics
Table 10. Power sequence pin states for F and FS pads
1
5.6.1
VDD
VDD33
VDDE
F and FS pads
low
low
high
Outputs drive high
low
high
—
Outputs Disabled
high
low
low
Outputs Disabled
high
low
high
Outputs drive high
high
high
low
Normal operation - except no drive current
and input buffer output is unknown.1
high
high
high
Normal Operation
The pad pre-drive circuitry will function normally but since VDDE is unpowered
the outputs will not drive high even though the output pmos can be enabled.
Power-up
If VDDE/VDDEH is powered up first, then a threshold detector tristates all drivers connected to VDDE/VDDEH. There is no limit
to how long after VDDE/VDDEH powers up before VDD must power up. If there are multiple VDDE/VDDEH supplies, they can
be powered up in any order. For each VDDE/VDDEH supply not powered up, the drivers in that VDDE/VDDEH segment exhibit
the characteristics described in the next paragraph.
If VDD is powered up first, then all pads are loaded through the drain diodes to VDDE/VDDEH. This presents a heavy load that
pulls the pad down to a diode above VSS. Current injected by external devices connected to the pads must meet the current
injection specification. There is no limit to how long after VDD powers up before VDDE/VDDEH must power up.
The rise times on the power supplies are to be no faster than 25 V/millisecond.
5.6.2
Power-down
If VDD is powered down first, then all drivers are tristated. There is no limit to how long after VDD powers down before
VDDE/VDDEH must power down.
If VDDE/VDDEH is powered down first, then all pads are loaded through the drain diodes to VDDE/VDDEH. This presents a heavy
load that pulls the pad down to a diode above VSS. Current injected by external devices connected to the pads must meet the
current injection specification. There is no limit to how long after VDDE/VDDEH powers down before VDD must power down.
There are no limits on the fall times for the power supplies.
5.6.3
Power sequencing and POR dependent on VDDA
During power up or down, VDDA can lag other supplies (of magnitude greater than VDDEH/2) within 1 V to prevent any
forward-biasing of device diodes that causes leakage current and/or POR. If the voltage difference between VDDA and VDDEH
is more than 1 V, the following will result:
•
•
•
Triggers POR (ADC monitors on VDDEH1 segment which powers the RESET pin) if the leakage current path created,
when VDDA is sufficiently low, causes sufficient voltage drop on VDDEH1 node monitored crosses low-voltage detect
level.
If VDDA is between 0–2 V, powering all the other segments (especially VDDEH1) will not be sufficient to get the part
out of reset.
Each VDDEH will have a leakage current to VDDA of a magnitude of ((VDDEH – VDDA – 1 V(diode drop)/200 KOhms)
up to (VDDEH/2 = VDDA + 1 V).
PXR40 Microcontroller Data Sheet, Rev. 1
60
Freescale Semiconductor
Electrical characteristics
•
5.7
Each VDD has the same behavior; however, the leakage will be small even though there is no current limiting resistor
since VDD = 1.32 V max.
DC electrical specifications
Table 11. DC electrical specifications
Spec
Characteristic
Symbol
Min
Max
Unit
1
Core Supply Voltage (External Regulation)
VDD
1.14
1.321,2
V
1a
Regulation)3
VDD
1.08
1.32
V
2
Core Supply Voltage (Internal
I/O Supply Voltage (fast I/O pads)
VDDE
3.0
3.6
1,4
1,5
V
3
I/O Supply Voltage (medium I/O pads)
VDDEH
3.0
5.25
V
4
3.3 V I/O Buffer Voltage
VDD33
3.0
3.61,4
V
VDDA
4.75
5.251,5
V
1.2
V
5
Analog Supply Voltage
6a
SRAM Standby Voltage
Keep-out Range: 1.2V–2V
VSTBY_LOW
0.956
6b
SRAM Standby Voltage
Keep-out Range: 1.2V–2V
VSTBY_HIGH
2
6
V
7
Voltage Regulator Control Input Voltage7
VDDREG
2.78
5.51,5
V
8
Clock Synthesizer Operating Voltage9
VDDSYN
3.0
3.61,4
V
9
Fast I/O Input High Voltage
Hysteresis enabled
Hysteresis disabled
VIH_F
VDDE + 0.3
V
Fast I/O Input Low Voltage
Hysteresis enabled
Hysteresis disabled
VIL_F
Medium I/O Input High Voltage
Hysteresis enabled
Hysteresis disabled
VIH_S
Medium I/O Input Low Voltage
Hysteresis enabled
Hysteresis disabled
VIL_S
10
11
12
0.65 × VDDE
0.55 × VDDE
V
VSS – 0.3
0.35 × VDDE
0.40 × VDDE
VDDEH + 0.3
V
0.65 × VDDEH
0.55 × VDDEH
V
VSS – 0.3
0.35 × VDDEH
0.40 × VDDEH
13
Fast I/O Input Hysteresis
VHYS_F
0.1 × VDDE
—
V
14
Medium I/O Input Hysteresis
VHYS_S
0.1 × VDDEH
—
V
15
Analog Input Voltage
VINDC
VSSA – 0.1
VDDA + 0.1
V
VOH_F
0.8 × VDDE
—
V
VOH_S
0.8 × VDDEH
—
V
VOL_F
—
0.2 × VDDE
V
VOL_S
—
0.2 × VDDEH
V
—
—
—
—
10
20
30
50
pF
pF
pF
pF
10
16
Fast I/O Output High Voltage
17
Medium I/O Output High Voltage11
18
10
Fast I/O Output Low Voltage
11
19
Medium I/O Output Low Voltage
20
Load Capacitance (Fast I/O)12
DSC(PCR[8:9]) = 0b00
DSC(PCR[8:9]) = 0b01
DSC(PCR[8:9]) = 0b10
DSC(PCR[8:9]) = 0b11
CL
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
61
Electrical characteristics
Table 11. DC electrical specifications (continued)
Spec
Characteristic
Symbol
Min
Max
Unit
21
Input Capacitance (Digital Pins)
CIN
—
7
pF
22
Input Capacitance (Analog Pins)
CIN_A
—
10
pF
24
Operating Current 1.2 V Supplies @ fsys = 264 MHz
VDD @1.32 V
VSTBY13 @1.2 V and 85oC
VSTBY @6.0 V and 85oC
IDD
IDDSTBY
IDDSTBY6
—
—
—
1.014
0.10
0.15
A
mA
mA
Operating Current 3.3 V Supplies @ fsys = 264 MHz
VDD3315
VDDSYN
IDD33
IDDSYN
—
—
note15
716
mA
mA
Operating Current 5.0 V Supplies @ fsys = 264 MHz
VDDA
Analog Reference Supply Current (Transient)
VDDREG
IDDA
IREF
IREG
—
—
—
5017
1.0
22
mA
mA
mA
Operating Current VDDE/VDDEH18 Supplies
VDDE2
VDDEH1
VDDEH3
VDDEH4
VDDEH5
VDDEH6
VDDEH7
IDD2
IDD1
IDD3
IDD4
IDD5
IDD6
IDD7
—
—
—
—
—
—
—
note18
mA
mA
mA
mA
mA
mA
mA
IACT_F
42
158
A
15
35
95
200
A
A
IINACT_D
–2.5
2.5
A
IIC
–1.0
1.0
mA
IINACT_A
–250
250
nA
–150
150
nA
VSS – VSSA
–100
100
mV
VRL
VSSA
VSSA + 100
mV
VRL – VSSA
–100
100
mV
VRH
VDDA – 100
VDDA
mV
VRH – VRL
4.75
5.25
V
VSSSYN – VSS
–100
100
mV
TA (TL to TH)
–40.0
125.0
C
—
—
25
V/ms
25
26
27
28
29
Fast I/O Weak Pull Up/Down Current19
3.0 V–3.6 V
Medium I/O Weak Pull Up/Down
3.0 V–3.6 V
4.5 V–5.5 V
30
I/O Input Leakage Current21
31
DC Injection Current (per pin)
32
Current20
22
Analog Input Current, Channel Off , AN[0:7], AN38,
AN39
Analog Input Current, Channel Off, all other analog
inputs AN[x]
33
VSS Differential Voltage
34
Analog Reference Low Voltage
35
VRL Differential Voltage
36
Analog Reference High Voltage
37
VREF Differential Voltage
38
VSSSYN to VSS Differential Voltage
39
Operating Temperature Range—Ambient (Packaged)
40
Slew rate on power supply pins
IACT_S
PXR40 Microcontroller Data Sheet, Rev. 1
62
Freescale Semiconductor
Electrical characteristics
Table 11. DC electrical specifications (continued)
Spec
41
42
Characteristic
Weak Pull-Up/Down Resistance23, 200 K Option
Weak Pull-Up/Down Resistance
23,
100 K Option
Resistance23
43
Weak Pull-Up/Down
44
Pull-Up/Down Resistance Matching Ratios24
(100K/200K)
, 5 K Option
Symbol
Min
Max
Unit
RPUPD200K
130
280
k
RPUPD100K
65
140
k
RPUPD5K
1.4
7.5
k
RPUPDMTCH
–2.5
+2.5
%
1
Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.
