ETC LC4064V

TM
ispMACH 4000V/B/C Family
3.3V/2.5V/1.8V In-System Programmable
SuperFAST TM High Density PLDs
June 2002
Data Sheet
■ Broad Device Offering
Features
•
•
•
•
■ High Performance
• fMAX = 400MHz maximum operating frequency
• tPD = 2.5ns propagation delay
• Up to four global clock pins with programmable
clock polarity control
• Up to 80 PTs per output
32 to 512 macrocells
30 to 208 I/O pins
44 to 256 pins/balls in TQFP or fpBGA packages
Commercial and industrial temperature ranges
■ Easy System Integration
• Operation with 3.3V, 2.5V or 1.8V LVCMOS I/O
• Operation with 3.3V (4000V), 2.5V (4000B) or
1.8V (4000C) supplies
• Hot-socketing
• Open-drain capability
• Input pull-up, pull-down or bus-keeper
• Programmable output slew rate
• 3.3V PCI compatible
• IEEE 1149.1 boundary scan testable
• 3.3V/2.5V/1.8V In-System Programmable
(ISP™) using IEEE 1532 compliant interface
• I/O pins with fast setup path
■ Ease of Design
• Enhanced macrocells with individual clock,
reset, preset and clock enable controls
• Up to four global OE controls
• Individual local OE control per I/O pin
• Excellent First-Time-FitTM and refit
• Fast path, SpeedLockingTM Path, and wide-PT
path
• Wide input gating (36 input logic blocks) for fast
counters, state machines and address decoders
■ Low Power
• 1.8V core E2CMOS® technology
• CMOS design techniques provide low static and
dynamic power
Table 1. ispMACH 4000V/B/C Family Selection Guide
ispMACH
4032V/B/C
Macrocells
ispMACH
4064V/B/C
ispMACH
4128V/B/C
ispMACH
4256V/B/C
ispMACH
4384V/B/C
ispMACH
4512V/B/C
32
64
128
256
384
512
30/32
30/32/64
64/92
64/128/160
128/192
128/208
tPD (ns)
2.5
2.5
2.7
3.0
3.5
3.5
tS (ns)
1.8
1.8
1.8
2.0
2.0
2.0
User I/O Options
tCO (ns)
2.2
2.2
2.7
2.7
2.7
2.7
fMAX (MHz)
400
400
333
322
322
322
3.3/2.5/1.8V
3.3/2.5/1.8V
3.3/2.5/1.8V
3.3/2.5/1.8V
3.3/2.5/1.8V
3.3/2.5/1.8V
44 TQFP
48 TQFP
44 TQFP
48 TQFP
100 TQFP
100 TQFP
128 TQFP
100 TQFP
176 TQFP
256 fpBGA
176 TQFP
256 fpBGA
Supply Voltages (V)
Pins/Package
176 TQFP
256 fpBGA*
*128-I/O and 160-I/O configurations.
www.latticesemi.com
1
ispm4k_08
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000 Introduction
The high performance ispMACH 4000 family from Lattice offers a SuperFAST CPLD solution. The family is a blend
of Lattice’s two most popular architectures: the ispLSI® 2000 and ispMACH 4A. Retaining the best of both families,
the ispMACH 4000 architecture focuses on significant innovations to combine the highest performance with low
power in a flexible CPLD family.
The ispMACH 4000 combines high speed and low power with the flexibility needed for ease of design. With its
robust Global Routing Pool and Output Routing Pool, this family delivers excellent First-Time-Fit, timing predictability, routing, pin-out retention and density migration.
The ispMACH 4000 family offers densities ranging from 32 to 512 macrocells. There are multiple density-I/O combinations in Thin Quad Flat Pack (TQFP) and Fine Pitch BGA (fpBGA) packages ranging from 44 to 256 pins/balls.
Table 1 shows the macrocell, package and I/O options, along with other key parameters.
The ispMACH 4000 family has enhanced system integration capabilities. It supports 3.3V (4000V), 2.5V (4000B)
and 1.8V (4000C) supply voltages and 3.3V, 2.5V and 1.8V interface voltages. The ispMACH 4000 also offers
enhanced I/O features such as slew rate control, PCI compatibility, bus-keeper latches, pull-up resistors, pull-down
resistors, open drain outputs and hot socketing. The ispMACH 4000 family members are 3.3V/2.5V/1.8V in-system
programmable through the IEEE Standard 1532 interface. IEEE Standard 1149.1 boundary scan testing capability
also allows product testing on automated test equipment.
Overview
The ispMACH 4000 devices consist of multiple 36-input, 16-macrocell Generic Logic Blocks (GLBs) interconnected
by a Global Routing Pool (GRP). Output Routing Pools (ORPs) connect the GLBs to the I/O Blocks (IOBs), which
contain multiple I/O cells. This architecture is shown in Figure 1.
16
16
Generic
Logic
Block
36
I/O
Block
ORP
16
36
16
16
36
36
2
Generic
16
Logic
Block
VCCO1
GND
TCK
TMS
TDI
TDO
VCC
GND
GOE0
GOE1
16
I/O Bank 0
ORP
Generic
Logic
Block
I/O
Block
ORP
I/O Bank 1
I/O
Block
Global Routing Pool
VCCO0
GND
CLK0/I
CLK1/I
CLK2/I
CLK3/I
Figure 1. Functional Block Diagram
Generic
16
Logic
Block
I/O
Block
ORP
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
The I/Os in the ispMACH 4000 are split into two banks. Each bank has a separate I/O power supply. Inputs can
support a variety of standards independent of the chip or bank power supply. Outputs support the standards compatible with the power supply provided to the bank. Support for a variety of standards helps designers implement
designs in mixed voltage environments.
ispMACH 4000 Architecture
There are a total of two GLBs in the ispMACH 4032, increasing to 32 GLBs in the ispMACH 4512. Each GLB has
36 inputs. All GLB inputs come from the GRP and all outputs from the GLB are brought back into the GRP to be
connected to the inputs of any other GLB on the device. Even if feedback signals return to the same GLB, they still
must go through the GRP. This mechanism ensures that GLBs communicate with each other with consistent and
predictable delays. The outputs from the GLB are also sent to the ORP. The ORP then sends them to the associated I/O cells in the I/O block.
Generic Logic Block
The ispMACH 4000 GLB consists of a programmable AND array, logic allocator, 16 macrocells and a GLB clock
generator. Macrocells are decoupled from the product terms through the logic allocator and the I/O pins are decoupled from macrocells through the ORP. Figure 2 illustrates the GLB.
To GRP
CLK3
CLK2
CLK1
CLK0
Figure 2. Generic Logic Block
Clock
Generator
1+OE
1+OE
1+OE
1+OE
To ORP
16 MC Feedback Signals
16 Macrocells
Logic Allocator
36 Inputs
from GRP
AND Array
36 Inputs,
83 Product Terms
1+OE
1+OE
1+OE
1+OE
To
Product Term
Output Enable
Sharing
AND Array
The programmable AND Array consists of 36 inputs and 83 output product terms. The 36 inputs from the GRP are
used to form 72 lines in the AND Array (true and complement of the inputs). Each line in the array can be connected to any of the 83 output product terms via a wired-AND. Each of the 80 logic product terms feed the logic
allocator with the remaining three control product terms feeding the Shared PT Clock, Shared PT Initialization and
Shared PT OE. The Shared PT Clock and Shared PT Initialization signals can optionally be inverted before being
fed to the macrocells.
Every set of five product terms from the 80 logic product terms forms a product term cluster starting with PT0.
There is one product term cluster for every macrocell in the GLB. Figure 3 is a graphical representation of the AND
Array.
3
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Figure 3. AND Array
In[0]
In[34]
In[35]
PT0
PT1
PT2
PT3
PT4
Cluster 0
PT75
PT76
PT77
Cluster 15
PT78
PT79
PT80 Shared PT Clock
PT81 Shared PT Initialization
PT82 Shared PTOE
Note:
Indicates programmable fuse.
Enhanced Logic Allocator
Within the logic allocator, product terms are allocated to macrocells in product term clusters. Each product term
cluster is associated with a macrocell. The cluster size for the ispMACH 4000 family is 4+1 (total 5) product terms.
The software automatically considers the availability and distribution of product term clusters as it fits the functions
within a GLB. The logic allocator is designed to provide three speed paths: 5-PT fast bypass path, 20-PT Speed
Locking path and an up to 80-PT path. The availability of these three paths lets designers trade timing variability for
increased performance.
The enhanced Logic Allocator of the ispMACH 4000 family consists of the following blocks:
• Product Term Allocator
• Cluster Allocator
• Wide Steering Logic
Figure 4 shows a macrocell slice of the Logic Allocator. There are 16 such slices in the GLB.
Figure 4. Macrocell Slice
to to
n-1 n-2
from from
n-1 n-4
From
n-4
Fast 5-PT
Path
1-80
PTs
5-PT
n
To XOR (MC)
Cluster
to
n+1
Individual Product
Term Allocator
from
n+2
Cluster
Allocator
4
from
n+1
To n+4
SuperWIDE™
Steering Logic
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Product Term Allocator
The product term allocator assigns product terms from a cluster to either logic or control applications as required
by the design being implemented. Product terms that are used as logic are steered into a 5-input OR gate associated with the cluster. Product terms that used for control are steered either to the macrocell or I/O cell associated
with the cluster. Table 2 shows the available functions for each of the five product terms in the cluster. The OR gate
output connects to the associated I/O cell, providing a fast path for narrow combinatorial functions, and to the logic
allocator.
Table 2. Individual PT Steering
Product Term
Logic
PTn
Logic PT
Control
Single PT for XOR/OR
PTn+1
Logic PT
Individual Clock (PT Clock)
PTn+2
Logic PT
Individual Initialization or Individual Clock Enable (PT Initialization/CE)
PTn+3
Logic PT
Individual Initialization (PT Initialization)
PTn+4
Logic PT
Individual OE (PTOE)
Cluster Allocator
The cluster allocator allows clusters to be steered to neighboring macrocells, thus allowing the creation of functions
with more product terms. Table 3 shows which clusters can be steered to which macrocells. Used in this manner,
the cluster allocator can be used to form functions of up to 20 product terms. Additionally, the cluster allocator
accepts inputs from the wide steering logic. Using these inputs, functions up to 80 product terms can be created.
Table 3. Available Clusters for Each Macrocell
Macrocell
Available Clusters
M0
—
C0
C1
C2
M1
C0
C1
C2
C3
M2
C1
C2
C3
C4
M3
C2
C3
C4
C5
M4
C3
C4
C5
C6
M5
C4
C5
C6
C7
M6
C5
C6
C7
C8
M7
C6
C7
C8
C9
M8
C7
C8
C9
C10
M9
C8
C9
C10
C11
M10
C9
C10
C11
C12
M11
C10
C11
C12
C13
M12
C11
C12
C13
C14
M13
C12
C13
C14
C15
M14
C13
C14
C15
—
M15
C14
C15
—
—
Wide Steering Logic
The wide steering logic allows the output of the cluster allocator n to be connected to the input of the cluster allocator n+4. Thus, cluster chains can be formed with up to 80 product terms, supporting wide product term functions
and allowing performance to be increased through a single GLB implementation. Table 4 shows the product term
chains.
5
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Table 4. Product Term Expansion Capability
Expansion
Chains
Macrocells Associated with Expansion Chain
(with Wrap Around)
Max PT/
Macrocell
Chain-0
M0 → M4 → M8 → M12 → M0
75
Chain-1
M1 → M5 → M9 → M13 → M1
80
Chain-2
M2 → M6 → M10 → M14 → M2
75
Chain-3
M3 → M7 → M11 → M15 → M3
70
Every time the super cluster allocator is used, there is an incremental delay of tEXP . When the super cluster allocator is used, all destinations other than the one being steered to, are given the value of ground (i.e., if the super cluster is steered to M (n+4), then M (n) is ground).
Macrocell
The 16 macrocells in the GLB are driven by the 16 outputs from the logic allocator. Each macrocell contains a programmable XOR gate, a programmable register/latch, along with routing for the logic and control functions. Figure
5 shows a graphical representation of the macrocell. The macrocells feed the ORP and GRP. A direct input from
the I/O cell allows designers to use the macrocell to construct high-speed input registers. A programmable delay in
this path allows designers to choose between the fastest possible set-up time and zero hold time.
Figure 5. Macrocell
Power-up
Initialization
Shared PT Initialization
PT Initialization (optional)
PT Initialization/CE (optional)
Delay
From I/O Cell
R
From Logic Allocator
D/T/L
P
To ORP
Q
To GRP
CE
Single PT
Block CLK0
Block CLK1
Block CLK2
Block CLK3
PT Clock (optional)
Shared PT Clock
Enhanced Clock Multiplexer
The clock input to the flip-flop can select any of the four block clocks along with the shared PT clock, and true and
complement forms of the optional individual term clock. An 8:1 multiplexer structure is used to select the clock. The
eight sources for the clock multiplexer are as follows:
• Block CLK0
• Block CLK1
6
Lattice Semiconductor
•
•
•
•
•
•
ispMACH 4000V/B/C Family Data Sheet
Block CLK2
Block CLK3
PT Clock
PT Clock Inverted
Shared PT Clock
Ground
Clock Enable Multiplexer
Each macrocell has a 4:1 clock enable multiplexer. This allows the clock enable signal to be selected from the following four sources:
• PT Initialization/CE
• PT Initialization/CE Inverted
• Shared PT Clock
• Logic High
Initialization Control
The ispMACH 4000 family architecture accommodates both block-level and macrocell-level set and reset capability.
There is one block-level initialization term that is distributed to all macrocell registers in a GLB. At the macrocell
level, two product terms can be “stolen” from the cluster associated with a macrocell to be used for set/reset functionality. A reset/preset swapping feature in each macrocell allows for reset and preset to be exchanged, providing
flexibility.
Note that the reset/preset swapping selection feature affects power-up reset as well. All flip-flops power up to a
known state for predictable system initialization. If a macrocell is configured to SET on a signal from the block-level
initialization, then that macrocell will be SET during device power-up. If a macrocell is configured to RESET on a
signal from the block-level initialization or is not configured for set/reset, then that macrocell will RESET on powerup. To guarantee initialization values, the VCC rise must be monotonic, and the clock must be inactive until the reset
delay time has elapsed.
GLB Clock Generator
Each ispMACH 4000 device has four clock pins that are also routed to the GRP to be used as inputs. These pins
drive a clock generator in each GLB, as shown in Figure 6. The clock generator provides four clock signals that can
be used anywhere in the GLB. These four GLB clock signals can consist of a number of combinations of the true
and complement edges of the global clock signals.
Figure 6. GLB Clock Generator
CLK0
Block CLK0
CLK1
Block CLK1
CLK2
Block CLK2
CLK3
Block CLK3
7
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Output Routing Pool (ORP)
The Output Routing Pool allows macrocell outputs to be connected to any of several I/O cells within an I/O block.
This provides greater flexibility in determining the pinout and allows design changes to occur without affecting the
pinout. The output routing pool also provides a parallel capability for routing macrocell-level OE product terms. This
allows the OE product term to follow the macrocell output as it is switched between I/O cells. Additionally, the output routing pool allows the macrocell output or true and complement forms of the 5-PT bypass signal to bypass the
output routing multipliers and feed the I/O cell directly. The enhanced ORP of the ispMACH 4000 family consists of
the following elements:
• Output Routing Multiplexers
• OE Routing Multiplexers
• Output Routing Pool Bypass Multiplexers
Figure 7 shows the structure of the ORP from the I/O cell perspective. This is referred to as an ORP slice. Each
ORP has as many ORP slices as there are I/O cells in the corresponding I/O block.
Figure 7. ORP Slice
OE Routing Multiplexer
From PTOE
To I/O
Cell
OE
ORP
Bypass
Multiplexer
5-PT Fast Path
To I/O
Cell
From Macrocell
Output
Output Routing Multiplexer
Output Routing Multiplexers
The details of connections between the macrocells and the I/O cells vary across devices and within a device
dependent on the maximum number of I/Os available. Tables 5, 6, 7 and 8 provide the connection details.
