STMICROELECTRONICS L9352_08

L9352B
Intelligent quad (2 x 5A / 2 x 2.5A) low-side switch
Features
■
Quad low-side switch
■
2 x 5 A designed as conventional switch
■
2 x 2.5 A designed as switched currentregulator
■
Low ON-resistance 4 x 0.2 Ω (typ.)
■
PowerSO-36 - package with integrated cooling
area
■
Integrated free-wheeling and clamping Zdiodes
■
Output slope control
■
Short circuit protection
■
Selective overtemperature shutdown
■
Open load detection
■
Ground and supply loss detection
■
External clock control
■
Recirculation control
■
Regulator drift detection
■
Regulator error control
■
Status monitoring
Table 1.
PowerSO-36
■
status push-pull stages
■
Electrostatic discharge (ESD) protection
Description
The L9352B is an integrated quad low-side power
switch to drive inductive loads like valves used in
ABS systems. Two of the four channels are
current regulators with current range from 0 mA to
2.25 A.
All channels are protected against fail functions.
They are monitored by a status output.
Device summary
Order code
Package(1)
Packing
L9352B-LF
PowerSO-36
Tray
L9352B-TR-LF
PowerSO-36
Tape and reel
1. ECOPACK® package (see Section 6: Package information).
September 2008
Rev 6
1/27
www.st.com
1
Contents
L9352B
Contents
1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
5
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2
Input circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3
Output stages (not regulated) channel 1 and 2 . . . . . . . . . . . . . . . . . . . . 13
4.4
Current-regulator-stages channel 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5
Protective circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6
Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.7
Drift detection (regulated channels only) . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8
Other test modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.9
Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1
Non regulated channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2
Regulated channels (timing diagrams of diagnostic with 2kHz
PWM input signal) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2/27
L9352B
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Special test mode functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3/27
List of figures
L9352B
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
4/27
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pins connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Input PWM to output current range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Current accuracy according to the input and clock frequency ratio . . . . . . . . . . . . . . . . . . 14
Output slope, resistive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Overload switch-off delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Normal condition, resistive load, pulsed input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Current overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Diagnostic status output at different open load current conditions . . . . . . . . . . . . . . . . . . . 21
Pulsed open load conditions (regulated and non-regulated channels) . . . . . . . . . . . . . . . . 22
Normal condition, inductive load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Current overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Recirculation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Current regulation error (e.g. as a result of voltage reduction) . . . . . . . . . . . . . . . . . . . . . . 24
Over temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Test mode 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PowerSO-36 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 25
L9352B
1
Block diagram
Block diagram
Figure 1.
Block diagram
VS
VCC
VDD
Internal Supply
EN
Overtemperature
Channel 4
Overtemperature
Channel 1
CLK
Open Load
Overload
IN1
Q1
LOGIC
ST1
IPD
GND-det.
Open Load
D4
IN4
LOGIC
&
DA
Overload
Q4
ST4
IPD
GND-det.
Overtemperature
Channel 3
Overtemperature
Channel 2
Open Load
Overload
IN2
Q2
LOGIC
ST2
IPD
GND-det.
Open Load
D3
IN3
LOGIC
&
DA
Overload
Q3
ST3
IPD
GND-det.
drift-det.
TEST
99AT0059
GND
5/27
Pins description
2
L9352B
Pins description
Figure 2.
Pins connection (top view)
GND
PGND3
PGND3
Q3
Q3
D3
D3
Q1
Q1
Q2
Q2
D4
D4
Q4
Q4
PGND4
PGND4
N.C.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
CLK
ST3
IN1
IN3
ST1
PGND1
PGND1
VS
PGND2
PGND2
TEST
EN
ST2
IN4
IN2
ST4
VDD
VCC
99AT0060
Table 2.
6/27
Pins description
N°
Pin
Description
1
GND
2, 3
PGND3
Power ground - Channel 3
4, 5
Q3
Power output - Channel 3
6, 7
D3
Free-wheeling diode - Channel 3
8, 9
Q1
Power output - Channel 1
10, 11
Q2
Power output - Channel 2
12, 13
D4
Free-wheeling diode - Channel 4
14, 15
Q4
Power output - Channel 4
16, 17
PGND4
Power ground - Channel 4
18
NC
19
VCC
5 V supply
20
VDD
5 V supply
21
ST4
Status output - Channel 4
22
IN2
Control input - Channel 2
23
IN4
Control input - Channel 4
24
ST2
Status output - Channel 2
25
EN
Enable input for all four channels
Logic ground
Not Connected
L9352B
Pins description
Table 2.
