SPANSION S25FL129P_00

S25FL129P
128-Mbit CMOS 3.0 Volt Flash Memory
with 104-MHz SPI (Serial Peripheral Interface) Multi I/O Bus
Data Sheet
S25FL129P Cover Sheet
This product is not recommended for new and current designs. For new and current designs,
S25FL128S supersedes S25FL129P. This is the factory-recommended migration path. Please refer to
the S25FL128S data sheet for specifications and ordering information.
Notice to Readers: This document states the current technical specifications regarding the Spansion
product(s) described herein. Each product described herein may be designated as Advance Information,
Preliminary, or Full Production. See Notice On Data Sheet Designations for definitions.
Publication Number S25FL129P_00
Revision 08
Issue Date September 21, 2012
D a t a
S h e e t
Notice On Data Sheet Designations
Spansion Inc. issues data sheets with Advance Information or Preliminary designations to advise readers of
product information or intended specifications throughout the product life cycle, including development,
qualification, initial production, and full production. In all cases, however, readers are encouraged to verify
that they have the latest information before finalizing their design. The following descriptions of Spansion data
sheet designations are presented here to highlight their presence and definitions.
Advance Information
The Advance Information designation indicates that Spansion Inc. is developing one or more specific
products, but has not committed any design to production. Information presented in a document with this
designation is likely to change, and in some cases, development on the product may discontinue. Spansion
Inc. therefore places the following conditions upon Advance Information content:
“This document contains information on one or more products under development at Spansion Inc.
The information is intended to help you evaluate this product. Do not design in this product without
contacting the factory. Spansion Inc. reserves the right to change or discontinue work on this proposed
product without notice.”
Preliminary
The Preliminary designation indicates that the product development has progressed such that a commitment
to production has taken place. This designation covers several aspects of the product life cycle, including
product qualification, initial production, and the subsequent phases in the manufacturing process that occur
before full production is achieved. Changes to the technical specifications presented in a Preliminary
document should be expected while keeping these aspects of production under consideration. Spansion
places the following conditions upon Preliminary content:
“This document states the current technical specifications regarding the Spansion product(s)
described herein. The Preliminary status of this document indicates that product qualification has been
completed, and that initial production has begun. Due to the phases of the manufacturing process that
require maintaining efficiency and quality, this document may be revised by subsequent versions or
modifications due to changes in technical specifications.”
Combination
Some data sheets contain a combination of products with different designations (Advance Information,
Preliminary, or Full Production). This type of document distinguishes these products and their designations
wherever necessary, typically on the first page, the ordering information page, and pages with the DC
Characteristics table and the AC Erase and Program table (in the table notes). The disclaimer on the first
page refers the reader to the notice on this page.
Full Production (No Designation on Document)
When a product has been in production for a period of time such that no changes or only nominal changes
are expected, the Preliminary designation is removed from the data sheet. Nominal changes may include
those affecting the number of ordering part numbers available, such as the addition or deletion of a speed
option, temperature range, package type, or VIO range. Changes may also include those needed to clarify a
description or to correct a typographical error or incorrect specification. Spansion Inc. applies the following
conditions to documents in this category:
“This document states the current technical specifications regarding the Spansion product(s)
described herein. Spansion Inc. deems the products to have been in sufficient production volume such
that subsequent versions of this document are not expected to change. However, typographical or
specification corrections, or modifications to the valid combinations offered may occur.”
Questions regarding these document designations may be directed to your local sales office.
2
S25FL129P
S25FL129P_00_08 September 21, 2012
S25FL129P
128-Mbit CMOS 3.0 Volt Flash Memory
with 104-MHz SPI (Serial Peripheral Interface) Multi I/O Bus
Data Sheet
This product is not recommended for new and current designs. For new and current designs, S25FL128S
supersedes S25FL129P. This is the factory-recommended migration path. Please refer to the S25FL128S
data sheet for specifications and ordering information.
Distinctive Characteristics
 One time programmable (OTP) area for permanent, secure
identification; can be programmed and locked at the factory
or by the customer
Architectural Advantages
 Single power supply operation
– Full voltage range: 2.7 to 3.6V read and write operations
 Memory architecture
– Uniform 64 KB sectors
– Top or bottom parameter block (Two 64-KB sectors broken
down into sixteen 4-KB sub-sectors each)
– Uniform 256 KB sectors (no 4-KB sub-sectors)
– 256-byte page size
– Backward compatible with the S25FL128P (uniform 256 KB sector)
device
 Program
–
–
–
–
Page Program (up to 256 bytes) in 1.5 ms (typical)
Program operations are on a page by page basis
Accelerated programming mode via 9V W#/ACC pin
Quad Page Programming
 Erase
– Bulk erase function
– Sector erase (SE) command (D8h) for 64 KB and 256 KB sectors
– Sub-sector erase (P4E) command (20h) for 4 KB sectors
(for uniform 64-KB sector device only)
– Sub-sector erase (P8E) command (40h) for 8 KB sectors
(for uniform 64-KB sector device only)
 Cycling endurance
– 100,000 cycles per sector typical
 CFI (Common Flash Interface) compliant: allows host system
to identify and accommodate multiple flash devices
 Process technology
– Manufactured on 0.09 µm MirrorBit® process technology
 Package option
–
–
–
–
–
Industry Standard Pinouts
16-pin SO package (300 mils)
8-contact WSON package (6 x 8 mm)
24-ball BGA (6 x 8 mm) package, 5 x 5 pin configuration
24-ball BGA (6 x 8 mm) package, 6 x 4 pin configuration
Performance Characteristics
 Speed
– Normal READ (Serial): 40 MHz clock rate
– FAST_READ (Serial): 104 MHz clock rate (maximum)
– DUAL I/O FAST_READ: 80 MHz clock rate or
20 MB/s effective data rate
– QUAD I/O FAST_READ: 80 MHz clock rate or
40 MB/s effective data rate
 Power saving standby mode
– Standby Mode 80 µA (typical)
– Deep Power-Down Mode 3 µA (typical)
 Data retention
Memory Protection Features
– 20 years typical
 Memory protection
 Device ID
– JEDEC standard two-byte electronic signature
– RES command one-byte electronic signature for backward
compatibility
Publication Number S25FL129P_00
– W#/ACC pin works in conjunction with Status Register Bits to
protect specified memory areas
– Status Register Block Protection bits (BP2, BP1, BP0) in status
Revision 08
Issue Date September 21, 2012
This document states the current technical specifications regarding the Spansion product(s) described herein. Spansion Inc. deems the products to have been in sufficient production volume such that subsequent versions of this document are not expected to change. However, typographical or specification corrections, or modifications to the valid combinations offered may occur.
D a t a
S h e e t
General Description
The S25FL129P is a 3.0 Volt (2.7V to 3.6V), single-power-supply Flash memory device. The device is offered
in two configurations: 256 uniform 64 KB sectors with the two (Top or Bottom) 64 KB sectors further split up
into thirty-two 4 KB sub sectors, or 64 uniform 256 KB sectors. The S25FL129P device is backward
compatible with the S25FL128P (uniform 256 KB sector) device.
The device accepts data written to SI (Serial Input) and outputs data on SO (Serial Output). The devices are
designed to be programmed in-system with the standard system 3.0-volt VCC supply.
The S25FL129P device adds the following high-performance features using 5 new instructions:
 Dual Output Read using both SI and SO pins as output pins at a clock rate of up to 80 MHz
 Quad Output Read using SI, SO, W#/ACC and HOLD# pins as output pins at a clock rate of up to 80 MHz
 Dual I/O High Performance Read using both SI and SO pins as input and output pins at a clock rate of up
to 80 MHz
 Quad I/O High Performance Read using SI, SO, W#/ACC and HOLD# pins as input and output pins at a
clock rate of up to 80 MHz
 Quad Page Programming using SI, SO, W#/ACC and HOLD# pins as input pins to program data at a clock
rate of up to 80 MHz
The memory can be programmed 1 to 256 bytes at a time, using the Page Program command. The device
supports Sector Erase and Bulk Erase commands.
Each device requires only a 3.0-volt power supply (2.7V to 3.6V) for both read and write functions. Internally
generated and regulated voltages are provided for the program operations. This device requires a high
voltage supply to the W#/ACC pin to enable the Accelerated Programming mode.
The S25FL129P device also offers a One-Time Programmable area (OTP) of up to 128-bits (16 bytes) for
permanent secure identification and an additional 490 bytes of OTP space for other use. This OTP area can
be programmed or read using the OTPP or OTPR instructions.
4
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
Table of Contents
Distinctive Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.
Input/Output Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1
Valid Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.
Spansion SPI Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.
Device Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1
Byte or Page Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2
Quad Page Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3
Dual and Quad I/O Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4
Sector Erase / Bulk Erase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.5
Monitoring Write Operations Using the Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6
Active Power and Standby Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.7
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.9
Data Protection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10 Hold Mode (HOLD#) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.11 Accelerated Programming Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.
Sector Address Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
9.
Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1
Read Data Bytes (READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2
Read Data Bytes at Higher Speed (FAST_READ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3
Dual Output Read Mode (DOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4
Quad Output Read Mode (QOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5
DUAL I/O High Performance Read Mode (DIOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6
Quad I/O High Performance Read Mode (QIOR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7
Read Identification (RDID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.8
Read-ID (READ_ID). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9
Write Enable (WREN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.10 Write Disable (WRDI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.11 Read Status Register (RDSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.12 Read Configuration Register (RCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.13 Write Registers (WRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.14 Page Program (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.15 QUAD Page Program (QPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.16 Parameter Sector Erase (P4E, P8E) (only applicable for the uniform 64 KB sector device) .
9.17 Sector Erase (SE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.18 Bulk Erase (BE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.19 Deep Power-Down (DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.20 Release from Deep Power-Down (RES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.21 Clear Status Register (CLSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.22 OTP Program (OTPP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.23 Read OTP Data Bytes (OTPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
26
27
28
29
30
32
33
37
38
38
39
40
41
43
44
45
46
47
48
49
50
51
51
10.
OTP Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1 Programming OTP Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Reading OTP Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 Locking OTP Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
52
52
52
52
11.
Power-up and Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
12.
Initial Delivery State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
September 21, 2012 S25FL129P_00_08
S25FL129P
14
14
14
14
14
14
14
15
15
17
18
18
5
D a t a
6
S h e e t
13.
Program Acceleration via W#/ACC Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
14.
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
14.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
15.
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
16.
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
17.
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
18.
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
18.1 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
19.
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.1 SO3 016 — 16-pin Wide Plastic Small Outline Package (300-mil Body Width) . . . . . . . . . .
19.2 WSON 8-contact (6 x 8 mm) No-Lead Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.3 FAB024 — 24-ball Ball Grid Array (6 x 8 mm) package . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19.4 FAC024 — 24-ball Ball Grid Array (6 x 8 mm) package . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
S25FL129P
63
63
64
65
66
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
Figures
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 6.1
Figure 6.2
Figure 7.1
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.6
Figure 9.7
Figure 9.8
Figure 9.9
Figure 9.10
Figure 9.11
Figure 9.12
Figure 9.13
Figure 9.14
Figure 9.15
Figure 9.16
Figure 9.17
Figure 9.18
Figure 9.19
Figure 9.20
Figure 9.21
Figure 9.22
Figure 9.23
Figure 9.24
Figure 9.25
Figure 9.26
Figure 9.27
Figure 10.1
Figure 10.2
Figure 11.1
Figure 11.2
Figure 13.1
Figure 14.1
Figure 14.2
Figure 17.1
Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5
16-pin Plastic Small Outline Package (SO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
8-contact WSON Package (6 x 8 mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 x 8 mm 24-ball BGA Package, 5 x 5 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 x 8 mm 24-ball BGA Package, 6 x 4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Bus Master and Memory Devices on the SPI Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SPI Modes Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Hold Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Read Data Bytes (READ) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Read Data Bytes at Higher Speed (FAST_READ) Command Sequence . . . . . . . . . . . . . . . 27
Dual Output Read Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Quad Output Read Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DUAL I/O High Performance Read Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Continuous Dual I/O High Performance Read Instruction Sequence . . . . . . . . . . . . . . . . . . 31
QUAD I/O High Performance Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Continuous QUAD I/O High Performance Instruction Sequence. . . . . . . . . . . . . . . . . . . . . . 33
Read Identification (RDID) Command Sequence and Data-Out Sequence . . . . . . . . . . . . . 34
Read-ID (RDID) Command Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Write Enable (WREN) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Write Disable (WRDI) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Read Status Register (RDSR) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Read Configuration Register (RCR) Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Write Registers (WRR) Instruction Sequence – 8 data bits . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Write Registers (WRR) Instruction Sequence – 16 data bits . . . . . . . . . . . . . . . . . . . . . . . . . 42
Page Program (PP) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
QUAD Page Program Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Parameter Sector Erase (P4E, P8E) Instruction Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . 45
Sector Erase (SE) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Bulk Erase (BE) Command Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Deep Power-Down (DP) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Release from Deep Power-Down (RES) Command Sequence . . . . . . . . . . . . . . . . . . . . . . . 49
Release from Deep Power-Down and RES Command Sequence . . . . . . . . . . . . . . . . . . . . 50
Clear Status Register (CLSR) Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
OTP Program Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Read OTP Instruction Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
OTP Memory Map - Part 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
OTP Memory Map - Part 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Power-Up Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Power-down and Voltage Drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
ACC Program Acceleration Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Maximum Negative Overshoot Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Maximum Positive Overshoot Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
AC Measurements I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
SPI Mode 0 (0,0) Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
SPI Mode 0 (0,0) Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
HOLD# Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Write Protect Setup and Hold Timing during WRR when SRWD = 1 . . . . . . . . . . . . . . . . . . 62
September 21, 2012 S25FL129P_00_08
S25FL129P
7
D a t a
S h e e t
Tables
Table 5.1
Table 7.1
Table 7.2
Table 7.3
Table 7.4
Table 8.1
Table 8.2
Table 8.3
Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5
Table 9.6
Table 9.7
Table 9.8
Table 9.9
Table 11.1
Table 13.1
Table 15.1
Table 16.1
Table 17.1
8
S25FL129P Valid Combinations Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Configuration Register Table (Uniform 64 KB sector) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Configuration Register Table (Uniform 256 KB sector) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
TBPROT = 0 (Starts Protection from TOP of Array) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
TBPROT = 1 (Starts Protection from BOTTOM of Array) . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
S25FL129P Sector Address Table (Uniform 256 KB sector) . . . . . . . . . . . . . . . . . . . . . . . . .19
S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=0) . . . . . . . . . . . . . . . .20
S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=1) . . . . . . . . . . . . . . . .22
Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Manufacturer and Device Identification - RDID (9Fh): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Product Group CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Product Group CFI System Interface String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Product Group CFI Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Product Group CFI Primary Vendor-Specific Extended Query . . . . . . . . . . . . . . . . . . . . . . . .36
READ_ID Data-Out Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
S25FL129P Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Protection Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Power-Up / Power-Down Voltage and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
ACC Program Acceleration Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
DC Characteristics (CMOS Compatible) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Test Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
1. Block Diagram
SRAM
PS
X
D
E
C
Array - L
Array - R
Logic
RD
DATA PATH
W# / ACC / IO2
HOLD# / IO3
VCC
GND
SO / IO1
SI / IO0
SCK
CS#
IO
2. Connection Diagrams
Figure 2.1 16-pin Plastic Small Outline Package (SO)
HOLD#/IO3
1
16
SCK
VCC
2
15
SI/IO0
DNC
3
14
DNC
DNC
4
13
DNC
DNC
5
12
DNC
DNC
6
11
DNC
CS#
7
10
GND
SO/IO1
8
9
W#/ACC/IO2
Note
DNC = Do Not Connect (Reserved for future use)
September 21, 2012 S25FL129P_00_08
S25FL129P
9
D a t a
S h e e t
Figure 2.2 8-contact WSON Package (6 x 8 mm)
CS#
1
SO/IO1
2
8
VCC
7
HOLD#/IO3
WSON
W#/ACC/IO2
3
6
SCK
GND
4
5
SI/IO0
Note
There is an exposed central pad on the underside of the WSON package. This should not be connected to any voltage or signal line on the
PCB. Connecting the central pad to GND (VSS) is possible, provided PCB routing ensures 0mV difference between voltage at the WSON
GND (VSS) lead and the central exposed pad.
Figure 2.3 6 x 8 mm 24-ball BGA Package, 5 x 5 Pin Configuration
1
2
3
4
5
NC
NC
NC
NC
NC
SCK
GND
VCC
NC
NC
CS#
NC
SO/IO1
NC
NC
A
B
C
NC W#/ACC/IO2 NC
D
SI/IO0 HOLD#/IO3
NC
E
NC
NC
NC
Figure 2.4 6 x 8 mm 24-ball BGA Package, 6 x 4 Pin Configuration
10
A1
A2
A3
A4
NC
NC
NC
NC
B1
B2
B3
B4
NC
SCK
GND
VCC
C1
C2
C3
C4
NC
CS#
NC W#/ACC/IO2
D1
D2
NC
SO/IO1
D3
D4
E1
E2
E3
E4
NC
NC
NC
NC
SI/IO0 HOLD#/IO3
F1
F2
F3
F4
NC
NC
NC
NC
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
3.
S h e e t
Input/Output Descriptions
Signal
I/O
Description
SO/IO1
I/O
Serial Data Output: Transfers data serially out of the device on the falling edge of SCK.
Functions as an I/O pin in Dual and Quad I/O, and Quad Page Program modes.
SI/IO0
I/O
Serial Data Input: Transfers data serially into the device. Device latches commands,
addresses, and program data on SI on the rising edge of SCK. Functions as an I/O pin in Dual
and Quad I/O mode.
SCK
Input
Serial Clock: Provides serial interface timing. Latches commands, addresses, and data on SI on
rising edge of SCK. Triggers output on SO after the falling edge of SCK.
CS#
Input
Chip Select: Places device in active power mode when driven low. Deselects device and places
SO at high impedance when high. After power-up, device requires a falling edge on CS# before
any command is written. Device is in standby mode when a program, erase, or Write Status
Register operation is not in progress.
HOLD#/IO3
I/O
Hold: Pauses any serial communication with the device without deselecting it. When driven low,
SO is at high impedance, and all input at SI and SCK are ignored. Requires that CS# also be
driven low. Functions as an I/O pin in Quad I/O mode.
W#/ACC/IO2
I/O
Write Protect: Protects the memory area specified by Status Register bits BP2:BP0. When
driven low, prevents any program or erase command from altering the data in the protected
memory area. Functions as an I/O pin in Quad I/O mode.
VCC
Input
Supply Voltage
GND
Input
Ground
4. Logic Symbol
VCC
SO/IO1
SI/IO0
SCK
CS#
W#/ACC/IO2
HOLD#/IO3
GND
September 21, 2012 S25FL129P_00_08
S25FL129P
11
D a t a
5.