Table 5. ORP Combinations for I/O Blocks with 8 I/Os
I/O Cell
Available Macrocells
I/O 0
M0, M1, M2, M3, M4, M5, M6, M7
I/O 1
M2, M3, M4, M5, M6, M7, M8, M9
I/O 2
M4, M5, M6, M7, M8, M9, M10, M11
I/O 3
M6, M7, M8, M9, M10, M11, M12, M13
I/O 4
M8, M9, M10, M11, M12, M13, M14, M15
I/O 5
M10, M11, M12, M13, M14, M15, M0, M1
I/O 6
M12, M13, M14, M15, M0, M1, M2, M3
I/O 7
M14, M15, M0, M1, M2, M3, M4, M5
8
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Table 6. ORP Combinations for I/O Blocks with 16 I/Os
I/O Cell
Available Macrocells
I/O 0
M0, M1, M2, M3, M4, M5, M6, M7
I/O 1
M1, M2, M3, M4, M5, M6, M7, M8
I/O 2
M2, M3, M4, M5, M6, M7, M8, M9
I/O 3
M3, M4, M5, M6, M7, M8, M9, M10
I/O 4
M4, M5, M6, M7, M8, M9, M10, M11
I/O 5
M5, M6, M7, M8, M9, M10, M11, M12
I/O 6
M6, M7, M8, M9, M10, M11, M12, M12
I/O 7
M7, M8, M9, M10, M11, M12, M13, M14
I/O 8
M8, M9, M10, M11, M12, M13, M14, M15
I/O 9
M9, M10, M11, M12, M13, M14, M15, M0
I/O 10
M10, M11, M12, M13, M14, M15, M0, M1
I/O 11
M11, M12, M13, M14, M15, M0, M1, M2
I/O 12
M12, M13, M14, M15, M0, M1, M2, M3
I/O 13
M13, M14, M15, M0, M1, M2, M3, M4
I/O 14
M14, M15, M0, M1, M2, M3, M4, M5
I/O 15
M15, M0, M1, M2, M3, M4, M5, M6
Table 7. ORP Combinations for I/O Blocks with 4 I/Os
I/O Cell
Available Macrocells
I/O 0
M0, M1, M2, M3, M4, M5, M6, M7
I/O 1
M4, M5, M6, M7, M8, M9, M10, M11
I/O 2
M8, M9, M10, M11, M12, M13, M14, M15
I/O 3
M12, M13, M14, M15, M0, M1, M2, M3
Table 8. ORP Combinations for I/O Blocks with 10 I/Os
I/O Cell
Available Macrocells
I/O 0
M0, M1, M2, M3, M4, M5, M6, M7
I/O 1
M2, M3, M4, M5, M6, M7, M8, M9
I/O 2
M4, M5, M6, M7, M8, M9, M10, M11
I/O 3
M6, M7, M8, M9, M10, M11, M12, M13
I/O 4
M8, M9, M10, M11, M12, M13, M14, M15
I/O 5
M10, M11, M12, M13, M14, M15, M0, M1
I/O 6
M12, M13, M14, M15, M0, M1, M2, M3
I/O 7
M14, M15, M0, M1, M2, M3, M4, M5
I/O 8
M2, M3, M4, M5, M6, M7, M8
I/O 9
M10, M11, M12, M13, M14, M15, M0, M1
9
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ORP Bypass and Fast Output Multiplexers
The ORP bypass and fast-path output multiplexer is a 4:1 multiplexer and allows the 5-PT fast path to bypass the
ORP and be connected directly to the pin with either the regular output or the inverted output. This multiplexer also
allows the register output to bypass the ORP to achieve faster tCO.
Output Enable Routing Multiplexers
The OE Routing Pool provides the corresponding local output enable (OE) product term to the I/O cell.
I/O Cell
The I/O cell contains the following programmable elements: output buffer, input buffer, OE multiplexer and bus
maintenance circuitry. Figure 8 details the I/O cell.
Figure 8. I/O Cell
GOE 0
GOE 1
GOE 2
GOE 3
From ORP
VCC
VCCO
VCCO
*
From ORP
*
*
To Macrocell
To GRP
*Global fuses
Each output supports a variety of output standards dependent on the VCCO supplied to its I/O bank. Outputs can
also be configured for open drain operation. Each input can be programmed to support a variety of standards, independent of the VCCO supplied to its I/O bank. The I/O standards supported are:
• LVTTL
• LVCMOS 1.8
• LVCMOS 3.3
• 3.3V PCI Compatible
• LVCMOS 2.5
All of the I/Os and dedicated inputs have the capability to provide a bus-keeper latch, Pull-up Resistor or Pull-down
Resistor. A fourth option is to provide none of these. The selection is done on a global basis. The default in both
hardware and software is such that when the device is erased or if the user does not specify, the input structure is
configured to be a Pull-up Resistor.
Each ispMACH 4000 device I/O has an individually programmable output slew rate control bit. Each output can be
individually configured for the higher speed transition (~3V/ns) or for the lower noise transition (~1V/ns). For highspeed designs with long, unterminated traces, the slow-slew rate will introduce fewer reflections, less noise and
keep ground bounce to a minimum. For designs with short traces or well terminated lines, the fast slew rate can be
used to achieve the highest speed. The slew rate is adjusted independent of power.
Global OE Generation
Most ispMACH 4000 family devices have a 4-bit wide Global OE Bus, except the ispMACH 4032 device that has a
2-bit wide Global OE Bus. This bus is derived from a 4-bit internal global OE PT bus and two dual purpose I/O or
GOE pins. Each signal that drives the bus can optionally be inverted.
10
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Each GLB has a block-level OE PT that connects to all bits of the Global OE PT bus with four fuses. Hence, for a
256-macrocell device (with 16 blocks), each line of the bus is driven from 16 OE product terms. Figures 9 and 10
show a graphical representation of the global OE generation.
Figure 9. Global OE Generation for All Devices Except ispMACH 4032
Internal Global OE
PT Bus
(4 lines)
Global OE
4-Bit
Global OE Bus
Shared PTOE
(Block 0)
Shared PTOE
(Block n)
Global
Fuses
GOE (0:3)
to I/O cells
Fuse connection
Hard wired
Figure 10. Global OE Generation for ispMACH 4032
Internal Global OE
PT Bus
(2 lines)
Global OE
4-Bit
Global OE Bus
Shared PTOE
(Block 0)
Shared PTOE
(Block 1)
Global
Fuses
Fuse connection
Hard wired
11
GOE (3:0)
to I/O cells
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Low Power and Power Management
The ispMACH 4000 family is designed with high speed low power design techniques to offer both high speed and
low power. With an advanced E2 low power cell and non sense-amplifier design approach (full CMOS logic
approach), the ispMACH 4000 family offers SuperFAST pin-to-pin speeds, while simultaneously delivering low
standby power without needing any “turbo bits” or other power management schemes associated with a traditional
sense-amplifier approach.
IEEE 1149.1-Compliant Boundary Scan Testability
All ispMACH 4000 devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This allows
functional testing of the circuit board on which the device is mounted through a serial scan path that can access all
critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded directly onto
test nodes, or test node data to be captured and shifted out for verification. In addition, these devices can be linked
into a board-level serial scan path for more board-level testing. The test access port operates with an LVCMOS
interface that corresponds to the power supply voltage.
I/O Quick Configuration
To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os’
physical nature should be minimal so that board test time is minimized. The ispMACH 4000 family of devices allows
this by offering the user the ability to quickly configure the physical nature of the I/O cells. This quick configuration
takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's
ispVM™ System programming software can either perform the quick configuration through the PC parallel port, or
can generate the ATE or test vectors necessary for a third-party test system.
IEEE 1532-Compliant In-System Programming
Programming devices in-system provides a number of significant benefits including: rapid prototyping, lower inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 4000 devices provide In-System Programming (ISP™) capability through the Boundary Scan Test Access Port. This capability has been
implemented in a manner that ensures that the port remains complaint to the IEEE 1149.1 standard. By using IEEE
1149.1 as the communication interface through which ISP is achieved, users get the benefit of a standard, welldefined interface. All ispMACH 4000 devices are also compliant with the IEEE 1532 standard.
The ispMACH 4000 devices can be programmed across the commercial temperature and voltage range. The PCbased Lattice software facilitates in-system programming of ispMACH 4000 devices. The software takes the
JEDEC file output produced by the design implementation software, along with information about the scan chain,
and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain
via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 4000 devices during the testing of a
circuit board.
Security Bit
A programmable security bit is provided on the ispMACH 4000 devices as a deterrent to unauthorized copying of
the array configuration patterns. Once programmed, this bit defeats readback of the programmed pattern by a
device programmer, securing proprietary designs from competitors. Programming and verification are also
defeated by the security bit. The bit can only be reset by erasing the entire device.
Hot Socketing
The ispMACH 4000 devices are well-suited for applications that require hot socketing capability. Hot socketing a
device requires that the device, during power-up and down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of I/O pin loading be minimal on active signals.
12
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Density Migration
The ispMACH 4000 family has been designed to ensure that different density devices in the same package have
the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration
from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization
will impact the likely success in each case.
13
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Absolute Maximum Ratings1, 2, 3
ispMACH 4000C
ispMACH 4000B
ispMACH 4000V
(1.8V)
(2.5V)
(3.3V)
Supply Voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . -0.5 to 2.5V . . . . . . . . . .-0.5 to 5.5V. . . . . . . . . . -0.5 to 5.5V
Output Supply Voltage (VCCO) . . . . . . . . . . . . . . . -0.5 to 4.5V . . . . . . . . . .-0.5 to 4.5V. . . . . . . . . . -0.5 to 4.5V
Input or I/O Tristate Voltage Applied4 . . . . . . . . . . -0.5 to 4.5V . . . . . . . . . .-0.5 to 4.5V. . . . . . . . . . -0.5 to 4.5V
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . -65 to 150°C. . . . . . . . . -65 to 150°C . . . . . . . . .-65 to 150°C
Junction Temperature (Tj) with Power Applied . . . -55 to 150°C. . . . . . . . . -55 to 150°C . . . . . . . . .-55 to 150°C
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional
operation of the device at these or any other conditions above those indicated in the operational sections of this specification
is not implied.
2. Compliance with Lattice Thermal Management document is required.
3. All voltages referenced to GND.
4. Overshoot and undershoot of -2V to (VIH (MAX) +2) volts is permitted for a duration of < 20ns.
Recommended Operating Conditions
Symbol
Parameter
VCC
Min
Max
Supply Voltage for 1.8V Devices
1.65
1.95
V
Supply Voltage for 2.5V Devices
2.3
2.7
V
Supply Voltage for 3.3V Devices
3.0
3.6
V
0
90
C
-40
105
C
Min
Max
Units
1,000
—
Cycles
Junction Temperature (Commercial)
Tj
Junction Temperature (Industrial)
Units
Erase Reprogram Specifications
Parameter
Erase/Reprogram Cycle
Note: Valid over commercial temperature range.
Hot Socketing Characteristics1,2,3
Symbol
IDK
1.
2.
3.
Parameter
Input or I/O Leakage Current
Condition
Min
Typ
Max
Units
0 ≤ VIN ≤ VIH (MAX)
—
—
±150
µA
Insensitive to sequence of VCC and VCCO. However, assumes monotonic rise/fall rates for VCC and VCCO.
0 < VCC < VCC (MAX), 0 < VCCO < VCCO (MAX).
IDK is additive to IPU , IPD or IBH. Device defaults to pull-up until fuse circuitry is active.
I/O Recommended Operating Conditions
VCCO (V)1
Standard
Min
Max
LVTTL
3.0
3.6
LVCMOS 3.3
3.0
3.6
LVCMOS 2.5
2.3
2.7
LVCMOS 1.8
1.65
1.95
PCI 3.3
3.0
3.6
1. Typical values for VCCO are the average of the Min and Max values.
14
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
DC Electrical Characteristics
Over Recommended Operating Conditions
Min
Typ
Max
Units
IIL, IIH1
Symbol
Input Leakage Current
Parameter
0 ≤ VIN ≤ VIH (MAX)
Condition
—
—
10
µA
0 ≤ VIN ≤ 0.7VCCO
30
—
150
µA
30
—
150
µA
IPU
I/O Weak Pull-up Resistor Current
IPD
I/O Weak Pull-down Resistor Current VIL (MAX) ≤ VIN ≤ VIH (MIN)
IBHLS
Bus Hold Low Sustaining Current
VIN = VIL (MAX)
30
—
—
µA
IBHHS
Bus Hold High Sustaining Current
VIN = 0.7 VCCO
-30
—
—
µA
IBHLO
Bus Hold Low Overdrive Current
0V ≤ VIN ≤ VBHT
—
—
150
µA
IBHHO
Bus Hold High Overdrive Current
VBHT ≤ VIN ≤ VCCO
—
—
-150
µA
VBHT
Bus Hold Trip Points
VCCO * 0.35
—
VCCO * 0.65
V
C1
I/O Capacitance2
C2
Clock Capacitance2
C3
Global Input Capacitance2
—
VCCO = 3.3V, 2.5V, 1.8V
—
VCC = 1.8V, VIO = 0 to VIH (MAX)
—
VCCO = 3.3V, 2.5V, 1.8V
—
VCC = 1.8V, VIO = 0 to VIH (MAX)
—
VCCO = 3.3V, 2.5V, 1.8V
—
VCC = 1.8V, VIO = 0 to VIH (MAX)
—
8
6
6
—
—
—
—
—
—
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tristated. It is not
measured with the output driver active. Bus maintenance circuits are disabled.
2. TA = 25°C, f = 1.0MHz
15
pf
pf
pf
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Supply Current
Over Recommended Operating Conditions
Symbol
Parameter
Condition
Min
Typ
Max
Units
VCC = 3.3V
—
11.8
—
mA
VCC = 2.5V
—
11.8
—
mA
VCC = 1.8V
—
1.8
—
mA
VCC = 3.3V
—
11.3
—
mA
VCC = 2.5V
—
11.3
—
mA
VCC = 1.8V
—
1.3
—
mA
VCC = 3.3V
—
12
—
mA
VCC = 2.5V
—
12
—
mA
ispMACH 4032V/B/C
1, 2, 3
ICC
ICC4
Operating Power Supply Current
Standby Power Supply Current
ispMACH 4064V/B/C
ICC1, 2, 3
4
ICC
Operating Power Supply Current
Standby Power Supply Current
VCC = 1.8V
—
2
—
mA
VCC = 3.3V
—
11.5
—
mA
VCC = 2.5V
—
11.5
—
mA
VCC = 1.8V
—
1.5
—
mA
VCC = 3.3V
—
12
—
mA
VCC = 2.5V
—
12
—
mA
VCC = 1.8V
—
2
—
mA
VCC = 3.3V
—
11.5
—
mA
VCC = 2.5V
—
11.5
—
mA
VCC = 1.8V
—
1.5
—
mA
VCC = 3.3V
—
12.5
—
mA
VCC = 2.5V
—
12.5
—
mA
ispMACH 4128V/B/C
1, 2, 3
ICC
ICC4
Operating Power Supply Current
Standby Power Supply Current
ispMACH 4256V/B/C
ICC1, 2, 3
ICC4
Operating Power Supply Current
Standby Power Supply Current
VCC = 1.8V
—
2.5
—
mA
VCC = 3.3V
—
12
—
mA
VCC = 2.5V
—
12
—
mA
VCC = 1.8V
—
2
—
mA
VCC = 3.3V
—
13.5
—
mA
VCC = 2.5V
—
13.5
—
mA
VCC = 1.8V
—
3.5
—
mA
VCC = 3.3V
—
12.5
—
mA
VCC = 2.5V
—
12.5
—
mA
VCC = 1.8V
—
2.5
—
mA
VCC = 3.3V
—
14
—
mA
VCC = 2.5V
—
14
—
mA
ispMACH 4384V/B/C
1, 2, 3
ICC
ICC4
Operating Power Supply Current
Standby Power Supply Current
ispMACH 4512V/B/C
ICC1, 2, 3
4
ICC
Operating Power Supply Current
Standby Power Supply Current
VCC = 1.8V
—
4
—
mA
VCC = 3.3V
—
13
—
mA
VCC = 2.5V
—
13
—
mA
VCC = 1.8V
—
3
—
mA
1. TA = 25°C, frequency = 1.0MHz. 2. Device configured with 16-bit counters. 3. ICC varies with specific device configuration and operating
frequency. 4. TA = 25°C
16
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
I/O DC Electrical Characteristics
Over Recommended Operating Conditions
VIH
VIL
Standard
Min (V)
Max (V)
Min (V)
Max (V)
-0.3
0.80
2.0
3.6
LVTTL
LVCMOS 3.3
-0.3
LVCMOS 2.5
0.80
-0.3
2.0
0.70
3.6
1.70
3.6
VOL
Max (V)
VOH
Min (V)
IOL1
(mA)
IOH1
(mA)
0.40
VCCO - 0.40
8.0
-4.0
0.20
VCCO - 0.20
0.1
-0.1
0.40
VCCO - 0.40
8.0
-4.0
0.20
VCCO - 0.20
0.1
-0.1
0.40
VCCO - 0.40
8.0
-4.0
0.20
VCCO - 0.20
0.1
-0.1
0.40
VCCO - 0.45
2.0
-2.0
LVCMOS 1.8
-0.3
0.35 VCC
0.65 * VCC
3.6
0.20
VCCO - 0.20
0.1
-0.1
PCI 3.3 (4000V/B)
-0.3
1.08
1.5
3.6
0.1 VCCO
0.9 VCCO
1.5
-0.5
PCI 3.3 (4000C)
-0.3
3.6
0.1 VCCO
0.9 VCCO
1.5
-0.5
0.3 * 3.3 * (VCC / 1.8) 0.5 * 3.3 * (VCC / 1.8)
1. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of
the I/O bank, as shown in the logic signals connection table, shall not exceed n*8mA. Where n is the number of I/Os between bank GND
connections or between the last GND in a bank and the end of a bank.