2.0 V for 10 hours cumulative time, 1.2 V +10% for time remaining.
3
Assumed with DC load.
4
5.3 V for 10 hours cumulative time, 3.3 V +10% for time remaining.
5
6.4 V for 10 hours cumulative time, 5.0 V +10% for time remaining.
6 V
STBY below 0.95 V the RAM will not retain states, but will be operational. VSTBY can be 0 V when bypass standby mode.
7 Regulator is functional with derated performance, with supply voltage down to 4.0 V for system with V
DDREG = 4.5 V (min).
8 2.7 V minimum operating voltage allowed during vehicle crank for system with V
DDREG = 3.0 V (min). Normal operating voltage
should be either VDDREG = 3.0 V (min) or 4.5 V (min) depending on the user regulation voltage system selected.
9 Required to be supplied when 3.3 V regulator is disabled. See Section 5.5 PMC/POR/LVI electrical specifications.
10 I
OH_F = {16,32,47,77} mA and IOL_F = {24,48,71,115} mA for {00,01,10,11} drive mode with VDDE = 3.0 V. This spec is for
characterization only.
11 I
OH_S = {11.6} mA and IOL_S = {17.7} mA for {medium} I/O with VDDE = 4.5 V;
IOH_S = {5.4} mA and IOL_S = {8.1} mA for {medium} I/O with VDDE = 3.0 V. These specs are for characterization only.
12 Applies to D_CLKOUT, external bus pins, and Nexus pins.
13 V
o
STBY current specified at 1.0 V at a junction temperature of 85 C. VSTBY current is 700 µA maximum at a junction temperature
oC.
of 150
14 Preliminary. Specification pending typical and/or high-use Runidd pattern simulation as well as final silicon characterization.
900 mA based on transistor count estimate at Worst Case (wcs) process and temperature condition.
15 Power requirements for the V
DD33 supply depend on the frequency of operation and load of all I/O pins, and the voltages on
the I/O segments. See Section 5.7.2 I/O pad VDD33 current specifications, for information on both fast (F, FS) and medium (MH)
pads. Also refer to Table 13 for values to calculate power dissipation for specific operation.
16 This value is a target that is subject to change.
17 This value allows a 5 V reference to supply ADC + REF.
18 Power requirements for each I/O segment depend on the frequency of operation and load of the I/O pins on a particular I/O
segment, and the voltage of the I/O segment. See Section 5.7.1 I/O pad current specifications, for information on I/O pad
power. Also refer to Table 12 for values to calculate power dissipation for specific operation. The total power consumption of
an I/O segment is the sum of the individual power consumptions for each pin on the segment.
19 Absolute value of current, measured at V and V .
IL
IH
20 Absolute value of current, measured at V and V .
IL
IH
21 Weak pull up/down inactive. Measured at V
DDE = 3.6 V and VDDEH = 5.25 V. Applies to pad types F and MH.
22 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each
8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types AE and AE/up-down. See Section 4 Signal
properties and muxing.
23 This programmable option applies only to eQADC differential input channels and is used for biasing and sensor diagnostics
24 Pull-up and pull-down resistances are both enabled and settings are equal.
2
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
63
Electrical characteristics
5.7.1
I/O pad current specifications
The power consumption of an I/O segment is dependent on the usage of the pins on a particular segment. The power
consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from
Table 12 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency,
and load parameters that fall outside the values given in Table 12.
The AC timing of these pads are described in the Section 5.11.2 Pad AC specifications.
Table 12. VDDE/VDDEH I/O Pad Average DC Current1
Spec
Pad Type
Symbol
Frequency
(MHz)
Load2
(pF)
Voltage
(V)
Drive/Slew
Rate Select
Current (mA)
1
Medium
IDRV_MH
50
50
5.25
11
16.0
2
20
50
5.25
01
6.3
3
3.0
50
5.25
00
1.1
4
2.0
200
5.25
00
2.4
66
10
3.6
00
6.5
6
66
20
3.6
01
9.4
7
66
30
3.6
10
10.8
8
66
50
3.6
11
33.3
66
50
3.6
11
12.0
50
50
3.6
10
6.2
11
33.33
50
3.6
01
4.0
12
20
50
3.6
00
2.4
13
20
200
3.6
00
8.9
5
9
10
1
2
Fast
Fast w/ Slew
Control
IDRV_FC
IDRV_FSR
These are average IDDE numbers for worst case PVT from simulation. Currents apply to output pins only.
All loads are lumped.
5.7.2
I/O pad VDD33 current specifications
The power consumption of the VDD33 supply is dependent on the usage of the pins on all I/O segments. The power consumption
is the sum of all input and output pin VDD33 currents for all I/O segments. The VDD33 current draw on fast speed pads can be
calculated from Table 13 dependent on the voltage, frequency, and load on all F type pins. The VDD33 current draw on medium
pads can be calculated from Table 13 dependent on voltage and independent on the frequency and load on all MH type pins.
Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in
Table 13.
The AC timing of these pads are described in the Section 5.11.2 Pad AC specifications.
PXR40 Microcontroller Data Sheet, Rev. 1
64
Freescale Semiconductor
Electrical characteristics
Table 13. VDD33 Pad Average DC Current1
Spec
Pad Type
Symbol
Frequency
(MHz)
Load2
(pF)
VDD33
(V)
VDDE
(V)
Drive/Slew
Rate Select
Current (mA)
1
Medium
I33_MH
—
—
3.6
5.5
—
0.0007
2
Fast
I33_FC
66
10
3.6
3.6
00
0.92
3
66
20
3.6
3.6
01
1.14
4
66
30
3.6
3.6
10
1.50
5
66
50
3.6
3.6
11
2.19
66
50
3.6
3.6
11
0.74
50
50
3.6
3.6
10
0.52
8
33.33
50
3.6
3.6
00
0.19
9
20
50
3.6
3.6
00
0.19
10
20
200
3.6
3.6
00
0.19
6
Fast w/ Slew
Control
7
I33_FSR
1
These are average IDDE for worst case PVT from simulation. Currents apply to output pins only for the fast pads and to input
pins only for the medium pads.