S h e e t
Ordering Information
This product is not recommended for new and current designs. For new and current designs, S25FL128S
supersedes S25FL129P. This is the factory-recommended migration path. Please refer to the S25FL128S
data sheet for specifications and ordering information.
The ordering part number is formed by a valid combination of the following:
S25FL
129
P
0X
M
F
I
00
1
Packing Type (Note 1)
0
= Tray
1
= Tube
3
= 13” Tape and Reel
Model Number (Additional Ordering Options)
31 = 6x4 pin configuration BGA package, Uniform 256 KB sectors
30 = 6x4 pin configuration BGA package, Uniform 64 KB sectors
21 = 5x5 pin configuration BGA package, Uniform 256 KB sectors
20 = 5x5 pin configuration BGA package, Uniform 64 KB sectors
01 = SO/WSON package, Uniform 256 KB sectors
00 = SO/WSON package, Uniform 64 KB sectors
Temperature Range
I
=
Industrial (–40°C to + 85°C)
V
=
Automotive In-Cabin (-40*C to + 105*C)
Package Materials
F
= Lead (Pb)-free
H
= Low-Halogen, Lead (Pb)-free
Package Type
M
= 16-pin SO package
N
= 8-contact WSON package
B
= 24-ball BGA 6 x 8 mm package, 1.00 mm pitch
Speed
0X =
104 MHz
Device Technology
P
= 0.09 µm MirrorBit® Process Technology
Density
129 =
128 Mbit
Device Family
S25FL
Spansion Memory 3.0 Volt-only, Serial Peripheral Interface (SPI) Flash Memory
5.1
Valid Combinations
Table 5.1 lists the valid combinations configurations planned to be supported in volume for this device.
Table 5.1 S25FL129P Valid Combinations Table
S25FL129P Valid Combinations
Base Ordering
Part Number
S25FL129P
Speed Option
Package and
Temperature
Model
Number
MFI, NFI
00
MFV , NFV
01
BHI
20, 30
BHV
21, 31
0X
Packing Type
0, 1, 3
0, 3
Package Marking
FL129P + (Temp) + F
FL129P + (Temp) + FL
FL129P + (Temp) + F
FL129P + (Temp) + FL
Note
1. Package Marking omits the leading “S25” and speed, package and model number.
12
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
6.
S h e e t
Spansion SPI Modes
A microcontroller can use either of its two SPI modes to control Spansion SPI Flash memory devices:
 CPOL = 0, CPHA = 0 (Mode 0)
 CPOL = 1, CPHA = 1 (Mode 3)
Input data is latched in on the rising edge of SCK, and output data is available from the falling edge of SCK for
both modes.
When the bus master is in standby mode, SCK is as shown in Figure 6.2 for each of the two modes:
 SCK remains at 0 for (CPOL = 0, CPHA = 0 Mode 0)
 SCK remains at 1 for (CPOL = 1, CPHA = 1 Mode 3)
Figure 6.1 Bus Master and Memory Devices on the SPI Bus
SO
SPI Interface with
(CPOL, CPHA) =
(0, 0) or (1, 1)
SI
SCK
SCK SO SI
SCK SO SI
SCK SO SI
Bus Master
SPI Memory
Device
CS3
CS2
SPI Memory
Device
SPI Memory
Device
CS1
CS#
HOLD#
W#/ACC
CS#
HOLD#
W#/ACC
CS#
HOLD#
W#/ACC
Note
The Write Protect/Accelerated Programming (W#/ACC) and Hold (HOLD#) signals should be driven high (logic level 1) or low (logic level 0)
as appropriate.
Figure 6.2 SPI Modes Supported
CS#
CPOL CPHA
Mode 0
0
0
SCK
Mode 3
1
1
SCK
SI
MSB
SO
September 21, 2012 S25FL129P_00_08
MSB
S25FL129P
13
D a t a
S h e e t
7. Device Operations
All Spansion SPI devices accept and output data in bytes (8 bits at a time). The SPI device is a slave device
that supports an inactive clock while CS# is held low.
7.1
Byte or Page Programming
Programming data requires two commands: Write Enable (WREN), which is one byte, and a Page Program
(PP) sequence, which consists of four bytes plus data. The Page Program sequence accepts from 1 byte up
to 256 consecutive bytes of data (which is the size of one page) to be programmed in one operation.
Programming means that bits can either be left at 0, or programmed from 1 to 0. Changing bits from 0 to 1
requires an erase operation.
7.2
Quad Page Programming
The Quad Page Program (QPP) instruction allows up to 256 bytes of data to be programmed using 4 pins as
inputs at the same time, thus effectively quadrupling the data transfer rate, compared to the Page Program
(PP) instruction. The Write Enable Latch (WEL) bit must be set to a 1 using the Write Enable (WREN)
command prior to issuing the QPP command.
7.3
Dual and Quad I/O Mode
The S25FL129P device supports Dual and Quad I/O operation when using the Dual/Quad Output Read Mode
and the Dual/Quad I/O High Performance Mode instructions. Using the Dual or Quad I/O instructions allows
data to be transferred to or from the device at two to four times the rate of standard SPI devices. When
operating in the Dual or Quad I/O High Performance Mode (BBh or EBh instructions), data can be read at fast
speed using two or four data bits at a time, and the 3-byte address can be input two or four address bits at a
time.
7.4
Sector Erase / Bulk Erase
The Sector Erase (SE) and Bulk Erase (BE) commands set all the bits in a sector or the entire memory array
to 1. While bits can be individually programmed from 1 to 0, erasing bits from 0 to 1 must be done on a sectorwide (SE) or array-wide (BE) level. In addition to the 64-KB Sector Erase (SE), the S25FL129P device also
offers 4-KB Parameter Sector Erase (P4E) and 8-KB Parameter Sector Erase (P8E) (only applicable for the
uniform 64 KB sector device).
7.5
Monitoring Write Operations Using the Status Register
The host system can determine when a Write Register, program, or erase operation is complete by
monitoring the Write in Progress (WIP) bit in the Status Register. The Read from Status Register command
provides the state of the WIP bit. In addition, the S25FL129P device offers two additional bits in the Status
Register (P_ERR, E_ERR) to indicate whether a Program or Erase operation was a success or failure.
7.6
Active Power and Standby Power Modes
The device is enabled and in the Active Power mode when Chip Select (CS#) is Low. When CS# is high, the
device is disabled, but may still be in the Active Power mode until all program, erase, and Write Registers
operations have completed. The device then goes into the Standby Power mode, and power consumption
drops to ISB. The Deep Power-Down (DP) command provides additional data protection against inadvertent
signals. After writing the DP command, the device ignores any further program or erase commands, and
reduces its power consumption to IDP.
14
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
7.7
S h e e t
Status Register
The Status Register contains the status and control bits that can be read or set by specific commands (see
Table 9.1 on page 25). These bits configure different protection configurations and supply information of
operation of the device. (for details see Table 9.8, S25FL129P Status Register on page 39):
 Write In Progress (WIP): Indicates whether the device is performing a Write Registers, program or erase
operation.
 Write Enable Latch (WEL): Indicates the status of the internal Write Enable Latch.
 Block Protect (BP2, BP1, BP0): Non-volatile bits that define memory area to be software-protected
against program and erase commands.
 Erase Error (E_ERR): The Erase Error Bit is used as an Erase operation success and failure check.
 Program Error (P_ERR): The Program Error Bit is used as an program operation success and failure check.
 Status Register Write Disable (SRWD): Places the device in the Hardware Protected mode when this bit
is set to 1 and the W#/ACC input is driven low. In this mode, the non-volatile bits of the Status Register
(SRWD, BP2, BP1, BP0) become read-only bits.
7.8
Configuration Register
The Configuration Register contains the control bits that can be read or set by specific commands. These bits
configure different configurations and security features of the device.
 The FREEZE bit locks the BP2-0 bits in Status Register and the TBPROT and TBPARM bits in the
Configuration Register. Note that once the FREEZE bit has been set to ‘1’, then it cannot be cleared to ‘0’
until a power-on-reset is executed. As long as the FREEZE bit is set to ‘0’, then the other bits of the
Configuration Register, including FREEZE bit, can be written to.
 The QUAD bit is non-volatile and sets the pin out of the device to Quad mode; that is, W#/ACC becomes
IO2 and HOLD# becomes IO3. The instructions for Serial, Dual Output, and Dual I/O reads function as
normal. The W#/ACC and HOLD# functionality does not work when the device is set in Quad mode.
 The TBPARM bit defines the logical location of the 4 KB parameter sectors. The parameter sectors consist
of thirty two 4 KB sectors. All sectors other than the parameter sectors are defined to be 64-KB uniform in
size. When TBPARM is set to a ‘1’, the 4 KB parameter sectors starts at the top of the array. When
TBPARM is set to a ‘0’, the 4 KB parameter sectors starts at the bottom of the array. Note that once this bit
is set to a '1', it cannot be changed back to '0'. (This function is not applicable to the uniform 256 KB sector
product.) The desired state of TBPARM must be selected during the initial configuration of the device
during system manufacture; before the first program or erase operation on the main Flash array. TBPARM
must not be programmed after programming or erasing is done in the main Flash array.
 The BPNV bit defines whether or not the BP2-0 bits in the Status Register are volatile or non-volatile.
When BPNV is set to a ‘1’, the BP2-0 bits in the Status Register are volatile and will be reset to binary 111
after power on reset. When BPNV is set to a ‘0’, the BP2-0 bits in the Status Register are non-volatile. Note
that once this bit is set to a '1', it cannot be changed back to '0'.
 The TBPROT bit defines the operation of the block protection bits BP2, BP1, and BP0 in the Status
Register. When TBPROT is set to a ‘0’, then the block protection is defined to start from the top of the array.
When TBPROT is set to a ‘1’, then the block protection is defined to start from the bottom of the array. Note
that once this bit is set to a '1', it cannot be changed back to '0'. The desired state of TBPROT must be
selected during the initial configuration of the device during system manufacture; before the first program
or erase operation on the main Flash array. TBPROT must not be programmed after programming or
erasing is done in the main Flash array.
September 21, 2012 S25FL129P_00_08
S25FL129P
15
D a t a
S h e e t
Note: It is suggested that the Block Protection and Parameter sectors not be set to the same area of the
array; otherwise, the user cannot utilize the Parameter sectors if they are protected. The following matrix
shows the recommended settings.
TBPARM
TBPROT
Array Overview
0
0
Parameter Sectors - Bottom
BP Protection - Top (default)
0
1
Not recommended (Parameters and BP Protection are both Bottom)
1
0
Not recommended (parameters and BP Protection are both Top)
1
1
Parameter Sectors - Top of Array (high address)
BP Protection - Bottom of Array (low address)
Table 7.1 Configuration Register Table (Uniform 64 KB sector)
Bit
Bit Name
7
NA
-
Bit Function
Not Used
Description
6
NA
-
Not Used
5
TBPROT
Configures start of block protection
1 = Bottom Array (low address)
0 = Top Array (high address) (Default)
4
NA
-
Do Not Use
3
BPNV
Configures BP2-0 bits in the Status Register
1 = Volatile
0 = Non-volatile (Default)
2
TBPARM
Configures Parameter sector location
1 = Top Array (high address)
0 = Bottom Array (low address) (Default)
1
QUAD
Puts the device into Quad I/O mode
1 = Quad I/O
0 = Dual or Serial I/O (Default)
0
FREEZE
Locks BP2-0 bits in the Status Register
1 = Enabled
0 = Disabled (Default)
Note
(Default) indicates the value of each Configuration Register bit set upon initial factory shipment.
Table 7.2 Configuration Register Table (Uniform 256 KB sector)
Bit
Bit Name
7
N/A
-
Not Used
6
N/A
-
Not Used
5
TBPROT
Configures start of block protection
1 = Bottom Array (low address)
0 = Top Array (high address) (Default)
4
N/A
3
BPNV
2
N/A
1
QUAD
0
FREEZE
Bit Function
Description
-
Do Not Use
Configures BP2-0 bits in the Status Register
1 = Volatile
0 = Non-volatile (Default)
-
Do not Use
Puts the device into Quad I/O mode
1 = Quad I/O
0 = Dual or Serial I/O (Default)
Locks BP2-0 bits in the Status Register
1 = Enabled
0 = Disabled (Default)
Note
1. (Default) indicates the value of each Configuration Register bit set upon initial factory shipment.
16
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
7.9
S h e e t
Data Protection Modes
Spansion SPI Flash memory devices provide the following data protection methods:
 The Write Enable (WREN) command: Must be written prior to any command that modifies data. The
WREN command sets the Write Enable Latch (WEL) bit. The WEL bit resets (disables writes) on power-up
or after the device completes the following commands:
– Page Program (PP)
– Sector Erase (SE)
– Bulk Erase (BE)
– Write Disable (WRDI)
– Write Register (WRR)
– Parameter 4 KB Sector Erase (P4E)
– Parameter 8 KB Sector Erase (P8E)
– Quad Page Programming (QPP)
– OTP Byte Programming (OTPP)
 Software Protected Mode (SPM): The Block Protect BP2, BP1, BP0 bits define the section of the memory
array that can be read but not programmed or erased. Table 7.3 and Table 7.4 shows the sizes and
address ranges of protected areas that are defined by Status Register bits BP2:BP0.
 Hardware Protected Mode (HPM): The Write Protect (W#/ACC) input and the Status Register Write
Disable (SRWD) bit together provide write protection.
 Clock Pulse Count: The device verifies that all program, erase, and Write Register commands consist of
a clock pulse count that is a multiple of eight before executing them.
Table 7.3 TBPROT = 0 (Starts Protection from TOP of Array)
Status Register Block
Memory Array
Unprotected
Sectors
Protected Sectors
Protected
Address Range
Uniform
64 KB
Uniform
256 KB
Unprotected
Address Range
Uniform
64 KB
Uniform
256 KB
000000h - FFFFFFh
SA255:SA0
SA63:SA0
0
000000h - FBFFFFh
SA251:SA0
SA62:SA0
1/64
000000h - F7FFFFh
SA247:SA0
SA61:SA0
1/32
000000h - EFFFFFh
SA239:SA0
SA59:SA0
1/16
000000h - DFFFFFh SA223:SA0
SA55:SA0
1/8
SA191:SA0
SA47:SA0
1/4
000000h - 7FFFFFh
SA127:SA0
SA31:SA0
1/2
None
None
None
All
BP2
BP1
BP0
0
0
0
None
0
0
0
0
1
FC0000h - FFFFFFh
(4) SA255:SA252
(1) SA63
0
1
0
F80000h - FFFFFFh
(8) SA255:SA248
(2)SA63:SA62
0
1
1
F00000h - FFFFFFh
(16) SA255:SA240
(4)SA63:SA60
1
0
0
E00000h - FFFFFFh
(32) SA255:SA224
(8)SA63:SA56
1
0
1
C00000h - FFFFFFh
(64)SA255:SA192
(16)SA63:SA48 000000h - BFFFFFh
1
1
0
800000h - FFFFFFh
(128)SA255:SA128 (32)SA63:SA32
1
1
1
000000h - FFFFFFh
(256)SA255:SA0
(64)SA63:SA0
Protected Portion of
Total Memory Area
Table 7.4 TBPROT = 1 (Starts Protection from BOTTOM of Array)
Status Register Block
Memory Array
Unprotected
Sectors
Protected Sectors
BP2
BP1
BP0
Protected
Address Range
Uniform
64 KB
Uniform
256 KB
Unprotected
Address Range
Uniform
64 KB
Uniform
256 KB
Protected Portion of
Total Memory Area
0
0
0
None
0
0
000000h - FFFFFFh
SA0:SA255
SA0:SA63
0
0
0
1
000000h - 03FFFFh
(4) SA0:SA3
(1) SA0
040000h - FFFFFFh
SA4:SA255
SA1:SA63
1/64
0
1
0
000000h - 07FFFFh
(8) SA0:SA7
(2)SA0:SA1
080000h - FFFFFFh
SA8:SA255
SA2:SA63
1/32
0
1
1
000000h - 0FFFFFh
(16)SA0:SA15
(4)SA0:SA3
100000h - FFFFFFh
SA16:SA255
SA4:SA63
1/16
1
0
0
000000h - 1FFFFFh
(32)SA0:SA31
(8)SA0:SA7
200000h - FFFFFFh
SA32:SA255
SA8:SA63
1/8
1
0
1
000000h - 3FFFFFh
(64)SA0:SA63
(16)SA0:SA15
400000h - FFFFFFh
SA64:SA255
SA16:SA63
1/4
1
1
0
000000h - 7FFFFFh
(128)SA0:SA127
(32)SA0:SA31
800000h - FFFFFFh
SA128:255
SA32:SA63
1/2
1
1
1
000000h - FFFFFFh
(256)SA0:SA255
(64)SA0:SA63
None
None
None
All
September 21, 2012 S25FL129P_00_08
S25FL129P
17
D a t a
7.10
S h e e t
Hold Mode (HOLD#)
The Hold input (HOLD#) stops any serial communication with the device, but does not terminate any Write
Registers, program or erase operation that is currently in progress.
The Hold mode starts on the falling edge of HOLD# if SCK is also low (see Figure 7.1, standard use). If the
falling edge of HOLD# does not occur while SCK is low, the Hold mode begins after the next falling edge of
SCK (non-standard use).
The Hold mode ends on the rising edge of HOLD# signal (standard use) if SCK is also low. If the rising edge
of HOLD# does not occur while SCK is low, the Hold mode ends on the next falling edge of CLK (nonstandard use) See Figure 7.1.
The SO output is high impedance, and the SI and SCK inputs are ignored (don’t care) for the duration of the
Hold mode.
CS# must remain low for the entire duration of the Hold mode to ensure that the device internal logic remains
unchanged. If CS# goes high while the device is in the Hold mode, the internal logic is reset. To prevent the
device from reverting to the Hold mode when device communication is resumed, HOLD# must be held high,
followed by driving CS# low.
Note: The HOLD Mode feature is disabled during Quad I/O Mode.
Figure 7.1 Hold Mode Operation
SCK
HOLD#
Hold
Condition
(standard use)
7.11
Hold
Condition
(non-standard use)
Accelerated Programming Operation
The device offers accelerated program operations through the ACC function. This function is primarily
intended to allow faster manufacturing throughput at the factory. If the system asserts VHH on this pin, the
device uses the higher voltage on the pin to reduce the time required for program operations. Removing VHH
from the W#/ACC pin returns the device to normal operation. Note that the W#/ACC pin must not be at VHH
for operations other than accelerated programming, or device damage may result. In addition, the W#/ACC
pin must not be left floating or unconnected; inconsistent behavior of the device may result.
Note: The ACC function is disabled during Quad I/O Mode.
18
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
8. Sector Address Table
The Sector Address tables show the size of the memory array, sectors, and pages. The device uses pages to
cache the program data before the data is programmed into the memory array. Each page or byte can be
individually programmed (bits are changed from 1 to 0). The data is erased (bits are changed from 0 to 1) on
a sub-sector, sector- or device-wide basis using the P4E/P8E (applicable only for the uniform 64 KB sector
device), SE or BE commands. Table 8.1 to Table 8.3 show the starting and ending address for each sector.