3.3V VCCO
IOL
IOH
80
60
40
20
0
0.5 1.0 1.5
50
IOL
IOH
40
30
20
10
0
2.0 2.5 3.0 3.5
50
IOL
IOH
40
30
20
10
0
0.5
1.0
1.5
0.5
1.0
1.5
2.0
VO Output Voltage (V)
1.8V VCCO
60
Typical I/O Output Current (mA)
60
0
0
VO Output Voltage (V)
0
2.5V VCCO
70
Typical I/O Output Current (mA)
Typical I/O Output Current (mA)
100
2.0
VO Output Voltage (V)
17
2.5
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V/B/C External Switching Characteristics
Over Recommended Operating Conditions
-25
Parameter
1, 2, 3
Description
-27
-3
-35
Min.
Max.
Min.
Max.
Min.
Max.
Min.
Max.
Units
tPD
5-PT bypass combinatorial propagation
delay
—
2.5
—
2.7
—
3.0
—
3.5
ns
tPD_MC
20-PT combinatorial propagation delay
through macrocell
—
3.2
—
3.5
—
3.8
—
4.2
ns
tS
GLB register setup time before clock
1.8
—
1.8
—
2.0
—
2.0
—
ns
tST
GLB register setup time before clock
with T-type register
2.0
—
2.0
—
2.2
—
2.2
—
ns
tSIR
GLB register setup time before clock,
input register path
0.7
—
1.0
—
1.0
—
1.0
—
tSIRZ
GLB register setup time before clock
with zero hold
1.7
—
2.0
—
2.0
—
2.0
—
tH
GLB register hold time after clock
0.0
—
0.0
—
0.0
—
0.0
—
ns
tHT
GLB register hold time after clock with
T-type register
0.0
—
0.0
—
0.0
—
0.0
—
ns
tHIR
GLB register hold time after clock, input
register path
0.9
—
1.0
—
1.0
—
1.0
—
tHIRZ
GLB register hold time after clock, input
register path with zero hold
0.0
—
0.0
—
0.0
—
0.0
—
tCO
GLB register clock-to-output delay
—
2.2
—
2.7
—
2.7
—
2.7
tR
External reset pin to output delay
—
3.5
—
4.0
—
4.4
—
4.5
ns
tRW
External reset pulse duration
1.5
—
1.5
—
1.5
—
1.5
-
ns
tPTOE/DIS
Input to output local product term output
enable/disable
—
4.0
—
4.5
—
5.0
—
5.5
tGPTOE/DIS
Input to output global product term output enable/disable
—
5.0
—
6.5
—
8.0
—
8.0
ns
ns
ns
ns
ns
ns
ns
tGOE/DIS
Global OE input to output enable/disable
—
3.0
—
3.5
—
4.0
—
4.5
ns
tCW
Global clock width, high or low
1.1
—
1.3
—
1.3
—
1.3
—
ns
tGW
Global gate width low (for low transparent) or high (for high transparent)
1.1
—
1.3
—
1.3
—
1.3
—
ns
tWIR
Input register clock width, high or low
1.1
—
1.3
—
1.3
—
1.3
—
ns
fMAX4
Clock frequency with internal feedback
400
—
333
—
322
—
322
—
MHz
fMAX (Ext.)
Clock frequency with external feedback,
[1/ (tS + tCO)]
250
—
222
—
212
—
212
—
MHz
Timing v.3.1
1.
2.
3.
4.
Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.
Measured using standard switching circuit, assuming GRP loading of 1 and 1 output switching.
Pulse widths and clock widths less than minimum will cause unknown behavior.
Standard 16-bit counter using GRP feedback.
18
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V/B/C External Switching Characteristics (Cont.)
Over Recommended Operating Conditions
-5
Parameter
Description1, 2, 3
-105
-75
Min.
Max.
Min.
Max.
Min.
Max.
Units
tPD
5-PT bypass combinatorial propagation delay
—
5.0
—
7.5
—
10.0
ns
tPD_MC
20-PT combinatorial propagation delay through macrocell
—
5.5
—
8.0
—
10.5
ns
tS
GLB register setup time before clock
3.0
—
4.5
—
5.5
—
ns
tST
GLB register setup time before clock with
T-type register
3.2
—
4.7
—
5.5
—
ns
tSIR
GLB register setup time before clock, input register path
1.2
—
1.7
—
1.7
—
ns
tSIRZ
GLB register setup time before clock with zero hold
2.2
—
2.7
—
2.7
—
ns
tH
GLB register hold time after clock
0.0
—
0.0
—
0.0
—
ns
tHT
GLB register hold time after clock with
T-type register
0.0
—
0.0
—
0.0
—
ns
tHIR
GLB register hold time after clock, input register path
1.0
—
1.0
—
1.0
—
ns
tHIRZ
GLB register hold time after clock, input register path with
zero hold
0.0
—
0.0
—
0.0
—
tCO
GLB register clock-to-output delay
—
3.40
—
4.5
—
6.0
tR
External reset pin to output delay
—
6.30
—
9.0
—
10.5
ns
tRW
External reset pulse duration
2.0
—
4.0
—
4.0
—
ns
tPTOE/DIS
Input to output local product term output enable/disable
—
7.00
—
9.0
—
10.5
ns
—
9.00
—
10.3
—
12.0
ns
tGPTOE/DIS Input to output global product term output enable/disable
ns
ns
tGOE/DIS
Global OE input to output enable/disable
—
5.00
—
7.0
—
8.0
ns
tCW
Global clock width, high or low
2.2
—
3.3
—
4.0
—
ns
tGW
Global gate width low (for low transparent) or high (for
high transparent)
2.2
—
3.3
—
4.0
—
ns
tWIR
Input register clock width, high or low
2.2
—
3.3
—
4.0
—
ns
fMAX4
Clock frequency with internal feedback
227
—
168
—
125
—
MHz
fMAX (Ext.)
Clock frequency with external feedback,
[1/ (tS + tCO)]
156
—
111
—
86
—
MHz
Timing v.3.1
1.
2.
3.
4.
5.
Timing numbers are based on default LVCMOS 1.8 I/O buffers. Use timing adjusters provided to calculate other standards.
Measured using standard switching circuit, assuming GRP loading of 1 and 1 output switching.
Pulse widths and clock widths less than minimum will cause unknown behavior.
Standard 16-bit counter using GRP feedback.
Only available in industrial grade.
19
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Timing Model
The task of determining the timing through the ispMACH 4000 family, like any CPLD, is relatively simple. The timing
model provided in Figure 10 shows the specific delay paths. Once the implementation of a given function is determined either conceptually or from the software report file, the delay path of the function can easily be determined
from the timing model. The Lattice design tools report the timing delays based on the same timing model for a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The external timing parameters are tested and guaranteed for every device. For more information on the timing model and
usage, please refer to Technical Note TN1004: ispMACH 4000 Timing Model Design and Usage Guidelines.
Figure 10. ispMACH 4000 Timing Model
Routing/GLB Delays
From
Feedback
tPDb
tFBK
tPDi
IN
SCLK
tIN
tIOI
tROUTE
tBLA
tMCELL
tEXP
DATA
Q
tINREG
tINDIO
tGCLK_IN
tIOI
OE
tBUF
tIOO
tEN
tDIS
Out
In/Out
Delays
tPTCLK
tBCLK
C.E.
tPTSR
tBSR
S/R
MC Reg.
Control
Delays
tORP
Feedback
Register/Latch
Delays
tGPTOE
tPTOE
tGOE
tIOI
In/Out
Delays
Note: Italicized items are optional delay adders.
20
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V/B/C Internal Timing Parameters
Over Recommended Operating Conditions
-25
Parameter
Description
-27
-3
-35
Min.
Max.
Min.
Max.
Min.
Max.
Min.
Max.
Units
In/Out Delays
tIN
Input Buffer Delay
—
0.60
—
0.60
—
0.70
—
0.70
ns
tGOE
Global OE Pin Delay
—
2.04
—
2.54
—
3.04
—
3.54
ns
tGCLK_IN
Global Clock Input Buffer Delay
—
0.78
—
1.28
—
1.28
—
1.28
ns
tBUF
Delay through Output Buffer
—
0.85
—
0.85
—
0.85
—
0.85
ns
tEN
Output Enable Time
—
0.96
—
0.96
—
0.96
—
0.96
ns
tDIS
Output Disable Time
—
0.96
—
0.96
—
0.96
—
0.96
ns
Routing/GLB Delays
tROUTE
Delay through GRP
—
0.61
—
0.81
—
1.01
—
1.01
ns
tMCELL
Macrocell Delay
—
0.45
—
0.55
—
0.55
—
0.65
ns
tINREG
Input Buffer to Macrocell Register Delay
—
0.11
—
0.31
—
0.31
—
0.31
ns
tFBK
Internal Feedback Delay
—
0.00
—
0.00
—
0.00
—
0.00
ns
tPDb
5-PT Bypass Propagation Delay
—
0.44
—
0.44
—
0.44
—
0.94
ns
tPDi
Macrocell Propagation Delay
—
0.64
—
0.64
—
0.64
—
0.94
ns
Register/Latch Delays
tS
D-Register Setup Time (Global Clock)
0.92
—
1.12
—
1.02
—
0.92
—
ns
tS_PT
D-Register Setup Time (Product Term
Clock)
1.42
—
1.32
—
1.32
—
1.32
—
ns
tST
T-Register Setup Time (Global Clock)
1.12
—
1.32
—
1.22
—
1.12
—
ns
tST_PT
T-Register Setup Time (Product Term
Clock)
1.42
—
1.32
—
1.32
—
1.32
—
ns
tH
D-Register Hold Time
0.88
—
0.68
—
0.98
—
1.08
—
ns
tHT
T-Register Hold Time
0.88
—
0.68
—
0.98
—
1.08
—
ns
tSIR
D-Input Register Setup Time (Global
Clock)
0.82
—
1.37
—
1.27
—
1.27
—
ns
tSIR_PT
D-Input Register Setup Time (Product
Term Clock)
1.45
—
1.45
—
1.45
—
1.45
—
ns
tHIR
D-Input Register Hold Time (Global
Clock)
0.88
—
0.63
—
0.73
—
0.73
—
ns
tHIR_PT
D-Input Register Hold Time (Product
Term Clock)
0.88
—
0.63
—
0.73
—
0.73
—
ns
tCOi
Register Clock to Output/Feedback
MUX Time
—
0.52
—
0.52
—
0.52
—
0.52
ns
tCES
Clock Enable Setup Time
2.25
—
2.25
—
2.25
—
2.25
—
ns
tCEH
Clock Enable Hold Time
1.88
—
1.88
—
1.88
—
1.88
—
ns
tSL
Latch Setup Time (Global Clock)
0.92
—
1.12
—
1.02
—
0.92
—
ns
tSL_PT
Latch Setup Time (Product Term Clock)
1.42
—
1.32
—
1.32
—
1.32
—
ns
tHL
Latch Hold Time
1.17
—
1.17
—
1.17
—
1.17
—
ns
tGOi
Latch Gate to Output/Feedback MUX
Time
—
0.33
—
0.33
—
0.33
—
0.33
ns
tPDLi
Propagation Delay through Transparent
Latch to Output/Feedback MUX
—
0.25
—
0.25
—
0.25
—
0.25
ns
tSRi
Asynchronous Reset or Set to Output/
Feedback MUX Delay
—
0.28
—
0.28
—
0.28
—
0.28
ns
21
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V/B/C Internal Timing Parameters (Cont.)
Over Recommended Operating Conditions
-25
Parameter
tSRR
Description
Asynchronous Reset or Set Recovery
Delay
-27
-3
-35
Min.
Max.
Min.
Max.
Min.
Max.
Min.
Max.
Units
—
1.67
—
1.67
—
1.67
—
1.67
ns
—
1.12
—
1.12
—
1.12
—
1.12
ns
Control Delays
tBCLK
GLB PT Clock Delay
tPTCLK
Macrocell PT Clock Delay
—
0.87
—
0.87
—
0.87
—
0.87
ns
tBSR
Block PT Set/Reset Delay
—
1.83
—
1.83
—
1.83
—
1.83
ns
tPTSR
Macrocell PT Set/Reset Delay
—
1.11
—
1.41
—
1.51
—
1.61
ns
tGPTOE
Global PT OE Delay
—
2.83
—
4.13
—
5.33
—
5.33
ns
tPTOE
Macrocell PT OE Delay
—
1.83
—
2.13
—
2.33
—
2.83
ns
Timing v.3.1
Note: Internal Timing Parameters are not tested and are for reference only. Refer to Timing Model in this data sheet for further details.
22
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V/B/C Internal Timing Parameters (Cont.)
Over Recommended Operating Conditions
-5
Parameter
Description
-101
-75
Min.
Max.
Min.
Max.
Min.
Max.
Units
In/Out Delays
tIN
Input Buffer Delay
—
0.95
—
1.50
—
2.00
ns
tGOE
Global OE Pin Delay
—
4.04
—
6.04
—
7.04
ns
tGCLK_IN
Global Clock Input Buffer Delay
—
1.83
—
2.28
—
3.28
ns
tBUF
Delay through Output Buffer
—
1.00
—
1.50
—
1.50
ns
tEN
Output Enable Time
—
0.96
—
0.96
—
0.96
ns
tDIS
Output Disable Time
—
0.96
—
0.96
—
0.96
ns
Routing/GLB Delays
tROUTE
Delay through GRP
—
1.51
—
2.26
—
3.26
ns
tMCELL
Macrocell Delay
—
1.05
—
1.45
—
1.95
ns
tINREG
Input Buffer to Macrocell Register Delay
—
0.56
—
0.96
—
1.46
ns
tFBK
Internal Feedback Delay
—
0.00
—
0.00
—
0.00
ns
tPDb
5-PT Bypass Propagation Delay
—
1.54
—
2.24
—
3.24
ns
tPDi
Macrocell Propagation Delay
—
0.94
—
1.24
—
1.74
ns
1.32
—
1.57
—
1.57
—
ns
Register/Latch Delays
tS
D-Register Setup Time (Global Clock)
tS_PT
D-Register Setup Time (Product Term Clock)
1.32
—
1.32
—
1.32
—
ns
tST
T-Register Setup Time (Global Clock)
1.52
—
1.77
—
1.77
—
ns
tST_PT
T-Register Setup Time (Product Term Clock)
1.32
—
1.32
—
1.32
—
ns
tH
D-Register Hold Time
1.68
—
2.93
—
3.93
—
ns
tHT
T-Register Hold Time
1.68
—
2.93
—
3.93
—
ns
tSIR
D-Input Register Setup Time (Global Clock)
1.52
—
1.57
—
1.57
—
ns
tSIR_PT
D-Input Register Setup Time (Product Term Clock)
1.45
—
1.45
—
1.45
—
ns
tHIR
D-Input Register Hold Time (Global Clock)
0.68
—
1.18
—
1.18
—
ns
tHIR_PT
D-Input Register Hold Time (Product Term Clock)
0.68
—
1.18
—
1.18
—
ns
tCOi
Register Clock to Output/Feedback MUX Time
—
0.52
—
0.67
—
1.17
ns
tCES
Clock Enable Setup Time
2.25
—
2.25
—
2.25
—
ns
tCEH
Clock Enable Hold Time
1.88
—
1.88
—
1.88
—
ns
tSL
Latch Setup Time (Global Clock)
1.32
—
1.57
—
1.57
—
ns
tSL_PT
Latch Setup Time (Product Term Clock)
1.32
—
1.32
—
1.32
—
ns
tHL
Latch Hold Time
1.17
—
1.17
—
1.17
—
ns
tGOi
Latch Gate to Output/Feedback MUX Time
—
0.33
—
0.33
—
0.33
ns
tPDLi
Propagation Delay through Transparent Latch to Output/
Feedback MUX
—
0.25
—
0.25
—
0.25
ns
tSRi
Asynchronous Reset or Set to Output/Feedback MUX
Delay
—
0.28
—
0.28
—
0.28
ns
tSRR
Asynchronous Reset or Set Recovery Delay
—
1.67
—
1.67
—
1.67
ns
Control Delays
tBCLK
GLB PT Clock Delay
—
1.12
—
1.12
—
0.62
ns
tPTCLK
Macrocell PT Clock Delay
—
0.87
—
0.87
—
0.87
ns
tBSR
GLB PT Set/Reset Delay
—
1.83
—
1.83
—
1.83
ns
tPTSR
Macrocell PT Set/Reset Delay
—
2.51
—
3.41
—
3.41
ns
23
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V/B/C Internal Timing Parameters (Cont.)