2 All loads are lumped.
5.7.3
LVDS pad specifications
LVDS pads are implemented to support the MSC (Microsecond Channel) protocol, which is an enhanced feature of the DSPI
module.
Table 14. DSPI LVDS pad specification
#
Characteristic
Min.
Value
Typ.
Value
Max.
Value
Unit
—
50
—
MHz
SRC=0b00 or 0b11
150
—
400
mV
SRC=0b01
90
—
320
SRC=0b10
160
—
480
VOS
—
1.06
1.2
1.39
V
Symbol
Condition
Data Rate
1
Data Frequency
fLVDSCLK
—
Driver Specs
2
Differential output voltage
VOD
3
Common mode voltage (LVDS),
VOS
4
Rise/Fall time
TR/TF
—
—
2
—
ns
5
Propagation delay (Low to High)
TPLH
—
—
4
—
ns
6
Propagation delay (High to Low)
TPHL
—
—
4
—
ns
7
Delay (H/L), sync Mode
tPDSYNC
—
—
4
—
ns
8
Delay, Z to Normal (High/Low)
TDZ
—
—
500
—
ns
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
65
Electrical characteristics
Table 14. DSPI LVDS pad specification (continued)
9
Diff Skew Itphla-tplhbI or
Itplhb-tphlaI
TSKEW
—
—
—
0.5
ns
Termination
10
Trans. Line (differential Zo)
—
—
95
100
105
ohms
11
Temperature
—
—
–40
—
150
C
5.8
Oscillator and FMPLL electrical characteristics
Table 15. FMPLL Electrical Specifications1
(VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)
Spec
1
Characteristic
PLL Reference Frequency Range2 (Normal Mode)
Crystal Reference (PLLCFG2 = 0b0)
Crystal Reference (PLLCFG2 = 0b1)
External Reference (PLLCFG2 = 0b0)
External Reference (PLLCFG2 = 0b1)
Symbol
Min
Max
fref_crystal
fref_crystal
fref_ext
fref_ext
8
16
8
16
20
403
20
40
Unit
MHz
2
Loss of Reference Frequency4
fLOR
100
1000
kHz
3
Self Clocked Mode Frequency5
fSCM
4
16
MHz
tLPLL
—
< 400
s
tDC
40
60
%
4
PLL Lock
Time6
7
5
Duty Cycle of Reference
6
Frequency un-LOCK Range
fUL
–4.0
4.0
% fsys
7
Frequency LOCK Range
fLCK
–2.0
2.0
% fsys
CJitter
–5
5
%fclkout
Cmod
0
4
%fsys
Cmod_err
–0.25
0.25
%fsys
Jitter8, 9
8
D_CLKOUT Period
Cycle-to-cycle Jitter
Measured at fSYS Max
9
Peak-to-Peak Frequency Modulation Range Limit 10,11
(fsys Max must not be exceeded)
10
FM Depth Tolerance12
11
VCO Frequency
fVCO
192
600
MHz
12
Modulation Rate Limits13
fmod
0.400
1
MHz
13
Predivider output frequency range14
fprediv
4
10
MHz
1
All values given are initial design targets and subject to change.
Crystal and External reference frequency limits depend on device relying on PLL to lock prior to release of reset, default
PREDIV/EPREDIV, MFD/EMFD default settings, and VCO frequency range. Absolute minimum loop frequency is 4 MHz.
3 Upper tolerance of less than 1% is allowed on 40MHz crystal.
4 “Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self clocked mode.
5 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f
LOR. This
frequency is measured at D_CLKOUT. A default RFD value of (0x05) is used in SCM mode, and the programmed MFD and
RFD values have no effect
2
PXR40 Microcontroller Data Sheet, Rev. 1
66
Freescale Semiconductor
Electrical characteristics
6
This specification applies to the period required for the PLL to re-lock after changing the MFD frequency control bits in the
synthesizer control register (SYNCR). From power up with crystal oscillator reference, lock time will be additive with crystal
startup time.
7
For Flexray operation, duty cycle requirements are higher.
8
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise
injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the Cjitter
percentage for a given interval. D_CLKOUT divider set to divide-by-2.
9
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter + Cmod.
10
Modulation depth selected must not result in fpll value greater than the fpll maximum specified value.
11
Maximum and minimum variation from programmed modulation depth is pending characterization. Depth settings available in
control register are: 2%, 3%, and 4% peak-to-peak.
12
Depth tolerance is the programmed modulation depth ±0.25% of Fsys. Violating the VCO min/max range may prevent the
system from exiting reset.
13
Modulation rates less than 400 kHz will result in exceedingly long FM calibration durations. Modulation rates greater than 1 MHz
will result in reduced calibration accuracy.
14 Violating this range will cause the VCO max/min range to be violated with the default MFD settings out of reset.
Table 16. Oscillator electrical specifications1
(VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)
Spec
Characteristic
Amplitude2
Symbol
Min
Max
Unit
1
Crystal Mode Differential
(Min differential voltage between EXTAL and XTAL)
Vcrystal_diff_amp
| Vextal – Vxtal | > 0.4 V
—
V
2
Crystal Mode: Internal Differential Amplifier Noise
Rejection
Vcrystal_diff_amp_nr
—
| Vextal – Vxtal | < 0.2 V
V
3
EXTAL Input High Voltage
Bypass mode, External Reference
VIHEXT
((VDD33/2) + 0.4 V)
—
V
4
EXTAL Input Low Voltage
Bypass mode, External Reference
VILEXT
—
(VDD33/2) – 0.4 V
V
5
XTAL Current3
IXTAL
1
3
mA
6
Total On-chip stray capacitance on XTAL
CS_XTAL
—
1.5
pF
7
Total On-chip stray capacitance on EXTAL
CS_EXTAL
—
1.5
pF
8
Crystal manufacturer’s recommended capacitive load
CL
See crystal spec
See crystal spec
pF
9
Discrete load capacitance to be connected to EXTAL
CL_EXTAL
—
(2 × CL – CS_EXTAL
– CPCB_EXTAL4)
pF
10
Discrete load capacitance to be connected to XTAL
CL_XTAL
—
(2 × CL – CS_XTAL
– CPCB_XTAL4)
pF
1
All values given are initial design targets and subject to change.
This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode.
In that case, Vextal – Vxtal  400 mV criterion has to be met for oscillator’s comparator to produce output clock.
3
Ixtal is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.
4
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.