The complete set of sectors comprises the memory array of the Flash device.
Table 8.1 S25FL129P Sector Address Table (Uniform 256 KB sector)
Address Range
Sector
Address Range
Sector
Start Address
End Address
Start Address
End Address
63
FC0000h
FFFFFFh
31
7C0000h
7FFFFFh
62
F80000h
FBFFFFh
30
780000h
7BFFFFh
61
F40000h
F7FFFFh
29
740000h
77FFFFh
60
F00000h
F3FFFFh
28
700000h
73FFFFh
59
EC0000h
EFFFFFh
27
6C0000h
6FFFFFh
58
E80000h
EBFFFFh
26
680000h
6BFFFFh
57
E40000h
E7FFFFh
25
640000h
67FFFFh
56
E00000h
E3FFFFh
24
600000h
63FFFFh
55
DC0000h
DFFFFFh
23
5C0000h
5FFFFFh
54
D80000h
DBFFFFh
22
580000h
5BFFFFh
53
D40000h
D7FFFFh
21
540000h
57FFFFh
52
D00000h
D3FFFFh
20
500000h
53FFFFh
51
CC0000h
CFFFFFh
19
4C0000h
4FFFFFh
50
C80000h
CBFFFFh
18
480000h
4BFFFFh
49
C40000h
C7FFFFh
17
440000h
47FFFFh
48
C00000h
C3FFFFh
16
400000h
43FFFFh
47
BC0000h
BFFFFFh
15
3C0000h
3FFFFFh
46
B80000h
BBFFFFh
14
380000h
3BFFFFh
45
B40000h
B7FFFFh
13
340000h
37FFFFh
44
B00000h
B3FFFFh
12
300000h
33FFFFh
43
AC0000h
AFFFFFh
11
2C0000h
2FFFFFh
42
A80000h
ABFFFFh
10
280000h
2BFFFFh
41
A40000h
A7FFFFh
9
240000h
27FFFFh
40
A00000h
A3FFFFh
8
200000h
23FFFFh
39
9C0000h
9FFFFFh
7
1C0000h
1FFFFFh
38
980000h
9BFFFFh
6
180000h
1BFFFFh
37
940000h
97FFFFh
5
140000h
17FFFFh
36
900000h
93FFFFh
4
100000h
13FFFFh
35
8C0000h
8FFFFFh
3
0C0000h
0FFFFFh
34
880000h
8BFFFFh
2
080000h
0BFFFFh
33
840000h
87FFFFh
1
040000h
07FFFFh
32
800000h
83FFFFh
0
000000h
03FFFFh
September 21, 2012 S25FL129P_00_08
S25FL129P
19
D a t a
S h e e t
Table 8.2 S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=0) (Sheet 1 of 2)
Sector
20
Address Range
Sector
Address Range
Start Address
End Address
SA108
6C0000h
6CFFFFh
SA107
6B0000h
6BFFFFh
SA106
6A0000h
6AFFFFh
SA59
3B0000h
SA105
690000h
69FFFFh
SA58
3A0000h
SA104
680000h
68FFFFh
SA57
390000h
SA103
670000h
67FFFFh
SA56
SA102
660000h
66FFFFh
SA55
SA101
650000h
65FFFFh
SA100
640000h
SA99
Sector
Address Range
Start Address
End Address
Start Address
SA61
3D0000h
3DFFFFh
SA14
0E0000h
End Address
0EFFFFh
SA60
3C0000h
3CFFFFh
SA13
0D0000h
0DFFFFh
3BFFFFh
SA12
0C0000h
0CFFFFh
3AFFFFh
SA11
0B0000h
0BFFFFh
39FFFFh
SA10
0A0000h
0AFFFFh
380000h
38FFFFh
SA9
090000h
09FFFFh
370000h
37FFFFh
SA8
080000h
08FFFFh
SA54
360000h
36FFFFh
SA7
070000h
07FFFFh
64FFFFh
SA53
350000h
35FFFFh
SA6
060000h
06FFFFh
630000h
63FFFFh
SA52
340000h
34FFFFh
SA5
050000h
05FFFFh
SA98
620000h
62FFFFh
SA51
330000h
33FFFFh
SA4
040000h
04FFFFh
SA97
610000h
61FFFFh
SA50
320000h
32FFFFh
SA3
030000h
03FFFFh
SA96
600000h
60FFFFh
SA49
310000h
31FFFFh
SA2
020000h
02FFFFh
SA95
5F0000h
5FFFFFh
SA48
300000h
30FFFFh
SA1
010000h
01FFFFh
SA94
5E0000h
5EFFFFh
SA47
2F0000h
2FFFFFh
SA0
000000h
00FFFFh
SA93
5D0000h
5DFFFFh
SA46
2E0000h
2EFFFFh
SS31
01F000h
01FFFFh
SA92
5C0000h
5CFFFFh
SA45
2D0000h
2DFFFFh
SS30
01E000h
01EFFFh
SA91
5B0000h
5BFFFFh
SA44
2C0000h
2CFFFFh
SS29
01D000h
01DFFFh
SA90
5A0000h
5AFFFFh
SA43
2B0000h
2BFFFFh
SS28
01C000h
01CFFFh
SA89
590000h
59FFFFh
SA42
2A0000h
2AFFFFh
SS27
01B000h
01BFFFh
SA88
580000h
58FFFFh
SA41
290000h
29FFFFh
SS26
01A000h
01AFFFh
SA87
570000h
57FFFFh
SA40
280000h
28FFFFh
SS25
019000h
019FFFh
SA86
560000h
56FFFFh
SA39
270000h
27FFFFh
SS24
018000h
018FFFh
SA85
550000h
55FFFFh
SA38
260000h
26FFFFh
SS23
017000h
017FFFh
SA84
540000h
54FFFFh
SA37
250000h
25FFFFh
SS22
016000h
016FFFh
SA83
530000h
53FFFFh
SA36
240000h
24FFFFh
SS21
015000h
015FFFh
SA82
520000h
52FFFFh
SA35
230000h
23FFFFh
SS20
014000h
014FFFh
SA81
510000h
51FFFFh
SA34
220000h
22FFFFh
SS19
013000h
013FFFh
SA80
500000h
50FFFFh
SA33
210000h
21FFFFh
SS18
012000h
012FFFh
SA79
4F0000h
4FFFFFh
SA32
200000h
20FFFFh
SS17
011000h
011FFFh
SA78
4E0000h
4EFFFFh
SA31
1F0000h
1FFFFFh
SS16
010000h
010FFFh
SA77
4D0000h
4DFFFFh
SA30
1E0000h
1EFFFFh
SS15
00F000h
00FFFFh
SA76
4C0000h
4CFFFFh
SA29
1D0000h
1DFFFFh
SS14
00E000h
00EFFFh
SA75
4B0000h
4BFFFFh
SA28
1C0000h
1CFFFFh
SS13
00D000h
00DFFFh
SA74
4A0000h
4AFFFFh
SA27
1B0000h
1BFFFFh
SS12
00C000h
00CFFFh
SA73
490000h
49FFFFh
SA26
1A0000h
1AFFFFh
SS11
00B000h
00BFFFh
SA72
480000h
48FFFFh
SA25
190000h
19FFFFh
SS10
00A000h
00AFFFh
SA71
470000h
47FFFFh
SA24
180000h
18FFFFh
SS9
009000h
009FFFh
SA70
460000h
46FFFFh
SA23
170000h
17FFFFh
SS8
008000h
008FFFh
SA69
450000h
45FFFFh
SA22
160000h
16FFFFh
SS7
007000h
007FFFh
SA68
440000h
44FFFFh
SA21
150000h
15FFFFh
SS6
006000h
006FFFh
SA67
430000h
43FFFFh
SA20
140000h
14FFFFh
SS5
005000h
005FFFh
SA66
420000h
42FFFFh
SA19
130000h
13FFFFh
SS4
004000h
004FFFh
SA65
410000h
41FFFFh
SA18
120000h
12FFFFh
SS3
003000h
003FFFh
SA64
400000h
40FFFFh
SA17
110000h
11FFFFh
SS2
002000h
002FFFh
SA63
3F0000h
3FFFFFh
SA16
100000h
10FFFFh
SS1
001000h
001FFFh
SA62
3E0000h
3EFFFFh
SA15
0F0000h
0FFFFFh
SS0
000000h
000FFFh
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
Table 8.2 S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=0) (Sheet 2 of 2)
Sector
Address Range
Start Address
End Address
SA255
FF0000h
FFFFFFh
SA254
FE0000h
FEFFFFh
Sector
Address Range
Sector
Address Range
Start Address
End Address
Start Address
SA206
CE0000h
CEFFFFh
SA157
9D0000h
End Address
9DFFFFh
SA205
CD0000h
CDFFFFh
SA156
9C0000h
9CFFFFh
SA253
FD0000h
FDFFFFh
SA204
CC0000h
CCFFFFh
SA155
9B0000h
9BFFFFh
SA252
FC0000h
FCFFFFh
SA203
CB0000h
CBFFFFh
SA154
9A0000h
9AFFFFh
SA251
FB0000h
FBFFFFh
SA202
CA0000h
CAFFFFh
SA153
990000h
99FFFFh
SA250
FA0000h
FAFFFFh
SA201
C90000h
C9FFFFh
SA152
980000h
98FFFFh
SA249
F90000h
F9FFFFh
SA200
C80000h
C8FFFFh
SA151
970000h
97FFFFh
SA248
F80000h
F8FFFFh
SA199
C70000h
C7FFFFh
SA150
960000h
96FFFFh
SA247
F70000h
F7FFFFh
SA198
C60000h
C6FFFFh
SA149
950000h
95FFFFh
SA246
F60000h
F6FFFFh
SA197
C50000h
C5FFFFh
SA148
940000h
94FFFFh
SA245
F50000h
F5FFFFh
SA196
C40000h
C4FFFFh
SA147
930000h
93FFFFh
SA244
F40000h
F4FFFFh
SA195
C30000h
C3FFFFh
SA146
920000h
92FFFFh
SA243
F30000h
F3FFFFh
SA194
C20000h
C2FFFFh
SA145
910000h
91FFFFh
SA242
F20000h
F2FFFFh
SA193
C10000h
C1FFFFh
SA144
900000h
90FFFFh
SA241
F10000h
F1FFFFh
SA192
C00000h
C0FFFFh
SA143
8F0000h
8FFFFFh
SA240
F00000h
F0FFFFh
SA191
BF0000h
BFFFFFh
SA142
8E0000h
8EFFFFh
SA239
EF0000h
EFFFFFh
SA190
BE0000h
BEFFFFh
SA141
8D0000h
8DFFFFh
SA238
EE0000h
EEFFFFh
SA189
BD0000h
BDFFFFh
SA140
8C0000h
8CFFFFh
SA237
ED0000h
EDFFFFh
SA188
BC0000h
BCFFFFh
SA139
8B0000h
8BFFFFh
SA236
EC0000h
ECFFFFh
SA187
BB0000h
BBFFFFh
SA138
8A0000h
8AFFFFh
SA235
EB0000h
EBFFFFh
SA186
BA0000h
BAFFFFh
SA137
890000h
89FFFFh
SA234
EA0000h
EAFFFFh
SA185
B90000h
B9FFFFh
SA136
880000h
88FFFFh
SA233
E90000h
E9FFFFh
SA184
B80000h
B8FFFFh
SA135
870000h
87FFFFh
SA232
E80000h
E8FFFFh
SA183
B70000h
B7FFFFh
SA134
860000h
86FFFFh
SA231
E70000h
E7FFFFh
SA182
B60000h
B6FFFFh
SA133
850000h
85FFFFh
SA230
E60000h
E6FFFFh
SA181
B50000h
B5FFFFh
SA132
840000h
84FFFFh
SA229
E50000h
E5FFFFh
SA180
B40000h
B4FFFFh
SA131
830000h
83FFFFh
SA228
E40000h
E4FFFFh
SA179
B30000h
B3FFFFh
SA130
820000h
82FFFFh
SA227
E30000h
E3FFFFh
SA178
B20000h
B2FFFFh
SA129
810000h
81FFFFh
SA226
E20000h
E2FFFFh
SA177
B10000h
B1FFFFh
SA128
800000h
80FFFFh
SA225
E10000h
E1FFFFh
SA176
B00000h
B0FFFFh
SA127
7F0000h
7FFFFFh
SA224
E00000h
E0FFFFh
SA175
AF0000h
AFFFFFh
SA126
7E0000h
7EFFFFh
SA223
DF0000h
DFFFFFh
SA174
AE0000h
AEFFFFh
SA125
7D0000h
7DFFFFh
SA222
DE0000h
DEFFFFh
SA173
AD0000h
ADFFFFh
SA124
7C0000h
7CFFFFh
SA221
DD0000h
DDFFFFh
SA172
AC0000h
ACFFFFh
SA123
7B0000h
7BFFFFh
SA220
DC0000h
DCFFFFh
SA171
AB0000h
ABFFFFh
SA122
7A0000h
7AFFFFh
SA219
DB0000h
DBFFFFh
SA170
AA0000h
AAFFFFh
SA121
790000h
79FFFFh
SA218
DA0000h
DAFFFFh
SA169
A90000h
A9FFFFh
SA120
780000h
78FFFFh
SA217
D90000h
D9FFFFh
SA168
A80000h
A8FFFFh
SA119
770000h
77FFFFh
SA216
D80000h
D8FFFFh
SA167
A70000h
A7FFFFh
SA118
760000h
76FFFFh
SA215
D70000h
D7FFFFh
SA166
A60000h
A6FFFFh
SA117
750000h
75FFFFh
SA214
D60000h
D6FFFFh
SA165
A50000h
A5FFFFh
SA116
740000h
74FFFFh
SA213
D50000h
D5FFFFh
SA164
A40000h
A4FFFFh
SA115
730000h
73FFFFh
SA212
D40000h
D4FFFFh
SA163
A30000h
A3FFFFh
SA114
720000h
72FFFFh
SA211
D30000h
D3FFFFh
SA162
A20000h
A2FFFFh
SA113
710000h
71FFFFh
SA210
D20000h
D2FFFFh
SA161
A10000h
A1FFFFh
SA112
700000h
70FFFFh
SA209
D10000h
D1FFFFh
SA160
A00000h
A0FFFFh
SA111
6F0000h
6FFFFFh
SA208
D00000h
D0FFFFh
SA159
9F0000h
9FFFFFh
SA110
6E0000h
6EFFFFh
SA207
CF0000h
CFFFFFh
SA158
9E0000h
9EFFFFh
SA109
6D0000h
6DFFFFh
Note
Sector SA0 is split up into sub-sectors SS0 - SS15 (dark gray shading)
Sector SA1 is split up into sub-sectors SS16 - SS31(light gray shading)
September 21, 2012 S25FL129P_00_08
S25FL129P
21
D a t a
S h e e t
Table 8.3 S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=1) (Sheet 1 of 2)
Sector
22
Address Range
Start Address
End Address
SS31
FFF000h
FFFFFFh
SS30
FFE000h
SS29
SS28
Sector
Address Range
Sector
Address Range
Start Address
End Address
Start Address
SA239
EF0000h
EFFFFFh
SA191
BF0000h
End Address
BFFFFFh
FFEFFFh
SA238
EE0000h
EEFFFFh
SA190
BE0000h
BEFFFFh
FFD000h
FFDFFFh
SA237
ED0000h
EDFFFFh
SA189
BD0000h
BDFFFFh
FFC000h
FFCFFFh
SA236
EC0000h
ECFFFFh
SA188
BC0000h
BCFFFFh
SS27
FFB000h
FFBFFFh
SA235
EB0000h
EBFFFFh
SA187
BB0000h
BBFFFFh
SS26
FFA000h
FFAFFFh
SA234
EA0000h
EAFFFFh
SA186
BA0000h
BAFFFFh
SS25
FF9000h
FF9FFFh
SA233
E90000h
E9FFFFh
SA185
B90000h
B9FFFFh
SS24
FF8000h
FF8FFFh
SA232
E80000h
E8FFFFh
SA184
B80000h
B8FFFFh
SS23
FF7000h
FF7FFFh
SA231
E70000h
E7FFFFh
SA183
B70000h
B7FFFFh
SS22
FF6000h
FF6FFFh
SA230
E60000h
E6FFFFh
SA182
B60000h
B6FFFFh
SS21
FF5000h
FF5FFFh
SA229
E50000h
E5FFFFh
SA181
B50000h
B5FFFFh
SS20
FF4000h
FF4FFFh
SA228
E40000h
E4FFFFh
SA180
B40000h
B4FFFFh
SS19
FF3000h
FF3FFFh
SA227
E30000h
E3FFFFh
SA179
B30000h
B3FFFFh
SS18
FF2000h
FF2FFFh
SA226
E20000h
E2FFFFh
SA178
B20000h
B2FFFFh
SS17
FF1000h
FF1FFFh
SA225
E10000h
E1FFFFh
SA177
B10000h
B1FFFFh
SS16
FF0000h
FF0FFFh
SA224
E00000h
E0FFFFh
SA176
B00000h
B0FFFFh
SS15
FEF000h
FEFFFFh
SA223
DF0000h
DFFFFFh
SA175
AF0000h
AFFFFFh
SS14
FEE000h
FEEFFFh
SA222
DE0000h
DEFFFFh
SA174
AE0000h
AEFFFFh
SS13
FED000h
FEDFFFh
SA221
DD0000h
DDFFFFh
SA173
AD0000h
ADFFFFh
SS12
FEC000h
FECFFFh
SA220
DC0000h
DCFFFFh
SA172
AC0000h
ACFFFFh
SS11
FEB000h
FEBFFFh
SA219
DB0000h
DBFFFFh
SA171
AB0000h
ABFFFFh
SS10
FEA000h
FEAFFFh
SA218
DA0000h
DAFFFFh
SA170
AA0000h
AAFFFFh
SS9
FE9000h
FE9FFFh
SA217
D90000h
D9FFFFh
SA169
A90000h
A9FFFFh
SS8
FE8000h
FE8FFFh
SA216
D80000h
D8FFFFh
SA168
A80000h
A8FFFFh
SS7
FE7000h
FE7FFFh
SA215
D70000h
D7FFFFh
SA167
A70000h
A7FFFFh
SS6
FE6000h
FE6FFFh
SA214
D60000h
D6FFFFh
SA166
A60000h
A6FFFFh
SS5
FE5000h
FE5FFFh
SA213
D50000h
D5FFFFh
SA165
A50000h
A5FFFFh
SS4
FE4000h
FE4FFFh
SA212
D40000h
D4FFFFh
SA164
A40000h
A4FFFFh
SS3
FE3000h
FE3FFFh
SA211
D30000h
D3FFFFh
SA163
A30000h
A3FFFFh
SS2
FE2000h
FE2FFFh
SA210
D20000h
D2FFFFh
SA162
A20000h
A2FFFFh
SS1
FE1000h
FE1FFFh
SA209
D10000h
D1FFFFh
SA161
A10000h
A1FFFFh
SS0
FE0000h
FE0FFFh
SA208
D00000h
D0FFFFh
SA160
A00000h
A0FFFFh
SA255
FF0000h
FFFFFFh
SA207
CF0000h
CFFFFFh
SA159
9F0000h
9FFFFFh
SA254
FE0000h
FEFFFFh
SA206
CE0000h
CEFFFFh
SA158
9E0000h
9EFFFFh
SA253
FD0000h
FDFFFFh
SA205
CD0000h
CDFFFFh
SA157
9D0000h
9DFFFFh
SA252
FC0000h
FCFFFFh
SA204
CC0000h
CCFFFFh
SA156
9C0000h
9CFFFFh
SA251
FB0000h
FBFFFFh
SA203
CB0000h
CBFFFFh
SA155
9B0000h
9BFFFFh
SA250
FA0000h
FAFFFFh
SA202
CA0000h
CAFFFFh
SA154
9A0000h
9AFFFFh
SA249
F90000h
F9FFFFh
SA201
C90000h
C9FFFFh
SA153
990000h
99FFFFh
SA248
F80000h
F8FFFFh
SA200
C80000h
C8FFFFh
SA152
980000h
98FFFFh
SA247
F70000h
F7FFFFh
SA199
C70000h
C7FFFFh
SA151
970000h
97FFFFh
SA246
F60000h
F6FFFFh
SA198
C60000h
C6FFFFh
SA150
960000h
96FFFFh
SA245
F50000h
F5FFFFh
SA197
C50000h
C5FFFFh
SA149
950000h
95FFFFh
SA244
F40000h
F4FFFFh
SA196
C40000h
C4FFFFh
SA148
940000h
94FFFFh
SA243
F30000h
F3FFFFh
SA195
C30000h
C3FFFFh
SA147
930000h
93FFFFh
SA242
F20000h
F2FFFFh
SA194
C20000h
C2FFFFh
SA146
920000h
92FFFFh
SA241
F10000h
F1FFFFh
SA193
C10000h
C1FFFFh
SA145
910000h
91FFFFh
SA240
F00000h
F0FFFFh
SA192
C00000h
C0FFFFh
SA144
900000h
90FFFFh
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
Table 8.3 S25FL129P Sector Address Table (Uniform 64 KB sector, TBPARM=1) (Sheet 2 of 2)
Sector
Address Range
Start Address
End Address
SA143
8F0000h
8FFFFFh
SA142
8E0000h
SA141
SA140
Sector
Address Range
Sector
Address Range
Start Address
End Address
Start Address
SA95
5F0000h
5FFFFFh
SA47
2F0000h
End Address
2FFFFFh
8EFFFFh
SA94
5E0000h
5EFFFFh
SA46
2E0000h
2EFFFFh
8D0000h
8DFFFFh
SA93
5D0000h
5DFFFFh
SA45
2D0000h
2DFFFFh
8C0000h
8CFFFFh
SA92
5C0000h
5CFFFFh
SA44
2C0000h
2CFFFFh
SA139
8B0000h
8BFFFFh
SA91
5B0000h
5BFFFFh
SA43
2B0000h
2BFFFFh
SA138
8A0000h
8AFFFFh
SA90
5A0000h
5AFFFFh
SA42
2A0000h
2AFFFFh
SA137
890000h
89FFFFh
SA89
590000h
59FFFFh
SA41
290000h
29FFFFh
SA136
880000h
88FFFFh
SA88
580000h
58FFFFh
SA40
280000h