Over Recommended Operating Conditions
-5
Parameter
Description
-101
-75
Min.
Max.
Min.
Max.
Min.
Max.
Units
tGPTOE
Global PT OE Delay
—
5.58
—
5.58
—
5.78
ns
tPTOE
Macrocell PT OE Delay
—
3.58
—
4.28
—
4.28
ns
Timing v.3.1
Note: Internal Timing Parameters are not tested and are for reference only. Refer to Timing Model in this data sheet for further details.
1. Only available in industrial grade.
24
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V/B/C Timing Adders1
Adder
Type
Base
Parameter
-25
Description
-27
-3
-35
Min.
Max.
Min.
Max.
Min.
Max.
Min.
—
0.95
—
1.00
—
1.00
—
Max. Units
Optional Delay Adders
tINDIO
tEXP
tINREG
tMCELL
tORP
tBLA
—
tROUTE
Input register delay
Product term expander
delay
—
0.33
—
Output routing pool delay
—
0.05
—
Additional block loading
adder
—
0.03
—
0.33
—
0.05
—
0.05
—
0.33
—
0.05
—
0.05
—
1.00
0.33
ns
ns
0.05
ns
0.05
ns
tIOI Input Adjusters
LVTTL_in
tIN, tGCLK_IN,
tGOE
Using LVTTL standard
—
0.60
—
0.60
—
0.60
—
0.60
ns
LVCMOS33_in
tIN, tGCLK_IN,
tGOE
Using LVCMOS 3.3
standard
—
0.60
—
0.60
—
0.60
—
0.60
ns
LVCMOS25_in
tIN, tGCLK_IN,
tGOE
Using LVCMOS 2.5
standard
—
0.60
—
0.60
—
0.60
—
0.60
ns
LVCMOS18_in
tIN, tGCLK_IN,
tGOE
Using LVCMOS 1.8
standard
—
0.00
—
0.00
—
0.00
—
0.00
ns
PCI_in
tIN, tGCLK_IN,
tGOE
Using PCI compatible
input
—
0.60
—
0.60
—
0.60
—
0.60
ns
tBUF, tEN, tDIS
Output configured as
TTL buffer
—
0.20
—
0.20
—
0.20
—
0.20
ns
LVCMOS33_out tBUF, tEN, tDIS
Output configured as
3.3V buffer
—
0.20
—
0.20
—
0.20
—
0.20
ns
LVCMOS25_out tBUF, tEN, tDIS
Output configured as
2.5V buffer
—
0.10
—
0.10
—
0.10
—
0.10
ns
LVCMOS18_out tBUF, tEN, tDIS
Output configured as
1.8V buffer
—
0.00
—
0.00
—
0.00
—
0.00
ns
PCI_out
tBUF, tEN, tDIS
Output configured as
PCI compatible buffer
—
0.20
—
0.20
—
0.20
—
0.20
ns
Slow Slew
tBUF, tEN
Output configured for
slow slew rate
—
1.00
—
1.00
—
1.00
—
1.00
ns
tIOO Output Adjusters
LVTTL_out
Timing v.3.1
Note: Open drain timing is the same as corresponding LVCMOS timing.
1. Refer to Technical Note TN1004: ispMACH 4000 Timing Model Design and Usage Guidelines for information regarding use of these adders.
25
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V/B/C Timing Adders1
Adder
Type
Base
Parameter
-5
Description
-102
-75
Min.
Max.
Min.
Max.
Min.
—
1.00
—
1.00
—
Max. Units
Optional Delay Adders
tINDIO
tINREG
tEXP
tMCELL
—
tORP
tBLA
tROUTE
Input register delay
1.00
ns
Product term expander delay
—
0.33
—
0.33
—
0.33
ns
Output routing pool delay
—
0.05
—
0.05
—
0.05
ns
Additional block loading adder
—
0.05
—
0.05
—
0.05
ns
tIOI Input Adjusters
LVTTL_in
tIN, tGCLK_IN,
tGOE
Using LVTTL standard
—
0.60
—
0.60
—
0.60
ns
LVCMOS33_in
tIN, tGCLK_IN,
tGOE
Using LVCMOS 3.3 standard
—
0.60
—
0.60
—
0.60
ns
LVCMOS25_in
tIN, tGCLK_IN,
tGOE
Using LVCMOS 2.5 standard
—
0.60
—
0.60
—
0.60
ns
LVCMOS18_in
tIN, tGCLK_IN,
tGOE
Using LVCMOS 1.8 standard
—
0.00
—
0.00
—
0.00
ns
PCI_in
tIN, tGCLK_IN,
tGOE
Using PCI compatible input
—
0.60
—
0.60
—
0.60
ns
—
0.20
—
0.20
—
0.20
ns
LVCMOS33_out tBUF, tEN, tDIS Output configured as 3.3V buffer
—
0.20
—
0.20
—
0.20
ns
LVCMOS25_out tBUF, tEN, tDIS Output configured as 2.5V buffer
—
0.10
—
0.10
—
0.10
ns
LVCMOS18_out tBUF, tEN, tDIS Output configured as 1.8V buffer
tIOO Output Adjusters
LVTTL_out
tBUF, tEN, tDIS Output configured as TTL buffer
—
0.00
—
0.00
—
0.00
ns
PCI_out
Output configured as PCI compatible
tBUF, tEN, tDIS
buffer
—
0.20
—
0.20
—
0.20
ns
Slow Slew
tBUF, tEN
—
1.00
—
1.00
—
1.00
ns
Output configured for slow slew rate
Timing v.3.1
Note: Open drain timing is the same as corresponding LVCMOS timing.
1. Refer to Technical Note TN1004: ispMACH 4000 Timing Model Design and Usage Guidelines for information regarding use of these adders.
2. Only available in industrial grade.
26
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Boundary Scan Waveforms and Timing Specifications
Symbol
Parameter
Min.
Max.
Units
tBTCP
TCK [BSCAN test] clock cycle
40
—
ns
tBTCH
TCK [BSCAN test] pulse width high
20
—
ns
tBTCL
TCK [BSCAN test] pulse width low
20
—
ns
tBTSU
TCK [BSCAN test] setup time
8
—
ns
tBTH
TCK [BSCAN test] hold time
10
—
ns
tBRF
TCK [BSCAN test] rise and fall time
50
—
mV/ns
tBTCO
TAP controller falling edge of clock to valid output
—
10
ns
tBTOZ
TAP controller falling edge of clock to data output disable
—
10
ns
tBTVO
TAP controller falling edge of clock to data output enable
—
10
ns
tBTCPSU
BSCAN test Capture register setup time
8
—
ns
tBTCPH
BSCAN test Capture register hold time
10
—
ns
tBTUCO
BSCAN test Update reg, falling edge of clock to valid output
—
25
ns
tBTUOZ
BSCAN test Update reg, falling edge of clock to output disable
—
25
ns
tBTUOV
BSCAN test Update reg, falling edge of clock to output enable
—
25
ns
27
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Power Consumption
ispMACH 4000V/B
Typical ICC vs. Frequency
ispMACH 4000C
Typical ICC vs. Frequency
4512C
300
300
4512V/B
250
250
4384C
ICC (mA)
ICC (mA)
4384V/B
200
4256C
150
100
200
150
4256V/B
100
4128C
50
4128V/B
50
4064C
4064V/B
4032V/B
4032C
0
0
50
100
150
200
250
300
350
0
0
400
Frequency (MHz)
50
100
150
200
250
300
350
400
Frequency (MHz)
Note: The devices are configured with maximum number
of 16-bit counters, typical current at 1.8V, 25°C.
Note: The devices are configured with maximum number
of 16-bit counters, typical current at 3.3V, 2.5V, 25°C.
Power Estimation Coefficients
Device
A
B
ispMACH 4032V/B
11.3
0.010
ispMACH 4032C
1.3
0.010
ispMACH 4064V/B
11.5
0.010
ispMACH 4064C
1.5
0.010
ispMACH 4128V/B
11.5
0.011
ispMACH 4128C
1.5
0.011
ispMACH 4256V/B
12
0.011
ispMACH 4256C
2
0.011
ispMACH 4384V/B
12.5
0.013
ispMACH 4384C
2.5
0.013
ispMACH 4512V/B
13
0.013
ispMACH 4512C
3
0.013
Note: For further information about the use of these coefficients, refer to Technical Note TN1005, Power Estimation in ispMACH 4000V/B/C
Devices.
28
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Switching Test Conditions
Figure 11 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,
voltage, and other test conditions are shown in Table 9.
Figure 11. Output Test Load, LVTTL and LVCMOS Standards
VCCO
R1
Test
Point
DUT
R2
CL
0213A/ispm4k
Table 9. Test Fixture Required Components
Test Condition
LVCMOS I/O, (L -> H, H -> L)
R1
CL1
R2
Timing Ref.
VCCO
LVCMOS 3.3 = 1.5V
LVCMOS 3.3 = 3.0V
LVCMOS 2.5 = VCCO/2
LVCMOS 2.5 = 2.3V
106Ω 106Ω
35pF
LVCMOS 1.8 = VCCO/2
LVCMOS 1.8 = 1.65V
106Ω
35pF
1.5V
3.0V
LVCMOS I/O (Z -> H)
∞
LVCMOS I/O (Z -> L)
106Ω
∞
35pF
1.5V
3.0V
LVCMOS I/O (H -> Z)
∞
106Ω
5pF
VOH - 0.3
3.0V
LVCMOS I/O (L -> Z)
106Ω
∞
5pF
VOL + 0.3
3.0V
1. CL includes test fixtures and probe capacitance.
29
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Signal Descriptions
Signal Names
Description
TMS
Input – This pin is the IEEE 1149.1 Test Mode Select input, which is used to control
the state machine
TCK
Input – This pin is the IEEE 1149.1 Test Clock input pin, used to clock through the
state machine
TDI
Input – This pin is the IEEE 1149.1 Test Data In pin, used to load data
TDO
Output – This pin is the IEEE 1149.1 Test Data Out pin used to shift data out
GOE0, GOE1
Input – These pins are the Global Output Enable Input pins
GND
Ground
NC
Not Connected
VCC
The power supply pins for logic core
CLK0/I, CLK1/I, CLK2/I, CLK3/I
These pins are configured to be either CLK input or as an input
VCCO0, VCCO1
The power supply pins for each I/O bank
Input/Output1 – These are the general purpose I/O used by the logic array. y is GLB
reference (alpha) and z is macrocell reference (numeric). z: 0-15
yzz
ispMACH 4032
y: A-B
ispMACH 4064
y: A-D
ispMACH 4128
y: A-H
ispMACH 4256
y: A-P
ispMACH 4384
y: A-P, AX-HX
ispMACH 4512
y: A-P, AX-PX
1. In some packages, certain I/O are only available for use as inputs. See the signal connections table for details.
30
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V/B/C Power Supply and NC Connections1
Signal
44 TQFP
48 TQFP
100 TQFP
128 TQFP
176 TQFP
256 fpBGA2, 3
VCC
11, 33
12, 36
25, 40, 75,
90
32, 51, 96,
115
42, 69, 88,
130, 157,
176
B2, B15, G8, G9, K8, K9, R2, R15
VCCO0
6
6
13, 33, 95
3, 17, 30,
41, 122
4, 22, 40,
56, 166
D6, F4, H7, J7, L4, N6
VCCO1
28
30
45, 63, 83
58, 67, 81,
94, 105
78, 92, 110, D11, F13, H10, J10, L13, N11
128, 144
GND
12, 34
13, 37
1, 26, 51, 76 1, 33, 65, 97 2, 46, 65,
A1, A16, C6, C11, F3, F14, G7, G10, H8,
90, 134, 153 H9, J8, J9, K7, K10, L3, L14, P6, P11, T1,
7, 18, 32, 96 10, 24, 40, 13, 31, 55, T16
GND (Bank 0) 5
5
113, 123
155, 167
GND (Bank 1) 27
29
46, 57, 68,
82
49, 59, 74,
88, 104
67, 79, 101,
119, 143
NC
—
—
—
1, 43, 44,
4256V/B/C, 128 I/O: A4, A5, A6, A11,
45, 89, 131, A12, A13, A15, B5, B6, B11, B12, B14,
132, 133
C7, D1, D4, D5, D10, D12, D16, E1, E2,
E4, E5, E7, E10, E13, E14, E15, E16, F1,
F2, F15, F16, G1, G4, G5, G6, G12, G13,
G14, J11, K3, K4, K15, L1, L2, L12, L15,
L16, M1, M2, M3, M4, M5, M12, M13,
M15, M16, N1, N2, N7, N10, N12, N14,
P5, P12, R4, R5, R6, R11, R12, R16, T2,
T4, T5, T6, T11, T12, T13, T15
—
4256V/B/C, 160 I/O: A5, A12, A15, B5,
B6, B11, B12, B14, D4, D5, D12, E1, E4,
E5, E13, E15, E16, F1, F2, F15, G1, G5,
G12, G14, L1, L2, L12, L15, L16, M1, M2,
M3, M12, M16, N1, N12, N14, P5, R4,
R5, R6, R11, R12, R16, T4, T5, T12, T15
4384V/B/C: B5, B12, D5, D12, E1, E15,
E16, F2, L12, M1, M2, M16, N12, R5,
R12, T4
4512V/B/C: None
1. All grounds must be electrically connected at the board level. However, for the purposes of I/O current loading, grounds are associated with
the bank shown.
2. Internal GNDs and I/O GNDs (Bank 0/1) are connected inside package.
3. VCCO balls connect to two power planes within the package, one for VCCO0 and one for VCCO1.
31
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4032V/B/C Logic Signal Connections: 44-Pin TQFP
ispMACH 4032V/B/C
Pin Number
Bank Number
GLB/MC/Pad
ORP
1
-
TDI
-
2
0
A5
A^5
3
0
A6
A^6
4
0
A7
A^7
5
0
GND (Bank 0)
-
6
0
VCCO (Bank 0)
-
7
0
A8
A^8
8
0
A9
A^9
9
0
A10
A^10
10
-
TCK
-
11
-
VCC
-
12
-
GND
-
13
0
A12
A^12
14
0
A13
A^13
15
0
A14
A^14
16
0
A15
A^15
17
1
CLK2/I
-
18
1
B0
B^0
19
1
B1
B^1
20
1
B2
B^2
21
1
B3
B^3
22
1
B4
B^4
23
-
TMS
-
24
1
B5
B^5
25
1
B6
B^6
26
1
B7
B^7
27
1
GND (Bank 1)
-
28
1
VCCO (Bank 1)
-
29
1
B8
B^8
30
1
B9
B^9
31
1
B10
B^10
32
-
TDO
-
33
-
VCC
-
34
-
GND
-
35
1
B12
B^12
36
1
B13
B^13
37
1
B14
B^14
38
1
B15/GOE1
B^15
39
0
CLK0/I
-
40
0
A0/GOE0
A^0
41
0
A1
A^1
42
0
A2
A^2
43
0
A3
A^3
32
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4032V/B/C Logic Signal Connections: 44-Pin TQFP (Cont.)
ispMACH 4032V/B/C
Pin Number
Bank Number
GLB/MC/Pad
ORP
44
0
A4
A^4
ispMACH 4032V/B/C Logic Signal Connections: 48-Pin TQFP
ispMACH 4032V/B/C
Pin Number
Bank Number
GLB/MC/Pad
ORP
1
-
TDI
-
2
0
A5
A^5
3
0
A6
A^6
4
0
A7
A^7
5
0
GND (Bank 0)
-
6
0
VCCO (Bank 0)
-
7
0
A8
A^8
8
0
A9
A^9
9
0
A10
A^10
10
0
A11
A^11
11
-
TCK
-
12
-
VCC
-
13
-
GND
-
14
0
A12
A^12
15
0
A13
A^13
16
0
A14
A^14
17
0
A15
A^15
18
0
CLK1/I
-
19
1
CLK2/I
-
20
1
B0
B^0
21
1
B1
B^1
22
1
B2
B^2
23
1
B3
B^3
24
1
B4
B^4
25
-
TMS
-
26
1
B5
B^5
27
1
B6
B^6
28
1
B7
B^7
29
1
GND (Bank 1)
-
30
1
VCCO (Bank 1)
-
31
1
B8
B^8
32
1
B9
B^9
33
1
B10
B^10
34
1
B11
B^11
35
-
TDO
-
36
-
VCC
-
33
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4032V/B/C Logic Signal Connections: 48-Pin TQFP (Cont.)
ispMACH 4032V/B/C
Pin Number
Bank Number
GLB/MC/Pad
ORP
37
-
GND
-
38
1
B12
B^12
39
1
B13
B^13
40
1
B14
B^14
41
1
B15/GOE1
B^15
42
1
CLK3/I
-
43
0
CLK0/I
-
44
0
A0/GOE0
A^0
45
0
A1
A^1
46
0
A2
A^2
47
0
A3
A^3
48
0
A4
A^4
ispMACH 4064V/B/C, 4128V/B/C, 4256V/B/C Logic Signal Connections:
100-Pin TQFP
ispMACH 4064V/B/C
ispMACH 4128V/B/C
ispMACH 4256V/B/C
Pin Number
Bank
Number
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
1
-
GND
-
GND
-
GND
-
2
-
TDI
-
TDI
-
TDI
-
3
0
A8
A^8
B0
B^0
C12
C^6
4
0
A9
A^9
B2
B^2
C10
C^5
5
0
A10
A^10
B4
B^4
C6
C^3
6
0
A11
A^11
B6
B^6
C2
C^1
7
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
8
0
A12
A^12
B8
B^8
D12
D^6
9
0
A13
A^13
B10
B^10
D10
D^5
10
0
A14
A^14
B12
B^12
D6
D^3
11
0
A15
A^15
B13
B^13
D4
D^2
12*
0
I
-
I
-
I
-
13
0
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
14
0
B15
B^15
C14
C^14
E4
E^2
15
0
B14
B^14
C12
C^12
E6
E^3
16
0
B13
B^13
C10
C^10
E10
E^5
17
0
B12
B^12
C8
C^8
E12
E^6
18
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
19
0
B11
B^11
C6
C^6
F2
F^1
20
0
B10
B^10
C5
C^5
F6
F^3
21
0
B9
B^9
C4
C^4
F10
F^5
22
0
B8
B^8
C2
C^2
F12
F^6
23*
0
I
-
I
-
I
-
24
-
TCK
-
TCK
-
TCK
-
34
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4064V/B/C, 4128V/B/C, 4256V/B/C Logic Signal Connections:
100-Pin TQFP (Cont.)
ispMACH 4064V/B/C
ispMACH 4128V/B/C
ispMACH 4256V/B/C
Pin Number
Bank
Number
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
25
-
VCC
-
VCC
-
VCC
-
26
-
GND
-
GND
-
GND
-
27*
0
I
-
I
-
I
-
28
0
B7
B^7
D13
D^13
G12
G^6
29
0
B6
B^6
D12
D^12
G10
G^5
30
0
B5
B^5
D10
D^10
G6
G^3
31
0
B4
B^4
D8
D^8
G2
G^1
32
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
33
0
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
34
0
B3
B^3
D6
D^6
H12
H^6
35
0
B2
B^2
D4
D^4
H10
H^5
36
0
B1
B^1
D2
D^2
H6
H^3
37
0
B0
B^0
D0
D^0
H2
H^1
38
0
CLK1/I
-
CLK1/I
-
CLK1/I
-
39
1
CLK2/I
-
CLK2/I
-
CLK2/I
-
40
-
VCC
-
VCC
-
VCC
-
41
1
C0
C^0
E0
E^0
I2
I^1
42
1
C1
C^1
E2
E^2
I6
I^3
43
1
C2
C^2
E4
E^4
I10
I^5
44
1
C3
C^3
E6
E^6
I12
I^6
45
1
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
46
1
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
47
1
C4
C^4
E8
E^8
J2
J^1
48
1
C5
C^5
E10
E^10
J6
J^3
49
1
C6
C^6
E12
E^12
J10
J^5
50
1
C7
C^7
E14
E^14
J12
J^6
51
-
GND
-
GND
-
GND
-
52
-
TMS
-
TMS
-
TMS
-
53
1
C8
C^8
F0
F^0
K12
K^6
54
1
C9
C^9
F2
F^2
K10
K^5
55
1
C10
C^10
F4
F^4
K6
K^3
56
1
C11
C^11
F6
F^6
K2
K^1
57
1
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
58
1
C12
C^12
F8
F^8
L12
L^6
59
1
C13
C^13
F10
F^10
L10
L^5
60
1
C14
C^14
F12
F^12
L6
L^3
61
1
C15
C^15
F13
F^13
L4
L^2
62*
1
I
-
I
-
I
-
63
1
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
64
1
D15
D^15
G14
G^14
M4
M^2
65
1
D14
D^14
G12
G^12
M6
M^3
66
1
D13
D^13
G10
G^10
M10
M^5
35
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4064V/B/C, 4128V/B/C, 4256V/B/C Logic Signal Connections:
100-Pin TQFP (Cont.)
ispMACH 4064V/B/C
ispMACH 4128V/B/C
ispMACH 4256V/B/C
Pin Number
Bank
Number
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
67
1
D12
D^12
G8
G^8
M12
M^6
68
1
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
69
1
D11
D^11
G6
G^6
N2
N^1
70
1
D10
D^10
G5
G^5
N6
N^3
71
1
D9
D^9
G4
G^4
N10
N^5
72
1
D8
D^8
G2
G^2
N12
N^6
73*
1
I
-
I
-
I
-
74
-
TDO
-
TDO
-
TDO
-
75
-
VCC
-
VCC
-
VCC
-
76
-
GND
-
GND
-
GND
-
77*
1
I
-
I
-
I
-
78
1
D7
D^7
H13
H^13
O12
O^6
79
1
D6
D^6
H12
H^12
O10
O^5
80
1
D5
D^5
H10
H^10
O6
O^3
81
1
D4
D^4
H8
H^8
O2
O^1
82
1
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
83
1
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
84
1
D3
D^3
H6
H^6
P12
P^6
85
1
D2
D^2
H4
H^4
P10
P^5
86
1
D1
D^1
H2
H^2
P6
P^3
87
1
D0/GOE1
D^0
H0/GOE1
H^0
P2/OE1
P^1
88
1
CLK3/I
-
CLK3/I
-
CLK3/I
-
89
0
CLK0/I
-
CLK0/I
-
CLK0/I
-
90
-
VCC
-
VCC
-
VCC
-
91
0
A0/GOE0
A^0
A0/GOE0
A^0
A2/GOE0
A^1
92
0
A1
A^1
A2
A^2
A6
A^3
93
0
A2
A^2
A4
A^4
A10
A^5
94
0
A3
A^3
A6
A^6
A12
A^6
95
0
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
96
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
97
0
A4
A^4
A8
A^8
B2
B^1
98
0
A5
A^5
A10
A^10
B6
B^3
99
0
A6
A^6
A12
A^12
B10
B^5
100
0
A7
A^7
A14
A^14
B12
B^6
*This pin is input only.
36
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP
ispMACH 4128V/B/C
Pin Number
Bank Number
GLB/MC/Pad
ORP
1
0
GND
-
2
0
TDI
-
3
0
VCCO (Bank 0)
-
4
0
B0
B^0
5
0
B1
B^1
6
0
B2
B^2
7
0
B4
B^4
8
0
B5
B^5
9
0
B6
B^6
10
0
GND (Bank 0)
-
11
0
B8
B^8
12
0
B9
B^9
13
0
B10
B^10
14
0
B12
B^12
15
0
B13
B^13
16
0
B14
B^14
17
0
VCCO (Bank 0)
-
18
0
C14
C^14
19
0
C13
C^13
20
0
C12
C^12
21
0
C10
C^10
22
0
C9
C^9
23
0
C8
C^8
24
0
GND (Bank 0)
-
25
0
C6
C^6
26
0
C5
C^5
27
0
C4
C^4
28
0
C2
C^2
29
0
C0
C^0
30
0
VCCO (Bank 0)
-
31
0
TCK
-
32
0
VCC
-
33
0
GND
-
34
0
D14
D^14
35
0
D13
D^13
36
0
D12
D^12
37
0
D10
D^10
38
0
D9
D^9
39
0
D8
D^8
40
0
GND (Bank 0)
-
41
0
VCCO (Bank 0)
-
42
0
D6
D^6
43
0
D5
D^5
37
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP (Cont.)
ispMACH 4128V/B/C
Pin Number
Bank Number
GLB/MC/Pad
ORP
44
0
D4
D^4
45
0
D2
D^2
46
0
D1
D^1
47
0
D0
D^0
48
0
CLK1/I
-
49
1
GND (Bank 1)
-
50
1
CLK2/I
-
51
1
VCC
-
52
1
E0
E^0
53
1
E1
E^1
54
1
E2
E^2
55
1
E4
E^4
56
1
E5
E^5
57
1
E6
E^6
58
1
VCCO (Bank 1)
-
59
1
GND (Bank 1)
-
60
1
E8
E^8
61
1
E9
E^9
62
1
E10
E^10
63
1
E12
E^12
64
1
E14
E^14
65
1
GND
-
66
1
TMS
-
67
1
VCCO (Bank 1)
-
68
1
F0
F^0
69
1
F1
F^1
70
1
F2
F^2
71
1
F4
F^4
72
1
F5
F^5
73
1
F6
F^6
74
1
GND (Bank 1)
-
75
1
F8
F^8
76
1
F9
F^9
77
1
F10
F^10
78
1
F12
F^12
79
1
F13
F^13
80
1
F14
F^14
81
1
VCCO (Bank 1)
-
82
1
G14
G^14
83
1
G13
G^13
84
1
G12
G^12
85
1
G10
G^10
86
1
G9
G^9
38
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4128V/B/C Logic Signal Connections: 128-Pin TQFP (Cont.)
ispMACH 4128V/B/C
Pin Number
Bank Number
GLB/MC/Pad
ORP
87
1
G8
G^8
88
1
GND (Bank 1)
-
89
1
G6
G^6
90
1
G5
G^5
91
1
G4
G^4
92
1
G2
G^2
93
1
G0
G^0
94
1
VCCO (Bank 1)
-
95
1
TDO
-
96
1
VCC
-
97
1
GND
-
98
1
H14
H^14
99
1
H13
H^13
100
1
H12
H^12
101
1
H10
H^10
102
1
H9
H^9
103
1
H8
H^8
104
1
GND (Bank 1)
-
105
1
VCCO (Bank 1)
-
106
1
H6
H^6
107
1
H5
H^5
108
1
H4
H^4
109
1
H2
H^2
110
1
H1
H^1
111
1
H0/GOE1
H^0
112
1
CLK3/I
-
113
0
GND (Bank 0)
-
114
0
CLK0/I
-
115
0
VCC
-
116
0
A0/GOE0
A^0
117
0
A1
A^1
118
0
A2
A^2
119
0
A4
A^4
120
0
A5
A^5
121
0
A6
A^6
122
0
VCCO (Bank 0)
-
123
0
GND (Bank 0)
-
124
0
A8
A^8
125
0
A9
A^9
126
0
A10
A^10
127
0
A12
A^12
128
0
A14
A^14
39
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C, Logic Signal Connections:
176-Pin TQFP
ispMACH 4256V/B/C
ispMACH 4384V/B/C
ispMACH 4512V/B/C
Pin Number
Bank
Number
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
1
-
NC
-
NC
-
NC
-
2
-
GND
-
GND
-
GND
-
3
-
TDI
-
TDI
-
TDI
-
4
0
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
5
0
C14
C^7
C14
C^7
C14
C^7
6
0
C12
C^6
C12
C^6
C12
C^6
7
0
C10
C^5
C10
C^5
C10
C^5
8
0
C8
C^4
C8
C^4
C8
C^4
9
0
C6
C^3
C6
C^3
C6
C^3
10
0
C4
C^2
C4
C^2
C4
C^2
11
0
C2
C^1
C2
C^1
C2
C^1
12
0
C0
C^0
C0
C^0
C0
C^0
13
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
14
0
D14
D^7
E14
E^7
G14
G^7
15
0
D12
D^6
E12
E^6
G12
G^6
16
0
D10
D^5
E10
E^5
G10
G^5
17
0
D8
D^4
E8
E^4
G8
G^4
18
0
D6
D^3
E6
E^3
G6
G^3
19
0
D4
D^2
E4
E^2
G4
G^2
20
0
D2
D^1
E2
E^1
G2
G^1
21
0
D0
D^0
E0
E^0
G0
G^0
22
0
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
23
0
E0
E^0
H0
H^0
J0
J^0
24
0
E2
E^1
H2
H^1
J2
J^1
25
0
E4
E^2
H4
H^2
J4
J^2
26
0
E6
E^3
H6
H^3
J6
J^3
27
0
E8
E^4
H8
H^4
J8
J^4
28
0
E10
E^5
H10
H^5
J10
J^5
29
0
E12
E^6
H12
H^6
J12
J^6
30
0
E14
E^7
H14
H^7
J14
J^7
31
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
32
0
F0
F^0
J0
J^0
N0
N^0
33
0
F2
F^1
J2
J^1
N2
N^1
34
0
F4
F^2
J4
J^2
N4
N^2
35
0
F6
F^3
J6
J^3
N6
N^3
36
0
F8
F^4
J8
J^4
N8
N^4
37
0
F10
F^5
J10
J^5
N10
N^5
38
0
F12
F^6
J12
J^6
N12
N^6
39
0
F14
F^7
J14
J^7
N14
N^7
40
0
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
41
-
TCK
-
TCK
-
TCK
-
42
-
VCC
-
VCC
-
VCC
-
40
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C, Logic Signal Connections:
176-Pin TQFP (Cont.)
ispMACH 4256V/B/C
ispMACH 4384V/B/C
ispMACH 4512V/B/C
Pin Number
Bank
Number
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
43
-
NC
-
NC
-
NC
-
44
-
NC
-
NC
-
NC
-
45
-
NC
-
NC
-
NC
-
46
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
47
0
G14
G^7
K14
K^7
O14
O^7
48
0
G12
G^6
K12
K^6
O12
O^6
49
0
G10
G^5
K10
K^5
O10
O^5
50
0
G8
G^4
K8
K^4
O8
O^4
51
0
G6
G^3
K6
K^3
O6
O^3
52
0
G4
G^2
K4
K^2
O4
O^2
53
0
G2
G^1
K2
K^1
O2
O^1
54
0
G0
G^0
K0
K^0
O0
O^0
55
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
56
0
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
57
0
H14
H^7
L14
L^7
P14
P^7
58
0
H12
H^6
L12
L^6
P12
P^6
59
0
H10
H^5
L10
L^5
P10
P^5
60
0
H8
H^4
L8
L^4
P8
P^4
61
0
H6
H^3
L6
L^3
P6
P^3
62
0
H4
H^2
L4
L^2
P4
P^2
63
0
H2
H^1
L2
L^1
P2
P^1
64
0
H0
H^0
L0
L^0
P0
P^0
65
-
GND
-
GND
-
GND
-
66
0
CLK1/I
-
CLK1/I
-
CLK1/I
-
67
1
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
68
1
CLK2/I
-
CLK2/I
-
CLK2/I
-
69
-
VCC
-
VCC
-
VCC
-
70
1
I0
I^0
M0
M^0
AX0
AX^0
71
1
I2
I^1
M2
M^1
AX2
AX^1
72
1
I4
I^2
M4
M^2
AX4
AX^2
73
1
I6
I^3
M6
M^3
AX6
AX^3
74
1
I8
I^4
M8
M^4
AX8
AX^4
75
1
I10
I^5
M10
M^5
AX10
AX^5
76
1
I12
I^6
M12
M^6
AX12
AX^6
77
1
I14
I^7
M14
M^7
AX14
AX^7
78
1
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
79
1
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
80
1
J0
J^0
N0
N^0
BX0
BX^0
81
1
J2
J^1
N2
N^1
BX2
BX^1
82
1
J4
J^2
N4
N^2
BX4
BX^2
83
1
J6
J^3
N6
N^3
BX6
BX^3
84
1
J8
J^4
N8
N^4
BX8
BX^4
41
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C, Logic Signal Connections:
176-Pin TQFP (Cont.)