2
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
67
Electrical characteristics
5.9
eQADC electrical characteristics
Table 17. eQADC Conversion Specifications (Operating)
Spec
6
7
fADCLK
2
16
MHz
2 + 14
128 + 14
2 + 12
128 + 12
2 + 10
128 + 10
CC
3
Stop Mode Recovery Time1
TSR
10
—
s
4
Resolution2
—
1.25
—
mV
INL8
–44
4
4
LSB5
Clock3
ADCLK cycles
5
INL: 8 MHz ADC
6
INL: 16 MHz ADC Clock3
INL16
–84
84
LSB
7
DNL: 8 MHz ADC Clock3
DNL8
–34
34
LSB
DNL16
–34
34
LSB
LSB
3
DNL: 16 MHz ADC Clock
9
Offset Error without Calibration
OFFNC
0
1004
10
Offset Error with Calibration
OFFWC
–44
44
LSB
11
Full Scale Gain Error without Calibration
GAINNC
–1204
04
LSB
GAINWC
4,6
44,6
LSB
Full Scale Gain Error with Calibration
4
–4
13
Non-Disruptive Input Injection
Current 7, 8, 9, 10
IINJ
–3
3
m
14
Incremental Error due to injection current11, 12
EINJ
–44
44
Counts
15
TUE value at 8 MHz 13, 14 (with calibration)
TUE8
–44,6
44,6
Counts
TUE16
–8
8
Counts
DIFFmax
DIFFmax2
DIFFmax4
—
—
—
(VRH – VRL)/2
(VRH – VRL)/4
(VRH - VRL)/8
V
V
V
DIFFcmv
(VRH – VRL)/2
– 5%
(VRH – VRL)/2
+ 5%
V
18
5
Unit
Conversion Cycles
Single Ended Conversion Cycles 12 bit resolution
Single Ended Conversion Cycles 10 bit resolution
Single Ended Conversion Cycles 8 bit resolution
Note: Differential conversion (min) is one clock
cycle less than the single-ended
conversion values listed here.
17
4
Max
2
16
2
Min
ADC Clock (ADCLK) Frequency
12
3
Symbol
1
8
1
Characteristic
TUE value at 16 MHz
13, 14
(with calibration)
15
Maximum differential voltage
(DANx+ - DANx-) or (DANx- - DANx+)
PREGAIN set to 1X setting
PREGAIN set to 2X setting
PREGAIN set to 4X setting
Differential input Common mode voltage15
(DANx- + DANx+)/2
Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time that
the ADC is ready to perform conversions. Delay from power up to full accuracy = 8 ms.
At VRH – VRL = 5.12 V, one count = 1.25 mV without using pregain.
INL and DNL are tested from VRL + 50 LSB to VRH – 50 LSB. The eQADC is guaranteed to be monotonic at 10 bit accuracy
(12 bit resolution selected).
New design target. Actual specification will change following characterization. Margin for manufacturing has not been fully
included.
At VRH – VRL = 5.12 V, one LSB = 1.25 mV.
The value is valid at 8 MHz, it is ±8 counts at 16 Mhz.
Below disruptive current conditions, the channel being stressed has conversion values of $3FF for analog inputs greater than
VRH and $000 for values less than VRL. Other channels are not affected by non-disruptive conditions.
PXR40 Microcontroller Data Sheet, Rev. 1
68
Freescale Semiconductor
Electrical characteristics
8
Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do
not affect device reliability or cause permanent damage.
9
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate
resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = –0.3 V, then use the larger of the calculated values.
10
Condition applies to two adjacent pins at injection limits.
11 Performance expected with production silicon.
12
All channels have same 10 k < Rs < 100 kChannel under test has Rs = 10 k, IINJ=IINJMAX,IINJMIN.
13
The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to cancelling errors.
14
TUE does not apply to differential conversions.
15
Voltages between VRL and VRH will not cause damage to the pins. However, they may not be converted accurately if the
differential voltage is above the maximum differential voltage. In addition, conversion errors may occur if the common mode
voltage of the differential signal violates the Differential Input common mode voltage specification.
5.9.1
ADC internal resource measurements
Table 18. Power Management Control (PMC) specification
Spec
Characteristic
Symbol
Min
Typical
Max
Unit
PMC Normal Mode
1
Bandgap 0.62 V
ADC0 channel 145
VADC145
—
0.62
—
V
2
Bandgap 1.2 V
ADC0 channel 146
VADC146
—
1.22
—
V
3
Vreg1p2 Feedback
ADC0 channel 147
VADC147
—
VDD / 2.045
—
V
4
LVD 1.2 V
ADC0 channel 180
VADC180
—
VDD / 1.774
—
V
5
Vreg3p3 Feedback
ADC0 channel 181
VADC181
—
Vreg3p3 / 5.460
—
V
6
LVD 3.3 V
ADC0 channel 182
VADC182
—
Vreg3p3 / 4.758
—
V
7
LVD 5.0 V
ADC0 channel 183
— LDO mode
— SMPS mode
VADC183
—
—
V
VDDREG / 4.758
VDDREG/7.032
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
69
Electrical characteristics
Table 19. Standby RAM regulator electrical specifications
Spec
Characteristic
Symbol
Min
Typ
Max
Unit
Normal Mode
1
Standby Regulator Output
ADC1 channel 194
VADC194
—
1.2
—
V
2
Standby Source Bias
150 mV to 360 mV (30mV Increment @
vref_sel)
ADC1 channel 195
Default Value 150 mV (@vref_sel = 1 1 1)
VADC195
150
—
360
mV
3
Standby Brownout Reference
ADC1 channel 195
VADC195
500
—
850
mV
Table 20. ADC band gap reference / LVI electrical specifications
Spec
Characteristic
Symbol
Min
Typ
Max
Unit
1
4.75 LVD (from VDDA)
ADC1 channel 196
VADC196
—
4.75
—
V
2
ADC Bandgap
ADC0 channel 45
ADC1 channel 45
VADC45
1.171
1.220
1.269
V
Table 21. Temperature sensor electrical specifications
Spec
1
Characteristic
1
Slope
–40 C to 100 C ±1.0 C
100 C to 150 C ±1.6 C
ADC0 channel 128
ADC1 channel 128
2
Accuracy
–40 C to 150 C
ADC0 channel 128
ADC1 channel 128
Symbol
Min
Typ
Max
Unit
VSADC1281
—
5.8
—
mV/ C
—
—
—
C
±10.0
Slope is the measured voltage change per °C.
PXR40 Microcontroller Data Sheet, Rev. 1
70
Freescale Semiconductor
Electrical characteristics
5.10
C90 flash memory electrical characteristics
Table 22. Flash program and erase specifications
Spec
Characteristic
Symbol
Min
Typ1
Initial
Max2
Max3
Unit
1
Double Word (64 bits) Program Time4
tdwprogram
—
38
—
500
s
2
Page Program Time4,5
tpprogram
—
45
160
500
s
3
16 KB Block Pre-program and Erase Time
t16kpperase
—
270
1000
5000
ms
4
64 KB Block Pre-program and Erase Time
t64kpperase
—
800
1800
5000
ms
5
128 KB Block Pre-program and Erase Time
t128kpperase
—
1500
2600
7500
ms
6
256 KB Block Pre-program and Erase Time
t256kpperase
—
3000
5200
15000
ms
1
oC.
Typical program and erase times assume nominal supply values and operation at 25
Initial factory condition:  100 program/erase cycles, 25 oC, typical supply voltage, 80 MHz minimum system frequency.
3 The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is characterized
but not guaranteed.
4
Program times are actual hardware programming times and do not include software overhead.
