TI SN74AHC374DW

SN54AHC374, SN74AHC374
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCLS240I – OCTOBER 1995 – REVISED JULY 2003
D
Operating Range 2-V to 5.5-V VCC
3-State Outputs Drive Bus Lines Directly
Latch-Up Performance Exceeds 250 mA Per
JESD 17
SN54AHC374 . . . J OR W PACKAGE
SN74AHC374 . . . DB, DGV, DW, N, NS, OR PW PACKAGE
(TOP VIEW)
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
1D
1Q
OE
VCC
SN54AHC374 . . . FK PACKAGE
(TOP VIEW)
VCC
8Q
8D
7D
7Q
6Q
6D
5D
5Q
CLK
2D
2Q
3Q
3D
4D
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
8D
7D
7Q
6Q
6D
4Q
GND
CLK
5Q
5D
OE
1Q
1D
2D
2Q
3Q
3D
4D
4Q
GND
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
8Q
D
D
D
description/ordering information
The ’AHC374 devices are octal edge-triggered D-type flip-flops that feature 3-state outputs designed
specifically for driving highly capacitive or relatively low-impedance loads. These devices are particularly
suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels of the data (D) inputs.
A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high
or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines
significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without
interface or pullup components.
ORDERING INFORMATION
PDIP – N
SN74AHC374N
Tube
SN74AHC374DW
Tape and reel
SN74AHC374DWR
SOP – NS
Tape and reel
SN74AHC374NSR
AHC374
SSOP – DB
Tape and reel
SN74AHC374DBR
HA374
Tube
SN74AHC374PW
Tape and reel
SN74AHC374PWR
TSSOP – PW
–55°C to 125°C
TOP-SIDE
MARKING
Tube
SOIC – DW
–40°C
40°C to 85°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SN74AHC374N
AHC374
HA374
TVSOP – DGV
Tape and reel
SN74AHC374DGVR
HA374
CDIP – J
Tube
SNJ54AHC374J
SNJ54AHC374J
CFP – W
Tube
SNJ54AHC374W
SNJ54AHC374W
LCCC – FK
Tube
SNJ54AHC374FK
SNJ54AHC374FK
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines
are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54AHC374, SN74AHC374
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCLS240I – OCTOBER 1995 – REVISED JULY 2003
description/ordering information (continued)
OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while
the outputs are in the high-impedance state.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
FUNCTION TABLE
(each flip-flop)
INPUTS
OE
CLK
D
OUTPUT
Q
L
↑
H
H
L
↑
L
L
L
H or L
X
Q0
H
X
X
Z
logic diagram (positive logic)
OE
CLK
1
11
C1
1D
3
1D
To Seven Other Channels
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2
1Q
SN54AHC374, SN74AHC374
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCLS240I – OCTOBER 1995 – REVISED JULY 2003
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Output voltage range, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±75 mA
Package thermal impedance, θJA (see Note 2): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92°C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
SN54AHC374
VCC
VIH
Supply voltage
VCC = 2 V
VCC = 3 V
High-level input voltage
VCC = 5.5 V
VCC = 2 V
VIL
VI
VO
IOH
Low-level input voltage
∆t/∆v
MAX
2
5.5
Input voltage
Output voltage
VCC = 2 V
VCC = 3.3 V ± 0.3 V
High-level output current
Low-level output current
Input transition rise or fall rate
SN74AHC374
MIN
MAX
2
5.5
1.5
1.5
2.1
2.1
3.85
UNIT
V
V
3.85
0.5
VCC = 3 V
VCC = 5.5 V
VCC = 5 V ± 0.5 V
VCC = 2 V
IOL
MIN
0.5
0.9
0.9
1.65
1.65
V
0
5.5
0
5.5
V
0
VCC
–50
0
VCC
–50
mA
–4
–4
–8
–8
50
50
VCC = 3.3 V ± 0.3 V
VCC = 5 V ± 0.5 V
4
4
8
8
VCC = 3.3 V ± 0.3 V
VCC = 5 V ± 0.5 V
100
100
20
20
V
mA
mA
mA
ns/V
TA
Operating free-air temperature
–55
125
–40
85
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN54AHC374, SN74AHC374
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCLS240I – OCTOBER 1995 – REVISED JULY 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
MIN
TA = 25°C
TYP
MAX
2V
1.9
2
1.9
1.9
3V
2.9
3
2.9
2.9
4.5 V
4.4
4.5
4.4
4.4
IOH = –4 mA
3V
2.58
2.48
2.48
IOH = –8 mA
4.5 V
3.94
3.8
3.8
TEST CONDITIONS
IOH = –50 mA
VOH
IOL = 50 mA
VOL
IOL = 4 mA
II
IOZ
ICC
Ci
IOL = 8 mA
VI = 5.5 V or GND
VO = VCC or GND
VI = VCC or GND,
VI = VCC or GND
VO = VCC or GND
IO = 0
VCC
SN54AHC374
MIN
MAX
SN74AHC374
MIN
MAX
UNIT
V
2V
0.1
0.1
0.1
3V
0.1
0.1
0.1
4.5 V
0.1
0.1
0.1
3V
0.36
0.5
0.44
V
4.5 V
0.36
0.5
0.44
0 V to 5.5 V
±0.1
±1*
±1
mA
5.5 V
±0.25
±2.5
±2.5
mA
5.5 V
4
40
40
mA
10
pF
5V
4
10
Co
5V
6
* On products compliant to MIL-PRF-38535, this parameter is not production tested at VCC = 0 V.