ispMACH 4256V/B/C
ispMACH 4384V/B/C
ispMACH 4512V/B/C
Pin Number
Bank
Number
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
85
1
J10
J^5
N10
N^5
BX10
BX^5
86
1
J12
J^6
N12
N^6
BX12
BX^6
87
1
J14
J^7
N14
N^7
BX14
BX^7
88
-
VCC
-
VCC
-
VCC
-
89
-
NC
-
NC
-
NC
-
90
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
91
-
TMS
-
TMS
-
TMS
-
92
1
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
93
1
K14
K^7
O14
O^7
CX14
CX^7
94
1
K12
K^6
O12
O^6
CX12
CX^6
95
1
K10
K^5
O10
O^5
CX10
CX^5
96
1
K8
K^4
O8
O^4
CX8
CX^4
97
1
K6
K^3
O6
O^3
CX6
CX^3
98
1
K4
K^2
O4
O^2
CX4
CX^2
99
1
K2
K^1
O2
O^1
CX2
CX^1
100
1
K0
K^0
O0
O^0
CX0
CX^0
101
1
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
102
1
L14
L^7
AX14
AX^7
GX14
GX^7
103
1
L12
L^6
AX12
AX^6
GX12
GX^6
104
1
L10
L^5
AX10
AX^5
GX10
GX^5
105
1
L8
L^4
AX8
AX^4
GX8
GX^4
106
1
L6
L^3
AX6
AX^3
GX6
GX^3
107
1
L4
L^2
AX4
AX^2
GX4
GX^2
108
1
L2
L^1
AX2
AX^1
GX2
GX^1
109
1
L0
L^0
AX0
AX^0
GX0
GX^0
110
1
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
111
1
M0
M^0
DX0
DX^0
JX0
JX^0
112
1
M2
M^1
DX2
DX^1
JX2
JX^1
113
1
M4
M^2
DX4
DX^2
JX4
JX^2
114
1
M6
M^3
DX6
DX^3
JX6
JX^3
115
1
M8
M^4
DX8
DX^4
JX8
JX^4
116
1
M10
M^5
DX10
DX^5
JX10
JX^5
117
1
M12
M^6
DX12
DX^6
JX12
JX^6
118
1
M14
M^7
DX14
DX^7
JX14
JX^7
119
1
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
120
1
N0
N^0
FX0
FX^0
NX0
NX^0
121
1
N2
N^1
FX2
FX^1
NX2
NX^1
122
1
N4
N^2
FX4
FX^2
NX4
NX^2
123
1
N6
N^3
FX6
FX^3
NX6
NX^3
124
1
N8
N^4
FX8
FX^4
NX8
NX^4
125
1
N10
N^5
FX10
FX^5
NX10
NX^5
126
1
N12
N^6
FX12
FX^6
NX12
NX^6
42
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C, Logic Signal Connections:
176-Pin TQFP (Cont.)
ispMACH 4256V/B/C
ispMACH 4384V/B/C
ispMACH 4512V/B/C
Pin Number
Bank
Number
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
127
1
N14
N^7
FX14
FX^7
NX14
NX^7
128
1
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
129
-
TDO
-
TDO
-
TDO
-
130
-
VCC
-
VCC
-
VCC
-
131
-
NC
-
NC
-
NC
-
132
-
NC
-
NC
-
NC
-
133
-
NC
-
NC
-
NC
-
134
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
135
1
O14
O^7
GX14
GX^7
OX14
OX^7
136
1
O12
O^6
GX12
GX^6
OX12
OX^6
137
1
O10
O^5
GX10
GX^5
OX10
OX^5
138
1
O8
O^4
GX8
GX^4
OX8
OX^4
139
1
O6
O^3
GX6
GX^3
OX6
OX^3
140
1
O4
O^2
GX4
GX^2
OX4
OX^2
141
1
O2
O^1
GX2
GX^1
OX2
OX^1
142
1
O0
O^0
GX0
GX^0
OX0
OX^0
143
1
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
144
1
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
145
1
P14
P^7
HX14
HX^7
PX14
PX^7
146
1
P12
P^6
HX12
HX^6
PX12
PX^6
147
1
P10
P^5
HX10
HX^5
PX10
PX^5
148
1
P8
P^4
HX8
HX^4
PX8
PX^4
149
1
P6
P^3
HX6
HX^3
PX6
PX^3
150
1
P4
P^2
HX4
HX^2
PX4
PX^2
151
1
P2/GOE1
P^1
HX2/GOE1
HX^1
PX2/GOE1
PX^1
152
1
P0
P^0
HX0
HX^0
PX0
PX^0
153
-
GND
-
GND
-
GND
-
154
1
CLK3/I
-
CLK3/I
-
CLK3/I
-
155
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
156
0
CLK0/I
-
CLK0/I
-
CLK0/I
-
157
-
VCC
-
VCC
-
VCC
-
158
0
A0
A^0
A0
A^0
A0
A^0
159
0
A2/GOE0
A^1
A2/GOE0
A^1
A2//GOE0
A^1
160
0
A4
A^2
A4
A^2
A4
A^2
161
0
A6
A^3
A6
A^3
A6
A^3
162
0
A8
A^4
A8
A^4
A8
A^4
163
0
A10
A^5
A10
A^5
A10
A^5
164
0
A12
A^6
A12
A^6
A12
A^6
165
0
A14
A^7
A14
A^7
A14
A^7
166
0
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
167
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
168
0
B0
B^0
B0
B^0
B0
B^0
43
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C, Logic Signal Connections:
176-Pin TQFP (Cont.)
ispMACH 4256V/B/C
ispMACH 4384V/B/C
ispMACH 4512V/B/C
Pin Number
Bank
Number
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
169
0
B2
B^1
B2
B^1
B2
B^1
170
0
B4
B^2
B4
B^2
B4
B^2
171
0
B6
B^3
B6
B^3
B6
B^3
172
0
B8
B^4
B8
B^4
B8
B^4
173
0
B10
B^5
B10
B^5
B10
B^5
174
0
B12
B^6
B12
B^6
B12
B^6
175
0
B14
B^7
B14
B^7
B14
B^7
176
-
VCC
-
VCC
-
VCC
-
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections:
256-Ball fpBGA
ispMACH 4256V/B/C
128-I/O
ispMACH 4256V/B/C
160-I/O
ispMACH 4384V/B/C
ispMACH 4512V/B/C
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
Ball
Number
I/O
Bank
-
-
-
-
-
-
VCC
-
VCC
-
-
-
GND
-
GND
-
GND
-
GND
-
C3
0
TDI
-
TDI
-
TDI
-
TDI
-
-
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
B1
0
C14
C^7
C18
C^9
C14
C^7
C14
C^7
F5
0
C12
C^6
C16
C^8
C12
C^6
C12
C^6
D3
0
C10
C^5
C14
C^7
C10
C^5
C10
C^5
C1
0
C8
C^4
C12
C^6
C8
C^4
C8
C^4
C2
0
C6
C^3
C10
C^5
C6
C^3
C6
C^3
E3
0
C4
C^2
C8
C^4
C4
C^2
C4
C^2
D2
0
C2
C^1
C6
C^3
C2
C^1
C1
C^1
F6
0
C0
C^0
C4
C^2
C0
C^0
C0
C^0
D1
0
NC
-
C2
C^1
F6
F^3
H0
H^0
E2
0
NC
-
C0
C^0
F4
F^2
H4
H^2
E4
0
NC
-
NC
-
D6
D^3
F4
F^2
G5
0
NC
-
NC
-
D4
D^2
F6
F^3
E1
0
NC
-
NC
-
NC
-
F8
F^4
-
-
-
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
-
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
F2
0
NC
-
NC
-
NC
-
F10
F^5
F1
0
NC
-
NC
-
D2
D^1
F12
F^6
G1
0
NC
-
NC
-
D0
D^0
F14
F^7
G6
0
NC
-
D18
D^9
F2
F^1
H8
H^4
G4
0
NC
-
D16
D^8
F0
F^0
H12
H^6
H6
0
D14
D^7
D14
D^7
E14
E^7
G14
G^7
G3
0
D12
D^6
D12
D^6
E12
E^6
G12
G^6
44
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections:
256-Ball fpBGA (Cont.)
ispMACH 4256V/B/C
128-I/O
ispMACH 4256V/B/C
160-I/O
Ball
Number
I/O
Bank
ispMACH 4384V/B/C
ispMACH 4512V/B/C
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
H5
0
D10
D^5
D10
D^5
E10
E^5
G10
G^5
G2
0
D8
D^4
D8
D^4
E8
E^4
G8
G^4
H1
0
D6
D^3
D6
D^3
E6
E^3
G6
G^3
H2
0
D4
D^2
D4
D^2
E4
E^2
G4
G^2
H3
0
D2
D^1
E2
D^1
E2
E^1
G2
G^1
H4
0
D0
D^0
D0
D^0
E0
E^0
G0
G^0
-
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
-
-
-
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
J4
0
E0
E^0
E0
E^0
H0
H^0
J0
J^0
J3
0
E2
E^1
E2
E^1
H2
H^1
J2
J^1
J2
0
E4
E^2
E4
E^2
H4
H^2
J4
J^2
J1
0
E6
E^3
E6
E^3
H6
H^3
J6
J^3
K1
0
E8
E^4
E8
E^4
H8
H^4
J8
J^4
J5
0
E10
E^5
E10
E^5
H10
H^5
J10
J^5
K2
0
E12
E^6
E12
E^6
H12
H^6
J12
J^6
J6
0
E14
E^7
E14
E^7
H14
H^7
J14
J^7
K3
0
NC
-
E16
E^8
G0
G^0
I0
I^0
K4
0
NC
-
E18
E^9
G2
G^1
I4
I^2
L1
0
NC
-
NC
-
I14
I^7
K0
K^0
L2
0
NC
-
NC
-
I12
I^6
K2
K^1
M1
0
NC
-
NC
-
NC
-
K4
K^2
-
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
-
-
-
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
M2
0
NC
-
NC
-
NC
-
K6
K^3
N1
0
NC
-
NC
-
I10
I^5
K8
K^4
M3
0
NC
-
NC
-
I8
I^4
K10
K^5
M4
0
NC
-
F0
F^0
G4
G^2
I8
I^4
N2
0
NC
-
F2
F^1
G6
G^3
I12
I^6
K5
0
F0
F^0
F4
F^2
J0
J^0
N0
N^0
P1
0
F2
F^1
F6
F^3
J2
J^1
N2
N^1
K6
0
F4
F^2
F8
F^4
J4
J^2
N4
N^2
N3
0
F6
F^3
F10
F^5
J6
J^3
N6
N^3
L5
0
F8
F^4
F12
F^6
J8
J^4
N8
N^4
P2
0
F10
F^5
F14
F^7
J10
J^5
N10
N^5
L6
0
F12
F^6
F16
F^8
J12
J^6
N12
N^6
R1
0
F14
F^7
F18
F^9
J14
J^7
N14
N^7
-
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
P3
0
TCK
-
TCK
-
TCK
-
TCK
-
-
-
VCC
-
VCC
-
VCC
-
VCC
-
-
-
GND
-
GND
-
GND
-
GND
-
-
-
-
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
45
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections:
256-Ball fpBGA (Cont.)
ispMACH 4256V/B/C
128-I/O
ispMACH 4256V/B/C
160-I/O
Ball
Number
I/O
Bank
ispMACH 4384V/B/C
ispMACH 4512V/B/C
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
T2
0
NC
-
G18
G^9
I6
I^3
K12
K^6
M5
0
NC
-
G16
G^8
I4
I^2
K14
K^7
N4
0
G14
G^7
G14
G^7
K14
K^7
O14
O^7
T3
0
G12
G^6
G12
G^6
K12
K^6
O12
O^6
R3
0
G10
G^5
G10
G^5
K10
K^5
O10
O^5
M6
0
G8
G^4
G8
G^4
K8
K^4
O8
O^4
P4
0
G6
G^3
G6
G^3
K6
K^3
O6
O^3
L7
0
G4
G^2
G4
G^2
K4
K^2
O4
O^2
N5
0
G2
G^1
G2
G^1
K2
K^1
O2
O^1
M7
0
G0
G^0
G0
G^0
K0
K^0
O0
O^0
P5
0
NC
-
NC
-
G8
G^4
M0
M^0
R4
0
NC
-
NC
-
G10
G^5
M4
M^2
T4
0
NC
-
NC
-
NC
-
L0
L^0
-
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
-
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
R5
0
NC
-
NC
-
NC
-
L4
L^2
T5
0
NC
-
NC
-
I2
I^1
L8
L^4
R6
0
NC
-
NC
-
I0
I^0
L12
L^6
T6
0
NC
-
H18
H^9
G12
G^6
M8
M^4
N7
0
NC
-
H16
H^8
G14
G^7
M12
M^6
P7
0
H14
H^7
H14
H^7
L14
L^7
P14
P^7
R7
0
H12
H^6
H12
H^6
L12
L^6
P12
P^6
L8
0
H10
H^5
H10
H^5
L10
L^5
P10
P^5
T7
0
H8
H^4
H8
H^4
L8
L^4
P8
P^4
M8
0
H6
H^3
H6
H^3
L6
L^3
P6
P^3
N8
0
H4
H^2
H4
H^2
L4
L^2
P4
P^2
R8
0
H2
H^1
H2
H^1
L2
L^1
P2
P^1
P8
0
H0
H^0
H0
H^0
L0
L^0
P0
P^0
-
-
GND
-
GND
-
GND
-
GND
-
T8
0
CLK1/I
-
CLK1/I
-
CLK1/I
-
CLK1/I
-
-
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
N9
1
CLK2/I
-
CLK2/I
-
CLK2/I
-
CLK2/I
-
-
-
VCC
-
VCC
-
VCC
-
VCC
-
P9
1
I0
I^0
I0
I^0
M0
M^0
AX0
AX^0
R9
1
I2
I^1
I2
I^1
M2
M^1
AX2
AX^1
T9
1
I4
I^2
I4
I^2
M4
M^2
AX4
AX^2
T10
1
I6
I^3
I6
I^3
M6
M^3
AX6
AX^3
R10
1
I8
I^4
I8
I^4
M8
M^4
AX8
AX^4
M9
1
I10
I^5
I10
I^5
M10
M^5
AX10
AX^5
P10
1
I12
I^6
I12
I^6
M12
M^6
AX12
AX^6
L9
1
I14
I^7
I14
I^7
M14
M^7
AX14
AX^7
46
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections:
256-Ball fpBGA (Cont.)
ispMACH 4256V/B/C
128-I/O
ispMACH 4256V/B/C
160-I/O
Ball
Number
I/O
Bank
ispMACH 4384V/B/C
ispMACH 4512V/B/C
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
N10
1
NC
-
I16
I^8
BX14
BX^7
DX0
DX^0
T11
1
NC
-
I18
I^9
BX12
BX^6
DX4
DX^2
R11
1
NC
-
NC
-
P0
P^0
EX0
EX^0
T12
1
NC
-
NC
-
P2
P^1
EX4
EX^2
N12
1
NC
-
NC
-
NC
-
EX8
EX^4
-
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
-
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
R12
1
NC
-
NC
-
NC
-
EX12
EX^6
T13
1
NC
-
J0
J^0
BX10
BX^5
DX8
DX^4
P12
1
NC
-
J2
J^1
BX8
BX^4
DX12
DX^6
M10
1
J0
J^0
J4
J^2
N0
N^0
BX0
BX^0
R13
1
J2
J^1
J6
J^3
N2
N^1
BX2
BX^1
L10
1
J4
J^2
J8
J^4
N4
N^2
BX4
BX^2
T14
1
J6
J^3
J10
J^5
N6
N^3
BX6
BX^3
M11
1
J8
J^4
J12
J^6
N8
N^4
BX8
BX^4
R14
1
J10
J^5
J14
J^7
N10
N^5
BX10
BX^5
P13
1
J12
J^6
J16
J^8
N12
N^6
BX12
BX^6
N13
1
J14
J^7
J18
J^9
N14
N^7
BX14
BX^7
M12
1
NC
-
NC
-
P4
P^2
FX0
FX^0
T15
1
NC
-
NC
-
P6
P^3
FX2
FX^1
-
-
VCC
-
VCC
-
VCC
-
VCC
-
-
-
GND
-
GND
-
GND
-
GND
-
-
-
-
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
P14
1
TMS
-
TMS
-
TMS
-
TMS
-
-
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
L12
1
NC
-
NC
-
NC
-
FX4
FX^2
R16
1
NC
-
NC
-
P8
P^4
FX6
FX^3
N14
1
NC
-
NC
-
P10
P^5
FX8
FX^4
P15
1
K14
K^7
K18
K^9
O14
O^7
CX14
CX^7
L11
1
K12
K^6
K16
K^8
O12
O^6
CX12
CX^6
P16
1
K10
K^5
K14
K^7
O10
O^5
CX10
CX^5
K11
1
K8
K^4
K12
K^6
O8
O^4
CX8
CX^4
M14
1
K6
K^3
K10
K^5
O6
O^3
CX6
CX^3
K12
1
K4
K^2
K8
K^4
O4
O^2
CX4
CX^2
N15
1
K2
K^1
K6
K^3
O2
O^1
CX2
CX^1
N16
1
K0
K^0
K4
K^2
O0
O^0
CX0
CX^0
M15
1
NC
-
K2
K^1
BX6
BX^3
HX0
HX^0
M13
1
NC
-
K0
K^0
BX4
BX^2
HX4
HX^2
-
-
-
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
-
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
M16
1
NC
-
NC
-
NC
-
FX10
FX^5
47
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections:
256-Ball fpBGA (Cont.)