5 Page size is 128 bits (4 words).
2
Table 23. Flash EEPROM module life
Spec
Characteristic
Symbol
Min
Typical1
Unit
1
Number of program/erase cycles per block for 16 KB and 64
KB blocks over the operating temperature range (TJ)
P/E
100,000
—
cycles
2
Number of program/erase cycles per block for 128 KB and 256
KB blocks over the operating temperature range (TJ)
P/E
1,000
100,000
cycles
3
Minimum Data Retention at 85 °C ambient temperature2
Blocks with 0–1,000 P/E cycles
Blocks with 1,001–10,000 P/E cycles
Blocks with 10,001–100,000 P/E cycles
20
10
5
—
—
—
Retention
years
1
Typical endurance is evaluated at 25 °C. Product qualification is performed to the minimum specification. For additional
information on the Freescale definition of Typical Endurance, please refer to Engineering Bulletin EB619, Typical Endurance
for Nonvolatile Memory.
2 Ambient temperature averaged over duration of application, not to exceed product operating temperature range.
Table 24 shows the Platform Flash Configuration Register 1 (PFCPR1) settings versus frequency of operation. Refer to the
device reference manual for definitions of these bit fields.
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
71
Electrical characteristics
Table 24. PFCPR1 settings vs. frequency of operation1
Spec
Clock
Mode
Maximum Frequency2
(MHz)
Core
fsys
264 MHz6
APC =
RWSC
WWSC
132 MHz6
0b011
Platform
fplatf
2
3
4
5
6
IPFEN3
PFLIM4
BFEN5
0b01
0b0
0b1
0b0
0b1
0b00
0b01
0b1x
0b0
0b1
1
Enhanced
2
Enhanced/ 200 MHz
Full
100 MHz
0b010
0b01
0b0
0b1
0b0
0b1
0b00
0b01
0b1x
0b0
0b1
3
Legacy
132 MHz
0b100
0b01
0b0
0b1
0b0
0b1
0b00
0b01
0b1x
0b0
0b1
0b111
0b11
0b00
0b00
0b00
0b0
132 MHz
Default setting after reset:
1
DPFEN3
Illegal combinations exist. Use entries from the same row in this table.
This is the nominal maximum frequency of operation: platform runs at fsys/2 in Enhanced Mode .
For maximum flash performance, set to 0b1.
For maximum flash performance, set to 0b10.
For maximum flash performance, set to 0b1.
This is the nominal maximum frequency of operation in Enhanced Mode. Max speed is the maximum speed
allowed including frequency modulation (FM). 270 MHz parts allow for 264 MHz system core clock(fsys) + 2% FM
and 132 Mhz platform clock (fplatf)+ 2% FM.
PXR40 Microcontroller Data Sheet, Rev. 1
72
Freescale Semiconductor
Electrical characteristics
5.11
AC specifications
5.11.1
Clocking
Figure 8 shows the operating frequency domains of various blocks on PXR40.
PLLCFG[0:1]
CORE
EXTAL
SYSDIV
X
PLL
fsys
2
fplatf
IPG DIV SEL
fperiph
SIU_SYSDIV[SYSCLKDIV[0:1]]
X = 2, 4, 8, or 16
fetpu
ETPU DIV SEL
SIU_SYSDIV[BYPASS]
X=1
SIU_SYSDIV[IPCLKDIV[0:1]]
DIV
PLATFORM /
BLOCKS /
FLASH
eTPU /
NDEDI
febi_cal
SIU_ECCR[EBDF[0:1]]
Note: tcycsys = 1 / fsys
tcyc = 1 / fplatf
2 = divide-by-2
 X = divide-by-X, depending on SIU_SYSDIV[BYPASS]
and SIU_SYSDIV[SYSCLKDIV].
EBI
CAL BUS
D_CLKOUT
(D_CLKOUT is not available
on all packages and cannot
be programmed for faster
than fsys/2.)
Figure 8. PXR40 block operating frequency domain diagram
Table 25 shows the operating frequencies of various blocks depending on the device’s clocking mode configuration settings (see
Table 26 and Table 27 for descriptions of bit settings).
Table 25. PXR40 operating frequencies1, 2
fsys
fplatf
SIU_ECCR
[EBDF[0:1]]3
(core)
Enhanced
01
11
264
264
132
132
Full
01
11
200
200
Legacy
01
11
132
132
Mode
1
fetpu
febi_cal4,5
Unit
132
132
66
33
MHz
100
100
200
200
50
25
MHz
132
132
132
132
66
33
MHz
(platform and all blocks (eTPU, eTPU RAM,
except eTPU)
and NDEDI)
The values in the table are specified at:
VDD = 1.02 V to 1.32 V
VDDE = 3.0 V to 3.6 V
VDDEH = 4.5 V to 5.5 V
VDD33 and VDDSYN = 3.0 V to 3.6 V
TA = TL to TH.
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
73
Electrical characteristics
2
Up to the maximum frequency rating of the device (refer to Table 39). The fsys speed is the nominal maximum frequency.
270 Mhz parts allow for 264 Mhz system clock + 2% FM.
3
See the PXR40 Reference Manual for full description as not all bit combinations are valid.
4
EBI/Calibration bus is not available in all packages.
5
The EBI/Calibration Bus operating frequency, febi_cal , depends on clock divider settings of block’s max allowed
frequency of operation. Normally febi_cal = fplatf /2, but can be limited to < fplatf /2 in Full Mode.
Table 26. IPCLKDIV settings
SIU_SYSDIV
[IPCLKDIV[0:1]]
Mode
00
Enhanced
01
Full
10
—
11
Legacy
Description
CPU frequency is doubled (Max 264Mhz). Platform,
peripheral, and eTPU clocks are 1/2 of CPU frequency
CPU and eTPU frequency is doubled (Max 200Mhz).
Platform and peripheral clocks are 1/2 of CPU frequency.
Reserved
CPU, eTPU, platform, and peripheral’s clocks all run at
same speed (Max 132Mhz).
Table 27. SYSCLKDIV settings
SIU_SYSDIV
[SYSCLKDIV[0:1]]
5.11.2
Description
00
Divide by 2.
01
Divide by 4.
10
Divide by 8.
11
Divide by 16.
Pad AC specifications
Table 28. Pad AC specifications (vddeh = 5.0 V, VDDE = 3.3 V)1
Spec
Pad
SRC/DSC
Out Delay2,4
L  H/H  L (ns)
Rise/Fall3,4
(ns)
Load Drive
(pF)
1
Medium5
00
152/165
70/74
50
205/220
96/96
200
28/34
12/15
50
52/59
28/31
200
12/12
5.3/5.9
50
32/32
22/22
200
2
3
01
4
5
6
11
PXR40 Microcontroller Data Sheet, Rev. 1
74
Freescale Semiconductor
Electrical characteristics
Table 28. Pad AC specifications (vddeh = 5.0 V, VDDE = 3.3 V)1 (continued)
Spec
Pad
SRC/DSC
7
Fast6
00
8
Out Delay2,4
L  H/H  L (ns)
01
20
10
30
10
11
50
Fast with Slew Rate
00
12
13
01
14
15
10
16
17
11
18
3
4
5
6
1.2
9
11
2
Load Drive
(pF)
10
2.5
1
Rise/Fall3,4
(ns)
40/40
16/16
50
50/50
21/21
200
13/13
5/5
50
19/19
8/8
200
8/8
2.4/2.4
50
12/12
5/5
200
5/5
1.1/1/1
50
8/8
2.6
2.6
19
Pull Up/Down (3.6 V max)
—
—
7500
50
20
Pull Up/Down (5.25 V max)
—
6000
5000/5000
50
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at
VDD = 1.02 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDDEH = 4.75 V to 5.25 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.