pF
timing requirements over recommended operating free-air temperature range, VCC = 3.3 V ± 0.3 V
(unless otherwise noted) (see Figure 1)
TA = 25°C
MIN
MAX
tw
Pulse duration, CLK high or low
tsu
Setup time, data before CLK↑
th
Hold time, data after CLK↑
SN54AHC374
MIN
MAX
SN74AHC374
MIN
MAX
UNIT
5
5.5
5.5
ns
4.5
4
4
ns
2
2
2
ns
timing requirements over recommended operating free-air temperature range, VCC = 5 V ± 0.5 V
(unless otherwise noted) (see Figure 1)
TA = 25°C
MIN
MAX
4
SN54AHC374
MIN
MAX
SN74AHC374
MIN
MAX
UNIT
tw
Pulse duration, CLK high or low
5
5
5
ns
tsu
Setup time, data before CLK↑
3
3
3
ns
th
Hold time, data after CLK↑
2
2
2
ns
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54AHC374, SN74AHC374
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCLS240I – OCTOBER 1995 – REVISED JULY 2003
switching characteristics over recommended operating free-air temperature range,
VCC = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
fmax
TA = 25°C
TYP
MAX
SN54AHC374
SN74AHC374
LOAD
CAPACITANCE
MIN
CL = 15 pF
80*
130*
70*
70
CL = 50 pF
55
85
50
50
tPLH
tPHL
CLK
Q
CL = 15 pF
tPZH
tPZL
OE
Q
CL = 15 pF
tPHZ
tPLZ
OE
Q
CL = 15 pF
tPLH
tPHL
CLK
Q
CL = 50 pF
tPZH
tPZL
OE
Q
CL = 50 pF
tPHZ
tPLZ
OE
Q
CL = 50 pF
MIN
MAX
MIN
MAX
MHz
8.1*
12.7*
1*
15*
1
15
8.1*
12.7*
1*
15*
1
15
7.1*
11*
1*
13*
1
13
7.1*
11*
1*
13*
1
13
7.5*
10.5*
1*
12.5*
1
12.5
7.5*
10.5*
1*
12.5*
1
12.5
10.6
16.2
1
18.5
1
18.5
10.6
16.2
1
18.5
1
18.5
9.6
14.5
1
16.5
1
16.5
9.6
14.5
1
16.5
1
16.5
10.2
14
1
16
1
16
10.2
14
1
16
1
16
tsk(o)
CL = 50 pF
∗ On products compliant to MIL-PRF-38535, this parameter is not production tested.
∗∗ On products compliant to MIL-PRF-38535, this parameter does not apply.
1.5**
UNIT
1.5
ns
ns
ns
ns
ns
ns
ns
switching characteristics over recommended operating free-air temperature range,
VCC = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
fmax
LOAD
CAPACITANCE
TA = 25°C
MIN
TYP
MAX
SN54AHC374
MIN
MAX
SN74AHC374
MIN
CL = 15 pF
130*
185*
110*
110
CL = 50 pF
85
120
75
75
tPLH
tPHL
CLK
Q
CL = 15 pF
tPZH
tPZL
OE
Q
CL = 15 pF
tPHZ
tPLZ
OE
Q
CL = 15 pF
tPLH
tPHL
CLK
Q
CL = 50 pF
tPZH
tPZL
OE
Q
CL = 50 pF
tPHZ
tPLZ
OE
Q
CL = 50 pF
8.1*
1*
9.5*
1
9.5
5.4*
8.1*
1*
9.5*
1
9.5
5.1*
7.6*
1*
9*
1
9
5.1*
7.6*
1*
9*
1
9
4.6*
6.8*
1*
8*
1
8
4.6*
6.8*
1*
8*
1
8
6.9
10.1
1
11.5
1
11.5
6.9
10.1
1
11.5
1
11.5
6.6
9.6
1
11
1
11
6.6
9.6
1
11
1
11
6.1
8.8
1
10
1
10
6.1
8.8
1
10
1
10
• DALLAS, TEXAS 75265
1**
UNIT
MHz
5.4*
tsk(o)
CL = 50 pF
∗ On products compliant to MIL-PRF-38535, this parameter is not production tested.