28FFFFh
SA135
870000h
87FFFFh
SA87
570000h
57FFFFh
SA39
270000h
27FFFFh
SA134
860000h
86FFFFh
SA86
560000h
56FFFFh
SA38
260000h
26FFFFh
SA133
850000h
85FFFFh
SA85
550000h
55FFFFh
SA37
250000h
25FFFFh
SA132
840000h
84FFFFh
SA84
540000h
54FFFFh
SA36
240000h
24FFFFh
SA131
830000h
83FFFFh
SA83
530000h
53FFFFh
SA35
230000h
23FFFFh
SA130
820000h
82FFFFh
SA82
520000h
52FFFFh
SA34
220000h
22FFFFh
SA129
810000h
81FFFFh
SA81
510000h
51FFFFh
SA33
210000h
21FFFFh
SA128
800000h
80FFFFh
SA80
500000h
50FFFFh
SA32
200000h
20FFFFh
SA127
7F0000h
7FFFFFh
SA79
4F0000h
4FFFFFh
SA31
1F0000h
1FFFFFh
SA126
7E0000h
7EFFFFh
SA78
4E0000h
4EFFFFh
SA30
1E0000h
1EFFFFh
SA125
7D0000h
7DFFFFh
SA77
4D0000h
4DFFFFh
SA29
1D0000h
1DFFFFh
SA124
7C0000h
7CFFFFh
SA76
4C0000h
4CFFFFh
SA28
1C0000h
1CFFFFh
SA123
7B0000h
7BFFFFh
SA75
4B0000h
4BFFFFh
SA27
1B0000h
1BFFFFh
SA122
7A0000h
7AFFFFh
SA74
4A0000h
4AFFFFh
SA26
1A0000h
1AFFFFh
SA121
790000h
79FFFFh
SA73
490000h
49FFFFh
SA25
190000h
19FFFFh
SA120
780000h
78FFFFh
SA72
480000h
48FFFFh
SA24
180000h
18FFFFh
SA119
770000h
77FFFFh
SA71
470000h
47FFFFh
SA23
170000h
17FFFFh
SA118
760000h
76FFFFh
SA70
460000h
46FFFFh
SA22
160000h
16FFFFh
SA117
750000h
75FFFFh
SA69
450000h
45FFFFh
SA21
150000h
15FFFFh
SA116
740000h
74FFFFh
SA68
440000h
44FFFFh
SA20
140000h
14FFFFh
SA115
730000h
73FFFFh
SA67
430000h
43FFFFh
SA19
130000h
13FFFFh
SA114
720000h
72FFFFh
SA66
420000h
42FFFFh
SA18
120000h
12FFFFh
SA113
710000h
71FFFFh
SA65
410000h
41FFFFh
SA17
110000h
11FFFFh
SA112
700000h
70FFFFh
SA64
400000h
40FFFFh
SA16
100000h
10FFFFh
SA111
6F0000h
6FFFFFh
SA63
3F0000h
3FFFFFh
SA15
0F0000h
0FFFFFh
SA110
6E0000h
6EFFFFh
SA62
3E0000h
3EFFFFh
SA14
0E0000h
0EFFFFh
SA109
6D0000h
6DFFFFh
SA61
3D0000h
3DFFFFh
SA13
0D0000h
0DFFFFh
SA108
6C0000h
6CFFFFh
SA60
3C0000h
3CFFFFh
SA12
0C0000h
0CFFFFh
SA107
6B0000h
6BFFFFh
SA59
3B0000h
3BFFFFh
SA11
0B0000h
0BFFFFh
SA106
6A0000h
6AFFFFh
SA58
3A0000h
3AFFFFh
SA10
0A0000h
0AFFFFh
SA105
690000h
69FFFFh
SA57
390000h
39FFFFh
SA9
090000h
09FFFFh
SA104
680000h
68FFFFh
SA56
380000h
38FFFFh
SA8
080000h
08FFFFh
SA103
670000h
67FFFFh
SA55
370000h
37FFFFh
SA7
070000h
07FFFFh
SA102
660000h
66FFFFh
SA54
360000h
36FFFFh
SA6
060000h
06FFFFh
SA101
650000h
65FFFFh
SA53
350000h
35FFFFh
SA5
050000h
05FFFFh
SA100
640000h
64FFFFh
SA52
340000h
34FFFFh
SA4
040000h
04FFFFh
SA99
630000h
63FFFFh
SA51
330000h
33FFFFh
SA3
030000h
03FFFFh
SA98
620000h
62FFFFh
SA50
320000h
32FFFFh
SA2
020000h
02FFFFh
SA97
610000h
61FFFFh
SA49
310000h
31FFFFh
SA1
010000h
01FFFFh
SA96
600000h
60FFFFh
SA48
300000h
30FFFFh
SA0
000000h
00FFFFh
Note
Sector SA254 is split up into sub-sectors SS0 - SS15 (dark gray shading)
Sector SA255 is split up into sub-sectors SS16 - SS31(light gray shading)
September 21, 2012 S25FL129P_00_08
S25FL129P
23
D a t a
9.
S h e e t
Command Definitions
The host system must shift all commands, addresses, and data in and out of the device, beginning with the
most significant bit. On the first rising edge of SCK after CS# is driven low, the device accepts the one-byte
command on SI (all commands are one byte long), most significant bit first. Each successive bit is latched on
the rising edge of SCK. Table 9.1 lists the complete set of commands.
Every command sequence begins with a one-byte command code. The command may be followed by
address, data, both, or nothing, depending on the command. CS# must be driven high after the last bit of the
command sequence has been written.
The Read Data Bytes (READ), Read Data Bytes at Higher Speed (FAST_READ), Dual Output Read (DOR),
Quad Output Read (QOR), Dual I/O High Performance Read (DIOR), Quad I/O High Performance Read
(QIOR), Read Status Register (RDSR), Read Configuration Register (RCR), Read OTP Data (OTPR), Read
Manufacturer and Device ID (READ_ID), Read Identification (RDID) and Release from Deep Power-Down
and Read Electronic Signature (RES) command sequences are followed by a data output sequence on SO.
CS# can be driven high after any bit of the sequence is output to terminate the operation.
The Page Program (PP), Quad Page Program (QPP), 64 KB Sector Erase (SE), 4 KB Parameter Sector
Erase (P4E), 8 KB Parameter Sector Erase (P8E), Bulk Erase (BE), Write Status and Configuration Registers
(WRR), Program OTP space (OTPP), Write Enable (WREN), or Write Disable (WRDI) commands require that
CS# be driven high at a byte boundary, otherwise the command is not executed. Since a byte is composed of
eight bits, CS# must therefore be driven high when the number of clock pulses after CS# is driven low is an
exact multiple of eight.
The device ignores any attempt to access the memory array during a Write Registers, program, or erase
operation, and continues the operation uninterrupted.
The instruction set is listed in Table 9.1.
24
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
Table 9.1 Instruction Set
Operation
Command
One byte Command
Code
Description
Address
Byte Cycle
Mode
Bit
Cycle
Dummy
Byte Cycle
Data
Byte
Cycle
1 to ∞
READ
(03h) 0000 0011
Read Data bytes
3
0
0
FAST_READ
(0Bh) 0000 1011
Read Data bytes at Fast Speed
3
0
1
1 to ∞
DOR
(3Bh) 0011 1011
Dual Output Read
3
0
1
1 to ∞
QOR
(6Bh) 0110 1011
Quad Output Read
3
0
1
1 to ∞
Read
DIOR
(BBh) 1011 1011
Dual I/O High Performance Read
3
1
0
1 to ∞
QIOR
(EBh) 1110 1011
Quad I/O High Performance Read
3
1
2
1 to ∞
RDID
(9Fh) 1001 1111
Read Identification
0
0
0
1 to 81
READ_ID
(90h) 1001 0000
Read Manufacturer and Device Identification
3
0
0
1 to ∞
WREN
(06h) 0000 0110
Write Enable
0
0
0
0
WRDI
(04h) 0000 0100
Write Disable
0
0
0
0
P4E (1)
(20h) 0010 0000
4 KB Parameter Sector Erase
3
0
0
0
Write Control
Erase
P8E (1)
(40h) 0100 0000
8 KB (two 4KB) Parameter Sector Erase
3
0
0
0
SE
(D8h) 1101 1000
64 KB and 256 KB Sector Erase
3
0
0
0
BE
(60h) 0110 0000 or
(C7h) 1100 0111
Bulk Erase
0
0
0
0
PP
(02h) 0000 0010
Page Programming
3
0
0
1 to 256
QPP
(32h) 0011 0010
Quad Page Programming
3
0
0
1 to 256
RDSR
(05h) 0000 0101
Read Status Register
0
0
0
1 to ∞
WRR
(01h) 0000 0001
Write (Status and Configuration) Register
0
0
0
1 to 2
RCR
(35h) 0011 0101
Read Configuration Register (CFG)
0
0
0
1 to ∞
CLSR
(30h) 0011 0000
Reset the Erase and Program Fall Flag (SRS and
SR6) and restore normal operation)
0
0
0
0
Program
Status and
Configuration
Register
DP
(B9h) 1011 1001
Deep Power-Down
0
0
0
0
(ABh) 1010 1011
Release from Deep Power-Down Mode
0
0
0
0
(ABh) 1010 1011
Release from Deep Power-Down and Read
Electronic Signature
0
0
3
1 to ∞
OTPP
(42h) 0100 0010
Program one byte of data in OTP memory space
3
0
0
1
OTPR
(4Bh) 0100 1011
Read data in the OTP memory space
3
0
1
1 to ∞
Power Saving
RES
OTP
Note
1. For uniform 64 KB sector device only.
September 21, 2012 S25FL129P_00_08
S25FL129P
25
D a t a
9.1
S h e e t
Read Data Bytes (READ)
The Read Data Bytes (READ) command reads data from the memory array at the frequency (fR) presented at
the SCK input, with a maximum speed of 40 MHz. The host system must first select the device by driving CS#
low. The READ command is then written to SI, followed by a 3 byte address (A23-A0). Each bit is latched on
the rising edge of SCK. The memory array data, at that address, are output serially on SO at a frequency fR,
on the falling edge of SCK.
Figure 9.1 and Table 9.1 on page 25 detail the READ command sequence. The first address byte specified
can start at any location of the memory array. The device automatically increments to the next higher address
after each byte of data is output. The entire memory array can therefore be read with a single READ
command. When the highest address is reached, the address counter reverts to 00000h, allowing the read
sequence to continue indefinitely.
The READ command is terminated by driving CS# high at any time during data output. The device rejects any
READ command issued while it is executing a program, erase, or Write Registers operation, and continues
the operation uninterrupted.
Figure 9.1 Read Data Bytes (READ) Command Sequence
CS#
Mode 3
SCK
0
1
2 3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
Mode 0
Command
24 Bit Address
23 22 21
SI
3 2 1 0
MSB
SO
Hi-Z
Data Out 1
7 6 5 4 3 2
Data Out 2
1 0 7
MSB
26
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
9.2
S h e e t
Read Data Bytes at Higher Speed (FAST_READ)
The FAST_READ command reads data from the memory array at the frequency (fC) presented at the SCK
input, with a maximum speed of 104 MHz. The host system must first select the device by driving CS# low.
The FAST_READ command is then written to SI, followed by a 3 byte address (A23-A0) and a dummy byte.
Each bit is latched on the rising edge of SCK. The memory array data, at that address, are output serially on
SO at a frequency fC, on the falling edge of SCK.
The FAST_READ command sequence is shown in Figure 9.2 and Table 9.1 on page 25. The first address
byte specified can start at any location of the memory array. The device automatically increments to the next
higher address after each byte of data is output. The entire memory array can therefore be read with a single
FAST_READ command. When the highest address is reached, the address counter reverts to 000000h,
allowing the read sequence to continue indefinitely.
The FAST_READ command is terminated by driving CS# high at any time during data output. The device
rejects any FAST_READ command issued while it is executing a program, erase, or Write Registers
operation, and continues the operation uninterrupted.
Figure 9.2 Read Data Bytes at Higher Speed (FAST_READ) Command Sequence
CS#
Mode 3
SCK
0
1
2
3
4
5
Command
7
8
9
10
28 29 30
31 32 33
24 Bit Address
23 22 21
SI
SO
6
34 35 36 37 38
39
40 41
42 43 44 45
46
47
Mode 0
3
2
Hi-Z
Dummy Byte
1
0
7
6
5
4
3
2
1
0
7
MSB
September 21, 2012 S25FL129P_00_08
S25FL129P
6
5
4
3
DATA OUT 1
2
1
0
7
MSB
DATA OUT 2
27
D a t a
9.3
S h e e t
Dual Output Read Mode (DOR)
The Dual Output Read instruction is similar to the FAST_READ instruction, except that the data is shifted out
2 bits at a time using 2 pins (SI/IO0 and SO/IO1) instead of 1 bit, at a maximum frequency of 80 MHz. The
Dual Output Read mode effectively doubles the data transfer rate compared to the FAST_READ instruction.
The host system must first select the device by driving CS# low. The Dual Output Read command is then
written to SI, followed by a 3-byte address (A23-A0) and a dummy byte. Each bit is latched on the rising edge
of SCK. Then the memory contents, at the address that is given, are shifted out two bits at a time through the
IO0 (SI) and IO1 (SO) pins at a frequency fC on the falling edge of SCK.
The Dual Output Read command sequence is shown in Figure 9.3 and Table 9.1 on page 25. The first
address byte specified can start at any location of the memory array. The device automatically increments to
the next higher address after each byte of data is output. The entire memory array can therefore be read with
a single Dual Output Read command. When the highest address is reached, the address counter reverts to
00000h, allowing the read sequence to continue indefinitely.
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.
The Dual Output Read command is terminated by driving CS# high at any time during data output. The
device rejects any Dual Output Read command issued while it is executing a program, erase, or Write
Registers operation, and continues the operation uninterrupted.
Figure 9.3 Dual Output Read Instruction Sequence
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCK
24 Bit
Address
Instruction
SI/IO0
23 22 21
*
3
Dummy Byte
2
Hi-Z
SO/IO1
1
0
7
6
5
4
3
2
SI Switches from Input to Output
1
0
6
4
2
0
6
4
2
0
6
7
5
3
1
7
5
3
1
7
*
*
Byte 1
*
Byte 2
*MSB
28
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
9.4
S h e e t
Quad Output Read Mode (QOR)
The Quad Output Read instruction is similar to the FAST_READ instruction, except that the data is shifted out
4 bits at a time using 4 pins (SI/IO0, SO/IO1, W#/ACC/IO2 and HOLD#/IO3) instead of 1 bit, at a maximum
frequency of 80 MHz. The Quad Output Read mode effectively doubles the data transfer rate compared to the
Dual Output Read instruction, and is four times the data transfer rate of the FAST_READ instruction.
The host system must first select the device by driving CS# low. The Quad Output Read command is then
written to SI, followed by a 3-byte address (A23-A0) and a dummy byte. Each bit is latched on the rising edge
of SCK. Then the memory contents, at the address that are given, are shifted out four bits at a time through
IO0 (SI), IO1 (SO), IO2 (W#/ACC), and IO3 (HOLD#) pins at a frequency fC on the falling edge of SCK.