Pins description (continued)
N°
Pin
Description
26
TEST
27, 28
PGND2
29
VS
30, 31
PGND1
Power ground - Channel 1
32
ST1
Status output - Channel 1
33
IN3
Control input - Channel 3
34
IN1
Control input - Channel 1
35
ST3
Status output - Channel 3
36
CLK
Clock input
Enable input for drift detection
Power ground - Channel 2
Supply voltage
7/27
Electrical specifications
L9352B
3
Electrical specifications
3.1
Absolute maximum ratings
The absolute maximum ratings are the limiting values for this device.
Warning:
Table 3.
Absolute maximum ratings
Symbol
EQ
Damage may occur if this device is subjected to conditions
which are beyond these values.
Parameter
Test conditions
Min
Switch off energy for inductive loads
Typ
Max
Unit
50
mJ
Voltages
VS
Supply voltage
-0.3
40
V
VCC, VDD
Supply voltage
-0.3
6
V
40
V
60
V
-1.5
6
V
VQ
Output voltage static
VQ
Output voltage during clamping
t < 1ms
Input voltage IN1 to IN4, EN
II < |10|mA
VIN, VEN
VCLK
Input voltage CLK
-1.5
6
V
VST
Output voltage status
-0.3
6
V
VD
Recirculation circuits D3, D4
40
V
Max. reverse breakdown voltage of free
wheeling diodes D3, D4
55
V
VDRmax
Currents
IQ1/2
Output current for Q1 and Q2
>5
internal
limited
A
IQ3/4
Output current for Q3 and Q4
>3
internal
limited
A
IQ1/2,
IPGND1/2
Output current at reversal supply for Q1
and Q2
-4
A
IQ3/4,
IPGND3/4
Output current at reversal supply for
Q3 and Q4
-2
A
Output current status pin
-5
IST
5
mA
ESD protection
ESD
8/27
Electrostatical discharging
GND, PGND, Qx, Dx, CLK, ST, IN,
TEST, EN
MIL883C
±2
kV
L9352B
Table 3.
Electrical specifications
Absolute maximum ratings (continued)
Symbol
VS,
VCC,VDD
ESD
Parameter
Test conditions
Min
Supply pins
vs. GND and PGND
±1
kV
Output pins (Qx, Dx)
vs. Common GND
(PGND1-4 + GND)
±4
kV
Test conditions
Min
3.2
Thermal data
Table 4.
Thermal data
Symbol
Parameter
Typ
Typ
Max
Unit
Max
Unit
150
°C
175
190
°C
Tj
Junction temperature
Tj
Tjc
Junction temperature during clamping
(life time)
Σt
Tstg
Storage temperature
Tstg
-55
150
°C
Over temperature shutdown threshold
(1)
175
200
°C
Over temperature shutdown hysteresis
(1)
Tth
Thy
Rth j-case
Σt
-40
= 30min
= 15min
10
Thermal resistance junction to case
°C
2
K/W
1. This parameter will not be tested but assured by design.
3.3
Operating range
Table 5.
Operating range
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VS
Supply voltage
4.8
18
V
VCC, VDD
Supply voltage
4.5
5.5
V
Supply voltage transient time
-1
1
V/μs
-0.3
40
V
60
V
dVS/dt
VQ
Output voltage static
VQ
Output voltage induced by inductive
switching
VST
Output voltage status
-0.3
6
V
IST
Output current status
-1
1
mA
Tj
Junction temperature
-40
150
°C
Tjc
Junction temperature during clamping
175
190
°C
Voltage will be
limited by internal
Z-diode clamping
Σ
Σ
= 30min
= 15min
9/27
Electrical specifications
L9352B
3.4
Electrical characteristics
Table 6.
Electrical characteristics
(VS = 4.8 to 18V; Tj = -40 to 150°C unless otherwise specified)
Symbol
Parameter
Test condition
Min.
Typ.
Max.