∗∗ On products compliant to MIL-PRF-38535, this parameter does not apply.
POST OFFICE BOX 655303
MAX
1
ns
ns
ns
ns
ns
ns
ns
5
SN54AHC374, SN74AHC374
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCLS240I – OCTOBER 1995 – REVISED JULY 2003
noise characteristics, VCC = 5 V, CL = 50 pF, TA = 25°C (see Note 4)
SN74AHC374
PARAMETER
MIN
TYP
MAX
UNIT
VOL(P)
VOL(V)
Quiet output, maximum dynamic VOL
0.5
1
V
Quiet output, minimum dynamic VOL
–0.5
–0.8
V
VOH(V)
VIH(D)
Quiet output, minimum dynamic VOH
4
High-level dynamic input voltage
V
3.5
VIL(D)
Low-level dynamic input voltage
NOTE 4: Characteristics are for surface-mount packages only.
V
1.5
V
TYP
UNIT
operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
Cpd
6
TEST CONDITIONS
Power dissipation capacitance
No load,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
f = 1 MHz
32
pF
SN54AHC374, SN74AHC374
OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS
WITH 3-STATE OUTPUTS
SCLS240I – OCTOBER 1995 – REVISED JULY 2003
PARAMETER MEASUREMENT INFORMATION
From Output
Under Test
RL = 1 kΩ
From Output
Under Test
Test
Point
S1
VCC
Open
TEST
GND
CL
(see Note A)
CL
(see Note A)
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open Drain
Open
VCC
GND
VCC
LOAD CIRCUIT FOR
3-STATE AND OPEN-DRAIN OUTPUTS
LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTS
VCC
50% VCC
Timing Input
tw
tsu
VCC
Input
50% VCC
50% VCC
0V
th
VCC
50% VCC
Data Input
50% VCC
0V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VOLTAGE WAVEFORMS
PULSE DURATION
VCC
50% VCC
Input
50% VCC
0V
tPLH
In-Phase
Output
tPHL
50% VCC
tPHL
Out-of-Phase
Output
VOH
50% VCC
VOL
Output
Waveform 1
S1 at VCC
(see Note B)
VOH
50% VCC
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
50% VCC
50% VCC
0V
tPZL
tPLZ
≈VCC
50% VCC
tPZH
tPLH
50% VCC
VCC
Output
Control
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
50% VCC
VOH – 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr ≤ 3 ns, tf ≤ 3 ns.
D. The outputs are measured one at a time with one input transition per measurement.
E. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
PACKAGE OPTION ADDENDUM
www.ti.com
30-Mar-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
5962-9686401Q2A
ACTIVE
LCCC
FK
20
1
TBD
Call TI
Level-NC-NC-NC
5962-9686401QRA
ACTIVE
CDIP
J
20
1
TBD
Call TI
Level-NC-NC-NC
1
TBD
Call TI
Level-NC-NC-NC
TBD
Call TI
Call TI
Lead/Ball Finish
MSL Peak Temp (3)
5962-9686401QSA
ACTIVE
CFP
W
20
SN74AHC374DBLE
OBSOLETE
SSOP
DB
20
SN74AHC374DBR
ACTIVE
SSOP
DB
20
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
SN74AHC374DGVR
ACTIVE
TVSOP
DGV
20
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
SN74AHC374DW
ACTIVE
SOIC
DW
20
25
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
SN74AHC374DWR
ACTIVE
SOIC
DW
20
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
SN74AHC374N
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
SN74AHC374NSR
ACTIVE
SO
NS
20
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
SN74AHC374PW
ACTIVE
TSSOP
PW
20
70
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
SN74AHC374PWLE
OBSOLETE
TSSOP
PW
20
TBD
Call TI
SN74AHC374PWR
ACTIVE
TSSOP
PW
20
2000
Pb-Free
(RoHS)
CU NIPDAU
SNJ54AHC374FK
ACTIVE
LCCC
FK
20
1
TBD
Call TI
Level-NC-NC-NC
SNJ54AHC374J
ACTIVE
CDIP
J
20
1
TBD
Call TI
Level-NC-NC-NC
SNJ54AHC374W
ACTIVE
CFP
W
20
1
TBD
Call TI
Level-NC-NC-NC
Call TI
Level-1-250C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
30-Mar-2005
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated