TI TLV2402ID

TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
D
D
D
D
D
D
D
D
Micro-Power Operation . . . < 1 µA/Channel
Input Common-Mode Range Exceeds the
Rails . . . –0.1 V to VCC + 5 V
Rail-to-Rail Input/Output
Gain Bandwidth Product . . . 5.5 kHz
Supply Voltage Range . . . 2.5 V to 16 V
Specified Temperature Range
– TA = 0°C to 70°C . . . Commercial Grade
– TA = –40°C to 125°C . . . Industrial Grade
Ultra-Small Packaging
– 5-Pin SOT-23 (TLV2401)
– 8-Pin MSOP (TLV2402)
Universal OpAmp EVM
TLV2404
D, N, OR PW PACKAGE
(TOP VIEW)
1OUT
1IN –
1IN+
VCC
2IN+
2IN –
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN –
4IN+
GND
3IN+
3IN –
3OUT
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
description
1.4
I CC – Supply Current – µ A/Ch
The TLV240x family of single-supply operational
amplifiers has the lowest supply current available
today at only 900 nA per channel. Added to this is
reverse battery protection making the device even
more ideal for battery powered systems. And for
harsh environments, the inputs can be taken 5 V
above the positive supply rail without damage to
the device.
The low supply current is coupled with extremely
low input bias currents enabling them to be used
with mega-Ω resistors making them ideal for
portable, long active life, applications. DC
accuracy is ensured with a low typical offset
voltage as low as 390 µV, CMRR of 120 dB and
minimum open loop gain of 130 V/mV at 2.7 V.
AV = 1
VIN = VCC / 2
TA =25 °C
1.2
1.0
0.8
0.6
0.4
0.2
0
0
2
4
6
8
10
12
14
16
VCC – Supply Voltage – V
The maximum recommended supply voltage is as high as 16 V and ensured operation down to 2.5 V, with
electrical characteristics specified at 2.7 V, 5 V and 15 V. The 2.5-V operation makes it compatible with Li-Ion
battery-powered systems and many micro-power microcontrollers available today including TI’s MSP430.
All members are available in PDIP and SOIC with the singles in the small SOT-23 package, duals in the MSOP,
and quads in TSSOP.
FAMILY PACKAGE TABLE
DEVICE
NO OF Ch
NO.
TLV2401†
TLV2402†
PACKAGE TYPES
PDIP
SOIC
SOT-23
TSSOP
MSOP
1
8
2
8
8
5
—
—
8
—
—
8
UNIVERSAL
EVM
Refer to the EVM
Selection Guide
(Lit# SLOU060)
TLV2404
4
14
14
—
14
—
† This device is in the Product Preview stage of development. Contact your local TI slaes office for more
information
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
TI is a trademark of Texas Instruments Incorporated.
Copyright  2000, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
TLV2401 AVAILABLE OPTIONS
TA
0°C to 70°C
- 40°C to 125°C
VIOmax
AT 25°C
1500 µV
PACKAGED DEVICES
SOT-23†
(DBV)
SMALL OUTLINE
(D)
TLV2401CD
TLV2401CDBV
TLV2401ID
TLV2401IDBV
PLASTIC DIP
(P)
TLV2401CP
TLV2401IP
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part
number (e.g., TLV2401CDR).
TLV2402 AVAILABLE OPTIONS
TA
0°C to 70°C
– 40°C to 125°C
VIOmax
AT 25°C
1500 µV
PACKAGED DEVICES
†
SMALL OUTLINE
MSOP
(DGK)
(D)
TLV2402CD
TLV2402CDGK
TLV2402ID
TLV2402IDGK
PLASTIC DIP
(P)
TLV2402CP
TLV2402IP
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part
number (e.g., TLV2402CDR).
TLV2404 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
VIOmax
AT 25°C
1500 µV
SMALL OUTLINE
(D)
TLV2404CD
PLASTIC DIP
(N)
TLV2404CN
TSSOP
(PW)
TLV2404CPW
– 40°C to 125°C
TLV2404ID
TLV2404IN
TLV2404IPW
† This package is available taped and reeled. To order this packaging option, add an R suffix to the part
number (e.g., TLV2404CDR).