Unit
Power supply
ISON
Supply current
VS ≤ 18V
(outputs ON)
5
mA
ISOFF
Quiescent current
VS ≤ 18V
(outputs OFF)
5
mA
Icc
Supply current VCC (analog supply)
VCC = 5V
5
mA
Idd
Supply current VDD (digital supply)
VDD = 5V fCLK=0Hz
5
μA
Idd
Supply current VDD (digital supply)
VDD = 5V fCLK=250kHz
5
mA
0.36
x VQ
1
V
3.5
V
100
kHz
45
%
General diagnostic functions
Open load voltage
VS ≥ 6.5V
(outputs OFF)
0.3
VthGND
Signal-GND-loss threshold
VCC = 5V
0.1
VthPGL
Power-GND-loss threshold
VCC = 5V
1.5
fCLK,min
Clock frequency error
VQU
fCLK = 250 kHz
DCCLKe_high Clock duty cycle error detection high
fCLK = 250 kHz
55
VCC = VDD = 5V
2
Supply detection
2.5
10
DCCLKe_low Clock duty cycle error detection low
VSloss
0.33
33,3
66,6
%
4.5
V
300
mA
9
A
100
%
Additional diagnostic functions channel 1 and channel 2 (non regulated channels)
IQU1,2
Open-load current channel 1, 2
VS ≥ 6.5V
50
IQO1,2
Over-load current channel 1, 2
VS ≥ 6.5V
5
7.5
Additional diagnostic functions channel 3 and channel 4 (regulated channels)
DCOUT
Output duty cycle error
filtered with 10ms
90
IQO3,4
Overload current
channel 3,4
VS ≥ 6.5V
2.5
5
8
A
Vrerr
Recirculation error shutdown
threshold (open D3/D4)
Iout > 50mA
45
50
60
V
PWMdOUT
Output PWM ratio during drift
comparison
VIN3 = VIN4 = PWMIN
VTEST = H
+14.3
%
-14.3
Digital inputs (IN1 to IN4, ENA, CLK, TEST). The valid PWM-Ratio for IN3/IN4 is 10% to 90%
VIL
Input low voltage
-0.3
1
V
VIH
Input high voltage
2
6
V
VIHy
Input voltage hysteresis(1)
20
500
mV
10/27
L9352B
Table 6.
Symbol
II
Electrical specifications
Electrical characteristics (continued)
(VS = 4.8 to 18V; Tj = -40 to 150°C unless otherwise specified)
Parameter
Input pull down current
Test condition
Min.
Typ.
Max.
Unit
VIN = 5V, VS ≥ 6.5V
8
20
40
μA
IST ≤ 40μA
0
0.4
V
IST ≥ - 40μA
2.5
3.45
V
IST ≥ -120μA
2
3.45
V
Digital outputs (ST1 to ST4)
VSTL
Status output voltage in low state (2))
VSTH
Status output voltage in high state (2))
RDIAGL
ROUT + RDSON in low state
0.3
0.64
1.5
kΩ
RDIAGH
ROUT + RDSON in high state
1.5
3.2
7.0
kΩ
0.2
0.4
W
Power outputs (Q1 to Q4)
RDSON
Static drain-source ON-resistance
IQ = 1A; VS ≥ 9.5V
VF_250mA
Forward voltage of free wheeling path
ID3/4 = -250mA
D3, D4 @250mA
0.5
1.5
V
VF_2.25A
Forward voltage of free wheeling path
ID3/4 = -2.25A
D3, D4 @2.25A
2.0
4.5
V
Rsens
Sense resistor = (VF_2.25AVF_250mA)/2A
1
W
VZ
Z-diode clamping voltage
IQ ≥ 100mA
45
60
V
IPD
Output pull down current
VEN = H, VIN = L
10
150
μA
IQlk
Output leakage current
VEN = L; VQ = 20V
5
μA
tON
Output ON delay time
IQ = 1A
0
5
20
μs
tOFF
Output OFF delay time channel
IQ = 1A
0
10
30
μs
tIN3/4min
Minimum Input Register ON time
(3)
tOFFREG
Output OFF delay time regulator
Timing
2
μs
528
μs
tr
Output rise time
IQ = 1A
0.5
1.5
8
μs
tf
Output fall time
IQ = 1A
0.5
1.5
8
μs
tsf
Short error detection filter time
fCLK = 250kHz DC = 50% (3)
4
8
μs
Long error detection filter time
fCLK = 250kHz DC = 50%
(3)
16
32
μs
Short circuit switch-OFF delay time
(3)
4
30
μs
tD
Status delay time
(3)
896
1024
μs
tRE
Regulation error status delay time
(3) (reg.
channels only)
10
ms
Output off status delay time
(3) (reg.
channels only
528
μs
tlf
tSCP
tDreg
Reg. current accuracy (reg. channels only)
IQ3/Q4
Maximum current
DC = 90%
2
2.25
2.5
A
11/27
Electrical specifications
Table 6.