This parameter is supplied for reference and is not guaranteed by design and not tested.
This parameter is guaranteed by characterization before qualification rather than 100% tested.
Delay and rise/fall are measured to 20% or 80% of the respective signal.
Out delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect to system clock.
Out delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect to system clock.
Table 29. Derated pad AC specifications (VDDEH = 3.3 V)1
Spec
Pad
SRC/DSC
Out Delay2,3
L  H/H  L (ns)
Rise/Fall4,3
(ns)
Load Drive
(pF)
1
Medium5
00
200/210
86/86
50
270/285
120/120
200
37/45
15.5/19
50
69/82
38/43
200
18/17
7.6/8.5
50
46/49
30/34
200
2
3
01
4
5
6
1
2
3
4
5
11
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at
VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDDEH = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.
This parameter is supplied for reference and is not guaranteed by design and not tested.
Delay and rise/fall are measured to 20% or 80% of the respective signal.
This parameter is guaranteed by characterization before qualification rather than 100% tested.
Out delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect to system clock.
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
75
Electrical characteristics
VDDEn / 2
VDDEHn / 2
Pad
Data Input
Rising
Edge
Output
Delay
Falling
Edge
Output
Delay
VOH
Pad
Output
VOL
Figure 9. Pad output delay
PXR40 Microcontroller Data Sheet, Rev. 1
76
Freescale Semiconductor
Electrical characteristics
5.12
AC timing
5.12.1
Generic timing diagrams
The generic timing diagrams in Figure 10 and Figure 11 apply to all I/O pins with pad types F and MH. See 4, Signal properties
and muxing, for the pad type for each pin.
D_CLKOUT
VDDE / 2
A
B
I/O Outputs
VDDEn / 2
VDDEHn / 2
A – Maximum Output Delay Time
B – Minimum Output Hold Time
Figure 10. Generic output delay/hold timing
D_CLKOUT
VDDE / 2
B
A
I/O Inputs
VDDEn / 2
VDDEHn / 2
A – Minimum Input Setup Time
B – Minimum Input Hold Time
Figure 11. Generic input setup/hold timing
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
77
Electrical characteristics
5.12.2
Reset and configuration pin timing
Table 30. Reset and configuration pin timing1
Spec
1
Characteristic
Symbol
Min
Max
Unit
1
RESET Pulse Width
tRPW
10
—
tcyc2
2
RESET Glitch Detect Pulse Width
tGPW
2
—
tcyc2
3
PLLCFG, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid
tRCSU
10
—
tcyc2
4
PLLCFG, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid
tRCH
0
—
tcyc2
Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.08 V to 1.32 V, TA = TL to TH.
See Notes on tcyc on Figure 8 and Table 25 in Section 5.11.1 Clocking.
2
2
RESET
1
RSTOUT
3
PLLCFG
BOOTCFG
WKPCFG
4
Figure 12. Reset and configuration pin timing
5.12.3
IEEE 1149.1 interface timing
Table 31. JTAG pin AC electrical characteristics1
Spec
Characteristic
Symbol
Min
Max
Unit
1
TCK Cycle Time
tJCYC
100
—
ns
2
TCK Clock Pulse Width (Measured at VDDE / 2)
tJDC
40
60
ns
3
TCK Rise and Fall Times (40%–70%)
tTCKRISE
—
3
ns
4
TMS, TDI Data Setup Time
tTMSS, tTDIS
5
—
ns
5
TMS, TDI Data Hold Time
tTMSH, tTDIH
25
—
ns
6
TCK Low to TDO Data Valid
tTDOV
—
10
ns
PXR40 Microcontroller Data Sheet, Rev. 1
78
Freescale Semiconductor
Electrical characteristics
Table 31. JTAG pin AC electrical characteristics1 (continued)
Spec
1
Characteristic
Symbol
Min
Max
Unit
tTDOI
0
—
ns
tTDOHZ
—
20
ns
tJCMPPW
100
—
ns
7
TCK Low to TDO Data Invalid
8
TCK Low to TDO High Impedance
9
JCOMP Assertion Time
10
JCOMP Setup Time to TCK Low
tJCMPS
40
—
ns
11
TCK Falling Edge to Output Valid
tBSDV
—
50
ns
12
TCK Falling Edge to Output Valid out of High Impedance
tBSDVZ
—
50
ns
13
TCK Falling Edge to Output High Impedance
tBSDHZ
—
50
ns
14
Boundary Scan Input Valid to TCK Rising Edge
tBSDST
50
—
ns
15
TCK Rising Edge to Boundary Scan Input Invalid
tBSDHT
50
—
ns
JTAG timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and
CL = 30 pF with DSC = 0b10, SRC = 0b00. These specifications apply to JTAG boundary scan only. See Table 32 for functional
specifications.
TCK
2
2
3
1
3
Figure 13. JTAG test clock input timing
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
79
Electrical characteristics
TCK
4
5
TMS, TDI
6
8
7
TDO
Figure 14. JTAG Test Access Port (TAP) timing
TCK
10
JCOMP
9
Figure 15. JTAG JCOMP timing
PXR40 Microcontroller Data Sheet, Rev. 1
80
Freescale Semiconductor
Electrical characteristics
TCK
11
13
Output
Signals
12
Output
Signals
14
15
Input
Signals
Figure 16. JTAG boundary scan timing
5.12.4
Nexus timing
Table 32. Nexus debug port timing1
Spec
Characteristic
Symbol
Min
Max
Unit
1
MCKO Cycle Time
tMCYC
22
8
tCYC3
2
MCKO Duty Cycle
tMDC
40
60
%
3
MCKO Low to MDO Data Valid4
tMDOV
–0.1
0.2
tMCYC
4
MCKO Low to MSEO Data Valid4
tMSEOV
–0.1
0.2
tMCYC
5
MCKO Low to EVTO Data
Valid4
tEVTOV
–0.1
0.2
tMCYC
6
EVTI Pulse Width
tEVTIPW
4.0
—
tTCYC3
7
EVTO Pulse Width
tEVTOPW
1
—
tMCYC
8
TCK Cycle Time
tTCYC
45
—
tCYC3
9
TCK Duty Cycle
tTDC
40
60
%
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
81
Electrical characteristics
Table 32. Nexus debug port timing1 (continued)
Spec
Characteristic
Symbol
Min
Max
Unit
10
TDI, TMS Data Setup Time
tNTDIS, tNTMSS
8
—
ns
11
TDI, TMS Data Hold Time
TNTDIH, tNTMSH
5
—
ns
12
TCK Low to TDO Data Valid
tNTDOV
0
10
ns
13
RDY Valid to MCKO6
—
—
—
—
1
2
3
4
5
6
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified
at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and CL = 30 pF with
DSC = 0b10.
The Nexus AUX port runs up to 82 MHz (pending characterization). Set NPC_PCR[MKCO_DIV] to correct division depending
on the system frequency, not to exceed maximum Nexus AUX port frequency.
See Notes on tcyc on Figure 13 and Table 25 in Section Section 5.11.1 Clocking.
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
Lower frequency is required to be fully compliant to standard.
The RDY pin timing is asynchronous to MCKO. The timing is guaranteed by design to function correctly.