The Quad Output Read command sequence is shown in Figure 9.4 and Table 9.1 on page 25. The first
address byte specified can start at any location of the memory array. The device automatically increments to
the next higher address after each byte of data is output. The entire memory array can therefore be read with
a single Quad Output Read command. When the highest address is reached, the address counter reverts to
00000h, allowing the read sequence to continue indefinitely.
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.
The Quad Output Read command is terminated by driving CS# high at any time during data output. The
device rejects any Quad Output Read command issued while it is executing a program, erase, or Write
Registers operation, and continues the operation uninterrupted.
The Quad bit of Configuration Register must be set (CR Bit1 = 1) to enable the Quad mode capability of the
S25FL device.
Figure 9.4 Quad Output Read Instruction Sequence
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCK
Instruction
SI/IO0
SO/IO1
W#/ACC/IO2
HOLD#/IO3
Hi-Z
24 Bit
Address
23 22 21
*
3 2 1
Hi-Z
Hi-Z
Dummy Byte
0
7 6 5
4 3
2 1 0
*
SI Switches from Input to Output
4 0
4 0
4 0
4 0
4
5
1
5
1
5
5
1 5
6
2
6
2 6
2
6
2
6
7
3
7
3 7
3
7
3
7
1
*
*
*
*
*
DATA DATA DATA DATA
OUT 1 OUT 2 OUT 3 OUT 4
September 21, 2012 S25FL129P_00_08
S25FL129P
*MSB
29
D a t a
9.5
S h e e t
DUAL I/O High Performance Read Mode (DIOR)
The Dual I/O High Performance Read instruction is similar to the Dual Output Read instruction, except that it
improves throughput by allowing input of the address bits (A23-A0) using two bits per SCK via two input pins
(SI/IO2 and SO/IO1), at a maximum frequency of 80 MHz.
The host system must first select the device by driving CS# low. The Dual I/O High Performance Read
command is then written to SI, followed by a 3-byte address (A23-A0) and a 1-byte Mode instruction, with two
bits latched on the rising edge of SCK. Then the memory contents, at the address that is given, are shifted out
two bits at a time through IO0 (SI) and IO1 (SO).
The DUAL I/O High Performance Read command sequence is shown in Figure 9.5 and Table 9.1
on page 25. The first address byte specified can start at any location of the memory array. The device
automatically increments to the next higher address after each byte of data is output. The entire memory
array can therefore be read with a single DUAL I/O High Performance Read command. When the highest
address is reached, the address counter reverts to 00000h, allowing the read sequence to continue
indefinitely.
In addition, address jumps can be done without exiting the Dual I/O High Performance Mode through the
setting of the Mode bits (after the Address (A23-0) sequence, as shown in Figure 9.5). This added feature
removes the need for the instruction sequence and greatly improves code execution (XIP). The upper nibble
(bits 7-4) of the Mode bits control the length of the next Dual I/O High Performance instruction through the
inclusion or exclusion of the first byte instruction code. The lower nibble (bits 3-0) of the Mode bits are DON’T
CARE (“x”). If the Mode bits equal Axh, then the device remains in Dual I/O High Performance Read Mode
and the next address can be entered (after CS# is raised high and then asserted low) without requiring the
BBh instruction opcode, as shown in Figure 9.6, thus eliminating eight cycles for the instruction sequence.
However, if the Mode bits are any value other than Axh, then the next instruction (after CS# is raised high and
then asserted low) requires the instruction sequence, which is normal operation. The following sequences will
release the device from Dual I/O High Performance Read mode; after which, the device can accept standard
SPI instructions:
1. During the Dual I/O High Performance Instruction Sequence, if the Mode bits are any value other
than Axh, then the next time CS# is raised high and then asserted low, the device will be released
from Dual I/O High Performance Read mode.
2. Furthermore, during any operation, if CS# toggles high to low to high for eight cycles (or less) and
data input (IO0 and IO1) are not set for a valid instruction sequence, then the device will be
released from Dual I/O High Performance Read mode.
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.
The read instruction can be terminated by driving the CS# pin to the logic high state. The CS# pin can be
driven high at any time during data output to terminate a read operation.
Figure 9.5 DUAL I/O High Performance Read Instruction Sequence
CS#
0
1
2
3
4
5
6
7
8
9
10
18
19
20
21
22
23
24
25
26
27
28
29
30
31
SCK
24 Bit
Address
Instruction
SI/IO0
Hi-Z
SO/IO1
IO0 & IO1 Switches from Input to Output
22 20
2
0
6
4
2
0
6
4
2
0
6
4
2
0
6
23 21
*
3
1
7
5
3
1
7
5
3
1
7
5
3
1
7
*
*
Mode Bits
30
S25FL129P
*
Byte 1
*
Byte 2
*MSB
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
Figure 9.6 Continuous Dual I/O High Performance Read Instruction Sequence
CS#
0
1
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
SCK
24 Bit
Address
SI/IO0
SO/IO1
IO0 & IO1 Switches from Input to Output
22 20
2
0
6
4
2
0
6
4
2
0
6
4
2
0
6
23
3
1
7
5
3
1
7
5
3
1
7
5
3
1
7
*
21
Mode Bits
September 21, 2012 S25FL129P_00_08
*
*
*
S25FL129P
Byte 1
*
Byte 2
*MSB
31
D a t a
9.6
S h e e t
Quad I/O High Performance Read Mode (QIOR)
The Quad I/O High Performance Read instruction is similar to the Quad Output Read instruction, except that
it further improves throughput by allowing input of the address bits (A23-A0) using 4 bits per SCK via four
input pins (SI/IO0, SO/IO1, W#/ACC/IO2 and HOLD#/IO3), at a maximum frequency of 80 MHz.
The host system must first select the device by driving CS# low. The Quad I/O High Performance Read
command is then written to SI, followed by a 3-byte address (A23-A0) and a 1-byte Mode instruction, with four
bits latched on the rising edge of SCK. Note that four dummy clocks are required prior to the data input. Then
the memory contents, at the address that is given, are shifted out four bits at a time through IO0 (SI), IO1
(SO), IO2 (W#/ACC), and IO3 (HOLD#).
The Quad I/O High Performance Read command sequence is shown in Figure 9.7 and Table 9.1 on page 25.
The first address byte specified can start at any location of the memory array. The device automatically
increments to the next higher address after each byte of data is output. The entire memory array can
therefore be read with a single Quad I/O High Performance Read command. When the highest address is
reached, the address counter reverts to 00000h, allowing the read sequence to continue indefinitely.
In addition, address jumps can be done without exiting the Quad I/O High Performance Mode through the
setting of the Mode bits (after the Address (A23-0) sequence, as shown in Figure 9.7). This added feature the
removes the need for the instruction sequence and greatly improves code execution (XIP). The upper nibble
(bits 7-4) of the Mode bits control the length of the next Quad I/O High Performance instruction through the
inclusion or exclusion of the first byte instruction code. The lower nibble (bits 3-0) of the Mode bits are DON'T
CARE (“x”). If the Mode bits equal Axh, then the device remains in Quad I/O High Performance Read Mode
and the next address can be entered (after CS# is raised high and then asserted low) without requiring the
EBh instruction opcode, as shown in Figure 9.8, thus eliminating eight cycles for the instruction sequence.
The following sequences will release the device from Quad I/O High Performance Read mode; after which,
the device can accept standard SPI instructions:
1. During the Quad I/O High Performance Instruction Sequence, if the Mode bits are any value other
than Axh, then the next time CS# is raised high and then asserted low the device will be released
from Quad I/O High Performance Read mode.
2. Furthermore, during any operation, if CS# toggles high to low to high for eight cycles (or less) and
data input (IO0, IO1, IO2, and IO3) are not set for a valid instruction sequence, then the device will
be released from Quad I/O High Performance Read mode.
It is important that the I/O pins be set to high-impedance prior to the falling edge of the first data out clock.
The read instruction can be terminated by driving the CS# pin to the logic high state. The CS# pin can be
driven high at any time during data output to terminate a read operation.
Figure 9.7 QUAD I/O High Performance Instruction Sequence
CS#
0
1
2
3
4
5
6
7
8
9
13 14 15 16 17 18 19 20 21 22 23 24 25 26
SCK
Instruction
SI/IO0
Hi-Z
SO/IO1
24 Bit
Address
IO’s Switches from Input to Output
20 16
0
4
0
4
0
4
0
4
21 17
1
5
1
5
1
5
1
5
22 18
2
6
2
6
2
6
2
6
23 19
*
3
7
3
7
3
3
7
Hi-Z
W#/ACC/IO2
HOLD#/IO3
Hi-Z
*
Mode Bits DUMMY DUMMY
7
*
*
Byte 1
Byte 2
*
*MSB
32
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
Figure 9.8 Continuous QUAD I/O High Performance Instruction Sequence
CS#
0
1
4
5
6
7
8
9
10
11
12
13
14
15
16
SCK
24 Bit
Address
IO’s Switches from Input to Output
SI/IO0
20
16
SO/IO1
21
17
1
5
1
5
1
W#/ACC/IO2
22
18
2
6
2
6
2
HOLD#/IO3
23
*
19
3
7
3
3
7
0
4
0
* Bits DUMMY
Mode
4
7
DUMMY
0
*
Byte 1
0
4
5
1
5
6
2
6
3
7
*
Byte 2
*
4
*MSB
9.7
Read Identification (RDID)
The Read Identification (RDID) command outputs the one-byte manufacturer identification, followed by the
two-byte device identification and the bytes for the Common Flash Interface (CFI) tables. The manufacturer
identification is assigned by JEDEC; for Spansion devices, it is 01h. The device identification (2 bytes) and
CFI bytes are assigned by the device manufacturer.
See Table 9.2 on page 34 for device ID data.
The Common Flash Interface (CFI) specification outlines device and host system software interrogation
handshake, which allows vendor-specified software algorithms to be used for entire families of devices.
Software support can then be device-independent, JEDEC ID-independent, and forward- and backwardcompatible for the specified flash device families. Flash vendors can standardize their existing interfaces for
long-term compatibility. The system can read CFI information at the addresses given in Table 9.3.
The host system must first select the device by driving CS# low. The RDID command is then written to SI,
and each bit is latched on the rising edge of SCK. One byte of manufacture identification, two bytes of device
identification and sixty-six bytes of extended device identification are then output from the memory array on
SO at a frequency fR, on the falling edge of SCK. The maximum clock frequency for the RDID (9Fh)
command is 50 MHz (Normal Read). The manufacturer ID and Device ID can be read repeatedly by applying
multiples of six hundred and forty eight clock cycles. The manufacturer ID, Device ID and CFI table can be
continuously read as long as CS# is held low with a clock input.
The RDID command sequence is shown in Figure 9.9 and Table 9.1 on page 25.
Driving CS# high after the device identification data has been read at least once terminates the RDID
command. Driving CS# high at any time during data output (for example, while reading the extended CFI
bytes), also terminates the RDID operation.
The device rejects any RDID command issued while it is executing a program, erase, or Write Registers
operation, and continues the operation uninterrupted.
September 21, 2012 S25FL129P_00_08
S25FL129P
33
D a t a
S h e e t
Figure 9.9 Read Identification (RDID) Command Sequence and Data-Out Sequence
CS#
0
1
2
3
4
5
6
7
8
9
10
28
29
30
32
31
33
34
652 653 654
655
SCK
Instruction
SI
Extended Device Information
Manufacturer / Device Identification
High Impedance
0
SO
1
2
20
21
22
23
24
25
26
644
645
646
1 647
Table 9.2 Manufacturer and Device Identification - RDID (9Fh):
Device
Manufacturer
Identification
Device Identification
Extended Device Identification
Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Uniform 256 KB Sector
01h
20h
18h
4Dh
00h
Uniform 64 KB Sector
01h
20h
18h
4Dh
01h
Notes
1. Byte 0 is Manufacturer ID of Spansion.
2. Byte 1 and 2 is Device Id.
3. Byte 3 is Extended Device Information String Length, to indicate how many Extended Device Information bytes will follow.
4. Byte 4 indicates uniform 64 KB sector or uniform 256 KB sector device.
5. Bytes 5 and 6 are Spansion reserved (do not use).
6. For Bytes 07h-0Fh and 3Dh-3Fh, the data will be read as 0xFF.
7. Bytes 10h-50h are factory programmed per JEDEC standard.
Table 9.3 Product Group CFI Query Identification String
34
Byte
Data
10h
51h
11h
52h
12h
59h
13h
02h
14h
00h
15h
40h
16h
00h
17h
00h
18h
00h
19h
00h
1Ah
00h
Description
Query Unique ASCII string “QRY”
Primary OEM Command Set
Address for Primary Extended Table
Alternate OEM Command Set
(00h = none exists)
Address for Alternate OEM Extended Table
(00h = none exists)
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
Table 9.4 Product Group CFI System Interface String
Byte
Data
Description
1Bh
27h
VCC Min. (erase/program): (D7-D4: Volt, D3-D0: 100 mV)
1Ch
36h
VCC Max. (erase/program): (D7-D4: Volt, D3-D0: 100 mV)
1Dh
00h
VPP Min. voltage (00h = no VPP pin present)
1Eh
00h
VPP Max. voltage (00h = no VPP pin present)
1Fh
0Bh
Typical timeout per single byte program 2N µs
20h
0Bh
Typical timeout for Min. size Page program 2N µs (00h = not supported)
21h
09h
Typical timeout per individual sector erase 2N ms
22h
11h
Typical timeout for full chip erase 2N ms (00h = not supported)
23h
01h
Max. timeout for byte program 2N times typical
24h
01h
Max. timeout for page program 2N times typical
25h
02h
Max. timeout per individual sector erase 2N times typical
26h
01h
Max. timeout for full chip erase 2N times typical
(00h = not supported)
Table 9.5 Product Group CFI Device Geometry Definition
Byte
Data
27h
18h
Device Size = 2 N byte;
Description
28h
05h
Flash Device Interface Description;
00h = x8 only
01h = x16 only
29h
05h
02h = x8/x16 capable
03h = x32 only
04h = Single I/O SPI, 3-byte address
05h = Multi I/O SPI, 3-byte address
2Ah
08h
2Bh
00h
2Ch
2Dh
2Eh
2Fh
30h
31h
02h (uniform 64 KB sector)
01h (uniform 256 KB sector)
Max. number of bytes in multi-byte write = 2N (00 = not supported)
Number of Erase Block Regions within device
1 = Uniform Device, 2 = Parameter Block
1Fh (uniform 64 KB sector)
3Fh (uniform 256 KB sector)
00h
10h (uniform 64 KB sector)
Erase Block Region 1 Information (refer to CFI publication 100)
00h (uniform 256 KB sector)
00h (uniform 64 KB sector)
04h (uniform 256 KB sector)
FDh (uniform 64 KB sector)
00h (uniform 256 KB sector)
32h
00h
33h
00h
Erase Block Region 2 Information (refer to CFI publication 100)
34h
01h (uniform 64 KB sector)
00h (uniform 256 KB sector)
35h
00h
36h
00h
37h
00h
38h
00h
39h
00h
3Ah
00h
3Bh
00h
3Ch
00h
Erase Block Region 3 Information (refer to CFI publication 100)
Erase Block Region 4 Information (refer to CFI publication 100)
September 21, 2012 S25FL129P_00_08
S25FL129P
35
D a t a
S h e e t
Table 9.6 Product Group CFI Primary Vendor-Specific Extended Query
Byte
Data
40h
50h
Description
41h
52h
42h
49h
43h
31h
Major version number, ASCII
44h
33h
Minor version number, ASCII
45h
15h
Address Sensitive Unlock (Bits 1-0)
00b = Required, 01b = Not Required
Process Technology (Bits 5-2)
0000b = 0.23 µm Floating Gate
0001b = 0.17 µm Floating Gate
0010b = 0.23 µm MirrorBit
0010b = 0.20 µm MirrorBit
0011b = 0.11 µm Floating Gate
0100b = 0.11 µm MirrorBit
0101b = 0.09 µm MirrorBit
1000b = 0.065 µm MirrorBit
46h
00h
Erase Suspend
0 = Not Supported, 1 = Read Only, 2 = Read and Write
47h
04h
Sector Protect
00 = Not Supported, X = Number of sectors in per smallest group
48h
00h
Temporary Sector Unprotect
00 = Not Supported, 01 = Supported
49h
05h
Sector Protect/Unprotect Scheme
04 = High Voltage Method
05 = Software Command Locking Method
08 = Advanced Sector Protection Method
4Ah
00h
Simultaneous Operation
00 = Not Supported, X = Number of Sectors outside Bank 1
4Bh
01h
Burst Mode Type
00 = Not Supported, 01 = Supported
4Ch
03h
Page Mode Type
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page,
03 = 256 Byte Page
4Dh
85h
ACC (Acceleration) Supply Minimum
00 = Not Supported, (D7-D4: Volt, D3-D0: 100 mV)
4Eh
95h
ACC (Acceleration) Supply Maximum
00 = Not Supported, (D7-D4: Volt, D3-D0: 100 mV)
4Fh
07h
W# Protection
07 = Uniform Device with Top or Bottom Write Protect (user select)
50h
00h
Program Suspend
00 = Not Supported, 01 = Supported
Query-unique ASCII string “PRI”
Note
CFI data related to VCC and time-outs may differ from actual VCC and time-outs of the product. Please consult the Ordering Information
tables to obtain the VCC range for particular part numbers. Please consult the AC Characteristics on page 60 for typical timeout
specifications.
36
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
9.8
S h e e t
Read-ID (READ_ID)
The READ_ID instruction provides the S25FL129P manufacturer and device information and is provided as
an alternative to the Release from Deep Power-Down and Read Electronic Signature (RES), and the JEDEC
Read Identification (RDID) commands.
The instruction is initiated by driving the CS# pin low and shifting in (via the SI input pin) the instruction code
“90h” followed by a 24-bit address (which is either 00000h or 00001h). Following this, the Manufacturer ID
and the Device ID are shifted out on the SO output pin starting after the falling edge of the SCK serial clock
input signal. If the 24-bit address is set to 000000h, the Manufacturer ID is read out first followed by the
Device ID. If the 24-bit address is set to 000001h, then the Device ID is read out first followed by the
Manufacturer ID. The Manufacturer ID and the Device ID are always shifted out on the SO output pin with the
MSB first, as shown in Figure 9.10. Once the device is in Read-ID mode, the Manufacturer ID and Device ID
output data toggles between address 000000H and 000001H until terminated by a low to high transition on
the CS# input pin. The maximum clock frequency for the Read-ID (90h) command is at 104 MHz
(FAST_READ). The Manufacturer ID and Device ID is output continuously until terminated by a low to high
transition on CS# chip select input pin.
