ONSEMI MC74LCX04DTG

MC74LCX04
Low-Voltage CMOS Hex
Inverter
With 5 V−Tolerant Inputs
The MC74LCX04 is a high performance hex inverter operating
from a 2.0 to 5.5 V supply. High impedance TTL compatible inputs
significantly reduce current loading to input drivers while TTL
compatible outputs offer improved switching noise performance. A VI
specification of 5.5 V allows MC74LCX04 inputs to be safely driven
from 5 V devices if VCC is less than 5.0 V.
Current drive capability is 24 mA at the outputs.
14
SOIC−14
D SUFFIX
CASE 751A
1
Designed for 2.0 V to 5.5 V VCC Operation
5 V Tolerant Inputs − Interface Capability With 5 V TTL Logic
LCX04G
AWLYWW
1
14
LVTTL Compatible
LVCMOS Compatible
24 mA Balanced Output Sink and Source Capability
Near Zero Static Supply Current (10 mA) Substantially Reduces
System Power Requirements
Latchup Performance Exceeds 500 mA

 ESD Performance:

MARKING
DIAGRAMS
14
Features






http://onsemi.com
Human Body Model >2000 V;
Machine Model >200 V
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
14
1
LCX
04
ALYWG
G
TSSOP−14
DT SUFFIX
CASE 948G
1
A
= Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or G = Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
 Semiconductor Components Industries, LLC, 2012
October, 2012 − Rev. 8
1
Publication Order Number:
MC74LCX04/D
MC74LCX04
VCC
A3
O3
A4
O4
A5
O5
14
13
12
11
10
9
8
A0
A1
A2
A3
1
2
3
4
5
6
7
A0
O0
A1
O1
A2
O2
GND
A4
A5
1
2
3
4
5
6
13
12
11
10
9
8
Figure 1. Pinout: 14−Lead (Top View)
O0
O1
O2
O3
O4
O5
Figure 2. Logic Diagram
TRUTH TABLE
PIN NAMES
Pins
Function
An
On
Data Inputs
Outputs
An
On
L
H
H
L
MAXIMUM RATINGS
Symbol
Parameter
Value
Condition
Unit
VCC
DC Supply Voltage
−0.5 to +7.0
V
VI
DC Input Voltage
−0.5  VI  +7.0
V
VO
DC Output Voltage
IIK
DC Input Diode Current
−50
VI < GND
mA
IOK
DC Output Diode Current
−50
VO < GND
mA
+50
VO > VCC
mA
IO
DC Output Source/Sink Current
50
mA
ICC
DC Supply Current Per Supply Pin
100
mA
IGND
DC Ground Current Per Ground Pin
100
mA
TSTG
Storage Temperature Range
−65 to +150
C
MSL
Moisture Sensitivity
−0.5  VO  VCC +0.5
Output in HIGH or LOW State (Note 1)
V
Level 1
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. IO absolute maximum rating must be observed.
http://onsemi.com
2
MC74LCX04
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Typ
Max
Unit
2.0
1.5
2.5, 3.3
2.5, 3.3
5.5
5.5
V
0
5.5
V
0
VCC
V
VCC = 3.0 V − 3.6 V
VCC = 2.7 V − 3.0 V
VCC = 2.3 V − 2.7 V
−24
−12
−8
mA
VCC = 3.0 V − 3.6 V
VCC = 2.7 V − 3.0 V
VCC = 2.3 V − 2.7 V
+24
+12
+8
mA
−55
+125
C
0
10
ns/V
VCC
Supply Voltage
Operating
Data Retention Only
VI
Input Voltage
VO
Output Voltage
(HIGH or LOW State) (3−State)
IOH
HIGH Level Output Current
IOL
LOW Level Output Current
TA
Operating Free−Air Temperature
Dt/DV
Input Transition Rise or Fall Rate, VIN from 0.8 V to 2.0 V, VCC = 3.0 V
DC ELECTRICAL CHARACTERISTICS
TA = −55C to +125C
Symbol
VIH
VIL
VOH
VOL
Characteristic
HIGH Level Input Voltage (Note 2)
LOW Level Input Voltage (Note 2)
HIGH Level Output Voltage
LOW Level Output Voltage
Condition
Min
2.3 V  VCC  2.7 V
1.7
2.7 V  VCC  3.6 V
2.0
Max
V
2.3 V  VCC  2.7 V
0.7
2.7 V  VCC  3.6 V
0.8
2.3 V  VCC  3.6 V; IOH = −100 mA
VCC − 0.2
VCC = 2.3 V; IOH = −8 mA
1.8
VCC = 2.7 V; IOH = −12 mA
2.2
VCC = 3.0 V; IOH = −18 mA
2.4
VCC = 3.0 V; IOH = −24 mA
2.2
Unit
V
V
2.3 V  VCC  3.6 V; IOL = 100 mA
0.2
VCC = 2.3 V; IOL = 8 mA
0.6
VCC = 2.7 V; IOL = 12 mA
0.4
VCC = 3.0 V; IOL = 16 mA
0.4
VCC = 3.0 V; IOL = 24 mA
0.55
V
IOFF
Power Off Leakage Current
VCC = 0, VIN = 5.5 V or VOUT = 5.5 V
10
mA
IIN
Input Leakage Current
VCC = 3.6 V, VIN = 5.5 V or GND
5
mA
ICC
Quiescent Supply Current
VCC = 3.6 V, VIN = 5.5 V or GND
10
mA
DICC
Increase in ICC per Input
2.3  VCC  3.6 V; VIH = VCC − 0.6 V
500
mA
2. These values of VI are used to test DC electrical characteristics only.
http://onsemi.com
3
MC74LCX04
AC CHARACTERISTICS (tR = tF = 2.5 ns; RL = 500 W)
Limits
TA = −55C to +125C
Symbol
VCC = 3.3 V  0.3 V
VCC = 2.7 V
VCC = 2.5 V  0.2 V
CL = 50 pF
CL = 50 pF
CL = 30 pF
Parameter
Waveform
Min
Max
Min
Max
Min
Max
Unit
tPLH
Propagation Delay Time
1
1.5
5.2
1.5
6.0
1.5
6.2
ns
tPHL
Input to Output
1.5
5.2
1.5
6.0
1.5
6.2
tOSHL
Output−to−Output Skew
1.0
tOSLH
(Note 3)
1.0
ns
3. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
The specification applies to any outputs switching in the same direction, either HIGH−to−LOW (tOSHL) or LOW−to−HIGH (tOSLH); parameter
guaranteed by design.
DYNAMIC SWITCHING CHARACTERISTICS
TA = +25C
Symbol
VOLP
VOLV
Characteristic
Condition
Min
Typ
Max
Unit
Dynamic LOW Peak Voltage
VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V
0.8
V
(Note 4)
VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V
0.6
V
Dynamic LOW Valley Voltage
VCC = 3.3 V, CL = 50 pF, VIH = 3.3 V, VIL = 0 V
−0.8
V
(Note 4)
VCC = 2.5 V, CL = 30 pF, VIH = 2.5 V, VIL = 0 V
−0.6
V
4. Number of outputs defined as “n”. Measured with “n−1” outputs switching from HIGH−to−LOW or LOW−to−HIGH. The remaining output is
measured in the LOW state.
CAPACITIVE CHARACTERISTICS
Symbol
Parameter
Condition
Typical
Unit
CIN
Input Capacitance
VCC = 3.3 V, VI = 0 V or VCC
7
pF
COUT
Output Capacitance
VCC = 3.3 V, VI = 0 V or VCC
8
pF
CPD
Power Dissipation Capacitance
10 MHz, VCC = 3.3 V, VI = 0 V or VCC
25
pF
ORDERING INFORMATION
Package
Shipping†
MC74LCX04DG
SOIC−14
(Pb−Free)
55 Units / Rail
MC74LCX04DR2G
SOIC−14
(Pb−Free)
2500 Tape & Reel
MC74LCX04DTG
TSSOP−14
(Pb−Free)
96 Units / Rail
MC74LCX04DTR2G
TSSOP−14
(Pb−Free)
2500 Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
4
MC74LCX04
VCC
Vmi
An
Vmi
0V
tPHL
tPLH
Vmo
On
VOH
Vmo
VOL
WAVEFORM 1 − PROPAGATION DELAYS
tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 ns
VCC
3.3 V $ 0.3 V
2.7 V
2.5 V $ 0.2 V
Vmi
1.5 V
1.5 V
VCC/2
Vmo
1.5 V
1.5 V
VCC/2
Symbol
Figure 3. AC Waveforms
VCC
PULSE
GENERATOR
DUT
RT
CL =
CL =
RL =
RT =
CL
RL
50 pF at VCC = 3.3 0.3 V or equivalent (includes jig and probe capacitance)
30 pF at VCC = 2.5 0.2 V or equivalent (includes jig and probe capacitance)
R1 = 500 W or equivalent
ZOUT of pulse generator (typically 50 W)
Figure 4. Test Circuit
http://onsemi.com
5
MC74LCX04
PACKAGE DIMENSIONS
TSSOP−14
DT SUFFIX
CASE 948G
ISSUE B
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
N
2X
14
L/2
M
B
−U−
L
PIN 1
IDENT.
N
F
7
1
0.15 (0.006) T U
0.25 (0.010)
8
S
DETAIL E
ÇÇÇ
ÉÉÉ
ÇÇÇ
ÉÉÉ
ÇÇÇ
K
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
K1
J J1
SECTION N−N
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
INCHES
MIN
MAX
MIN MAX
4.90
5.10 0.193 0.200
4.30
4.50 0.169 0.177
−−−
1.20
−−− 0.047
0.05
0.15 0.002 0.006
0.50
0.75 0.020 0.030
0.65 BSC
0.026 BSC
0.50
0.60 0.020 0.024
0.09
0.20 0.004 0.008
0.09
0.16 0.004 0.006
0.19
0.30 0.007 0.012
0.19
0.25 0.007 0.010
6.40 BSC
0.252 BSC
0_
8_
0_
8_
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
14X
0.36
14X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
6
MC74LCX04
PACKAGE DIMENSIONS
SOIC−14 NB
CASE 751A−03
ISSUE K
D
A
B
14
8
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT
MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE
MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER
SIDE.
A3
E
H
L
1
0.25
M
DETAIL A
7
B
13X
M
b
0.25
M
C A
S
B
S
e
DETAIL A
h
A
X 45 _
M
A1
C
SEATING
PLANE
DIM
A
A1
A3
b
D
E
e
H
h
L
M
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.19
0.25
0.35
0.49
8.55
8.75
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
INCHES
MIN
MAX
0.054 0.068
0.004 0.010
0.008 0.010
0.014 0.019
0.337 0.344
0.150 0.157
0.050 BSC
0.228 0.244
0.010 0.019
0.016 0.049
0_
7_
SOLDERING FOOTPRINT*
6.50
14X
1.18
1
1.27
PITCH
14X
0.58
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74LCX04/D