1
2
MCKO
3
4
5
MDO
MSEO
EVTO
Output Data Valid
7
EVTI
6
Figure 17. Nexus timings
PXR40 Microcontroller Data Sheet, Rev. 1
82
Freescale Semiconductor
Electrical characteristics
8
9
TCK
10
11
TMS, TDI
12
TDO
Figure 18. Nexus TCK, TDI, TMS, TDO timing
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
83
Electrical characteristics
5.12.5
External Bus Interface (EBI) timing
Table 33. Bus operation timing 1
66 MHz (Ext. Bus Freq)2 3
Spec
Characteristic
Symbol
Unit
Notes
—
ns
Signals are measured at 50% VDDE.
Min
Max
tC
15.2
1
D_CLKOUT Period
2
D_CLKOUT Duty Cycle
tCDC
45%
55%
tC
3
D_CLKOUT Rise Time
tCRT
—
—4
ns
4
4
D_CLKOUT Fall Time
tCFT
—
—
ns
5
D_CLKOUT Posedge to Output
Signal Invalid or High Z (Hold Time)
tCOH
1.0/1.5
—
ns
Hold time selectable via
SIU_ECCR[EBTS] bit:
EBTS = 0: 1.0 ns
EBTS = 1: 1.5 ns
tCOV
—
7.0/7.5
ns
Output valid time selectable via
SIU_ECCR[EBTS] bit:
EBTS = 0: 7.0 ns
EBTS = 1: 7.5 ns
D_ADD[9:30]
D_BDIP
D_CS[0:3]
D_DAT[0:15]
D_OE
D_RD_WR
D_TA
D_TS
D_WE[0:3]/D_BE[0:3]
6
D_CLKOUT Posedge to Output
Signal Valid (Output Delay)
D_ADD[9:30]
D_BDIP
D_CS[0:3]
D_DAT[0:15]
D_OE
D_RD_WR
D_TA
D_TS
D_WE[0:3]/D_BE[0:3]
PXR40 Microcontroller Data Sheet, Rev. 1
84
Freescale Semiconductor
Electrical characteristics
Table 33. Bus operation timing 1 (continued)
66 MHz (Ext. Bus Freq)2 3
Spec
7
Characteristic
Symbol
Input Signal Valid to D_CLKOUT
Posedge (Setup Time)
Unit
Min
Max
tCIS
5.0/4.5
—
ns
tCIH
1.0
—
ns
Input setup time selectable via
SIU_ECCR[EBTS] bit:
EBTS = 0; 5.0ns
EBTS = 1; 4.5ns
D_ADD[9:30]
D_DAT[0:15]
D_RD_WR
D_TA
D_TS
8
D_CLKOUT Posedge to Input
Signal Invalid (Hold Time)
Notes
D_ADD[9:30]
D_DAT[0:15]
D_RD_WR
D_TA
D_TS
1
2
3
4
5
9
D_ALE Pulse Width
tAPW
6.5
—
ns
The timing is for Asynchronous
external memory system.
10
D_ALE Negated to Address Invalid
tAAI
2.0/1.0 5
—
ns
The timing is for Asynchronous
external memory system.
ALE is measured at 50% of VDDE.
EBI timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and
CL = 30 pF with DSC = 0b10.
Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM).
270 MHz parts allow for 264 MHz system clock + 2% FM.
Depending on the internal bus speed, set the SIU_ECCR[EBDF] bits correctly not to exceed maximum external bus frequency.
The maximum external bus frequency is 66 MHz.
Refer to Fast pad timing in Table 28 and Table 29.
ALE hold time spec is temperature dependant. 1.0 ns spec applies for temperature range -40 to 0 C. 2.0 ns spec applies to
temperatures > 0 C. This spec has no dependency on SIU_ECCR[EBTS] bit.
VOH_F
VDDE / 2
D_CLKOUT
VOL_F
3
2
2
4
1
Figure 19. D_CLKOUT timing
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
85
Electrical characteristics
VDDE / 2
D_CLKOUT
6
5
5
Output
Bus
VDDE / 2
6
5
5
Output
Signal
VDDE / 2
6
Output
Signal
VDDE / 2
Figure 20. Synchronous output timing
PXR40 Microcontroller Data Sheet, Rev. 1
86
Freescale Semiconductor
Electrical characteristics
D_CLKOUT
VDDE / 2
7
8
Input
Bus
VDDE / 2
7
8
Input
Signal
VDDE / 2
Figure 21. Synchronous input timing
ipg_clk
D_CLKOUT
D_ALE
D_TS
D_ADD/D_DAT
DATA
ADDR
9
10
Figure 22. ALE signal timing
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
87
Electrical characteristics
5.12.6
External interrupt timing (IRQ pin)
Table 34. External interrupt timing1
Spec
Characteristic
Symbol
Min
Max
Unit
1
IRQ Pulse Width Low
tIPWL
3
—
tcyc2
2
IRQ Pulse Width High
tIPWH
3
—
tcyc2
3
IRQ Edge to Edge Time3
tICYC
6
—
tcyc2
1
IRQ timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL
to TH.
2
See Notes on tcyc on Figure 8 and Table 25 in Section 5.11.1 Clocking.
3 Applies when IRQ pins are configured for rising edge or falling edge events, but not both.
IRQ
2
1
3
Figure 23. External interrupt timing
5.12.7
eTPU timing
Table 35. eTPU timing1
Spec
Characteristic
Symbol
Min
Max
Unit
1
eTPU Input Channel Pulse Width
tICPW
4
—
tcyc2
2
eTPU Output Channel Pulse Width
tOCPW
13
—
tcyc2
1
eTPU timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH,
and CL = 200 pF with SRC = 0b00.
2
See Notes on tcyc on Figure 8 and Table 25 in Section 5.11.1 Clocking.
3 This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).
PXR40 Microcontroller Data Sheet, Rev. 1
88
Freescale Semiconductor
Electrical characteristics
eTPU Input
and TCRCLK
1
2
eTPU
Output
Figure 24. eTPU timing
5.12.8
eMIOS timing
Table 36. eMIOS timing1
Spec
Characteristic
Symbol
Min
Max
Unit
1
eMIOS Input Pulse Width
tMIPW
4
—
tcyc2
2
eMIOS Output Pulse Width
tMOPW
13
—
tcyc2
1
eMIOS timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH,
and CL = 50 pF with SRC = 0b00.
2 See Notes on t
cyc on Figure 8 and Table 25 in Section 5.11.1 Clocking.