ispMACH 4256V/B/C
128-I/O
ispMACH 4256V/B/C
160-I/O
Ball
Number
I/O
Bank
ispMACH 4384V/B/C
ispMACH 4512V/B/C
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
L15
1
NC
-
NC
-
P12
P^6
FX12
FX^6
L16
1
NC
-
NC
-
P14
P^7
FX14
FX^7
J11
1
NC
-
L18
L^9
BX2
BX^1
HX8
HX^4
K15
1
NC
-
L16
L^8
BX0
BX^0
HX12
HX^6
J12
1
L14
L^7
L14
L^7
AX14
AX^7
GX14
GX^7
K13
1
L12
L^6
L12
L^6
AX12
AX^6
GX12
GX^6
K14
1
L10
L^5
L10
L^5
AX10
AX^5
GX10
GX^5
K16
1
L8
L^4
L8
L^4
AX8
AX^4
GX8
GX^4
J16
1
L6
L^3
L6
L^3
AX6
AX^3
GX6
GX^3
J15
1
L4
L^2
L4
L^2
AX4
AX^2
GX4
GX^2
H16
1
L2
L^1
L2
L^1
AX2
AX^1
GX2
GX^1
J13
1
L0
L^0
L0
L^0
AX0
AX^0
GX0
GX^0
-
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
-
-
-
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
J14
1
M0
M^0
M0
M^0
DX0
DX^0
JX0
JX^0
H15
1
M2
M^1
M2
M^1
DX2
DX^1
JX2
JX^1
H14
1
M4
M^2
M4
M^2
DX4
DX^2
JX4
JX^2
H13
1
M6
M^3
M6
M^3
DX6
DX^3
JX6
JX^3
G16
1
M8
M^4
M8
M^4
DX8
DX^4
JX8
JX^4
H12
1
M10
M^5
M10
M^5
DX10
DX^5
JX10
JX^5
G15
1
M12
M^6
M12
M^6
DX12
DX^6
JX12
JX^6
H11
1
M14
M^7
M14
M^7
DX14
DX^7
JX14
JX^7
F16
1
NC
-
M16
M^8
CX0
CX^0
IX0
IX^0
G13
1
NC
-
M18
M^9
CX2
CX^1
IX4
IX^2
G14
1
NC
-
NC
-
EX14
EX^7
KX0
KX^0
F15
1
NC
-
NC
-
EX12
EX^6
KX2
KX^1
E16
1
NC
-
NC
-
NC
-
KX4
KX^2
-
1
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
-
-
-
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
E15
1
NC
-
NC
-
NC
-
KX6
KX^3
G12
1
NC
-
NC
-
EX10
EX^5
KX8
KX^4
E13
1
NC
-
NC
-
EX8
EX^4
KX10
KX^5
D16
1
NC
-
N0
N^0
CX4
CX^2
IX8
IX^4
E14
1
NC
-
N2
N^1
CX6
CX^3
IX12
IX^6
G11
1
N0
N^0
N4
N^2
FX0
FX^0
NX0
NX^0
D15
1
N2
N^1
N6
N^3
FX2
FX^1
NX2
NX^1
F11
1
N4
N^2
N8
N^4
FX4
FX^2
NX4
NX^2
C16
1
N6
N^3
N10
N^5
FX6
FX^3
NX6
NX^3
F12
1
N8
N^4
N12
N^6
FX8
FX^4
NX8
NX^4
D14
1
N10
N^5
N14
N^7
FX10
FX^5
NX10
NX^5
C15
1
N12
N^6
N16
N^8
FX12
FX^6
NX12
NX^6
48
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections:
256-Ball fpBGA (Cont.)
ispMACH 4256V/B/C
128-I/O
ispMACH 4256V/B/C
160-I/O
ispMACH 4384V/B/C
ispMACH 4512V/B/C
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
Ball
Number
I/O
Bank
B16
1
N14
N^7
N18
N^9
FX14
FX^7
NX14
NX^7
-
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
C14
1
TDO
-
TDO
-
TDO
-
TDO
-
-
-
VCC
-
VCC
-
VCC
-
VCC
-
-
-
GND
-
GND
-
GND
-
GND
-
-
-
-
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
A15
1
NC
-
NC
-
EX6
EX^3
KX12
KX^6
B14
1
NC
-
NC
-
EX4
EX^2
KX14
KX^7
E12
1
O14
O^7
O18
O^9
GX14
GX^7
OX14
OX^7
A14
1
O12
O^6
O16
O^8
GX12
GX^6
OX12
OX^6
C13
1
O10
O^5
O14
O^7
GX10
GX^5
OX10
OX^5
D13
1
O8
O^4
O12
O^6
GX8
GX^4
OX8
OX^4
E11
1
O6
O^3
O10
O^5
GX6
GX^3
OX6
OX^3
B13
1
O4
O^2
O8
O^4
GX4
GX^2
OX4
OX^2
F10
1
O2
O^1
O6
O^3
GX2
GX^1
OX2
OX^1
C12
1
O0
O^0
O4
O^2
GX0
GX^0
OX0
OX^0
E10
1
NC
-
O2
O^1
CX8
CX^4
MX0
MX^0
A13
1
NC
-
O0
O^0
CX10
CX^5
MX4
MX^2
D12
1
NC
-
NC
-
NC
-
LX0
LX^0
-
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
GND (Bank 1)
-
-
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
VCCO (Bank 1)
-
B12
1
NC
-
NC
-
NC
-
LX4
LX^2
A12
1
NC
-
NC
-
EX2
EX^1
LX8
LX^4
B11
1
NC
-
NC
-
EX0
EX^0
LX12
LX^6
A11
1
NC
-
P18
P^9
CX12
CX^6
MX8
MX^4
D10
1
NC
-
P16
P^8
CX14
CX^7
MX12
MX^6
C10
1
P14
P^7
P14
P^7
HX14
HX^7
PX14
PX^7
B10
1
P12
P^6
P12
P6
HX12
HX^6
PX12
PX^6
A10
1
P10
P^5
P10
P^5
HX10
HX^5
PX10
PX^5
A9
1
P8
P^4
P8
P^4
HX8
HX^4
PX8
PX^4
F9
1
P6
P^3
P6
P^3
HX6
HX^3
PX6
PX^3
B9
1
P4
P^2
P4
P^2
HX4
HX^2
PX4
PX^2
E9
1
P2/GOE1
P^1
P2/GOE1
P^1
HX2/GOE1
HX^1
PX2/GOE1
PX^1
C9
1
P0
P^0
P0
P^0
HX0
HX^0
PX0
PX^0
-
-
GND
-
GND
GND
-
GND
-
D9
0
CLK3/I
-
CLK3/I
-
CLK3/I
-
CLK3/I
-
-
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
B8
0
CLK0/I
-
CLK0/I
-
CLK0/I
-
CLK0/I
-
-
-
VCC
-
VCC
-
VCC
-
VCC
-
D8
0
A0
A^0
A0
A^0
A0
A^0
A0
A^0
C8
0
A2/GOE0
A^1
A2/GOE0
A^1
A2/GOE0
A^1
A2/GOE0
A^1
49
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4256V/B/C, 4384V/B/C, 4512V/B/C Logic Signal Connections:
256-Ball fpBGA (Cont.)
ispMACH 4256V/B/C
128-I/O
ispMACH 4256V/B/C
160-I/O
Ball
Number
I/O
Bank
ispMACH 4384V/B/C
ispMACH 4512V/B/C
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
GLB/MC/Pad
ORP
A8
0
A4
A^2
A4
A^2
A4
A^2
A4
A^2
A7
0
A6
A^3
A6
A^3
A6
A^3
A6
A^3
B7
0
A8
A^4
A8
A^4
A8
A^4
A8
A^4
E8
0
A10
A^5
A10
A^5
A10
A^5
A10
A^5
D7
0
A12
A^6
A12
A^6
A12
A^6
A12
A^6
F8
0
A14
A^7
A14
A^7
A14
A^7
A14
A^7
C7
0
NC
-
A16
A^8
F14
F^7
D0
D^0
A6
0
NC
-
A18
A^9
F12
F^6
D4
D^2
B6
0
NC
-
NC
-
D14
D^7
E0
E^0
A5
0
NC
-
NC
-
D12
D^6
E4
E^2
B5
0
NC
-
NC
-
NC
-
E8
E^4
-
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
VCCO (Bank 0)
-
-
0
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
GND (Bank 0)
-
D5
0
NC
-
NC
-
NC
-
E12
E^6
A4
0
NC
-
B0
B^0
F10
F^5
D8
D^4
E7
0
NC
-
B2
B^1
F8
F^4
D12
D^6
A3
0
B0
B^0
B4
B^2
B0
B^0
B0
B^0
F7
0
B2
B^1
B6
B^3
B2
B^1
B2
B^1
B4
0
B4
B^2
B8
B^4
B4
B^2
B4
B^2
C5
0
B6
B^3
B10
B^5
B6
B^3
B6
B^3
A2
0
B8
B^4
B12
B^6
B8
B^4
B8
B^4
E6
0
B10
B^5
B14
B^7
B10
B^5
B10
B^5
B3
0
B12
B^6
B16
B^8
B12
B^6
B12
B^6
C4
0
B14
B^7
B18
B^9
B14
B^7
B14
B^7
D4
0
NC
-
NC
-
D10
D^5
F0
F^0
E5
0
NC
-
NC
-
D8
D^4
F2
F^1
-
-
VCC
-
VCC
-
VCC
-
VCC
-
-
-
-
-
-
-
GND
-
GND
-
-
-
-
-
-
-
GND (Bank 0)
-
GND (Bank 0)
-
50
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
Part Number Description
LC XXXX X – XX X XXX X X XX
Production Status
Blank = Final production
ES = Engineering Samples
Device Family
Device Number
4032 = 32 Macrocells
4064 = 64 Macrocells
4128 = 128 Macrocells
4256 = 256 Macrocells
4384 = 384 Macrocells
4512 = 512 Macrocells
Grade
C = Commercial
I = Industrial
I/O Designator
A = 128 I/Os
B = 160 I/Os
Supply Voltage
V = 3.3V
B = 2.5V
C = 1.8V
Pin/Ball Count
44 (1.0mm thickness)
48 (1.0mm thickness)
100
128
176
256
Speed
25 = 2.5ns
27 = 2.7ns
3 = 3.0ns
35 = 3.5ns
5 = 5.0ns
75 = 7.5ns
10 = 10.0ns
Package
T = TQFP
F = fpBGA
0212/ispm4K
Ordering Information
ispMACH 4000C Commercial Devices
Device
LC4032C
LC4064C
LC4128C
Macrocells
Voltage
tPD
Package
Pin/Ball Count
I/O
LC4032C-25T48C
Part Number
32
1.8
2.5
TQFP
48
32
Grade
C
LC4032C-5T48C
32
1.8
5
TQFP
48
32
C
LC4032C-75T48C
32
1.8
7.5
TQFP
48
32
C
LC4032C-25T44C
32
1.8
2.5
TQFP
44
30
C
LC4032C-5T44C
32
1.8
5
TQFP
44
30
C
LC4032C-75T44C
32
1.8
7.5
TQFP
44
30
C
LC4064C-25T100C
64
1.8
2.5
TQFP
100
64
C
LC4064C-5T100C
64
1.8
5
TQFP
100
64
C
LC4064C-75T100C
64
1.8
7.5
TQFP
100
64
C
LC4128C-27T128C
128
1.8
2.7
TQFP
128
92
C
LC4128C-5T128C
128
1.8
5
TQFP
128
92
C
LC4128C-75T128C
128
1.8
7.5
TQFP
128
92
C
LC4128C-27T100C
128
1.8
2.7
TQFP
100
64
C
LC4128C-5T100C
128
1.8
5
TQFP
100
64
C
LC4128C-75T100C
128
1.8
7.5
TQFP
100
64
C
51
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000C Commercial Devices (Cont.)
Device
LC4256C
LC4384C
LC4512C
Macrocells
Voltage
tPD
Package
Pin/Ball Count
I/O
Grade
LC4256C-3F256AC
Part Number
256
1.8
3
fpBGA
256
128
C
LC4256C-5F256AC
256
1.8
5
fpBGA
256
128
C
LC4256C-75F256AC
256
1.8
7.5
fpBGA
256
128
C
LC4256C-3F256BC
256
1.8
3
fpBGA
256
160
C
LC4256C-5F256BC
256
1.8
5
fpBGA
256
160
C
LC4256C-75F256BC
256
1.8
7.5
fpBGA
256
160
C
LC4256C-3T176C
256
1.8
3
TQFP
176
128
C
LC4256C-5T176C
256
1.8
5
TQFP
176
128
C
LC4256C-75T176C
256
1.8
7.5
TQFP
176
128
C
LC4256C-3T100C
256
1.8
3
TQFP
100
64
C
LC4256C-5T100C
256
1.8
5
TQFP
100
64
C
LC4256C-75T100C
256
1.8
7.5
TQFP
100
64
C
LC4384C-35F256C
384
1.8
3.5
fpBGA
256
192
C
LC4384C-5F256C
384
1.8
5
fpBGA
256
192
C
LC4384C-75F256C
384
1.8
7.5
fpBGA
256
192
C
LC4384C-35T176C
384
1.8
3.5
TQFP
176
128
C
LC4384C-5T176C
384
1.8
5
TQFP
176
128
C
LC4384C-75T176C
384
1.8
7.5
TQFP
176
128
C
LC4512C-35F256C
512
1.8
3.5
fpBGA
256
208
C
LC4512C-5F256C
512
1.8
5
fpBGA
256
208
C
LC4512C-75F256C
512
1.8
7.5
fpBGA
256
208
C
LC4512C-35T176C
512
1.8
3.5
TQFP
176
128
C
LC4512C-5T176C
512
1.8
5
TQFP
176
128
C
LC4512C-75T176C
512
1.8
7.5
TQFP
176
128
C
Pin/Ball Count
I/O
Grade
ispMACH 4000B Commercial Devices
Device
LC4032B
LC4064B
LC4128B
Part Number
Macrocells
Voltage
tPD
Package
LC4032B-25T48C
32
2.5
2.5
TQFP
48
32
C
LC4032B-5T48C
32
2.5
5
TQFP
48
32
C
LC4032B-75T48C
32
2.5
7.5
TQFP
48
32
C
LC4032B-25T44C
32
2.5
2.5
TQFP
44
30
C
LC4032B-5T44C
32
2.5
5
TQFP
44
30
C
LC4032B-75T44C
32
2.5
7.5
TQFP
44
30
C
LC4064B-25T100C
64
2.5
2.5
TQFP
100
64
C
LC4064B-5T100C
64
2.5
5
TQFP
100
64
C
LC4064B-75T100C
64
2.5
7.5
TQFP
100
64
C
LC4128B-27T128C
128
2.5
2.7
TQFP
128
92
C
LC4128B-5T128C
128
2.5
5
TQFP
128
92
C
LC4128B-75T128C
128
2.5
7.5
TQFP
128
92
C
LC4128B-27T100C
128
2.5
2.7
TQFP
100
64
C
LC4128B-5T100C
128
2.5
5
TQFP
100
64
C
LC4128B-75T100C
128
2.5
7.5
TQFP
100
64
C
52
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000B Commercial Devices (Cont.)