Symbol
IQ3/Q4
ΔIQ3/Q4
L9352B
Electrical characteristics (continued)
(VS = 4.8 to 18V; Tj = -40 to 150°C unless otherwise specified)
Parameter
Current Resolution Input Duty Cycle
0.4% - 99% fclk = [email protected]
Test condition
0.00A ≤ IQ3/Q4 ≤ 0.25A
0.25A ≤ IQ3/Q4 ≤ 0.40A
0.40A ≤ IQ3/Q4 ≤ 0.80A
0.80A ≤ IQ3/Q4 ≤ 2.25A
Min. quant. step
Min.
Typ.
-8
Max.
Unit
25
10
6
6
mA
%
%
%
5
mA
250
kHz
2
kHz
Frequencies
CLK frequency
crystal-controlled
Input PWM frequency
(reg. channels only)
1. This parameter will not be tested but assured by design.
2. Short circuit between two digital outputs (one in high the other in low state) will lead to the defined result "LOW".
3. Digital filtered with external clock, only functional test.
12/27
L9352B
Functional description
4
Functional description
4.1
Overview
The L9352B is designed to drive inductive loads (relays, electromagnetic valves) in low side
configuration. Integrated active Zener-clamp (for channel1 and 2) or free wheeling diodes
(for channel 3 and 4) allow the recirculation of the inductive loads. All four channels are
monitored with a status output. All wiring to the loads and supply pins of the device are
controlled. The device is self-protected against short circuit at the outputs and over
temperature. For each channel one independent push-pull status output is used for a
parallel diagnostic function.
Channel 3 and 4 work as current regulator. A PWM signal on the input defines the target
output current. The output current is controlled through the output PWM of the power stage.
The regulator limit of 90% is detected and monitored with the status signal. The current is
measured during recirculation phase of the load.
A test mode compares the differences between the two regulators. This “drift” test compares
the output PWM of the regulators. By this feature a drift of the load during lifetime can be
detected.
4.2
Input circuits
The INput, CLK, TEST and ENable inputs, are active high, consist of Schmidt triggers with
hysteresis. All inputs are connected to pull-down current sources.
4.3
Output stages (not regulated) channel 1 and 2
The two power outputs (5A) consist of DMOS-power transistors with open drain output. The
output stages are protected against short circuit. Via integrated Zener-clamp-diodes the
overvoltage of the inductive loads due to recirculation are clamped to typ. 52V for fast shut
off of the valves. Parallel to the DMOS transistors there are internal pull-down current
sources. They are provided to assure an open load condition in the OFF-state. With EN=low
this current source is switched off, but the open load comparator is still active.
4.4
Current-regulator-stages channel 3 and 4
The current-regulator channels are designed to drive inductive loads. The target value of the
current is given by the duty cycle (DC) of the 2 kHz PWM input signal. The following figure
shows the relation between the input PWM and the output current and the specified
accuracy.
13/27
Functional description
Figure 3.
L9352B
Input PWM to output current range
2250
IO
(mA)
800
400
250
±25 ±
mA 10%
10 16
±6%
-8% to +6%
32
INPUT PWM(%)
90
D03AT513A
The ON period of the input signal is measured with a 1MHz clock, synchronized with the
external 250kHz clock. For requested precision of the output current the ratio between the
frequencies of the input signal and the external 250kHz clock has to be fixed according to
the graph shown in Figure 4.
Current accuracy according to the input and clock frequency ratio
current accuracy
Figure 4.
5.6%
112.5
Regulator
125
132
fCLK / fIN
0%
switched off
-10%
The theoretical error is zero for fCLK / fIN = 125.