Figure 9.10 Read-ID (RDID) Command Timing Diagram
CS#
0
1
2
3
4
5
6
7
8
9
10
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCK
Instruction
SI
24-Bit Address
23 22 21
3
2
1
0
MSB
Manufacture Identification
Device Identification
High Impedance
7
SO
6
5
4
3
2
1
0
Table 9.7 READ_ID Data-Out Sequence
Address
Data
Manufacturer Identification
00000h
01h
Device Identification
00001h
17h
September 21, 2012 S25FL129P_00_08
S25FL129P
37
D a t a
9.9
S h e e t
Write Enable (WREN)
The Write Enable (WREN) command (see Figure 9.11) sets the Write Enable Latch (WEL) bit to a 1, which
enables the device to accept a Write Status Register, program, or erase command. The WEL bit must be set
prior to every Page Program (PP), Quad Page Program (QPP), Parameter Sector Erase (P4E, P8E), Erase
(SE or BE), Write Registers (WRR) and OTP Program (OTPP) command.
The host system must first drive CS# low, write the WREN command, and then drive CS# high.
Figure 9.11 Write Enable (WREN) Command Sequence
CS#
0
Mode 3
SCK
1
2
3
4
5
6
7
Mode 0
Command
SI
Hi-Z
SO
9.10
Write Disable (WRDI)
The Write Disable (WRDI) command (see Figure 9.12) resets the Write Enable Latch (WEL) bit to a 0, which
disables the device from accepting a Page Program (PP), Quad Page Program (QPP), Parameter Sector
Erase (P4E, P8E), Erase (SE, BE), Write Registers (WRR) and OTP Program (OTPP) command. The host
system must first drive CS# low, write the WRDI command, and then drive CS# high.
Any of following conditions resets the WEL bit:
 Power-up
 Write Disable (WRDI) command completion
 Write Registers (WRR) command completion
 Page Program (PP) command completion
 Quad Page Program (QPP) completion
 Parameter Sector Erase (P4E, P8E) completion (applicable for the uniform 64 KB sector device only)
 Sector Erase (SE) command completion
 Bulk Erase (BE) command completion
 OTP Program (OTPP) completion
Figure 9.12 Write Disable (WRDI) Command Sequence
CS#
Mode 3
0 1 2 3 4 5 6 7
SCK Mode 0
Command
SI
Hi-Z
SO
38
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
9.11
S h e e t
Read Status Register (RDSR)
The Read Status Register (RDSR) command outputs the state of the Status Register bits. Table 9.8 shows
the status register bits and their functions. The RDSR command may be written at any time, even while a
program, erase, or Write Registers operation is in progress. The host system should check the Write In
Progress (WIP) bit before sending a new command to the device if an operation is already in progress.
Figure 9.13 shows the RDSR command sequence, which also shows that it is possible to read the Status
Register continuously until CS# is driven high. The maximum clock frequency for the RDSR command is
104 MHz.
Table 9.8 S25FL129P Status Register
Bit
Status Register Bit
Bit Function
7
SRWD
Status Register Write Disable
6
P_ERR
Programming Error Occurred
5
E_ERR
Erase Error Occurred
4
BP2
3
BP1
2
BP0
1
WEL
Write Enable Latch
0
WIP
Write in Progress
Block Protect
Description
1 = Protects when W#/ACC is low
0 = No protection, even when W#/ACC is low
0 = No Error
1 = Error occurred
0 = No Error
1 = Error occurred
Protects selected Blocks from Program or Erase
1 = Device accepts Write Registers, program or erase commands
0 = Ignores Write Registers, program or erase commands
1 = Device Busy a Write Registers, program or erase operation is in
progress
0 = Ready. Device is in standby mode and can accept commands.
Figure 9.13 Read Status Register (RDSR) Command Sequence
CS#
Mode 3
SCK
0 1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
Mode 0
Command
SI
SO
Hi-Z
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7
MSB
Status Register Out
MSB
Status Register Out
The following describes the status and control bits of the Status Register.
Write In Progress (WIP) bit: Indicates whether the device is busy performing a Write Registers, program, or
erase operation. This bit is read-only, and is controlled internally by the device. If WIP is 1, one of these
operations is in progress; if WIP is 0, no such operation is in progress. This bit is a Read-only bit.
Write Enable Latch (WEL) bit: Determines whether the device will accept and execute a Write Registers,
program, or erase command. When set to 1, the device accepts these commands; when set to 0, the device
rejects the commands. This bit is set to 1 by writing the WREN command, and set to 0 by the WRDI
command, and is also automatically reset to 0 after the completion of a Write Registers, program, or erase
operation, and after a power down/power up sequence. WEL cannot be directly set by the WRR command.
Block Protect (BP2, BP1, BP0) bits: Define the portion of the memory area that will be protected against
any changes to the stored data. The Block Protection (BP2, BP1, BP0) bits are either volatile or non-volatile,
depending on the state of the non-volatile bit BPNV in the Configuration register. The Block Protection (BP2,
BP1, BP0) bits are written with the Write Registers (WRR) instruction. When one or more of the Block Protect
(BP2, BP1, BP0) bits is set to 1’s, the relevant memory area is protected against Page Program (PP),
September 21, 2012 S25FL129P_00_08
S25FL129P
39
D a t a
S h e e t
Parameter Sector Erase (P4E, P8E), Sector Erase (SE), Quad Page Programming (QPP) and Bulk Erase
(BE) instructions. If the Hardware Protected mode is enabled, BP2:BP0 cannot be changed.
The Bulk Erase (BE) instruction can be executed only when the Block Protection (BP2, BP1, BP0) bits are set
to 0’s.
The default condition of the BP2-0 bits is binary 000 (all 0’s).
Erase Error bit (E_ERR): The Erase Error Bit is used as a Erase operation success and failure check. When
the Erase Error bit is set to a “1”, it indicates that there was an error which occurred in the last erase
operation. With the Erase Error bit set to a “1”, this bit is reset with the Clear Status Register (CLSR)
command.
Program Error bit (P_ERR): The Program Error Bit is used as a Program operation success and failure
check. When the Program Error bit is set to a “1”, it indicates that there was an error which occurred in the last
program operation. With the Program Error bit set to a “1”, this bit is reset with the Clear Status Register
(CLSR) command.
Status Register Write Disable (SRWD) bit: Provides data protection when used together with the Write
Protect (W#/ACC) signal. The Status Register Write Disable (SRWD) bit is operated in conjunction with the
Write Protect (W#/ACC) input pin. The Status Register Write Disable (SRWD) bit and the Write Protect (W#/
ACC) signal allow the device to be put in the Hardware Protected mode. With the Status Register Write
Disable (SRWD) bit set to a “1” and the W#/ACC driven to the logic low state, the device enters the Hardware
Protected mode; the non-volatile bits of the Status Register (SRWD, BP2, BP1, BP0) and the nonvolatile bits
of the Configuration Register (TBPARM, TBPROT, BPNV and QUAD) become read-only bits and the Write
Registers (WRR) instruction opcode is no longer accepted for execution.
Note that the P_ERR and E_ERR bits will not be set to a 1 if the application writes to a protected memory
area.
9.12
Read Configuration Register (RCR)
The Read Configuration Register (RCR) instruction opcode allows the Configuration Register contents to be
read out of the SO serial output pin. The Configuration Register contents may be read at any time, even while
a program, erase, or write cycle is in progress. When one of these cycles is in progress, it is recommended to
the user to check the Write In Progress (WIP) bit of the Status Register before issuing a new instruction
opcode to the device. The Configuration Register originally shows 00h when the device is first shipped from
the factory to the customer. (Refer to Section 7.8 on page 15, Table 7.1 and Table 7.1 on page 16 for more
details.)
Figure 9.14 Read Configuration Register (RCR) Instruction Sequence
CS#
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
1
0
SCK
In s t r u c t i o n
SI
Configuration Register Out
Configuration Register Out
SO
High Impedance
7
6
5
4
MSB
40
3
2
1
0
7
MSB
S25FL129P
6
5
4
3
2
7
MSB
S25FL129P_00_08 September 21, 2012
D a t a
9.13
S h e e t
Write Registers (WRR)
The Write Registers (WRR) command allows changing the bits in the Status and Configuration Registers. A
Write Enable (WREN) command, which itself sets the Write Enable Latch (WEL) in the Status Register, is
required prior to writing the WRR command. Table 9.8 shows the status register bits and their functions.
The host system must drive CS# low, then write the WRR command and the appropriate data byte on SI
Figure 9.15.
The WRR command cannot change the state of the Write Enable Latch (bit 1). The WREN command must be
used for that purpose.
The Status Register consists of one data byte in length; similarly, the Configuration Register is also one data
byte in length. The CS# pin must be driven to the logic low state during the entire duration of the sequence.
The WRR command also controls the value of the Status Register Write Disable (SRWD) bit. The SRWD bit
and W#/ACC pin together place the device in the Hardware Protected Mode (HPM). The device ignores all
WRR commands once it enters the Hardware Protected Mode (HPM). Table 9.9 shows that W#/ACC must be
driven low and the SRWD bit must be 1 for this to occur.
The Write Registers (WRR) instruction has no effect on the P/E Error and the WIP bits of the Status and
Configuration Registers. Any bit reserved for the future is always read as a ‘0’
The CS# chip select input pin must be driven to the logic high state after the eighth (see Figure 9.15) or
sixteenth (see Figure 9.16) bit of data has been latched in. If not, the Write Registers (WRR) instruction is not
executed. If CS# is driven high after the eighth cycle then only the Status Register is written to; otherwise,
after the sixteenth cycle both the Status and Configuration Registers are written to. As soon as the CS# chip
select input pin is driven to the logic high state, the self-timed Write Registers cycle is initiated. While the
Write Registers cycle is in progress, the Status Register may still be read to check the value of the Write In
Progress (WIP) bit. The Write In Progress (WIP) bit is a ‘1’ during the self-timed Write Registers cycle, and is
a ‘0’ when it is completed. When the Write Registers cycle is completed, the Write Enable Latch (WEL) is set
to a ‘0’. The WRR command can operate at a maximum clock frequency of 104 MHz.
Figure 9.15 Write Registers (WRR) Instruction Sequence – 8 data bits
CS#
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
SCK
In st r u ct i o n
SI
St at u s Regi s t er In
7
6
5
4
3
2
1
0
MSB
SO
September 21, 2012 S25FL129P_00_08
High Impedance
S25FL129P
41
D a t a
S h e e t
Figure 9.16 Write Registers (WRR) Instruction Sequence – 16 data bits
S#
CS
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
SCK
Instruction
Status Register In
SI
7
6
5
4
3
2
Configuration Register In
1
0
7
6
5
4
3
2
1
0
MSB
MSB
High Impedance
SO
Table 9.9 Protection Modes
W#/
ACC
SRWD
Bit
1
1
1
0
0
0
0
1
Memory Content
Mode
Write Protection of Registers
Protected Area
Unprotected Area
Software
Protected
(SPM)
Status and Configuration Registers are
Writable (if WREN instruction has set the WEL
bit). The values in the SRWD, BP2, BP1, and
BP0 bits and those in the Configuration
Register can be changed
Protected against Page
Program, Parameter
Sector Erase, Sector
Erase, and Bulk Erase
Ready to accept Page
Program, Parameter
Sector Erase, and Sector
Erase instructions
Hardware
Protected
(HPM)
Status and Configuration Registers are
Hardware Write Protected. The values in the
SRWD, BP2, BP1, and BP0 bits and those in
the Configuration Register cannot be changed
Protected against Page
Program, Sector Erase,
and Bulk Erase
Ready to accept Page
Program, Sector Erase
instructions
Note
As defined by the values in the Block Protect (BP2, BP1, BP0) bits of the Status Register, as shown in Table 7.3 on page 17.
Table 9.9 shows that neither W#/ACC or SRWD bit by themselves can enable HPM. The device can enter
HPM either by setting the SRWD bit after driving W#/ACC low, or by driving W#/ACC low after setting the
SRWD bit. However, the device disables HPM only when W#/ACC is driven high.
Note that HPM only protects against changes to the status register. Since BP2:BP0 cannot be changed in
HPM, the size of the protected area of the memory array cannot be changed. Note that HPM provides no
protection to the memory array area outside that specified by BP2:BP0 (Software Protected Mode, or SPM).
If W#/ACC is permanently tied high, HPM can never be activated, and only the SPM (Block Protect bits of the
Status Register) can be used.
The Status and Configuration registers originally default to 00h, when the device is first shipped from the
factory to the customer.
Note: HPM is disabled when the Quad I/O Mode is enabled (Quad bit = 1 in the Configuration Register).
W# becomes IO2; therefore, HPM cannot be utilized.
42
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
9.14
S h e e t
Page Program (PP)
The Page Program (PP) command changes specified bytes in the memory array (from 1 to 0 only). A WREN
command is required prior to writing the PP command.
The host system must drive CS# low, and then write the PP command, three address bytes, and at least one
data byte on SI. If the 8 least significant address bits (A7-A0) are not all zero, all transmitted data that goes
beyond the end of the currently selected page are programmed from the starting address of the same page
(from the address whose 8 least significant bits are all zero). CS# must be driven low for the entire duration of
the PP sequence. The command sequence is shown in Figure 9.17 and Table 9.1 on page 25.
The device programs only the last 256 data bytes sent to the device. If the 8 least significant address bits (A7A0) are not all zero, all transmitted data that goes beyond the end of the currently selected page are
programmed from the starting address of the same page (from the address whose 8 least significant bits are
all zero). If fewer than 256 data bytes are sent to device, they are correctly programmed at the requested
addresses without having any effect on the other bytes in the same page.
The host system must drive CS# high after the device has latched the 8th bit of the data byte, otherwise the
device does not execute the PP command. The PP operation begins as soon as CS# is driven high. The
device internally controls the timing of the operation, which requires a period of tPP. The Status Register may
be read to check the value of the Write In Progress (WIP) bit while the PP operation is in progress. The WIP
bit is 1 during the PP operation, and is 0 when the operation is completed. The device internally resets the
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).
The device does not execute a Page Program (PP) command that specifies a page that is protected by the
Block Protect bits (BP2:BP0) (see Table 7.3 on page 17).
Figure 9.17 Page Program (PP) Command Sequence
CS#
0
Mode 3
5
4
3
6
8
7
28 29 30 31 32 33 34 35 36 37 38
9 10
39
Mode 0
24 Bit Address
3
23 22 21
2
1
0
MSB
6
5
4
3
2
1
0
2079
2078
2077
55
2075
51 52 53 54
2072
MSB
CS#
40 41 42 43 44 45 46 47 48 49 50
7
2076
SI
Data Byte 1
2074
Command
2073
SCK
2
1
SCK
Data Byte 2
SI
7
6
MSB
September 21, 2012 S25FL129P_00_08
5
4
3
2
Data Byte 3
1
0
7
6
5
4
MSB
S25FL129P
3
2
Data Byte 256
1
0
7
6
5
4
3
2
1
0
MSB
43
D a t a
9.15
S h e e t
QUAD Page Program (QPP)
The Quad Page Program instruction is similar to the Page Program instruction, except that the Quad Page
Program (QPP) instruction allows up to 256 bytes of data to be programmed at previously erased (FFh)
memory locations using four pins: IO0 (SI), IO1 (SO), IO2 (W#/ACC), and IO3 (HOLD#), instead of just one
pin (SI) as in the case of the Page Program (PP) instruction. This effectively increases the data transfer rate
by up to four times, as compared to the Page Program (PP) instruction. The QPP feature can improve
performance for PROM Programmer and applications that have slow clock speeds < 5 MHz. Systems with
faster clock speed will not realize much benefit for the QPP instruction since the inherent page program time
is much greater than the time it take to clock-in the data.
To use QPP, the Quad Enable Bit in the Configuration Register must be set (QUAD = 1). A Write Enable
instruction must be executed before the device will accept the Quad Page Program instruction (Status
Register-1, WEL = 1). The instruction is initiated by driving the CS# pin low then shifting the instruction code
“32h” followed by a 24 bit address (A23-A0) and at least one data byte, into the IO pins. The CS# pin must be
held low for the entire length of the instruction while data is being sent to the device. All other functions of
Quad Input Page Program are identical to standard Page Program. The QPP instruction sequence is shown
below.
Figure 9.18 QUAD Page Program Instruction Sequence
CS#
29
30
31
32
33
34
35
36
37
38
39
2
1
0
4
0
4
0
4
0
4
0
SO/IO1
5
1
5
1
5
1
5
1
W#/ACC/IO2
6
2
6
2
6
2
6
2
7
3
7
3
0
2
1
3
4
5
6
7
8
9
28
10
SCK
24 Bit
Address
Instruction
SI/IO0
3
21
23 22
*
3
7
HOLD#/IO3
3
7
*
Byte 1
*
Byte 2
*
Byte 3
*
Byte 4
543
542
541
540
539
538
537
536
CS#
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
SI/IO0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
0
4
SO/IO1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
5
1
W#/ACC/IO2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
6
2
SCK
HOLD#/IO3
7
3
*
Byte 5
7
3
*
Byte 6
7
3
*
Byte 7
7
3
*
Byte 8
7
3
*
Byte 9
7
3
*
Byte 10
7
3
*
Byte 11
7
3
*
Byte 12
0
3
3
7
3
7
3
7
*
*
*
*
Byte 253 Byte 254 Byte 255 Byte 256
7
*MSB
44
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
9.16
S h e e t
Parameter Sector Erase (P4E, P8E) (only applicable for the uniform 64 KB
sector device)
The Parameter Sector Erase (P4E, P8E) command sets all bits at all addresses within a specified sector to a
logic 1 (FFh). A WREN command is required prior to writing the Parameter Sector Erase commands.
The host system must drive CS# low, and then write the P4E or P8E command, plus three address bytes on
SI. Any address within the sector (see Table 5.1 on page 12) is a valid address for the P4E or P8E command.
CS# must be driven low for the entire duration of the P4E/P8E sequence. The command sequence is shown
in Figure 9.19 and Table 9.1 on page 25.
The host system must drive CS# high after the device has latched the 24th bit of the P4E/P8E address,
otherwise the device does not execute the command. The parameter sector erase operation begins as soon
as CS# is driven high. The device internally controls the timing of the operation, which requires a period of
tSE. The Status Register may be read to check the value of the Write In Progress (WIP) bit while the
parameter sector erase operation is in progress. The WIP bit is 1 during the P4E/P8E operation, and is 0
when the operation is completed. The device internally resets the Write Enable Latch to 0 before the
operation completes (the exact timing is not specified).
A Parameter Sector Erase (P4E, P8E) instruction applied to a sector that has been Write Protected through
the Block Protect Bits will not be executed.
The Parameter Sector Erase Command (P8E) erases two of the 4 KB Sectors in selected address space.
The Parameter Sector Erase Command (P8E) erases two sequential 4 KB Parameter Sectors in the selected
address space. The address LSB is disregarded so that two sequential 4 KB Parameter Sectors are erased.
The 24 Bit Address is any location within the first Sector to be erased (n), and the next sequential 4 KB
Parameter Sector will also be erased (n+1). The 4 KB parameter Sector will only be erased properly if n or
n+1 is a valid 4 KB parameter Sector. i.e. If n is not a valid 4K parameter Sector, then it will not be erased. If
n+1 is not a valid 4 KB parameter Sector, then it will not be erased.
Note: The P4E and P8E commands do not apply to the uniform 256 KB sector device.
Figure 9.19 Parameter Sector Erase (P4E, P8E) Instruction Sequence
CS#
0
1
2
3
4
5
6
7
8
9
10
28 29 30 31
SCK
Instruction
SI
20h or 40h
24 Bit Address
23 22 21
3
2
1
0
MSB
September 21, 2012 S25FL129P_00_08
S25FL129P
45
D a t a
9.17
S h e e t
Sector Erase (SE)
The Sector Erase (SE) command sets all bits at all addresses within a specified sector to a logic 1. A WREN
command is required prior to writing the SE command.
The host system must drive CS# low, and then write the SE command plus three address bytes on SI. Any
address within the sector (see Table 7.3 on page 17) is a valid address for the SE command. CS# must be
driven low for the entire duration of the SE sequence. The command sequence is shown in Figure 9.20 and
Table 9.1 on page 25.
The host system must drive CS# high after the device has latched the 24th bit of the SE address, otherwise
the device does not execute the command. The SE operation begins as soon as CS# is driven high. The
device internally controls the timing of the operation, which requires a period of tSE. The Status Register may
be read to check the value of the Write In Progress (WIP) bit while the SE operation is in progress. The WIP
bit is 1 during the SE operation, and is 0 when the operation is completed. The device internally resets the
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).
The device only executes a SE command for those sectors which are not protected by the Block Protect bits
(BP2:BP0) (see Table 7.3 on page 17). Otherwise, the device ignores the command.
A 64 KB sector erase (D8h) command issued on 4 KB or 8 KB erase sectors will erase all sectors in the
specified 64 KB region. However, please note that a 4 KB sector erase (20h) or 8 KB sector erase (40h)
command will not work on a 64 KB sector.
Figure 9.20 Sector Erase (SE) Command Sequence
CS#
Mode 3
SCK
0
1
2
3
4
5
6
7
8
9
10
28
29
30
31
1
0
Mode 0
Command
SI
24 bit Address
23
22
21
3
2
MSB
SO
46
Hi-Z
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
9.18
S h e e t
Bulk Erase (BE)
The Bulk Erase (BE) command sets all the bits within the entire memory array to logic 1s. A WREN command
is required prior to writing the BE command.
The host system must drive CS# low, and then write the BE command on SI. CS# must be driven low for the
entire duration of the BE sequence. The command sequence is shown in Figure 9.21 and Table 9.1
on page 25.
The host system must drive CS# high after the device has latched the 8th bit of the CE command, otherwise
the device does not execute the command. The BE operation begins as soon as CS# is driven high. The
device internally controls the timing of the operation, which requires a period of tBE. The Status Register may
be read to check the value of the Write In Progress (WIP) bit while the BE operation is in progress. The WIP
bit is 1 during the BE operation, and is 0 when the operation is completed. The device internally resets the
Write Enable Latch to 0 before the operation completes (the exact timing is not specified).
The device only executes a BE command if all Block Protect bits (BP2:BP0) are 0 (see Table 7.3
on page 17). Otherwise, the device ignores the command.
Figure 9.21 Bulk Erase (BE) Command Sequence
CS#
Mode 3
SCK
0
1
2
3
4
5
6
7
Mode 0
Command
SI
SO
September 21, 2012 S25FL129P_00_08
Hi-Z
S25FL129P
47
D a t a
9.19
S h e e t
Deep Power-Down (DP)
The Deep Power-Down (DP) command provides the lowest power consumption mode of the device. It is
intended for periods when the device is not in active use, and ignores all commands except for the Release
from Deep Power-Down (RES) command. The DP mode therefore provides the maximum data protection
against unintended write operations. The standard standby mode, which the device goes into automatically
when CS# is high (and all operations in progress are complete), should generally be used for the lowest
power consumption when the quickest return to device activity is required.
The host system must drive CS# low, and then write the DP command on SI. CS# must be driven low for the
entire duration of the DP sequence. The command sequence is shown in Figure 9.22 and Table 9.1
on page 25.
The host system must drive CS# high after the device has latched the 8th bit of the DP command, otherwise
the device does not execute the command. After a delay of tDP, the device enters the DP mode and current
reduces from ISB to IDP (see Table 16.1 on page 58).
Once the device has entered the DP mode, all commands are ignored except the RES command (which
releases the device from the DP mode). The RES command also provides the Electronic Signature of the
device to be output on SO, if desired (see Section 9.20 and 9.20.1).
DP mode automatically terminates when power is removed, and the device always powers up in the standard
standby mode. The device rejects any DP command issued while it is executing a program, erase, or Write
Registers operation, and continues the operation uninterrupted.
Figure 9.22 Deep Power-Down (DP) Command Sequence
CS#
tDP
Mode 3
SCK
0
1
2
3
4
5
6
7
Mode 0
Command
SI
SO
Hi-Z
Standby Mode
48
S25FL129P
Deep Power-down Mode
S25FL129P_00_08 September 21, 2012
D a t a
9.20
S h e e t
Release from Deep Power-Down (RES)
The device requires the Release from Deep Power-Down (RES) command to exit the Deep Power-Down
mode. When the device is in the Deep Power-Down mode, all commands except RES are ignored.
The host system must drive CS# low and write the RES command to SI. CS# must be driven low for the entire
duration of the sequence. The command sequence is shown in Figure 9.23 and Table 9.1 on page 25.
The host system must drive CS# high tRES(max) after the 8-bit RES command byte. The device transitions
from DP mode to the standby mode after a delay of tRES (see Figure 18.1). In the standby mode, the device
can execute any read or write command.
Note: The RES command dose not reset the Write Enable Latch (WEL) bit.
Figure 9.23 Release from Deep Power-Down (RES) Command Sequence
CS#
Mode 3
SCK
0
1
2
3
4
5
6
7
Mode 0
Command
tRES
SI
SO
Hi-Z
Deep Power-down Mode
September 21, 2012 S25FL129P_00_08
S25FL129P
Standby Mode
49
D a t a
9.20.1
S h e e t
Release from Deep Power-Down and Read Electronic Signature (RES)
The device features an 8-bit Electronic Signature, which can be read using the RES command. See
Figure 9.24 and Table 9.1 on page 25 for the command sequence and signature value. The Electronic
Signature is not to be confused with the identification data obtained using the RDID command. The device
offers the Electronic Signature so that it can be used with previous devices that offered it; however, the
Electronic Signature should not be used for new designs, which should read the RDID data instead.
After the host system drives CS# low, it must write the RES command followed by 3 dummy bytes to SI (each
bit is latched on SI during the rising edge of SCK). The Electronic Signature is then output on SO; each bit is
shifted out on the falling edge of SCK. The RES operation is terminated by driving CS# high after the
Electronic Signature is read at least once. Additional clock cycles on SCK with CS# low cause the device to
output the Electronic Signature repeatedly.
When CS# is driven high, the device transitions from DP mode to the standby mode after a delay of tRES, as
previously described. The RES command always provides access to the Electronic Signature of the device
and can be applied even if DP mode has not been entered.
Any RES command issued while an erase, program, or Write Registers operation is in progress not executed,
and the operation continues uninterrupted.
Note: The RES command does not reset the Write Enable Latch (WEL) bit.
Figure 9.24 Release from Deep Power-Down and RES Command Sequence
CS#
1
0
2
3
4
5
6
8
7
9
28 29 30 31 32 33 34 35 36 37 38 39
10
SCK
SI
tRES
3 Dummy Bytes
Command
3
23 22 21
2
1
0
MSB
SO
Electronic ID
Hi-Z
7
6
5
4
3
2
1
0
MSB
Deep Power-Down Mode
9.21
Standby Mode
Clear Status Register (CLSR)
The Clear Status Register command resets bit SR5 (Erase Fail Flag) and bit SR6 (Program Fail Flag). It is not
necessary to set the WEL bit before the Clear SR Fail Flags command is executed. The WEL bit will be
unchanged after this command is executed.
Figure 9.25 Clear Status Register (CLSR) Instruction Sequence
CS
S#
0
1
2
3
4
5
6
7
SCK
Instruction
SI
50
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
9.22
S h e e t
OTP Program (OTPP)
The OTP Program command programs data in the OTP region, which is in a different address space from the
main array data. Refer to OTP Regions on page 52 for details on the OTP region. The protocol of the OTP
Program command is the same as the Page Program command, except that the OTP Program command
requires exactly one byte of data; otherwise, the command will be ignored. To program the OTP in bit
granularity, the rest of the bits within the data byte can be set to “1”.
The OTP memory space can be programmed one or more times, provided that the OTP memory space is not
locked (as described in “Locking OTP Regions”). Subsequent OTP programming can be performed only on
the unprogrammed bits (that is, “1” data).
Note: The Write Enable (WREN) command must precede the OTPP command before programming of the
OTP can occur.
Figure 9.26 OTP Program Instruction Sequence
CS#
0
1
2
3
4
5
6
7
8
9
10
28 29 30 31 32 33 34 35 36 37 38 39
SCK
24 Bit
Address
Instruction
SI
23 22 21
Data Byte 1
3
2
1
0
MSB
9.23
7
6
5
4
3
2
1
0
MSB
Read OTP Data Bytes (OTPR)
The Read OTP Data Bytes command reads data from the OTP region. Refer to “OTP Regions” for details on
the OTP region. The protocol of the Read OTP Data Bytes command is the same as the Fast Read Data
Bytes command except that it will not wrap to the starting address after the OTP address is at its maximum;
instead, the data will be indeterminate.
Figure 9.27 Read OTP Instruction Sequence
CS
0
1
2
3
4
5
6
7
8
9
10
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCK
24 Bit
Address
Instruction
SI
23 22 21
3
Dummy Byte
2
1
0
7
6
5
4
3
2
1
0
DATA OUT 1
SO
High Impedance
7
MSB
September 21, 2012 S25FL129P_00_08
S25FL129P
6
5
4
3
2
DATA OUT 2
1
0
7
MSB
51
D a t a
S h e e t
10. OTP Regions
The OTP Regions are separately addressable from the main array and consists of two 8-byte (ESN), thirty
16-byte, and one 10-byte regions that can be individually locked.
 The two 8-byte ESN region is a special order part (please contact your local Spansion sales representative
for further details). The two 8-byte regions enable permanent part identification through an Electronic
Serial Number (ESN). The customer can utilize the ESN to pair a Flash device with the system CPU/ASIC
to prevent system cloning. The Spansion factory programs and locks the lower 8-byte ESN with a 64-bit
randomly generated, unique number. The upper 8-byte ESN is left blank for customer use or, if special
ordered, Spansion can program (and lock) in a unique customer ID.
Lock Register ESN1
(Bit 0)
Lock Register ESN2
(Bit 1)
ESN1 Region Contains
1h
1h
0h
0h
Unique random pattern
Factory/Customer
programmed pattern
Standard part
Special order part
1h
1h/0h
ESN2 Region Contains
 The thirty 16-byte and one 10-byte OTP regions are open for the customer usage.
 The thirty 16-byte, one 10-byte, and upper 8-byte ESN OTP regions can be individually locked by the end
user. Once locked, the data cannot changed. The locking process is permanent and cannot be undone.
The following general conditions should be noted with respect to the OTP Regions:
 On power-up, or following a hardware reset, or at the end of an OTPP or an OTPR command, the device
reverts to sending commands to the normal address space.
 Reads or Programs outside of the OTP Regions will be ignored
 The OTP Region is not accessible when the device is executing an Embedded Program or Embedded
Erase algorithm.
 The ACC function is not available when accessing the OTP Regions.
 The thirty 16-byte and one 10-byte OTP regions are left open for customer usage, but special care of the
OTP locking must be maintained, or else a malevolent user can permanently lock the OTP regions. This is
not a concern, if the OTP regions are not used.
10.1
Programming OTP Address Space
The protocol of the OTP Program command (42h) is the same as the Page Program command. Refer to
Table 9.1 for the command description and protocol. The OTP Program command can be issued multiple
times to any given OTP address, but this address space can never be erased. After a given OTP region is
programmed, it can be locked to prevent further programming with the OTP lock registers (refer to
Section 10.3). The valid address range for OTP Program is depicted in the figure below. OTP Program
operations outside the valid OTP address range will be ignored.
10.2
Reading OTP Data
The protocol of the OTP Read command (4Bh) is the same as that of the Fast Read command. Refer to
Table 9.1 for the command description and protocol. The valid address range for OTP Reads is depicted in
the figure below. OTP Read operations outside the valid OTP address range will yield indeterminate data.
10.3
Locking OTP Regions
In order to permanently lock the ESN and OTP regions, individual bits at the specified addresses can be set
to 1 to lock specific regions of OTP memory, as highlighted in Figures 10.1 and 10.2.
52
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
Figure 10.1 OTP Memory Map - Part 1
OT P R EGION
ADDRESS
0x213h
16 bytes (OTP16)
0x204h
0x203h
16 bytes (OTP15)
0x1F4h
0x1F3h
16 bytes (OTP14)
0x1E4h
0x1E3
16 bytes (OTP13)
0x1D4h
0x1D3h
16 bytes (OTP12)
0x1C4h
0x1C3h
16 bytes (OTP11)
0x1B4h
0x1B3h
16 bytes (OTP10)
0x1A4h
0x1A3h
16 bytes (OTP9)
0x194h
0x193h
16 bytes (OTP8)
0x184h
0x183h
16 bytes (OTP7)
0x174h
0x173h
16 bytes (OTP6)
0x164h
0x163h
16 bytes (OTP5)
0x154h
0x153h
16 bytes (OTP4)
Address
0x112h
0x144h
0x143h
16 bytes (OTP3)
0x134h
0x133h
16 bytes (OTP2)
0x124h
0x123h
16 bytes (OTP1)
0x114h
0x113h
0x112h
0x111h
0x113h
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
8 bytes (ES N2)
0x10Ah
0x109h
8 bytes (ES N1)
0x102h
0x101h
0x100h
0x100h
Reserved
X
X
X
X
X
X
Bit 1 Bit 0
B it
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2- 7
Locks R egion…
OTP1
OTP2
OTP3
OTP4
OTP5
OTP6
OTP7
OTP8
OTP9
OTP10
OTP11
OTP12
OTP13
OTP14
OTP15
OTP16
ESN1
ES N2
R eserved
Notes
1. Bit 0 at address 0x100h locks ESN1 region.
2. Bit 1 at address 0x100h locks ESN2 region.
3. Bits 2-7 (“X”) are NOT programmable and will be ignored.
September 21, 2012 S25FL129P_00_08
S25FL129P
53
D a t a
S h e e t
Figure 10.2 OTP Memory Map - Part 2
ADDRESS
OT P R EGION
0x2FFh
10 bytes (OTP31)
0x2F6h
0x2F5h
16 bytes (OTP30)
0x2E6h
0x2E5
16 bytes (OTP29)
0x2D6h
0x2D5h
16 bytes (OTP28)
0x2C6h
0x2C5h
16 bytes (OTP27)
0x2B6h
0x2B5h
16 bytes (OTP26)
0x2A6h
0x2A5h
16 bytes (OTP25)
0x296h
0x295h
16 bytes (OTP24)
0x286h
0x285h
16 bytes (OTP23)
0x276h
0x275h
16 bytes (OTP22)
0x266h
0x265h
16 bytes (OTP21)
Address
0x214h
0x256h
0x255h
16 bytes (OTP20)
0x246h
0x245h
16 bytes (OTP19)
0x236h
0x235h
0x215h
16 bytes (OTP18)
0x226h
0x225h
16 bytes (OTP17)
0x216h
0x215h
0x214h
X
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
B it
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Locks Region…
OTP17
OTP18
OTP19
OTP20
OTP21
OTP22
OTP23
OTP24
OTP25
OTP26
OTP27
OTP28
OTP29
OTP30
OTP31
R eserved
Note
1. Bit 7 (“X”) at address 0x215h is NOT programmable and will be ignored.
54
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
11. Power-up and Power-down
During power-up and power-down, certain conditions must be observed. CS# must follow the voltage applied
on VCC, and must not be driven low to select the device until VCC reaches the allowable values as follows
(see Figure 11.1 and Table 11.1 on page 56):
 At power-up, VCC (min.) plus a period of tPU
 At power-down, GND
A pull-up resistor on Chip Select (CS#) typically meets proper power-up and power-down requirements.
No Read, Write Registers, program, or erase command should be sent to the device until VCC rises to the
VCC min., plus a delay of tPU. At power-up, the device is in standby mode (not Deep Power-Down mode) and
the WEL bit is reset (0).
Each device in the host system should have the VCC rail decoupled by a suitable capacitor close to the
package pins (this capacitor is generally of the order of 0.1 µF), as a precaution to stabilizing the VCC feed.
When VCC drops from the operating voltage to below the minimum VCC threshold at power-down, all
operations are disabled and the device does not respond to any commands. Note that data corruption may
result if a power-down occurs while a Write Registers, program, or erase operation is in progress.
Figure 11.1 Power-Up Timing Diagram
Vcc
(max)
Vcc
(min)
Vcc
t PU
Full Device Access
Time
Figure 11.2 Power-down and Voltage Drop
VCC
VCC(max)
No Device Access Allowed
VCC(min)
tPU
Device Access
Allowed
VCC(cut-off)
VCC(low)
tPD
time
September 21, 2012 S25FL129P_00_08
S25FL129P
55
D a t a
S h e e t
Table 11.1 Power-Up / Power-Down Voltage and Timing
Symbol
VCC(min)
Parameter
Min
Max
Unit
VCC (minimum operation voltage)
2.7
VCC (Cut off where re-initialization is needed)
2.4
V
VCC (Low voltage for initialization to occur at read/standby)
VCC (Low voltage for initialization to occur at embedded)
0.2
V
tPU
VCC(min.) to device operation
300
µs
TPD
VCC (low duration time)
1.0
µs
VCC(cut-off)
VCC(low)
V
2.3
12. Initial Delivery State
The device is delivered with the memory array erased i.e. all bits are set to 1 (FFh) upon initial factory
shipment. The Status Register and Configuration Register contains 00h (all bits are set to 0).
The Lock Register (address 0x100h) is written to 0x01 and ESN1 (addresses 0x102h-0x109h) are written
with a 64-bit randomly generated, unique number (taken from Section 10. on page 52).
13. Program Acceleration via W#/ACC Pin
The program acceleration function requires applying VHH to the W#/ACC input, and then waiting a period of
tWC. Minimum tVHH rise and fall times is required for W#/ACC to change to VHH from VIL or VIH. Removing
VHH from the W#/ACC pin returns the device to normal operation after a period of tWC.