Device
LC4256B
LC4384B
LC4512B
Macrocells
Voltage
tPD
Package
Pin/Ball Count
I/O
Grade
LC4256B-3F256AC
Part Number
256
2.5
3
fpBGA
256
128
C
LC4256B-5F256AC
256
2.5
5
fpBGA
256
128
C
LC4256B-75F256AC
256
2.5
7.5
fpBGA
256
128
C
LC4256B-3F256BC
256
2.5
3
fpBGA
256
160
C
LC4256B-5F256BC
256
2.5
5
fpBGA
256
160
C
LC4256B-75F256BC
256
2.5
7.5
fpBGA
256
160
C
LC4256B-3T176C
256
2.5
3
TQFP
176
128
C
LC4256B-5T176C
256
2.5
5
TQFP
176
128
C
LC4256B-75T176C
256
2.5
7.5
TQFP
176
128
C
LC4256B-3T100C
256
2.5
3
TQFP
100
64
C
LC4256B-5T100C
256
2.5
5
TQFP
100
64
C
LC4256B-75T100C
256
2.5
7.5
TQFP
100
64
C
LC4384B-35F256C
384
2.5
3.5
fpBGA
256
192
C
LC4384B-5F256C
384
2.5
5
fpBGA
256
192
C
LC4384B-75F256C
384
2.5
7.5
fpBGA
256
192
C
LC4384B-35T176C
384
2.5
3.5
TQFP
176
128
C
LC4384B-5T176C
384
2.5
5
TQFP
176
128
C
LC4384B-75T176C
384
2.5
7.5
TQFP
176
128
C
LC4512B-35F256C
512
2.5
3.5
fpBGA
256
208
C
LC4512B-5F256C
512
2.5
5
fpBGA
256
208
C
LC4512B-75F256C
512
2.5
7.5
fpBGA
256
208
C
LC4512B-35T176C
512
2.5
3.5
TQFP
176
128
C
LC4512B-5T176C
512
2.5
5
TQFP
176
128
C
LC4512B-75T176C
512
2.5
7.5
TQFP
176
128
C
Pin/Ball Count
I/O
Grade
ispMACH 4000V Commercial Devices
Device
LC4032V
LC4064V
LC4128V
Part Number
Macrocells
Voltage
tPD
Package
LC4032V-25T48C
32
3.3
2.5
TQFP
48
32
C
LC4032V-5T48C
32
3.3
5
TQFP
48
32
C
LC4032V-75T48C
32
3.3
7.5
TQFP
48
32
C
LC4032V-25T44C
32
3.3
2.5
TQFP
44
30
C
LC4032V-5T44C
32
3.3
5
TQFP
44
30
C
LC4032V-75T44C
32
3.3
7.5
TQFP
44
30
C
LC4064V-25T100C
64
3.3
2.5
TQFP
100
64
C
LC4064V-5T100C
64
3.3
5
TQFP
100
64
C
LC4064V-75T100C
64
3.3
7.5
TQFP
100
64
C
LC4128V-27T128C
128
3.3
2.7
TQFP
128
92
C
LC4128V-5T128C
128
3.3
5
TQFP
128
92
C
LC4128V-75T128C
128
3.3
7.5
TQFP
128
92
C
LC4128V-27T100C
128
3.3
2.7
TQFP
100
64
C
LC4128V-5T100C
128
3.3
5
TQFP
100
64
C
LC4128V-75T100C
128
3.3
7.5
TQFP
100
64
C
53
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V Commercial Devices (Cont.)
Device
LC4256V
LC4384V
LC4512V
Macrocells
Voltage
tPD
Package
Pin/Ball Count
I/O
Grade
LC4256V-3F256AC
Part Number
256
3.3
3
fpBGA
256
128
C
LC4256V-5F256AC
256
3.3
5
fpBGA
256
128
C
LC4256V-75F256AC
256
3.3
7.5
fpBGA
256
128
C
LC4256V-3F256BC
256
3.3
3
fpBGA
256
160
C
LC4256V-5F256BC
256
3.3
5
fpBGA
256
160
C
LC4256V-75F256BC
256
3.3
7.5
fpBGA
256
160
C
LC4256V-3T176C
256
3.3
3
TQFP
176
128
C
LC4256V-5T176C
256
3.3
5
TQFP
176
128
C
LC4256V-75T176C
256
3.3
7.5
TQFP
176
128
C
LC4256V-3T100C
256
3.3
3
TQFP
100
64
C
LC4256V-5T100C
256
3.3
5
TQFP
100
64
C
LC4256V-75T100C
256
3.3
7.5
TQFP
100
64
C
LC4384V-35F256C
384
3.3
3.5
fpBGA
256
192
C
LC4384V-5F256C
384
3.3
5
fpBGA
256
192
C
LC4384V-75F256C
384
3.3
7.5
fpBGA
256
192
C
LC4384V-35T176C
384
3.3
3.5
TQFP
176
128
C
LC4384V-5T176C
384
3.3
5
TQFP
176
128
C
LC4384V-75T176C
384
3.3
7.5
TQFP
176
128
C
LC4512V-35F256C
512
3.3
3.5
fpBGA
256
208
C
LC4512V-5F256C
512
3.3
5
fpBGA
256
208
C
LC4512V-75F256C
512
3.3
7.5
fpBGA
256
208
C
LC4512V-35T176C
512
3.3
3.5
TQFP
176
128
C
LC4512V-5T176C
512
3.3
5
TQFP
176
128
C
LC4512V-75T176C
512
3.3
7.5
TQFP
176
128
C
Note: The ispMACH 4000V/B/C family is dual-marked with both commercial and industrial grades. The commercial speed grade is one speed
grade faster (i.e. LC4128C-5T100C) than the industrial speed grade (i.e. LC4128C-75T100I).
ispMACH 4000C Industrial Devices
Family
LC4032C
LC4064C
Macrocells
Voltage
tPD
Package
Pin/Ball Count
I/O
Grade
LC4032C-5T48I
Part Number
32
1.8
5
TQFP
48
32
I
LC4032C-75T48I
32
1.8
7.5
TQFP
48
32
I
LC4032C-10T48I
32
1.8
10
TQFP
48
32
I
LC4032C-5T44I
32
1.8
5
TQFP
44
30
I
LC4032C-75T44I
32
1.8
7.5
TQFP
44
30
I
LC4032C-10T44I
32
1.8
10
TQFP
44
30
I
LC4064C-5T100I
64
1.8
5
TQFP
100
64
I
LC4064C-75T100I
64
1.8
7.5
TQFP
100
64
I
LC4064C-10T100I
64
1.8
10
TQFP
100
64
I
54
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000C Industrial Devices (Cont.)
Family
LC4128C
LC4256C
LC4384C
LC4512C
Macrocells
Voltage
tPD
Package
Pin/Ball Count
I/O
Grade
LC4128C-5T128I
Part Number
128
1.8
5
TQFP
128
92
I
LC4128C-75T128I
128
1.8
7.5
TQFP
128
92
I
LC4128C-10T128I
128
1.8
10
TQFP
128
92
I
LC4128C-5T100I
128
1.8
5
TQFP
100
64
I
LC4128C-75T100I
128
1.8
7.5
TQFP
100
64
I
LC4128C-10T100I
128
1.8
10
TQFP
100
64
I
LC4256C-5F256AI
256
1.8
5
fpBGA
256
128
I
LC4256C-75F256AI
256
1.8
7.5
fpBGA
256
128
I
LC4256C-10F256AI
256
1.8
10
fpBGA
256
128
I
LC4256C-5F256BI
256
1.8
5
fpBGA
256
160
I
LC4256C-75F256BI
256
1.8
7.5
fpBGA
256
160
I
LC4256C-10F256BI
256
1.8
10
fpBGA
256
160
I
LC4256C-5T176I
256
1.8
5
TQFP
176
128
I
LC4256C-75T176I
256
1.8
7.5
TQFP
176
128
I
LC4256C-10T176I
256
1.8
10
TQFP
176
128
I
LC4256C-5T100I
256
1.8
5
TQFP
100
64
I
LC4256C-75T100I
256
1.8
7.5
TQFP
100
64
I
LC4256C-10T100I
256
1.8
10
TQFP
100
64
I
LC4384C-5F256I
384
1.8
5
fpBGA
256
192
I
LC4384C-75F256I
384
1.8
7.5
fpBGA
256
192
I
LC4384C-10F256I
384
1.8
10
fpBGA
256
192
I
LC4384C-5T176I
384
1.8
5
TQFP
176
128
I
LC4384C-75T176I
384
1.8
7.5
TQFP
176
128
I
LC4384C-10T176I
384
1.8
10
TQFP
176
128
I
LC4512C-5F256I
512
1.8
5
fpBGA
256
208
I
LC4512C-75F256I
512
1.8
7.5
fpBGA
256
208
I
LC4512C-10F256I
512
1.8
10
fpBGA
256
208
I
LC4512C-5T176I
512
1.8
5
TQFP
176
128
I
LC4512C-75T176I
512
1.8
7.5
TQFP
176
128
I
LC4512C-10T176I
512
1.8
10
TQFP
176
128
I
ispMACH 4000B Industrial Devices
Family
LC4032B
LC4064B
Part Number
Macrocells
Voltage
tPD
Package
Pin/Ball Count
I/O
Grade
LC4032B-5T48I
32
LC4032B-75T48I
32
2.5
5
TQFP
48
32
I
2.5
7.5
TQFP
48
32
I
LC4032B-10T48I
32
2.5
10
TQFP
48
32
I
LC4032B-5T44I
32
2.5
5
TQFP
44
30
I
LC4032B-75T44I
32
2.5
7.5
TQFP
44
30
I
LC4032B-10T44I
32
2.5
10
TQFP
44
30
I
LC4064B-5T100I
64
2.5
5
TQFP
100
64
I
LC4064B-75T100I
64
2.5
7.5
TQFP
100
64
I
LC4064B-10T100I
64
2.5
10
TQFP
100
64
I
55
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000B Industrial Devices (Cont.)
Family
LC4128B
LC4256B
LC4384B
LC4512B
Macrocells
Voltage
tPD
Package
Pin/Ball Count
I/O
Grade
LC4128B-5T128I
Part Number
128
2.5
5
TQFP
128
92
I
LC4128B-75T128I
128
2.5
7.5
TQFP
128
92
I
LC4128B-10T128I
128
2.5
10
TQFP
128
92
I
LC4128B-5T100I
128
2.5
5
TQFP
100
64
I
LC4128B-75T100I
128
2.5
7.5
TQFP
100
64
I
LC4128B-10T100I
128
2.5
10
TQFP
100
64
I
LC4256B-5F256AI
256
2.5
5
fpBGA
256
128
I
LC4256B-75F256AI
256
2.5
7.5
fpBGA
256
128
I
LC4256B-10F256AI
256
2.5
10
fpBGA
256
128
I
LC4256B-5F256BI
256
2.5
5
fpBGA
256
160
I
LC4256B-75F256BI
256
2.5
7.5
fpBGA
256
160
I
LC4256B-10F256BI
256
2.5
10
fpBGA
256
160
I
LC4256B-5T176I
256
2.5
5
TQFP
176
128
I
LC4256B-75T176I
256
2.5
7.5
TQFP
176
128
I
LC4256B-10T176I
256
2.5
10
TQFP
176
128
I
LC4256B-5T100I
256
2.5
5
TQFP
100
64
I
LC4256B-75T100I
256
2.5
7.5
TQFP
100
64
I
LC4256B-10T100I
256
2.5
10
TQFP
100
64
I
LC4384B-5F256I
384
2.5
5
fpBGA
256
192
I
LC4384B-75F256I
384
2.5
7.5
fpBGA
256
192
I
LC4384B-10F256I
384
2.5
10
fpBGA
256
192
I
LC4384B-5T176I
384
2.5
5
TQFP
176
128
I
LC4384B-75T176I
384
2.5
7.5
TQFP
176
128
I
LC4384B-10T176I
384
2.5
10
TQFP
176
128
I
LC4512B-5F256I
512
2.5
5
fpBGA
256
208
I
LC4512B-75F256I
512
2.5
7.5
fpBGA
256
208
I
LC4512B-10F256I
512
2.5
10
fpBGA
256
208
I
LC4512B-5T176I
512
2.5
5
TQFP
176
128
I
LC4512B-75T176I
512
2.5
7.5
TQFP
176
128
I
LC4512B-10T176I
512
2.5
10
TQFP
176
128
I
ispMACH 4000V Industrial Devices
Family
LC4032V
LC4064V
Macrocells
Voltage
tPD
Package
Pin/Ball Count
I/O
Grade
LC4032V-5T48I
Part Number
32
3.3
5
TQFP
48
32
I
LC4032V-75T48I
32
3.3
7.5
TQFP
48
32
I
LC4032V-10T48I
32
3.3
10
TQFP
48
32
I
LC4032V-5T44I
32
3.3
5
TQFP
44
30
I
LC4032V-75T44I
32
3.3
7.5
TQFP
44
30
I
LC4032V-10T44I
32
3.3
10
TQFP
44
30
I
LC4064V-5T100I
64
3.3
5
TQFP
100
64
I
LC4064V-75T100I
64
3.3
7.5
TQFP
100
64
I
LC4064V-10T100I
64
3.3
10
TQFP
100
64
I
56
Lattice Semiconductor
ispMACH 4000V/B/C Family Data Sheet
ispMACH 4000V Industrial Devices (Cont.)
Family
LC4128V
LC4256V
LC4384V
LC4512V
Macrocells
Voltage
tPD
Package
Pin/Ball Count
I/O
Grade
LC4128V-5T128I
Part Number
128
3.3
5
TQFP
128
92
I
LC4128V-75T128I
128
3.3
7.5
TQFP
128
92
I
LC4128V-10T128I
128
3.3
10
TQFP
128
92
I
LC4128V-5T100I
128
3.3
5
TQFP
100
64
I
LC4128V-75T100I
128
3.3
7.5
TQFP
100
64
I
LC4128V-10T100I
128
3.3
10
TQFP
100
64
I
LC4256V-5F256AI
256
3.3
5
fpBGA
256
128
I
LC4256V-75F256AI
256
3.3
7.5
fpBGA
256
128
I
LC4256V-10F256AI
256
3.3
10
fpBGA
256
128
I
LC4256V-5F256BI
256
3.3
5
fpBGA
256
160
I
LC4256V-75F256BI
256
3.3
7.5
fpBGA
256
160
I
LC4256V-10F256BI
256
3.3
10
fpBGA
256
160
I
LC4256V-5T176I
256
3.3
5
TQFP
176
128
I
LC4256V-75T176I
256
3.3
7.5
TQFP
176
128
I
LC4256V-10T176I
256
3.3
10
TQFP
176
128
I
LC4256V-5T100I
256
3.3
5
TQFP
100
64
I
LC4256V-75T100I
256
3.3
7.5
TQFP
100
64
I
LC4256V-10T100I
256
3.3
10
TQFP
100
64
I
LC4384V-5F256I
384
3.3
5
fpBGA
256
192
I
LC4384V-75F256I
384
3.3
7.5
fpBGA
256
192
I
LC4384V-10F256I
384
3.3
10
fpBGA
256
192
I
LC4384V-5T176I
384
3.3
5
TQFP
176
128
I
LC4384V-75T176I
384
3.3
7.5
TQFP
176
128
I
LC4384V-10T176I
384
3.3
10
TQFP
176
128
I
LC4512V-5F256I
512
3.3
5
fpBGA
256
208
I
LC4512V-75F256I
512
3.3
7.5
fpBGA
256
208
I
LC4512V-10F256I
512
3.3
10
fpBGA
256
208
I
LC4512V-5T176I
512
3.3
5
TQFP
176
128
I
LC4512V-75T176I
512
3.3
7.5
TQFP
176
128
I
LC4512V-10T176I
512
3.3
10
TQFP
176
128
I
Note: The ispMACH 4000V/B/C family is dual-marked with both commercial and industrial grades. The commercial speed grade is one speed
grade faster (i.e. LC4128C-5T100C) than the industrial speed grade (i.e. LC4128C-75T100I).
For Further Information
In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH
4000V/B/C family:
• ispMACH 4000 Timing Model Design and Usage Guidelines (TN1004)
• ispMACH 4000V/B/C Power Consumption (TN1005)
57