3 This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
89
Electrical characteristics
eMIOS Input
1
2
eMIOS
Output
Figure 25. eMIOS timing
5.12.9
DSPI timing
Table 37. DSPI timing1 2
Peripheral Bus Freq: 132 MHz
Spec
Characteristic
Symbol
Unit
Min
Max
1
DSPI Cycle Time3, 4
Master (MTFE = 0)
Slave (MTFE = 0)
Master (MTFE = 1)
Slave (MTFE = 1)
tSCK
tSYS * 2
tSYS*32768*7
ns
2
PCS to SCK Delay5
tCSC
12
—
ns
3
After SCK Delay6
Master mode
Slave mode
tASC
tSYS * 2
tSYS *3 –
constraints 7
—
4
SCK Duty Cycle
tSDC
0.33 * tSCK
0.66 * tSCK
ns
5
Slave Access Time
(SS active to SOUT valid)
tA
—
25
ns
6
Slave SOUT Disable Time
(SS inactive to SOUT High-Z or invalid)
tDIS
—
25
ns
7
PCSx to PCSS time
tPCSC
tSYS * 2
tSYS * 7
ns
8
PCSS to PCSx time
tPASC
tSYS * 2
tSYS * 7
ns
ns
PXR40 Microcontroller Data Sheet, Rev. 1
90
Freescale Semiconductor
Electrical characteristics
Table 37. DSPI timing1 2 (continued)
Peripheral Bus Freq: 132 MHz
Spec
Characteristic
9
10
11
12
1
2
3
4
5
6
7
8
Symbol
Data Setup Time for Inputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)8
Master (MTFE = 1, CPHA = 1)
tSUI
Data Hold Time for Inputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)8
Master (MTFE = 1, CPHA = 1)
tHI
Data Valid (after SCK edge)
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)
Master (MTFE = 1, CPHA = 1)
tSUO
Data Hold Time for Outputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)
Master (MTFE = 1, CPHA = 1)
tHO
Unit
Min
Max
20
4
6
20
—
—
—
—
ns
ns
ns
ns
–3
7
12
–3
—
—
—
—
ns
ns
ns
ns
—
—
—
—
5
25
13
5
ns
ns
ns
ns
–5
2.5
3
–5
—
—
—
—
ns
ns
ns
ns
DSPI timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, and TA = TL to TH
Speed is the nominal maximum frequency of platform clock (fplatf). Max speed is the maximum speed allowed including
frequency modulation (FM). 270 MHz parts allow for 264 Mhz for system core clock (fsys) + 2% FM.
The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated
based on two devices communicating over a DSPI link.
The actual minimum SCK cycle time is limited by pad performance.
The maximum value is programmable in DSPI_CTARn[PSSCK] and DSPI_CTARn[CSSCK].
The maximum value is programmable in DSPI_CTARn[PASC] and DSPI_CTARn[ASC].
For example, external master should start SCK clock not earlier than 3 system clock periods after assertion SS
This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10.
The DSPI in this device can be configured to serialize data to an external device that implements the Microsecond Bus protocol.
DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) for data and clock signals to improve high
speed operation.
Table 38. DSPI LVDS timing1, 2
Characteristic
LVDS Clock to Data/Chip Select Outputs
1
2
Symbol
Min
Max
Unit
tLVDSDATA
–0.25 ×
tSCYC
+0.25 ×
tSCYC
ns
These are typical values that are estimated from simulation.
See DSPI LVDS Pad related data in Table 14.
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
91
Electrical characteristics
2
3
PCSx
1
4
SCK Output
(CPOL = 0)
4
SCK Output
(CPOL = 1)
9
SIN
10
First Data
Last Data
Data
12
SOUT
First Data
11
Data
Last Data
Figure 26. DSPI classic SPI timing — Master, CPHA = 0
PCSx
SCK Output
(CPOL=0)
10
SCK Output
(CPOL=1)
9
SIN
Data
First Data
12
SOUT
First Data
Last Data
11
Data
Last Data
Figure 27. DSPI classic SPI timing — Master, CPHA = 1
PXR40 Microcontroller Data Sheet, Rev. 1
92
Freescale Semiconductor
Electrical characteristics
3
2
SS
1
4
SCK Input
(CPOL = 0)
4
SCK Input
(CPOL = 1)
5
First Data
SOUT
9
6
Data
Last Data
Data
Last Data
10
First Data
SIN
11
12
Figure 28. DSPI classic SPI timing — Slave, CPHA = 0
SS
SCK Input
(CPOL = 0)
SCK Input
(CPOL = 1)
11
5
12
SOUT
First Data
9
SIN
Data
Last Data
Data
Last Data
6
10
First Data
Figure 29. DSPI classic SPI timing — Slave, CPHA = 1
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
93
Electrical characteristics
3
PCSx
4
1
2
SCK Output
(CPOL = 0)
4
SCK Output
(CPOL = 1)
9
SIN
10
First Data
Last Data
Data
12
SOUT
11
First Data
Last Data
Data
Figure 30. DSPI modified transfer format timing — Master, CPHA = 0
PCSx
SCK Output
(CPOL = 0)
SCK Output
(CPOL = 1)
10
9
SIN
First Data
Data
12
SOUT
First Data
Data
Last Data
11
Last Data
Figure 31. DSPI modified transfer format timing — Master, CPHA = 1
PXR40 Microcontroller Data Sheet, Rev. 1
94
Freescale Semiconductor
Electrical characteristics
3
2
SS
1
SCK Input
(CPOL = 0)
4
4
SCK Input
(CPOL = 1)
12
11
5
First Data
SOUT
Data
Last Data
10
9
Data
First Data
SIN
6
Last Data
Figure 32. DSPI modified transfer format timing — Slave, CPHA = 0
SS
SCK Input
(CPOL = 0)
SCK Input
(CPOL = 1)
11
5
6
12
First Data
SOUT
9
Last Data
Data
Last Data
10
First Data
SIN
Data
Figure 33. DSPI modified transfer format timing — Slave, CPHA = 1
7
8
PCSS
PCSx
Figure 34. DSPI PCS strobe (PCSS) timing
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
95
Ordering information
6
Ordering information
6.1
Orderable parts
Figure 35 and Table 39 describe and list the orderable part numbers for the PXR40.
M PX R 40 30 V VU 264 R
Qualification status
Brand
Family
Class
Flash memory size
Temperature range
Package identifier
Operating frequency
Tape and reel indicator
Qualification status
P = Pre-qualification (engineering samples)
M = Fully spec. qualified, general market flow
S = Fully spec. qualified, automotive flow
Temperature range
V = –40 °C to 105 °C
(ambient)
Family
D = Display Graphics
N = Connectivity/Network
R = Performance/Real Time Control
S = Safety
Package identifier
VU = 416 PBGA
Operating frequency
1 = 150 MHz
2 = 180 MHz
Flash Memory Size
30 = 3 MB
40 = 4 MB
Tape and reel status
R = Tape and reel
(blank) = Trays
Note: Not all options are available on all devices. See Table 39 for more information.
Figure 35. PXR40 orderable part number description
Table 39. PXR40 orderable part number summary
Flash/SRAM
Package
Speed
(MHz)
MPXR4030VVU264
3 MB / 192 KB
416 PBGA (27 mm x 27 mm)
264
MPXR4040VVU264
4 MB / 256 KB
416 PBGA (27 mm x 27 mm)
264
Part number
PXR40 Microcontroller Data Sheet, Rev. 1
96
Freescale Semiconductor
Package information
7
Package information
7.1
416-pin package
The package drawings of the 416-pin TEPBGA package are shown in Figure 36 and Figure 37.
Figure 36. 416 TEPBGA package (1 of 2)
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
97
Package information
Figure 37. 416 TEPBGA package (2 of 2)
PXR40 Microcontroller Data Sheet, Rev. 1
98
Freescale Semiconductor
Product documentation
8
Product documentation
This data sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these
types are available at: http://www.freescale.com.
The following documents are required for a complete description of the device and are necessary to design properly with the
parts:
•
PXR40 Microprocessor Reference Manual (document number PXR40RM).
9
Revision history
Table 40 describes the changes made to this document between revisions.
Table 40. Revision history
Revision
1
Date
Description of Changes
September 2011 Initial release: Technical Data
PXR40 Microcontroller Data Sheet, Rev. 1
Freescale Semiconductor
99
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org
© Freescale Semiconductor, Inc. 2011. All rights reserved.
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
[email protected]
Document Number: PXR40
Rev. 1
09/2011