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
TLV240x PACKAGE PINOUTS
TLV2401
D OR P PACKAGE
(TOP VIEW)
TLV2401
DBV PACKAGE
(TOP VIEW)
OUT
GND
IN+
1
5
VCC
2
3
4
IN –
NC
IN –
IN +
GND
1
8
2
7
3
6
4
5
TLV2402
D, DGK, OR P PACKAGE
(TOP VIEW)
NC
VCC
OUT
NC
1OUT
1IN –
1IN +
GND
1
8
2
7
3
6
4
5
VCC
2OUT
2IN –
2IN+
TLV2404
D, N, OR PW PACKAGE
(TOP VIEW)
1OUT
1IN –
1IN+
VCC
2IN+
2IN –
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN –
4IN+
GND
3IN+
3IN –
3OUT
NC – No internal connection
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 V
Differential input voltage, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 V
Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C
Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values, except differential voltages, are with respect to GND
DISSIPATION RATING TABLE
PACKAGE
ΘJC
(°C/W)
ΘJA
(°C/W)
TA ≤ 25°C
POWER RATING
D (8)
38.3
176
710 mW
D (14)
26.9
122.6
1022 mW
DBV (5)
55
324.1
385 mW
DGK (8)
54.23
259.96
481 mW
N (14)
32
78
1600 mW
P (8)
41
104
1200 mW
PW (14)
29.3
173.6
720 mW
recommended operating conditions
Single supply
Supply voltage
voltage, VCC
Split supply
Common-mode input voltage range, VICR
C-suffix
free air temperature,
temperature TA
Operating free-air
4
I-suffix
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MIN
MAX
2.5
16
±1.25
±8
–0.1
0
VCC+5
70
– 40
125
UNIT
V
V
°C
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
electrical characteristics at recommended operating conditions, VCC = 2.7, 5 V, and 15 V (unless
otherwise noted)
dc performance
PARAMETER
VIO
Input offset voltage
αVIO
Offset voltage draft
CMRR Common-mode
Common mode rejection ratio
TEST CONDITIONS
VO = VCC/2 V,
VIC = VCC/2 V,
RS = 50 Ω
TLV240x
Large-signal
g
g
differential voltage
g
amplification
MIN
25°C
RS = 50 Ω
VIC = 0 to VCC,
VO(
O(pp)) = 4 V,,
RL = 500 kΩ
VCC = 5 V
VCC = 15 V
TYP
MAX
390
1200
Full range
1500
25°C
VCC = 2
2.7
7V
AVD
TA†
70
Full range
65
25°C
130
Full range
30
25°C
300
Full range
100
25°C
1000
µV
µV/°C
3
25°C
UNIT
120
dB
400
1000
V/mV
1800
Full range
120
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
input characteristics
PARAMETER
VICR
Common-mode input voltage range
TA†
MIN
VCC = 2.7 V
25°C or
Full range
– 0.1
to
7.7
V
VCC = 5 V
25°C or
Full range
– 0.1
to
10
V
25°C or
Full range
– 0.1
to
20
V
TEST CONDITIONS
Measured over CMRR
range, RS = 50 Ω
VCC = 15 V
25°C
IIO
Input offset current
TLV240xC
VO = VCC/2 V,
VIC = VCC/2 V,
V
RS = 50 Ω
IIB
Input bias current
TLV240xI
TLV240xI
ri(d)
Differential input resistance
25
UNIT
250
pA
400
100
300
350
Full range
25°C
MAX
300
Full range
25°C
TLV240xC
TYP
pA
900
300
MΩ
Ci(c)
Common-mode input capacitance
f = 100 kHz
25°C
3
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
pF
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
electrical characteristics at recommended operating conditions, VCC = 2.7, 5 V, and 15 V (unless
otherwise noted) (continued)
output characteristics
PARAMETER
TEST CONDITIONS
VCC = 2
2.7
7V
VIC = VCC/2,,
IOH = –2 µA
VCC = 5 V
VCC = 15 V
VOH
High level output voltage
High-level
VCC = 2
2.7
7V
VIC = VCC/2,,
IOH = –50 µA
VCC = 5 V
VCC = 15 V
/2 IOL = 2 µA
VIC = VCC/2,
VOL
Low level output voltage
Low-level
VIC = VCC/2,
/2 IOL = 50 µA
TA†
25°C
MIN
TYP
2.65
2.68
Full range
2.63
25°C
4.95
Full range
4.93
25°C
14.95
Full range
14.93
25°C
2.62
Full range
2.6
25°C
4.92
Full range
4.9
25°C
14.92
Full range
14.9
25°C
MAX
4.98
14.98
V
2.65
4.95
14.95
90
Full range
150
180
25°C
UNIT
180
Full range
230
mV
260
IO
Output current
VO = 0.5 V from rail
25°C
±200
Zo
Closed-loop output impedance
f = 100 Hz,
AV = 10
25°C
1200
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
µA
Ω
power supply
PARAMETER
TEST CONDITIONS
VCC = 2.7
2 7 V or 5 V
ICC
Supply current (per channel)
VO = VCC/2
VCC = 15 V
PSRR
Power supply
y rejection
j
ratio
(∆VCC/∆VIO)
VCC = 2.7 to 5 V,,
VIC = VCC/2 V
No load,,
VCC = 5 to 15 V,
VIC = VCC/2 V
No load,
TA†
25°C
MIN
TYP
MAX
880
950
Full range
1290
25°C
900
Full range
990
UNIT
nA
1350
25°C
100
Full range
100
25°C
100
120
dB
120
Full range
100
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
dynamic performance
PARAMETER
UGBW
Unity gain bandwidth
RL = 500 kΩ,
SR
Slew rate at unity gain
VO(pp) = 0.8 V,
φM
Phase margin
Gain margin
ts
Settling time
CL = 100 pF
TA†
25°C
CL = 100 pF
25°C
TEST CONDITIONS
RL = 500 kΩ
kΩ,
RL = 500 kΩ,
CL = 100 pF
VCC = 2.7 or 5 V,
V(STEP)PP = 1 V, CL = 100 pF,
AV = –1,
RL = 100 kΩ
VCC = 15 V,
V(STEP)PP = 1 V
V, CL = 100 pF
F,
AV = –1,
RL = 100 kΩ
25°C
0.1%
MIN
TYP
POST OFFICE BOX 655303
2.5
V/ms
60
15
dB
1.84
25°C
ms
0.1%
6.1
0.01%
32
• DALLAS, TEXAS 75265
UNIT
kHz
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
6
MAX
5.5
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
electrical characteristics at recommended operating conditions, VCC = 2.7, 5 V, and 15 V (unless
otherwise noted) (continued)
noise/distortion performance
PARAMETER
Vn
TEST CONDITIONS
TA†
MIN
f = 10 Hz
Equivalent input noise voltage
TYP
800
25°C
f = 100 Hz
500
In
Equivalent input noise current
f = 100 Hz
8
† Full range is 0°C to 70°C for the C suffix and –40°C to 125°C for the I suffix. If not specified, full range is – 40°C to 125°C.
MAX
UNIT
nV/√Hz
fA/√Hz
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
IIB
Input Offset Voltage
Input Bias Current
vs Common-mode input voltage
1, 2, 3
vs Free-air temperature
4, 6, 8
vs Common-mode input voltage
5, 7, 9
vs Free-air temperature
4, 6, 8
vs Common-mode input voltage
5, 7, 9
IIO
Input Offset Current
CMRR
Common-mode rejection ratio
vs Frequency
VOH
VOL
High-level output voltage
vs High-level output current
11, 13, 15
Low-level output voltage
vs Low-level output current
12, 14, 16
VO(PP)
Zo
Output voltage peak-to-peak
vs Frequency
17
Output impedance
vs Frequency
18
ICC
PSRR
Supply current
vs Supply voltage
19
Power supply rejection ratio
vs Frequency
20
AVD
Differential voltage gain
vs Frequency
21
Phase
vs Frequency
21
Gain-bandwidth product
vs Supply voltage
22
SR
Slew rate
vs Free-air temperature
23
φm
Phase margin
vs Load capacitance
24
Gain margin
vs Load capacitance
25
10
Large-signal voltage follower
26, 27, 28
Small-signal voltage follower
29
Large-signal inverted pulse response
30, 31, 32
Small-signal inverted pulse response
Crosstalk
33
vs Frequency
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
34
7
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
TYPICAL CHARACTERISTICS
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT
VOLTAGE
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT
VOLTAGE
800
600
400
200
0
–200
–0.2 0.2
0.6
1.0
1.4
1.8
2.2
0
–100
–200
–300
VCC = 5 V
TA = 25 °C
–400
–0.2 0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2
2.6 2.9
Figure 1
200
100
IIO
0
IIB
–100
–200
–40 –25 –10 5
I IB / I IO – Input Bias / Offset Current – pA
20 35 50 65 80 95 110 125
350
300
IIO
0
–50
IIB
–100
–150
–0.2 0.4 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2
VICR – Common Mode Input Voltage – V
Figure 7
8
4.2
200
150
100
50
IIO
0
–50
IIB
–100
–150
–0.2 0.2
8.6
10.8 13.0 15.2
0.6
1.0
1.4
1.8
2.2
2.6 2.9
400
300
200
100
IIO
0
IIB
–100
–200
–40 –25 –10 5
20 35 50 65 80 95 110 125
TA – Free-Air Temperature – °C
Figure 6
Figure 5
INPUT BIAS / OFFSET CURRENT
vs
COMMON-MODE INPUT
VOLTAGE
INPUT BIAS / OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
600
6.4
VCC = 5 V
VIC = 2.5 V
500
VICR – Common Mode Input Voltage – V
I IB / I IO – Input Bias / Offset Current – pA
I IB / I IO – Input Bias / Offset Current – pA
50
2.0
INPUT BIAS / OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
700
100
–300
600
VCC = 2.7 V
TA = 25 °C
Figure 4
150
–200
Figure 3
250
INPUT BIAS / OFFSET CURRENT
vs
COMMON-MODE INPUT
VOLTAGE
VCC = 5 V
TA = 25 °C
–100
VICR – Common-Mode Input Voltage –V
400
TA – Free-Air Temperature – °C
200
0
–400
–0.2
250
VCC = 15 V
VIC = 7.5 V
500
400
300
200
100
IIO
0
–100
–200
–40 –25 –10 5
IIB
20 35 50 65 80 95 110 125
TA – Free-Air Temperature – °C
Figure 8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
I IB / I IO – Input Bias / Offset Current – pA
I IB / I IO – Input Bias / Offset Current – pA
300
100
INPUT BIAS / OFFSET CURRENT
vs
COMMON MODE INPUT
VOLTAGE
600
400
200
Figure 2
INPUT BIAS / OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
500
VCC =15 V
TA = 25 °C
300
VICR – Common-Mode Input Voltage – V
VICR – Common-Mode Input Voltage – V
VCC = 2.7 V
VIC = 1.35 V
V IO – Input Offset Voltage – µV
1000
I IB / I IO – Input Bias / Offset Current – pA
VCC = 2.7 V
TA = 25°C
V IO – Input Offset Voltage – µV
V IO – Input Offset Voltage – µV
400
100
1400
1200
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT
VOLTAGE
VCC =15 V
TA = 25 °C
200
150
100
50
IIO
0
–50
IIB
–100
–150
–0.2
2.0
4.2
6.4
8.6
10.8 13.0 15.2
VICR – Common-Mode Input Voltage –V
Figure 9
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
TYPICAL CHARACTERISTICS
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
1.50
100
RF=100 kΩ
RI=1 kΩ
80
60
40
20
VCC = 2.7 V
2.4
TA = –40°C
2.1
TA = –0°C
TA = 25 °C
TA = 70 °C
TA = 125 °C
1.8
1.5
1.2
0
10
100
1k
f – Frequency – Hz
50
100
150
3.5
150
1.25
TA = 0 °C
TA = –40°C
1.00
0.75
TA = 25 °C
TA = 70 °C
TA = 125 °C
0.50
0.25
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
Figure 13
0.25
0
100
150
IOL – Low-Level Output Current – µA
Figure 16
50
100
150
TA = –40°C
VCC = 15 V
0
200
50
200
200
OUTPUT IMPEDANCE
vs
FREQUENCY
10k
14
VCC = 15 V
12
10
8
6
RL = 100 kΩ
CL = 100 pF
TA = 25°C
VCC = 5 V
2
VCC = 2.7 V
AV=10
1k
AV=1
100
0
VCC=2.7, 5, 15 V
TA=25°C
–2
10
150
Figure 15
16
4
100
IOH – High-Level Output Current – µA
Z o – Output Impedance – Ω
TA = –0°C
TA = 25 °C
TA = 70 °C
TA = 125 °C
50
13.5
OUTPUT VOLTAGE
PEAK-TO-PEAK
vs
FREQUENCY
V O(PP) – Output voltage Peak–to–Peak – V
TA = –40°C
0
TA = –0°C
TA = 25 °C
TA = 70 °C
TA = 125 °C
14.0
Figure 14
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0.50
14.5
IOL – Low-Level Output Current – µA
1.25
200
13
200
VCC = 15 V
150
15.0
IOH – High-Level Output Current – µA
1.50
100
Figure 12
0
0.75
50
IOL – Low-Level Output Current – µA
VCC = 5 V
3.0
1.00
0.25
0
V OH – High-Level Output Voltage – V
TA = –0°C
TA = 25 °C
TA = 70 °C
TA = 125 °C
100
TA = 70 °C
TA = 125 °C
0.50
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VOL – Low-Level Output Voltage – V
TA = –40°C
4.5
50
0.75
200
1.50
0
1.00
Figure 11
5.0
4.0
TA =25 °C
TA = 0 °C
TA = –40°C
1.25
IOH – High-Level Output Current – µA
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
VCC = 5 V
VCC = 2.7 V
0
0
10k
Figure 10
V OH – High-Level Output Voltage – V
VOL – Low-Level Output Voltage – V
VCC=2.7, 5, 15 V
1
VOL – Low-Level Output Voltage – V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
2.7
120
V OH – High-Level Output Voltage – V
CMRR – Common-Mode Rejection Ratio – dB
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
100
f – Frequency – Hz
1k
Figure 17
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10
100
1k
f – Frequency – Hz
10k
Figure 18
9
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
POWER SUPPLY REJECTION RATIO
vs
FREQUENCY
PSRR – Power Supply Rejection Ratio – dB
I CC – Supply Current – µ A/Ch
1.4
1.2
1.0
0.8
0.6
TA = 125°C
TA = 70 °C
TA =25 °C
TA = 0 °C
TA = –40°C
0.4
0.2
AV = 1
VIN = VCC / 2
0
0
2
4
6
8
10
12
14
16
VCC = 2.7, 5, & 15 V
TA = 25°C
110
100
90
80
70
60
50
40
VCC – Supply Voltage – V
100
1k
f – Frequency – Hz
Figure 19
Figure 20
DIFFERENTIAL VOLTAGE GAIN AND PHASE
vs
FREQUENCY
GAIN BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
10
90
30
45
20
10
0
0
VCC=2.7, 5, 15 V
RL=500 kΩ
CL=100 pF
TA=25°C
–10
100
1k
f – Frequency – Hz
4
3
2
1
VCC – Supply Voltage –V
Figure 22
SLEW RATE
vs
FREE-AIR TEMPERATURE
PHASE MARGIN
vs
CAPACITIVE LOAD
80
3.0
70
SR+
VCC = 5, 15 V
60
VCC = 2.7 V
2.0
1.5
SR–
1.0
VCC = 2.7, 5, 15 V
Phase Margin – °
SR – Slew Rate – V/ ms
5
TA = 25°C
RL = 100 kΩ
CL = 100 pF
f = 1kHz
Figure 21
3.5
2.5
6
0
2.5 4.0 5.5 7.0 8.5 10.0 11.5 13.0 14.5 16.0
–45
10k
–20
10
GBWP –Gain Bandwidth Product – kHz
50
40
10k
7
135
Phase – °
AVD – Differential Voltage Gain – dB
60
50
40
30
20
0.5
10
0
–40 –25 –10 5
10
120
VCC = 2.7, 5, & 15 V
RL= 500 kΩ
TA = 25°C
0
20 35 50 65 80 95 110 125
TA – Free-Air Temperature – °C
100
1k
CL – Capacitive Load – pF
Figure 23
Figure 24
POST OFFICE BOX 655303
10
• DALLAS, TEXAS 75265
10k
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
TYPICAL CHARACTERISTICS
GAIN MARGIN
vs
CAPACITIVE LOAD
LARGE SIGNAL FOLLOWER
PULSE RESPONSE
10
VCC = 2.7, 5 V
5
0
3
0
2
1
VO
–1
0
–1
100
1k
CL – Capacitive Load – pF
–1
10k
0
1
2
3
4
5
Figure 25
Figure 26
LARGE SIGNAL FOLLOWER
PULSE RESPONSE
LARGE SIGNAL FOLLOWER
PULSE RESPONSE
4
VCC = 5 V
AV = 1
RL = 100 kΩ
CL = 100 pF
TA = 25°C
0
3
–1
25
VIN
IN
VO
V
1
VCC = 15 V
AV = 1
RL = 100 kΩ
CL = 100 pF
TA = 25°C
20
10
5
15
0
–5
10
VO
5
V
1
4
2
15
2
V – Output Voltage – V
O
5
3
– Input Voltage – V
VIN
6
30
IN
8
7
6
t – Time – ms
– Input Voltage – V
10
0
0
–1
–5
0
1
2
3
4
5
6
–2
6
8
10
Figure 28
2.0
150
1.5
80
VO
16
VCC = 2.7, 5,
& 15 V
AV = 1
RL = 100 kΩ
CL = 100 pF
TA = 25°C
40
20
–150
3
VIN
1
VCC = 2.7 V
AV = –1
RL = 100 kΩ
CL = 100 pF
TA = 25°C
0.5
0.0
–0.5
0
–1
–1.0
VO
–1.5
0
2
1.0
IN
100
14
V
0
V – Output Voltage – V
O
300
V IN – Input Voltage – mV
VIN
120
12
LARGE SIGNAL INVERTING
PULSE RESPONSE
140
–20
–50 0
4
Figure 27
180
60
2
t – Time – ms
SMALL SIGNAL FOLLOWER
PULSE RESPONSE
160
0
t – Time – ms
– Input Voltage – V
–1
V – Output Voltage – mV
O
VCC = 2.7 V
AV = 1
RL = 100 kΩ
CL = 100 pF
TA = 25°C
V
V – Output Voltage – V
O
Gain Margin – dB
VCC = 15 V
15
1
VIN
– Input Voltage – V
4
20
IN
RL= 500 kΩ
TA = 25°C
V – Output Voltage – V
O
2
5
25
–2
50 100 150 200 250 300 350 400 450 500
–1
t – Time – µs
0
1
2
3
4
5
6
7
t – Time – ms
Figure 29
Figure 30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
TYPICAL CHARACTERISTICS
LARGE SIGNAL INVERTING
PULSE RESPONSE
12
3
10
2
8
1
6
0
VCC = 5 V
AV = –1
RL = 100 kΩ
CL = 100 pF
TA = 25°C
0.0
–0.5
–1.0
IN
–1.5
–1
V
–2.0
–2.5
4
–3.0
0
–2
–4
–6
VO
–12
–1
0
1
2
3
4
5
6
7
–5
20
200
0
100
–20
–100
30
35
IN
–60
VCC = 2.7,
5, & 15 V
All Channels
RL = 100 kΩ
CL = 100 pF
VIN = 1 VPP
VCC = 15 V
–80
–100
VCC = 2.7, 5 V
V
VO
–40
Crosstalk –dB
0
– Input Voltage – mV
VCC = 2.7, 5,
& 15 V
AV = –1
RL = 100 kΩ
CL = 100 pF
TA = 25°C
25
CROSSTALK
vs
FREQUENCY
–50
–100
–150
–200
15
Figure 32
150
0
10
Figure 31
VIN
50
5
t – Time – ms
200
100
0
t – Time – ms
SMALL SIGNAL INVERTING
PULSE RESPONSE
VO – Output Voltage – mV
–3
–10
–3.5
12
0
VCC = 15 V
AV = –1
RL = 100 kΩ
CL = 100 pF
TA = 25°C
2
–8
VO
6
3
IN
0.5
9
VIN
V
1.0
– Input Voltage – V
VIN
12
–120
–140
0
200
400
600
800 1000 1200
t – Time – ms
100
1k
f – Frequency –Hz
Figure 33
Figure 34
POST OFFICE BOX 655303
– Input Voltage – V
4
2.0
V – Output Voltage – V
O
2.5
1.5
V – Output Voltage – V
O
LARGE SIGNAL INVERTING
PULSE RESPONSE
10
• DALLAS, TEXAS 75265
10k
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
APPLICATION INFORMATION
offset voltage
The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times
the corresponding gains. The following schematic and formula can be used to calculate the output offset
voltage:
RF
IIB–
RG
+
–
VI
VO
+
RS
ǒ ǒ ǓǓ ǒ ǒ ǓǓ
IIB+
V
OO
+ VIO 1 )
R
R
F
G
" IIB) RS
1
)
R
R
F
G
" IIB– RF
Figure 35. Output Offset Voltage Model
general configurations
When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often
required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier
(see Figure 36).
RG
RF
–
VI
VO
+
R1
V
O
V
I
C1
ǒ Ǔǒ
+ 1 ) RRF
G
1
f
–3dB
Ǔ
1
+ 2pR1C1
) sR1C1
1
Figure 36. Single-Pole Low-Pass Filter
If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this
task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth.
Failure to do this can result in phase shift of the amplifier.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
APPLICATION INFORMATION
general configurations (continued)
C1
+
_
VI
R1
R1 = R2 = R
C1 = C2 = C
Q = Peaking Factor
(Butterworth Q = 0.707)
R2
f
C2
RG
RF
–3dB
RG =
+ 2p1RC
(
RF
1
2–
Q
)
Figure 37. 2-Pole Low-Pass Sallen-Key Filter
circuit layout considerations
To achieve the levels of high performance of the TLV240x, follow proper printed-circuit board design techniques.
A general set of guidelines is given in the following.
D
D
D
D
D
14
Ground planes – It is highly recommended that a ground plane be used on the board to provide all
components with a low inductive ground connection. However, in the areas of the amplifier inputs and
output, the ground plane can be removed to minimize the stray capacitance.
Proper power supply decoupling – Use a 6.8-µF tantalum capacitor in parallel with a 0.1-µF ceramic
capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers
depending on the application, but a 0.1-µF ceramic capacitor should always be used on the supply terminal
of every amplifier. In addition, the 0.1-µF capacitor should be placed as close as possible to the supply
terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less
effective. The designer should strive for distances of less than 0.1 inches between the device power
terminals and the ceramic capacitors.
Sockets – Sockets can be used but are not recommended. The additional lead inductance in the socket pins
will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board
is the best implementation.
Short trace runs/compact part placements – Optimum high performance is achieved when stray series
inductance has been minimized. To realize this, the circuit layout should be made as compact as possible,
thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of
the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at
the input of the amplifier.
Surface-mount passive components – Using surface-mount passive components is recommended for high
performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of
surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small
size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray
inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be
kept as short as possible.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
APPLICATION INFORMATION
general power dissipation considerations
ǒ Ǔ
For a given θJA, the maximum power dissipation is shown in Figure 38 and is calculated by the following formula:
P
T
–T
MAX A
q JA
PD = Maximum power dissipation of THS240x IC (watts)
TMAX = Absolute maximum junction temperature (150°C)
TA
= Free-ambient air temperature (°C)
θJA = θJC + θCA
θJC = Thermal coefficient from junction to case
θCA = Thermal coefficient from case to ambient air (°C/W)
MAXIMUM POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
2
1.75
Maximum Power Dissipation – W
Where:
+
D
PDIP Package
Low-K Test PCB
θJA = 104°C/W
1.5
1.25
SOIC Package
Low-K Test PCB
θJA = 176°C/W
TJ = 150°C
MSOP Package
Low-K Test PCB
θJA = 260°C/W
1
0.75
0.5
0.25
SOT-23 Package
Low-K Test PCB
θJA = 324°C/W
0
–55 –40 –25 –10 5 20 35 50 65 80 95 110 125
TA – Free-Air Temperature – °C
NOTE A: Results are with no air flow and using JEDEC Standard Low-K test PCB.
