MITSUBISHI CM75MXA-24S

< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Collector current I C .............….......................…
75A
Collector-emitter voltage V CES ......................… 1 2 0 0 V
Maximum junction temperature T j m a x ..............
1 7 5 °C
●Flat base Type
●Copper base plate
●Tin plating pin terminals
●RoHS Directive compliant
CIB (Converter+Inverter+Chopper Brake)
●Recognized under UL1557, File E323585
APPLICATION
AC Motor Control, Motion/Servo Control, Power supply, etc.
OUTLINE DRAWING & INTERNAL CONNECTION
Dimension in mm
TERMINAL
t=0.8
SECTION A
INTERNAL CONNECTION
Tolerance otherwise specified
P(54~56)
P1(48~49)
Division of Dimension
GUP(13)
R(1~2)
GVP(18)
GWP(23)
B(52~53)
S(5~6)
V(19~20)
U(14~15)
T(9~10)
W(24~25)
GUN(40)
N(59~61)
GVN(33)
GWN(31)
NTC
TH1(29)
GB(41)
N1(44~45)
Es(32)
Es'(39)
Caution: Each (two or three) pin terminal of P/N/P1/N1/U/V/W/B/R/S/T is connected in the module,
but should use all each three pins for the external wiring.
Publication Date : September 2012
1
TH2(28)
3
Tolerance
0.5
to
over
3
to
6
±0.3
over
6
to
30
±0.5
ClampDi
±0.2
over 30
to 120
±0.8
over 120
to 400
±1.2
The tolerance of size between
terminals is assumed to be ±0.4.
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
ABSOLUTE MAXIMUM RATINGS (Tj=25 °C, unless otherwise specified)
INVERTER PART IGBT/FWDi
Rating
Unit
VCES
Symbol
Collector-emitter voltage
G-E short-circuited
1200
V
VGES
Gate-emitter voltage
C-E short-circuited
± 20
V
IC
Item
DC, TC=122 °C
Collector current
ICRM
Ptot
IE
IERM
(Note1)
Tjmax
(Note2, 4)
TC=25 °C
75
(Note3)
Pulse, Repetitive
Total power dissipation
(Note1)
Conditions
(Note2, 4)
600
(Note2)
Emitter current
W
75
(Note3)
Pulse, Repetitive
Maximum junction temperature
A
150
A
150
Instantaneous event (overload)
175
°C
BRAKE PART IGBT/CLAMPDi
Rating
Unit
VCES
Symbol
Collector-emitter voltage
G-E short-circuited
1200
V
VGES
Gate-emitter voltage
C-E short-circuited
± 20
V
IC
ICRM
Item
Conditions
DC, TC=125 °C
Collector current
(Note2, 4)
50
(Note3)
Pulse, Repetitive
(Note2, 4)
Ptot
Total power dissipation
TC=25 °C
VRRM
Repetitive peak reverse voltage
G-E short-circuited
(Note2)
IF
IFRM
Tjmax
Forward current
425
W
1200
V
50
Pulse, Repetitive
Maximum junction temperature
A
100
(Note3)
A
100
Instantaneous event (overload)
175
°C
CONVERTER PART CONVDi
Rating
Unit
VRRM
Symbol
Repetitive peak reverse voltage
-
1600
V
Ea
Recommended AC input voltage
RMS
440
V
IO
DC output current
3-phase full wave rectifying, TC=125 °C
75
A
Surge forward current
The sine half wave 1 cycle peak value,
f=60 Hz, non-repetitive
750
A
I t
Current square time
Value for one cycle of surge current
2340
As
Tjmax
Maximum junction temperature
Instantaneous event (overload)
150
°C
Rating
Unit
IFSM
2
Item
Conditions
(Note4)
2
MODULE
Symbol
Item
Conditions
Visol
Isolation voltage
Terminals to base plate, RMS, f=60 Hz, AC 1 min
TCmax
Maximum case temperature
(Note4)
2500
V
125
°C
Tjop
Operating junction temperature
Continuous operation (under switching)
-40 ~ +150
Tstg
Storage temperature
-
-40 ~ +125
°C
MECHANICAL CHARACTERISTICS
Symbol
Ms
Item
Mounting torque
Limits
Conditions
Mounting to heat sink
Typ.
Max.
2.5
3.0
3.5
Terminal to terminal
6.47
-
-
Terminal to base plate
14.27
-
-
ds
Creepage distance
da
Clearance
m
Weight
-
ec
Flatness of base plate
On the centerline X, Y
M 5 screw
Min.
Unit
N·m
mm
Terminal to terminal
6.47
-
-
Terminal to base plate
12.33
-
-
-
300
-
g
±0
-
+100
μm
Publication Date : September 2012
2
(Note5)
mm
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
ELECTRICAL CHARACTERISTICS (T j =25 °C, unless otherwise specified)
INVERTER PART IGBT/FWDi
Symbol
Item
Limits
Conditions
Min.
Typ.
Max.
Unit
ICES
Collector-emitter cut-off current
VCE=VCES, G-E short-circuited
-
-
1.0
mA
IGES
Gate-emitter leakage current
VGE=VGES, C-E short-circuited
-
-
0.5
μA
VGE(th)
Gate-emitter threshold voltage
IC=7.5 mA, VCE=10 V
5.4
6.0
6.6
V
IC=75 A
VCEsat
Collector-emitter saturation voltage
Cies
Input capacitance
Coes
Output capacitance
Cres
Reverse transfer capacitance
QG
Gate charge
td(on)
Turn-on delay time
tr
Rise time
td(off)
Turn-off delay time
tf
Fall time
T j =25 °C
-
1.80
2.25
VGE=15 V,
T j =125 °C
-
2.00
-
(Terminal)
T j =150 °C
-
2.05
-
IC=75 A
(Note1)
(Note6)
,
T j =25 °C
-
1.70
2.15
VGE=15 V,
T j =125 °C
-
1.90
-
(Chip)
T j =150 °C
-
1.95
-
,
-
-
7.5
-
-
1.5
-
-
0.13
-
175
-
-
-
300
VCE=10 V, G-E short-circuited
VCC=600 V, IC=75 A, VGE=15 V
VCC=600 V, IC=75 A, VGE=±15 V,
RG=8.2 Ω, Inductive load
Emitter-collector voltage
-
-
200
-
-
600
-
-
300
T j =25 °C
-
1.80
2.25
G-E short-circuited,
T j =125 °C
-
1.80
-
(Terminal)
T j =150 °C
-
1.80
-
T j =25 °C
-
1.70
2.15
G-E short-circuited,
T j =125 °C
-
1.70
-
(Chip)
T j =150 °C
-
1.70
-
IE=75 A
VEC
(Note6)
IE=75 A
(Note6)
(Note6)
,
,
V
V
nF
nC
ns
V
V
trr
(Note1)
Reverse recovery time
VCC=600 V, IE=75 A, VGE=±15 V,
-
-
300
ns
Qrr
(Note1)
Reverse recovery charge
RG=8.2 Ω, Inductive load
-
4.0
-
μC
Eon
Turn-on switching energy per pulse
VCC=600 V, IC=IE=75 A,
-
7.3
-
Eoff
Turn-off switching energy per pulse
VGE=±15 V, RG=8.2 Ω, T j =150 °C,
-
8.0
-
Reverse recovery energy per pulse
Inductive load
-
6.9
-
mJ
-
-
4.0
mΩ
-
0
-
Ω
Err
(Note1)
R CC'+EE'
Internal lead resistance
rg
Internal gate resistance
Main terminals-chip, per switch,
(Note4)
TC=25 °C
Per switch
mJ
BRAKE PART IGBT/CLAMPDi
Symbol
ICES
Item
Collector-emitter cut-off current
VCE=VCES, G-E short-circuited
IGES
Gate-emitter leakage current
VGE=VGES, C-E short-circuited
VGE(th)
Gate-emitter threshold voltage
IC=5 mA, VCE=10 V
Collector-emitter saturation voltage
Cies
Input capacitance
Coes
Output capacitance
Cres
Reverse transfer capacitance
QG
Gate charge
Unit
Min.
Typ.
Max.
-
-
1.0
mA
-
-
0.5
μA
5.4
6.0
6.6
V
T j =25 °C
-
1.80
2.25
VGE=15 V,
T j =125 °C
-
2.00
-
(Terminal)
T j =150 °C
-
2.05
-
IC=50 A
VCEsat
Limits
Conditions
IC=50 A
(Note6)
(Note6)
,
T j =25 °C
-
1.70
2.15
VGE=15 V,
,
T j =125 °C
-
1.90
-
(Chip)
T j =150 °C
-
1.95
-
-
-
5.0
VCE=10 V, G-E short-circuited
-
-
1.0
-
-
0.08
VCC=600 V, IC=50 A, VGE=15 V
-
117
-
Publication Date : September 2012
3
V
V
nF
nC
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
ELECTRICAL CHARACTERISTICS (cont.; T j =25 °C, unless otherwise specified)
BRAKE PART IGBT/CLAMPDi
Symbol
Item
td(on)
Turn-on delay time
tr
Rise time
td(off)
Turn-off delay time
tf
Fall time
VCC=600 V, IC=50 A, VGE=±15 V,
RG=13 Ω, Inductive load
Forward voltage
Min.
Typ.
Max.
-
-
300
-
-
200
-
-
600
-
-
300
T j =25 °C
-
1.80
2.25
G-E short-circuited,
T j =125 °C
-
1.80
-
(Terminal)
T j =150 °C
-
1.80
-
(Note6)
IF=50 A
VF
Limits
Conditions
(Note6)
IF=50 A
,
T j =25 °C
-
1.70
2.15
G-E short-circuited,
,
T j =125 °C
-
1.70
-
(Chip)
T j =150 °C
Unit
ns
V
V
-
1.70
-
trr
Reverse recovery time
VCC=600 V, IF=50 A, VGE=±15 V,
-
-
300
ns
Qrr
Reverse recovery charge
RG=13 Ω, Inductive load
-
2.7
-
μC
Eon
Turn-on switching energy per pulse
VCC=600 V, IC=IF=50 A,
-
5.5
-
Eoff
Turn-off switching energy per pulse
VGE=±15 V, RG=13 Ω, T j =150 °C,
-
5.3
-
Err
Reverse recovery energy per pulse
Inductive load
-
4.5
-
mJ
rg
Internal gate resistance
-
-
0
-
Ω
mJ
CONVERTER PART CONVDi
Symbol
IRRM
VF
(Terminal)
Item
Conditions
Repetitive peak reverse current
VR=VRRM, T j =150 °C
IF=75 A
Forward voltage
(Note6)
Limits
Unit
Min.
Typ.
Max.
-
-
20
mA
-
1.2
1.6
V
NTC THERMISTOR PART
Symbol
Item
Conditions
(Note4)
R25
Zero-power resistance
TC=25 °C
∆R/R
Deviation of resistance
R100=493 Ω, TC=100 °C
B(25/50)
B-constant
Approximate by equation
P25
Power dissipation
TC=25 °C
(Note4)
(Note7)
(Note4)
Limits
Max.
Unit
Min.
Typ.
4.85
5.00
5.15
kΩ
-7.3
-
+7.8
%
-
3375
-
K
-
-
10
mW
THERMAL RESISTANCE CHARACTERISTICS
Symbol
Item
Conditions
Limits
Min.
Typ.
Max.
Rth(j-c)Q
Junction to case, per Inverter IGBT
-
-
0.25
Rth(j-c)D
Junction to case, per Inverter FWDi
-
-
0.40
Rth(j-c)Q
Thermal resistance
(Note4)
Unit
K/W
Junction to case, per Brake IGBT
-
-
0.35
Rth(j-c)D
Junction to case, per Brake ClampDi
-
-
0.63
Rth(j-c)D
Junction to case, per Converter ConvDi
-
-
0.24
K/W
-
15
-
K/kW
Rth(c-s)
Contact thermal resistance
(Note4)
Case to heat sink, per 1 module,
Thermal grease applied
Publication Date : September 2012
4
(Note8)
K/W
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
-:Concave
+:Convex
Note1. Represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
2. Junction temperature (T j ) should not increase beyond T j m a x rating.
3. Pulse width and repetition rate should be such that the device junction temperature (T j ) dose not exceed T j m a x rating.
4. Case temperature (TC) and heat sink temperature (T s ) are defined on the each surface (mounting side) of base plate and heat sink
just under the chips. Refer to the figure of chip location.
5. The base plate (mounting side) flatness measurement points (X, Y) are as follows of the following figure.
Y
X
mounting side
mounting side
-:Concave
mounting side
+:Convex
6. Pulse width and repetition rate should be such as to cause negligible temperature rise.
Refer to the figure of test circuit.