Figure 13.1 ACC Program Acceleration Timing Requirements
VHH
ACC
tWC
tWC
VIL or VIH
VIL or VIH
Command OK
tVHH
tVHH
Note
Only Read Status Register (RDSR) and Page Program (PP) operation are allow when ACC is at (VHH).
The W#/ACC pin is disabled during Quad I/O mode.
Table 13.1 ACC Program Acceleration Specifications
Symbol
56
Min.
Max
VHH
ACC Pin Voltage High
Parameter
8.5
9.5
tVHH
ACC Voltage Rise and Fall time
2.2
µs
tWC
ACC at VHH and VIL or VIH to First command
5
µs
S25FL129P
Unit
V
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
14. Electrical Specifications
14.1
Absolute Maximum Ratings
Description
Rating
Ambient Storage Temperature
-65°C to +150°C
-0.5V to VCC+0.5V
Voltage with Respect to Ground: All Inputs and I/Os
Output Short Circuit Current (2)
200 mA
Note
1. Minimum DC voltage on input or I/Os is -0.5V. During voltage transitions, inputs or I/Os may undershoot GND to -2.0V for periods of up to
20 ns. See Figure 14.1. Maximum DC voltage on input or I/Os is VCC + 0.5V. During voltage transitions inputs or I/Os may overshoot to
VCC + 2.0V for periods up to 20 ns. See Figure 14.2.
2. No more than one output may be shorted to ground at a time. Duration of the short circuit should not be greater than one second.
3. Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only;
functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is
not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect device reliability.
Figure 14.1 Maximum Negative Overshoot Waveform
20 ns
20 ns
+0.8V
–0.5V
–2.0V
20 ns
Figure 14.2 Maximum Positive Overshoot Waveform
20 ns
VCC
+2.0V
VCC
+0.5V
2.0V
20 ns
20 ns
15. Operating Ranges
Table 15.1 Operating Ranges
Description
Ambient Operating Temperature (TA)
Positive Power Supply
Rating
Industrial
–40°C to +85°C
Automotive In-Cabin
–40°C to +105°C
Voltage Range
2.7V to 3.6V
Note
Operating ranges define those limits between which functionality of the device is guaranteed.
September 21, 2012 S25FL129P_00_08
S25FL129P
57
D a t a
S h e e t
16. DC Characteristics
This section summarizes the DC Characteristics of the device. Designers should check that the operating
conditions in their circuit match the measurement conditions specified in the Test Specifications in Table 17.1
on page 59, when relying on the quoted parameters.
Table 16.1 DC Characteristics (CMOS Compatible)
Limits
Symbol
Parameter
Test Conditions
Min.
VCC
Supply Voltage
VHH
ACC Program Acceleration
Voltage
VIL
Typ*
Unit
Max
2.7
3.6
V
8.5
9.5
V
Input Low Voltage
-0.3
0.3 x VCC
V
VIH
Input High Voltage
0.7 x VCC
VCC +0.5
V
VOL
Output Low Voltage
IOL = 1.6 mA, VCC = VCC min.
VOH
Output High Voltage
IOH = -0.1 mA
VCC = 2.7V to 3.6V
0.4
VCC-0.6
V
V
ILI
Input Leakage Current
VCC = VCC Max,
VIN = VCC or GND
±2
µA
ILO
Output Leakage Current
VCC = VCC Max,
VIN = VCC or GND
±2
µA
At 80 MHz
(Dual or Quad)
38
ICC1
Active Power Supply Current READ
(SO = Open)
At 104 MHz (Serial)
25
At 40 MHz (Serial)
12
ICC2
Active Power Supply Current
(Page Program)
CS# = VCC
26
mA
ICC3
Active Power Supply Current
(WRR)
CS# = VCC
15
mA
ICC4
Active Power Supply Current
(SE)
CS# = VCC
26
mA
ICC5
Active Power Supply Current
(BE)
CS# = VCC
26
mA
80
200
µA
80
250
µA
3
10
µA
Standby Current (Industrial
Temperature Range Parts)
ISB1
IPD
Standby Current
(Automotive In-Cabin
Temperature Range Parts)
Deep Power-down Current
CS# = VCC;
SO + VIN = GND or VCC
CS# = VCC;
SO + VIN = GND or VCC
mA
*Typical values are at TAI = 25°C and VCC = 3V
58
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
17. Test Conditions
Figure 17.1 AC Measurements I/O Waveform
0.8 VCC
0.7 VCC
0.5 VCC
0.3 VCC
Input Levels
0.2 VCC
Input and Output
Timing Reference levels
Table 17.1 Test Specifications
Symbol
Parameter
CL
Load Capacitance
Min
Max
30
Input Rise and Fall Times
September 21, 2012 S25FL129P_00_08
Unit
pF
5
ns
Input Pulse Voltage
0.2 VCC to 0.8 VCC
V
Input Timing Reference Voltage
0.3 VCC to 0.7 VCC
V
Output Timing Reference Voltage
0.5 VCC
V
S25FL129P
59
D a t a
S h e e t
18. AC Characteristics
Figure 18.1 AC Characteristics
Symbol
(Notes)
fR
fC
Parameter
(Notes)
Min.
(Notes)
Typ
(Notes)
Max
(Notes)
Unit
SCK Clock Frequency for READ command
DC
40
MHz
SCK Clock Frequency for RDID command
DC
50
MHz
SCK Clock Frequency for all others:
FAST_READ, PP, QPP, P4E, P8E, SE, BE, DP,
RES, WREN, WRDI, RDSR, WRR, READ_ID
DC
104 (serial)
80 (dual/quad)
MHz
tWH, tCH (5)
Clock High Time
4.5
ns
tWL, tCL (5)
Clock Low Time
4.5
ns
tCRT, tCLCH
Clock Rise Time (slew rate)
0.1
V/ns
tCFT, tCHCL
Clock Fall Time (slew rate)
0.1
V/ns
tCS
CS# High Time (Read Instructions)
CS# High Time (Program/Erase)
10
tCSS
CS# Active Setup Time (relative to SCK)
3
tCSH
ns
50
ns
CS# Active Hold Time (relative to SCK)
3
ns
tSU:DAT
Data in Setup Time
3
ns
tHD:DAT
Data in Hold Time
2
tV
Clock Low to Output Valid
0
tHO
Output Hold Time
2
tDIS
Output Disable Time
ns
8 (Serial)Δ
9.5 (Dual/Quad)Δ
6.5 (Serial)∞
8 (Dual/Quad)∞
7 (Dual/Quad)Ω
ns
8
ns
ns
tHLCH
HOLD# Active Setup Time (relative to SCK)
3
ns
tCHHH
HOLD# Active Hold Time (relative to SCK)
3
ns
tHHCH
HOLD# Non Active Setup Time (relative to SCK)
3
ns
tCHHL
HOLD# Non Active Hold Time (relative to SCK)
3
ns
tHZ
HOLD# enable to Output Invalid
8
ns
tLZ
HOLD# disable to Output Valid
8
ns
tWPS
W#/ACC Setup Time (4)
20
tWPH
W#/ACC Hold Time (4)
100
ns
ns
tW
WRR Cycle Time
tPP
Page Programming (1)(2)
tEP
Page Programming (ACC = 9V) (1)(2)(3)
Sector Erase Time (64 KB) (1)(2)
0.5
2
sec
Sector Erase Time (256 KB) (1)(2)
2
8
sec
tSE
50
ms
1.5
3
ms
1.2
2.4
ms
tPE
Parameter Sector Erase Time (4 KB or 8 KB) (1)(2)
200
800
ms
tBE
Bulk Erase Time (1)(2)
128
256
sec
tRES
Deep Power-down to Standby Mode
30
µs
tDP
Time to enter Deep Power-down Mode
10
tVHH
ACC Voltage Rise and Fall time
tWC
ACC at VHH and VIL or VIH to first command
µs
2.2
µs
5
µs
Notes
1. Typical program and erase times assume the following conditions: 25°C, VCC = 3.0V; 10,000 cycles; checkerboard data pattern.
2. Under worst-case conditions of 85°C; VCC = 2.7V; 100,000 cycles.
3. Acceleration mode (9V ACC) only in Program mode, not Erase.
4. Only applicable as a constraint for WRR instruction when SRWD is set to a ‘1’.
5. tWH + tWL must be less than or equal to 1/fC.
6. Δ Full Vcc range (2.7 – 3.6V) and CL = 30 pF
7. ∞ Regulated Vcc range (3.0 – 3.6V) and CL = 30 pF
8. Ω Regulated Vcc range (3.0 – 3.6V) and CL = 15 pF
60
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
18.1
S h e e t
Capacitance
Symbol
Parameter
Test Conditions
Input Capacitance
(applies to SCK, PO7-PO0, SI, CS#)
CIN
Output Capacitance
(applies to PO7-PO0, SO)
COUT
Min
Max
Unit
VOUT = 0V
6
pF
VIN = 0V
8
pF
Figure 18.2 SPI Mode 0 (0,0) Input Timing
tCS
CS#
tCSH
tCSH
tCSS
tCSS
SCK
tSU:DAT tHD:DAT
tCRT
SI
tCFT
MSB IN
SO
LSB IN
Hi-Z
Figure 18.3 SPI Mode 0 (0,0) Output Timing
CS#
tWH
SCK
tV
tHO
tWL
tV
SO
September 21, 2012 S25FL129P_00_08
tDIS
tHO
LSB OUT
S25FL129P
61
D a t a
S h e e t
Figure 18.4 HOLD# Timing
CS#
tCHHL
tHHCH
tHLCH
SCK
tCHHH
tHZ
tLZ
SO
SI
HOLD#
Figure 18.5 Write Protect Setup and Hold Timing during WRR when SRWD = 1
W#
tWPS
tWPH
CS#
SCK
SI
SO
62
Hi-Z
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
19. Physical Dimensions
19.1
SO3 016 — 16-pin Wide Plastic Small Outline Package (300-mil Body Width)
September 21, 2012 S25FL129P_00_08
S25FL129P
63
D a t a
19.2
S h e e t
WSON 8-contact (6 x 8 mm) No-Lead Package (WNF008)
NOTES:
PACKAGE
SYMBOL
1.
DIMENSIONING AND TOLERANCING CONFORMS TO
ASME Y14.5M - 1994.
2.
ALL DIMENSIONS ARE IN MILLMETERS.
3.
N IS THE TOTAL NUMBER OF TERMINALS.
4
DIMENSION “b” APPLIES TO METALLIZED TERMINAL AND IS
MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL
TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE
OTHER END OF THE TERMINAL, THE DIMENSION “b”
SHOULD NT BE MEASURED IN THAT RADIUS AREA.
WNF008
MIN
NOM
MAX
NOTE
e
1.27 BSC.
N
8
3
ND
4
5
L
0.45
0.50
b
0.35
0.40
0.55
0.45
D2
4.70
4.80
4.90
E2
5.70
5.80
5.90
4
5
ND REFER TO THE NUMBER OF TERMINALS ON D SIDE.
6.
MAX. PACKAGE WARPAGE IS 0.05mm.
D
6.00 BSC
7.
MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS.
E
8.00 BSC
8
PIN #1 ID ON TOP WILL BE LASER MARKED.
9
BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED
HEAT SINK SLUG AS WELL AS THE TERMINALS.
10
A MAXIMUM 0.15mm PULL BACK (L1) MAY BE PRESENT.
A
0.70
0.75
0.80
A1
0.00
0.02
0.05
K
L1
0.20 MIN.
0.00
---
0.15
10
g1015 \ 16-038.30 \ 07.21.11
64
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
19.3
S h e e t
FAB024 — 24-ball Ball Grid Array (6 x 8 mm) package
September 21, 2012 S25FL129P_00_08
S25FL129P
65
D a t a
19.4
S h e e t
FAC024 — 24-ball Ball Grid Array (6 x 8 mm) package
PACKAGE
FAC024
JEDEC
N/A
DxE
SYMBOL
NOTES:
1.
8.00 mm x 6.00 mm NOM
PACKAGE
MIN
NOM
MAX
A
---
---
1.20
A1
0.25
---
---
A2
0.70
---
0.90
NOTE
PROFILE
BALL HEIGHT
BODY THICKNESS
D
8.00 BSC.
BODY SIZE
E
6.00 BSC.
BODY SIZE
5.00 BSC.
MATRIX FOOTPRINT
E1
3.00 BSC.
MATRIX FOOTPRINT
MD
6
MATRIX SIZE D DIRECTION
ME
4
MATRIX SIZE E DIRECTION
N
24
BALL COUNT
0.35
0.40
e
1.00 BSC.
SD/ SE
0.5/0.5
J
0.45
2.
ALL DIMENSIONS ARE IN MILLIMETERS.
3.
BALL POSITION DESIGNATION PER JEP95, SECTION
4.3, SPP-010.
4.
e REPRESENTS THE SOLDER BALL GRID PITCH.
5.
SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D"
DIRECTION.
SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE
"E" DIRECTION.
D1
Øb
DIMENSIONING AND TOLERANCING METHODS PER
ASME Y14.5M-1994.
n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS
FOR MATRIX SIZE MD X ME.
6
DATUM C IS THE SEATING PLANE AND IS DEFINED BY THE
CROWNS OF THE SOLDER BALLS.
7
BALL DIAMETER
DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL
DIAMETER IN A PLANE PARALLEL TO DATUM C.
BALL PITCHL
SOLDER BALL PLACEMENT
SD AND SE ARE MEASURED WITH RESPECT TO DATUMS A
AND B AND DEFINE THE POSITION OF THE CENTER SOLDER
BALL IN THE OUTER ROW.
DEPOPULATED SOLDER BALLS
WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE
OUTER ROW SD OR SE = 0.000.
PACKAGE OUTLINE TYPE
WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE
OUTER ROW, SD OR SE = e/2
8.
"+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED
BALLS.
9
A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK
MARK, METALLIZED MARK INDENTATION OR OTHER MEANS.
10 OUTLINE AND DIMENSIONS PER CUSTOMER REQUIREMENT.
3642 F16-038.9 \ 09.10.09
66
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
20. Revision History
Section
Description
Revision 01 (May 26, 2009)
Initial release.
Revision 02 (June 22, 2009)
Quad Page Programming
Configuration Register
Corrected description.
Removed the Note in the bottom of the page.
Added Suggested cross setting table.
Data Protection Modes
Corrected description for Software Protected Mode.
Accelerated Programming Operation
Added Note.
Corrected description.
Read Identification (RDID)
Added statement for operating clock frequency.
Read Status Register (RDSR)
Added statement for operating clock frequency.
Read Configuration Register (RCR)
Added reference section.
Corrected figure.
Write Registers (WRR)
Parameter Sector Erase (P4E, P8E)
Added Note for Hardware Protect Mode.
Removed all occurrences of Quad operations.
Corrected description.
Added Note.
Sector Erase (SE)
Corrected description.
Release from Deep Power-down
(RES)
Added Note.
Release from Deep Power-down and
Read Electronic Signature (RES)
Added Note.
OTP Regions
Corrected description for ESN.
Added ESN table.
Initial Delivery State
Added description for the Rock Register.
AC Characteristics
Corrected description of Note.
Physical Dimensions
Added BGA package.
Revision 03 (October 14, 2009)
Global
Changed datasheet designation from Advanced Information to Preliminary
Changed all references to RDID clock rate from 40 to 50 MHz
Added note regarding exposed central pad on bottom of package to the WSON connection diagram
Connection Diagrams
Added “5 x 5 pin configuration” to Figure 2.3 title
Added 6 x 4 pin configuration BGA connection diagram
Added 20, 21, 30, and 31 model numbers for BGA packages
Ordering Information
Added Automotive In-Cabin temperature ordering option
Added Low-Halogen material option
Changed valid BGA model number combinations to 20, 21, 30, and 31
Changed valid BGA material option to Low-Halogen
Valid Combinations
Added Automotive In-Cabin temperature valid combinations for all packages
Added Note 2 regarding contact factory for availability of Automotive In-Cabin temperature grade
parts
Physical Dimensions
Added FAC024 BGA package
DC Characteristics
Added Note 1 indicating that ICSB1 maximum value only applies to Industrial temperature grade parts
AC Characteristics
Added min and max values for Sector Erase Time (256 KB)
September 21, 2012 S25FL129P_00_08
S25FL129P
67
D a t a
Section
S h e e t
Description
Revision 04 (November 2, 2009)
Ordering Information
Removed Note 2
DC Characteristics
Added separate Standby Current values for Industrial and Automotive In-Cabin temperature range
parts.
Removed Note 1.
Revision 05 (August 12, 2010)
Global
The data sheet went from a “Preliminary” designation to full production.
Sector Address Table
In Table 8.2, corrected the End Address of SS30 from 01E000h to 01EFFFh.
Command Definitions
In Table 9.1, corrected the QIOR one byte command code from 1110 1111 to 1110 1011.
Read Identification
In Table 9.5 added CFI data of bytes 2Dh to 34h for the 256 KB sector products.
Sector Erase
Clarified that the device only executes a SE command for those sectors which are not protected by
the Block Protect Bits.
Operating Ranges
Added the Automotive In-Cabin range.
Revision 06 (October 1, 2010)
Configuration Register
Clarified that TBPARM and TBPROT must be selected at the initial configuration of the device, before
any program or erase operations.
Command Definitions
In the Instruction Set table, corrected the CLSR Data Byte Cycle value from 1 to 0.
Sector Erase (SE)
Clarified that a 64 KB sector erase command will work on 4 KB and 8 KB sectors.
Clear Status Register
Removed incomplete statement regarding internal state machine.
OTP Regions
Clarified that for locking OTP regions, setting the bit refers to changing the value from 0 to 1.
Revision 07 (May 16, 2012)
Global
Added text for recommending FL128S as migration device.
Revision 08 (September 21, 2012)
AC Characteristics
Changed Output Hold Time (tHO) to 2 ns (min).
Physical Dimensions
Updated the package outline drawing for SO3016 and WSON 6x8 packages.
68
S25FL129P
S25FL129P_00_08 September 21, 2012
D a t a
S h e e t
Colophon
The products described in this document are designed, developed and manufactured as contemplated for general use, including without
limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as
contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal
operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under
the Foreign Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country,
the prior authorization by the respective government entity will be required for export of those products.
Trademarks and Notice
The contents of this document are subject to change without notice. This document may contain information on a Spansion product under
development by Spansion. Spansion reserves the right to change or discontinue work on any product without notice. The information in this
document is provided as is without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular purpose,
merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or statutory. Spansion assumes no liability for any
damages of any kind arising out of the use of the information in this document.
Copyright © 2009-2012 Spansion Inc. All rights reserved. Spansion®, the Spansion logo, MirrorBit®, MirrorBit® Eclipse™, ORNAND™ and
combinations thereof, are trademarks and registered trademarks of Spansion LLC in the United States and other countries. Other names used
are for informational purposes only and may be trademarks of their respective owners.
September 21, 2012 S25FL129P_00_08
S25FL129P
69