Figure 38. Maximum Power Dissipation vs Free-Air Temperature
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts  Release 8, the model generation
software used with Microsim PSpice . The Boyle macromodel (see Note 2) and subcircuit in Figure 39 are
generated using the TLV240x typical electrical and operating characteristics at TA = 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 2: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
3
99
VCC+
+
egnd
ree
ro2
cee
fb
rp
rc1
rc2
–
c1
7
11
12
+
1
c2
vlim
IN+
r2
+
9
6
–
vc
2
8
+
q1
q2
IN–
–
vb
ga
–
ro1
gcm
ioff
53
dp 13
14
re1
VOUT
re2
91
10
iee
VCC–
4
dc
–
dlp
90
+
+
vlp
+ 54
–
–
vln
+
de
.subckt 240X_5V–X 1 2 3 4 5
*
c1
11 12 9.8944E–12
c2
6 7 30.000E–12
cee 10 99 8.8738E–12
dc
5 53 dy
de
54 5 dy
dlp
90 91 dx
dln
92 90 dx
dp
4 3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb
7 99 poly(5) vb vc ve vlp vln 0 61.404E6 –1E3 1E3 61E6 –61E6
ga
6 0 11 12 1.0216E–6
gcm 0 6 10 99 10.216E–12
iee
10 4 dc 54.540E–9
ioff
0 6 dc 5e–12
hlim 90 0 vlim 1K
q1
11 2 13 qx1
q2
12 1 14 qx2
r2
6 9 100.00E3
rc1
rc2
re1
re2
ree
ro1
ro2
rp
vb
vc
ve
vlim
vlp
vln
.model
.model
.model
.model
.ends
3
3
13
14
10
8
7
3
9
3
54
7
91
0
dx
dy
qx1
qx2
Figure 39. Boyle Macromodels and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
16
5
92
hlim
–
ve
dln
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11 978.81E3
12 978.81E3
10 30.364E3
10 30.364E3
99 3.6670E9
5 10
99 10
4 1.4183E6
0 dc 0
53 dc .88315
4 dc .88315
8 dc 0
0 dc 540
92 dc 540
D(Is=800.00E–18)
D(Is=800.00E–18 Rs=1m Cjo=10p)
NPN(Is=800.00E–18 Bf=27.270E21)
NPN(Is=800.0000E–18 Bf=27.270E21)
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
MECHANICAL DATA
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0.050 (1,27)
0.020 (0,51)
0.014 (0,35)
14
0.010 (0,25) M
8
0.008 (0,20) NOM
0.244 (6,20)
0.228 (5,80)
0.157 (4,00)
0.150 (3,81)
Gage Plane
0.010 (0,25)
1
7
0°– 8°
A
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
PINS **
0.004 (0,10)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
4040047 / D 10/96
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
MECHANICAL INFORMATION
DBV (R-PDSO-G5)
PLASTIC SMALL-OUTLINE PACKAGE
0,40
0,20
0,95
5
0,25 M
4
1,80
1,50
1
0,15 NOM
3,00
2,50
3
Gage Plane
3,10
2,70
0,25
0°– 8°
0,55
0,35
Seating Plane
1,30
1,00
0,10
0,05 MIN
4073253-4/B 10/97
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions include mold flash or protrusion.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
MECHANICAL INFORMATION
DGK (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE
0,38
0,25
0,65
8
0,25 M
5
0,15 NOM
3,05
2,95
4,98
4,78
Gage Plane
0,25
1
0°– 6°
4
3,05
2,95
0,69
0,41
Seating Plane
1,07 MAX
0,15
0,05
0,10
4073329/B 04/98
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion.
Falls within JEDEC MO-187
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
MECHANICAL INFORMATION
N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PIN SHOWN
PINS **
14
16
18
20
A MAX
0.775
(19,69)
0.775
(19,69)
0.920
(23.37)
0.975
(24,77)
A MIN
0.745
(18,92)
0.745
(18,92)
0.850
(21.59)
0.940
(23,88)
DIM
A
16
9
0.260 (6,60)
0.240 (6,10)
1
8
0.070 (1,78) MAX
0.035 (0,89) MAX
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.010 (0,25) M
0°– 15°
0.010 (0,25) NOM
14/18 PIN ONLY
4040049/C 08/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
MECHANICAL INFORMATION
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE PACKAGE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0°– 15°
0.010 (0,25) M
0.010 (0,25) NOM
4040082 / B 03/95
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLV2401, TLV2402, TLV2404
FAMILY OF 900-nA/Ch RAIL-TO-RAIL INPUT/OUTPUT
OPERATIONAL AMPLIFIERS WITH REVERSE BATTERY PROTECTION
SLOS244 – FEBRUARY 2000
MECHANICAL INFORMATION
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
22
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  2000, Texas Instruments Incorporated