R
1
1
7. B ( 25 / 50)  ln( 25 ) /(

),
R 50 T25 T50
R25: resistance at absolute temperature T25 [K]; T25=25 [°C]+273.15=298.15 [K]
R50: resistance at absolute temperature T50 [K]; T50=50 [°C]+273.15=323.15 [K]
8. Typical value is measured by using thermally conductive grease of λ=0.9 W/(m·K).
9. Use the following screws when mounting the printed circuit board (PCB) on the stand offs.
"ST2.6×10 or ST2.6×12 self tapping screw"
The length of the screw depends on the thickness of the PCB.
RECOMMENDED OPERATING CONDITIONS
Symbol
Item
VCC
(DC) Supply voltage
VGEon
Gate (-emitter drive) voltage
RG
External gate resistance
Conditions
Applied across P-N/P1-N1 terminals
Applied across GB-Es1/
G*P-*/G*N-Es(*=U, V, W) terminals
Inverter IGBT
Per switch
Brake IGBT
Publication Date : September 2012
5
Limits
Unit
Min.
Typ.
Max.
-
600
850
V
13.5
15.0
16.5
V
8.2
-
82
13
-
130
Ω
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
CHIP LOCATION (Top view)
Dimension in mm, tolerance: ±1 mm
Tr*P/Tr*N/TrBr: IGBT, Di*P/Di*N: FWDi (*=U/V/W), DiBr: ClampDi, CR*P/CR*N: ConvDi (*=R/S/T), Th: NTC thermistor
TEST CIRCUIT AND WAVEFORMS
~
vGE
iE
*:U, V, W
P1
90 %
0V
+
VC C
+V GE
G*N
iC
0A
N1
tr
t d( o n)
tf
t d ( of f )
t
Switching characteristics test circuit and waveforms
t r r , Q r r test waveform
iE
vCE
0
iC
iC
ICM
VCC
0.1×ICM
0.1×VCC
ICM
VCC
t
0.5×I r r
10%
-V GE
Es
t
Irr
vC E
vGE
trr
0A
90 %
RG
Q r r =0.5×I r r ×t r r
IE
iC
*
0V
iE
t
~
~
G*P
-V GE
0
Load
0
0.1×VCC
IEM
vEC
vCE
0.02×ICM
ti
ti
IGBT Turn-on switching energy
IGBT Turn-off switching energy
t
VCC
0A
t
0V
t
ti
FWDi Reverse recovery energy
Turn-on / Turn-off switching energy and Reverse recovery energy test waveforms (Integral time instruction drawing)
Publication Date : September 2012
6
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
TEST CIRCUIT
48/49
VGE=15 V
48/49
IC
13
VGE=15 V
14/15
VGE=15 V
IC
18
Shortcircuited
40
P1
44/45
GWP
V
Es
G-E
short-circuited
IF
V
V
V
VGE=15 V
Es
GVP-V, GVN-Es,
GWP-W, GWN-Es,
GB-Es
G-E
short-circuited
UP / UN IGBT
52/53
W
VGE=15 V
IC
GVN
N1
48/49
Shortcircuited
U
IC
V
P1
GVP
GUN
N1
Es
44/45
32
Shortcircuited
GUP
IC
GB
31
P1
Shortcircuited
VGE=15 V
VGE=15 V
Shortcircuited
32
B
V
33
44/45
V
24/25
V
Shortcircuited
32
IC
23
19/20
V
P1
48/49
IC
GWN
N1
41
N1
Es
G-E
short-circuited
GUP-U, GUN-Es,
GWP-W, GWN-Es,
GB-Es
VP / VN IGBT
Shortcircuited
44/45
32
GUP-U, GUN-Es,
GVP-V, GVN-Es,
GB-Es
WP / WN IGBT
G-E
short-circuited
GUP-U, GUN-Es,
GVP-V, GVN-Es,
GWP-W, GWN-Es
Brake IGBT / ClampDi
V CE s a t / ClampDi VF test circuit
V
48/49
Shortcircuited
48/49
IE
13
Shortcircuited
14/15
Shortcircuited
IE
18
Shortcircuited
V
Shortcircuited
Shortcircuited
33
44/45
32
P1
31
44/45
32
P1
Shortcircuited
GWP
V
V
U
GUN
Es
G-E
short-circuited
V
V
IE
Shortcircuited
GVP-V, GVN-Es,
GWP-W, GWN-Es,
GB-Es
Es
G-E
short-circuited
UP / UN FWDi
W
Shortcircuited
IE
GVN
N1
P
Shortcircuited
GVP
Shortcircuited
59/60/61
44/45
P1
Shortcircuited
GUP
IF
1/2
24/25
V
40
32
IE
23
19/20
V
54/55/56
48/49
IE
GWN
N1
Es
GUP-U, GUN-Es,
GWP-W, GWN-Es,
GB-Es
G-E
short-circuited
VP / VN FWDi
V
R
N1
IF
N
GUP-U, GUN-Es,
GVP-V, GVN-Es,
GB-Es
WP / WN FWDi
ConvDi (ex. phase-R)
VEC / ConvDi VF test circuit
* In the above test circuit, should use all three main pin terminals (P1/N1/P/N/U/V/W) for connection with the terminals and the current source.