If the period of the input signal is longer than 132 times the period of the clock the regulator
is switched off. For a clock frequency lower than 100kHz the clock control will also disable
the regulator. For high precision applications the clock frequency and the input frequency
have to be correlated.
The output current is measured during the recirculation of the load. The current sense
resistor is in series to the free wheeling diode. If this recirculation path is interrupted the
regulator stops immediately and the status output remains low for the rest of the input cycle.
The output period is 64 times the clock period. With a clock frequency of 250kHz the output
PWM frequency is 3.9kHz. The output PWM is synchronized with the first negative edge of
the input signal. After that the output and the input are asynchronous. The first period is
14/27
L9352B
Functional description
used to measure the current. This means the first turn-on of the power is 256μs after the first
negative edge of the input signal.
As regulator a digital PI-regulator with the Transfer function for:
0.126
KI: --------------z–1
and KP: 0.96
for a sampling time of 256µs is realized.
To speed up the current settling time the regulator output is locked to 90% output PWM until
the target current value is reached. This happens also when the target current value
changes and the output PWM reaches 90% during the regulation. The status output gets
low if the target current value is not reached within the regulation error delay time of
tRE=10ms.
4.5
Protective circuits
The outputs are protected against current overload, over temperature, and power-GND-loss.
The external clock is monitored by a clock watchdog. This clock watchdog detects a minimal
frequency fCLK,min and wrong clock duty cycles. The allowed clock duty cycle range is 45% to
55%. The current-regulator stages are protected against recirculation errors, when D3 or D4
is not connected. All these error conditions shut off the power stage and invert the status
output information.
4.6
Error detection
The status outputs indicate the switching state under normal conditions (status LOW = OFF;
status HIGH = ON). If an error occurs, the logic level of the status output is inverted, as listed
in the diagnostic table below. All external errors, for example open load, are filtered
internally. The following table shows the detected errors, the filter times and the detection
mode (on/off).
Table 7.
Error detection
Short circuit of the load
ON State
OFF State
EN &IN = HIGH
EN &IN = LOW
X
Open load
(under voltage detection)
X
Filter time
Reset done by
tsf
EN & IN = “LOW”
for TD or TDreg
tlf
timer TD
Open load
(under current detection)
X
tsf
timer TD
Overtemperature
X
tsf
EN & IN = “LOW”
for TD or TDreg
Power-GND-loss
X
X
tlf
in on: EN & IN = “LOW”
for TD or TDreg
in off: timer TD
Signal-GND-loss
X
X
tlf
timer TD
15/27
Functional description
Table 7.
L9352B
Error detection (continued)
ON State
OFF State
EN &IN = HIGH
EN &IN = LOW
Supply-VS-loss
X
X
tlf
timer TD
Clock control
X
X
no
in on: EN & IN = “LOW”
for TD or TDreg
in off: timer TD
no
in on: EN & IN = “LOW”
for TD or TDreg
in off: timer TD
Output voltage clamp active
X
(regulated
channels)
Filter time
Reset done by
EN&IN = low means that at least one between enable and input is low. For the inputs IN=low
means also no input PWM. For the regulator input period longer than TDreg and for the
standard channel input period longer than TD.
A detected error is stored in an error register. The reset of this register is made with a timer
TD. With this approach all errors are present at the status output at least for the time TD.
All protection functions like short circuit of the output, over temperature, clock failure or
power-GND-loss in ON condition are stored into an internal “fail” register. The output is then
shut off. The register must be reset with a low signal at the input. A “low signal” means that
the input is low for a time longer than TD or TDReg for the related channel, otherwise it is
interpreted as a PWM input signal and the register is left in set mode.
Signal-GND-loss and VS-loss are detected in the active on mode, but they do not set the fail
register. This type of error is only delayed with the standard timer tlf function.
Open load is detected for all four channels in on- and off-state.
Open load in off condition detects the voltage on the output pin. If this voltage is below 0.33
* VS the error register is set and delayed with TD. A sink current stage pull the output down
to ground, with EN high. With EN low the output is floating in case of openload and the
detection is not assured. In the ON state the load current is monitored by the non-regulated
channels. If it drops below the specified threshold value IQU an open load is detected and
the error register is set and delayed with TD. A regulated channel detects the open load in
the on state with the current regulator error detection. If the output PWM reaches 90% for a
time longer than tRE than an error occurs. This could happen when no load is connected, the
resistivity of the load is too high or the supply voltage too low.
A clock failure (clock loss) is detected when the frequency becomes lower than fCLK,min. All
status outputs are set on error and all power outputs are shut off. The status signals remain
in their state until the clock signal is present again. A clock failure during power on of VCC is
detected only on the regulated channels. The status outputs of the channel 1 and 2 are low
in this case.
16/27
L9352B
4.7
Functional description
Drift detection (regulated channels only)
The drift detection is used to compare the two regulated channels during regulation. This
“Drift” test compares the output PWM of the regulators. The resistivity of the load influences
the output PWM. The approximated formula for the output current below shows the
dependency of the load resistor to the output PWM. In this formula the energy reduction
during the recirculation is not taken into account. The real output PWM is higher. The
testmode is enabled with IN, EN and TEST high. With an identical 2kHz PWM-Signal
connected to the IN-inputs the output PWM must be in a range of ±14.3%. If the difference
between the two on-times is more than ±14.3% of the expected value an error is detected
and monitored by the status outputs, in the same way as described above, but a drift error
will not be registered and also not delayed with TD as other errors.
VBAT
IOUT = ---------------------------- ⋅ PWM
RL + RON
Drift Definition:
Drift = PWM(1+E) - PWM (1-E) = 2PWM E
Drift * 4 < PWM (1+E)
with E >14.3% a drift is detected
E.. not correlated Error of the channels
%PWM ... Corresponding ideal output PWM to a given input PWM
A 7bit output-PWM-register is used for the comparison. The register with the lower value is
subtracted from the higher one. This result is multiplied by four and compared with the
higher value.
4.8
Other test modes
The test pin is also used to test the regulated channels in the production. With a special
sequence on this pin the power stages of the regulated channels can be controlled direct
from the input. No status feedback of the regulated channels is given. The status output is
clocked by the regulator logic. The output sequence is a indication of a proper logic
functionality. The following table shows the functionality of this special test mode.
Table 8.
Special test mode functionality
EN
IN
TEST
OUT
STATUS
Note
1
X
X
X
X
disable test mode
1
1
1
on
1
Drift mode
0
X
off
test pattern
test condition one
0
X
off
test pattern
test condition two
0
X
off
test pattern
test condition three
0
0
off
test pattern
test condition four
0
1
on
test pattern
test condition four
For more details about the test condition four see timing diagram.
17/27
Functional description
4.9
L9352B
Diagnostic
The status follows the input signal in normal operating conditions.
If any error is detected the status is inverted.
Table 9.
Diagnostic
Test
Operating condition
Enable
Control input
non-reg./reg. IN
Status
Power
output/current
reg. Q
output
input
input
TEST
ENA
Normal function
L
L
L
L
L
L
H
H
L
H/PWM
L
H/PWM
OFF
OFF
OFF
ON
L
L
L
H
Open load or short to ground
L
L
L
L
L
L
H
H
L
H/PWM
L
H/PWM
OFF
OFF
OFF
ON
X
X
H
L
Overload or short to supply
Latched overload
Reset latch
Reset latch
L
L
L
L
H
H
H –> L
H
H/PWM
H/PWM
X
H/PWM –> L
OFF
OFF
OFF
OFF
L
L
L
L
Overtemperature
Latched overtemperature
Reset latch
Reset latch
L
L
L
L
H
H
H –> L
H
H/PWM
H/PWM
X
H/PWM –> L
OFF
OFF
OFF
OFF
L
L
L
L
Recirculation error (reg.chn.)
Latched error
Reset latch
Reset latch
L
L
L
L
H
H
H –> L
H
PWM
PWM
X
PWM –> L
OFF
OFF
OFF
OFF
L
L
L
L
Clock failure (clock loss)(1)
L
L
L
L
L
L
H
H
L
H/PWM
L
H/PWM
OFF
OFF
OFF
OFF
H
H
H
L
H
H
H
H
L
L
H
H
L
H/PWM
H/PWM
H/PWM
OFF
OFF
ON
ON
X
X
L
H
Drift(2)
Failure
No failure
1. during power on sequence only detected on channel 3 and 4 (see description).
2. This input combination is also used for an internal chip-test and must not be used.
18/27
ST
L9352B
Timing diagrams
5
Timing diagrams
5.1
Non regulated channels
Figure 5.
Output slope, resistive load
VI
VIH
VIL
t
VQ
tON
tOFF
tf
tr
VS
85% V S
15% V S
t
99AT0061
Figure 6.
Overload switch-off delay
IQ
IQO
IQU
t
tD
tSCP
VST
tsf
t
00RS0001
19/27
Timing diagrams
L9352B
Figure 7.
Normal condition, resistive load, pulsed input signal
VIN
VQ
IQ
IQU
tD
tD
VST
99AT0063
Figure 8.
Current overload
tD
Reset Fail
register
VIN
VQ
Set Fail
register
IQO
IQ
tD
VST
99AT0064
20/27
L9352B
Timing diagrams
Figure 9.
Diagnostic status output at different open load current conditions
Under current condition followed by normal operation
tD
VIN
VQ
IQ
IQU
tD
VST
99AT0065
Open load condition in the case of pulsed input signal followed by normal operation
tD
VIN
VQ
IQU
IQ
tD
VST
99AT0066
21/27
Timing diagrams
L9352B
Figure 10. Pulsed open load conditions (regulated and non-regulated channels)
VIN
VQ
0.33 x VS
IQ
tD
tlf
tlf
VST
99AT0067
5.2
Regulated channels (timing diagrams of diagnostic with
2kHz PWM input signal)
Figure 11. Normal condition, inductive load
tDREG
500μs
VIN
VQ
Target Current
IQ
VST
99AT0068
22/27
256μs
256μs
L9352B
Timing diagrams
Figure 12. Current overload
tDREG
500μs
Reset Fail
register
VIN
VQ
Set fail
registor
IQO
IQ
tsf
VST
99AT0069
Figure 13. Recirculation error
500μs
tDREG
Reset Fail
register
VIN
VQ
IQ
Set Fail
register
target current
VST
99AT0070
23/27
Timing diagrams
L9352B
Figure 14. Current regulation error (e.g. as a result of voltage reduction)
500μs
VIN
VQ
PWM ratio = 90%
target current
IQ
tRE
VST
99AT0071
Figure 15. Over temperature
Overtemperature
Condition
500μs
tDREG
VIN
VQ
IQ
Set Fail
register
target current
VST
99AT0072
Figure 16. Test mode 4
Test mode 4
VTEST
VIN3/4
VQ3/4
99AT0073
24/27
VEN low
Reset Fail
register
L9352B
6
Package information
Package information
In order to meet environmental requirements, ST (also) offers these devices in ECOPACK®
packages. ECOPACK® packages are lead-free. The category of second Level Interconnect
is marked on the package and on the inner box label, in compliance with JEDEC Standard
JESD97. The maximum ratings related to soldering conditions are also marked on the inner
box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 17. PowerSO-36 mechanical data and package dimensions
DIM.
mm
MIN.
TYP.
A
a1
inch
MAX.
MIN.
TYP.
3.60
0.10
0.30
a2
MAX.
0.1417
0.0039
0.0118
3.30
0.1299
a3
0
0.10
b
0.22
0.38
0.0087
0.0150
c
0.23
0.32
0.0091
0.0126
D
15.80
16.00 0.6220
0.6299
D1
9.40
9.80
0.3701
E
13.90
14.5
0.5472
0.5709
E1
10.90
11.10 0.4291
0.4370
E2
E3
e
6.20
0.3858
0.1142
0.2283
0.65
e3
0
H
15.50
h
0.4350
0.10
0.0039
15.90 0.6102
1.10
0.8
0.2441
0.0256
11.05
G
L
0.0039
2.90
5.80
OUTLINE AND
MECHANICAL DATA
1.10
0.6260
0.0433
0.0315
N
10˚ (max)
s
8˚ (max)
0.0433
PowerSO-36
Note: “D and E1” do not include mold flash or protusions.
- Mold flash or protusions shall not exceed 0.15mm (0.006”)
- Critical dimensions are "a3", "E" and "G".
0096119 C
25/27
Revision history
7
L9352B
Revision history
Table 10.
26/27
Document revision history
Date
Revision
Changes
20-Feb-2004
5
Initial release.
05-Sep-2008
6
Document reformatted.
Updated the order codes in Table 1: Device summary.
L9352B
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
27/27