Publication Date : September 2012
7
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
T j =25 °C
VGE=15 V
(Chip)
150
VGE=20 V
12 V
3
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (V)
IC (A)
COLLECTOR CURRENT
13.5 V
15 V
125
100
11 V
75
10 V
50
9V
25
T j =150 °C
T j =125 °C
2.5
2
1.5
T j =25 °C
1
0.5
0
0
0
2
4
6
8
COLLECTOR-EMITTER VOLTAGE
10
0
VCE (V)
T j =25 °C
50
100
COLLECTOR CURRENT
COLLECTOR-EMITTER SATURATION VOLTAGE
CHARACTERISTICS
(TYPICAL)
150
IC (A)
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
G-E short-circuited
(Chip)
(Chip)
1000
10
IE (A)
IC=150 A
8
IC=75 A
6
EMITTER CURRENT
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (V)
(Chip)
3.5
IC=30 A
4
2
100
T j =150 °C
T j =125 °C
T j =25 °C
0
6
8
10
12
14
GATE-EMITTER VOLTAGE
16
18
10
20
0.5
VGE (V)
1
1.5
2
EMITTER-COLLECTOR VOLTAGE
Publication Date : September 2012
8
2.5
VEC (V)
3
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=8.2 Ω, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
VCC=600 V, VGE=±15 V, IC=75 A, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
1000
1000
td(off)
tf
100
SWITCHING TIME (ns)
SWITCHING TIME (ns)
tf
td(on)
10
tr
td(off)
100
td(on)
tr
10
1
1
10
COLLECTOR CURRENT
1
100
IC (A)
EXTERNAL GATE RESISTANCE
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=8.2 Ω,
INDUCTIVE LOAD, PER PULSE
---------------: T j =150 °C, - - - - -: T j =125 °C
RG (Ω)
100
Eoff
10
Eon
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
100
1
100
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, IC=75 A,
INDUCTIVE LOAD, PER PULSE
---------------: T j =150 °C, - - - - -: T j =125 °C
REVERSE RECOVERY ENERGY (mJ)
SWITCHING ENERGY (mJ)
10
10
Eon
Eoff
10
Err
Err
0.1
1
1
1
10
1
100
10
EXTERNAL GATE RESISTANCE
COLLECTOR CURRENT IC (A)
EMITTER CURRENT IE (A)
Publication Date : September 2012
9
100
RG (Ω)
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
INVERTER PART
CAPACITANCE CHARACTERISTICS
(TYPICAL)
FREE WHEELING DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=8.2 Ω, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
G-E short-circuited, T j =25 °C
100
1000
Cies
t r r (ns), I r r (A)
CAPACITANCE (nF)
10
Coes
1
0.01
10
0.1
1
10
COLLECTOR-EMITTER VOLTAGE
100
1
VCE (V)
10
EMITTER CURRENT
100
IE (A)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
VCC=600 V, IC=75 A, Tj=25 °C
Single pulse, TC=25 °C
R t h ( j - c ) Q =0.25 K/W, R t h ( j - c ) D =0.40 K/W
20
1
NORMALIZED TRANSIENT THERMAL RESISTANCE
Zth(j-c)
VGE (V)
trr
Cres
0.1
GATE-EMITTER VOLTAGE
Irr
100
15
10
5
0
0
50
100
GATE CHARGE
150
200
250
QG (nC)
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
TIME (S)
Publication Date : September 2012
10
0.1
1
10
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
BRAKE PART
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
CLAMP DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
VGE=15 V
G-E short-circuited
(Chip)
3
T j =150 °C
T j =150 °C
VF (V)
T j =125 °C
2.5
FORWARD VOLTAGE
COLLECTOR-EMITTER
SATURATION VOLTAGE VCEsat (V)
(Chip)
100
3.5
2
1.5
T j =25 °C
1
10
T j =25 °C
T j =125 °C
0.5
0
1
0
20
40
60
COLLECTOR CURRENT
80
0.5
100
1
IC (A)
1.5
FORWARD CURRENT
2
2.5
IF (A)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=13 Ω, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
VCC=600 V, IC=50 A, VGE=±15 V, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
1000
1000
td(off)
tf
100
SWITCHING TIME (ns)
SWITCHING TIME (ns)
tf
td(on)
10
tr
td(off)
100
td(on)
tr
1
10
1
10
COLLECTOR CURRENT
10
100
IC (A)
100
EXTERNAL GATE RESISTANCE
Publication Date : September 2012
11
1000
RG (Ω)
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
BRAKE PART
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, VGE=±15 V, RG=13 Ω,
INDUCTIVE LOAD, PER PULSE
---------------: T j =150 °C, - - - - -: T j =125 °C
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
VCC=600 V, IC/IF=50 A, VGE=±15 V,
INDUCTIVE LOAD, PER PULSE
---------------: T j =150 °C, - - - - -: T j =125 °C
100
Err
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
SWITCHING ENERGY (mJ)
REVERSE RECOVERY ENERGY (mJ)
10
Eoff
1
Eon
0.1
Eon
10
Eoff
Err
1
1
10
100
10
1000
EXTERNAL GATE RESISTANCE
COLLECTOR CURRENT IC (A)
FORWARD CURRENT IF (A)
RG (Ω)
CLAMP DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
VCC=600 V, VGE=±15 V, RG=13 Ω, INDUCTIVE LOAD
---------------: T j =150 °C, - - - - -: T j =125 °C
Single pulse, TC=25 °C
R t h ( j - c ) Q =0.35 K/W, R t h ( j - c ) D =0.63 K/W
1000
1
100
NORMALIZED TRANSIENT THERMAL RESISTANCE
Zth(j-c)
t r r (ns), I r r (A)
100
trr
Irr
10
1
10
FORWARD CURRENT
100
IF (A)
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
TIME (S)
Publication Date : September 2012
12
0.1
1
10
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
CONVERTER PART
CONVERTER DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS
(MAXIMUM)
Single pulse, TC=25 °C
R t h ( j - c ) D =0.24 K/W
100
NORMALIZED TRANSIENT THERMAL RESISTANCE
Zth(j-c)
1
FORWARD CURRENT
IF (A)
T j =125 °C
T j =25 °C
10
1
0.4
0.6
0.8
1
1.2
FORWARD VOLTAGE
1.4
1.6
VF (V)
TEMPERATURE CHARACTERISTICS
(TYPICAL)
RESISTANCE
R (kΩ)
100
10
1
0.1
-25
0
25
50
TEMPERATURE
75
0.01
0.001
0.00001
0.0001
0.001
0.01
TIME (S)
NTC thermistor part
-50
0.1
100
125
T (°C)
Publication Date : September 2012
13
0.1
1
10
< IGBT MODULES >
CM75MXA-24S
HIGH POWER SWITCHING USE
INSULATED TYPE
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more
reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors
may lead to personal injury, fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
•These materials are intended as a reference to assist our customers in the selection of the Mitsubishi
semiconductor product best suited to the customer's application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
•Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.
•All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are subject
to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It
is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product
listed herein.
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi
Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these
inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by various means,
including the Mitsubishi Semiconductor home page (www.MitsubishiElectric.com/semiconductors/).
•When using any or all of the information contained in these materials, including product data, diagrams,
charts, programs, and algorithms, please be sure to evaluate all information as a total system before making
a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes
no responsibility for any damage, liability or other loss resulting from the information containedherein.
•Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or systems
for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
•The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or
in part these materials.
•If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other than
the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of
destination is prohibited.
•Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor
for further details on these materials or the products contained therein.
© 2012 MITSUBISHI ELECTRIC CORPORATION. ALL RIGHTS RESERVED.
Publication Date : September 2012
14