AMICC A43L8316V-10

A43L8316
Preliminary
128K X 16 Bit X 2 Banks Synchronous DRAM
Document Title
128K X 16 Bit X 2 Banks Synchronous DRAM
Revision History
Rev. No.
0.0
1.0
History
Issue Date
Remark
Initial issue
February 15, 2000
Preliminary
Error correction: basic feature and function descriptions
April 7, 2000
CAS interrupt (I)
Change tSHZ in Hi-Z at 7ns part: 7.5ns → 7ns (max.)
Change tSHZ in Hi-Z at 8ns part: 7ns → 7.5ns (max.)
Add 7ns and 8ns parts
Preliminary (April, 2000, Version 1.0)
AMIC Technology, Inc.
A43L8316
Preliminary
128K X 16 Bit X 2 Banks Synchronous DRAM
Features
n
n
n
n
n
n
n
n
n
JEDEC standard 3.3V power supply
LVTTL compatible with multiplexed address
Dual banks / Pulse RAS
MRS cycle with address key programs
- CAS Latency (2,3)
- Burst Length (1,2,4,8 & full page)
- Burst Type (Sequential & Interleave)
n All inputs are sampled at the positive going edge of the
system clock
Burst Read Single-bit Write operation
DQM for masking
Auto & self refresh
16ms refresh period (1K cycle)
50 Pin TSOP (II)
General Description
The A43L8316 is 4,194,304 bits synchronous high data
rate Dynamic RAM organized as 2 X 131,072 words by 16
bits, fabricated with AMIC’s high performance CMOS
technology. Synchronous design allows precise cycle
control with the use of system clock. I/O transactions are
possible on every clock cycle. Range of operating
frequencies, programmable latencies allows the same
device to be useful for a variety of high bandwidth, high
performance memory system applications.
Pin Configuration
VSS
A4
A5
A6
A7
NC
NC
NC
CKE
CLK
UDQM
NC/RFU
DQ8
VDDQ
DQ9
VSSQ
DQ10
VDDQ
DQ11
DQ12
DQ13
VSSQ
DQ14
DQ15
VSS
n TSOP (II)
50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26
VDD
DQ5
A3
DQ4
A2
VDDQ
A1
DQ3
A0
DQ2
A8
DQ1
VSSQ
1
BA
DQ0
Preliminary (April, 2000, Version 1.0)
CS
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
RAS
8
CAS
7
WE
6
LDQM
5
DQ7
4
VDDQ
3
DQ6
2
VSSQ
1
VDD
A43L8316V
AMIC Technology, Inc.
A43L8316
Block Diagram
LWE
I/O Control
Data Input Register
Bank Select
Output Buffer
Column Decoder
Sense AMP
Column Buffer
LCBR
LRAS
Address Register
ADD
Row Decoder
Row Buffer
Refresh Counter
CLK
128K X 16
128K X 16
LDQM
DQi
Latency & Burst Length
LRAS
LCAS
LRAS
LCBR
Programming Register
LDQM
LWE
LWCBR
Timing Register
CLK
CKE
Preliminary (April, 2000, Version 1.0)
CS
RAS
CAS
2
WE
L(U)DQM
AMIC Technology, Inc.
A43L8316
Pin Descriptions
Symbol
Name
Description
CLK
System Clock
Active on the positive going edge to sample all inputs.
CS
Chip Select
Disables or Enables device operation by masking or enabling all inputs except
CLK, CKE and L(U)DQM
Masks system clock to freeze operation from the next clock cycle.
CKE
Clock Enable
CKE should be enabled at least one clock + tss prior to new command.
Disable input buffers for power down in standby.
Row / Column addresses are multiplexed on the same pins.
A0~A8/AP
Address
Row address : RA0~RA8, Column address: CA0~CA7
Selects bank to be activated during row address latch time.
BA
Bank Select Address
Selects band for read/write during column address latch time.
RAS
Row Address Strobe
Latches row addresses on the positive going edge of the CLK with RAS low.
Enables row access & precharge.
CAS
Column Address
Strobe
Latches column addresses on the positive going edge of the CLK with CAS low.
Enables column access.
WE
Write Enable
Enables write operation and Row precharge.
Data Input/Output
Mask
Makes data output Hi-Z, t SHZ after the clock and masks the output.
L(U)DQM
DQ0-15
Data Input/Output
Data inputs/outputs are multiplexed on the same pins.
VDD/VSS
Power
Supply/Ground
Power Supply: +3.3V±0.3V/Ground
VDDQ/VSSQ
Data Output
Power/Ground
Provide isolated Power/Ground to DQs for improved noise immunity.
NC/RFU
No Connection
Preliminary (April, 2000, Version 1.0)
Blocks data input when L(U)DQM active.
3
AMIC Technology, Inc.
A43L8316
Absolute Maximum Ratings*
*Comments
Voltage on any pin relative to VSS (Vin, Vout ) . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1.0V to +4.6V
Voltage on VDD supply relative to VSS (VDD, VDDQ )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-1.0V to +4.6V
Storage Temperature (TSTG) . . . . . . . . . . -55°C to +150°C
Soldering Temperature X Time (TSLODER) . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C X 10sec
Power Dissipation (PD) . . . . . . . . . . . . . . . . . . . . . . . . .1W
Short Circuit Current (Ios) . . . . . . . . . . . . . . . . . . . . 50mA
Permanent device damage may occur if “Absolute
Maximum Ratings” are exceeded.
Functional operation should be restricted to recommended
operating condition.
Exposure to higher than recommended voltage for
extended periods of time could affect device reliability.
DC Electrical Characteristics
Recommend operating conditions (Voltage referenced to VSS = 0V)
Parameter
Symbol
Min
Typ
Max
Unit
VDD,VDDQ
3.0
3.3
3.6
V
Input High Voltage
VIH
2.0
3.0
VDD+0.3
V
Input Low Voltage
VIL
-0.3
0
0.8
V
Note 1
Output High Voltage
VOH
2.4
-
-
V
IOH = -2mA
Output Low Voltage
VOL
-
-
0.4
V
IOL = 2mA
Input Leakage Current
IIL
-5
-
5
µA
Note 2
Output Leakage Current
IOL
-5
-
5
µA
Note 3
Supply Voltage
Output Loading Condition
Note
See Figure 1
Note: 1. VIL (min) = -1.5V AC (pulse width ≤ 5ns).
2. Any input 0V ≤ VIN ≤ VDD + 0.3V, all other pins are not under test = 0V
3. Dout is disabled, 0V ≤ Vout ≤ VDD
Decoupling Capacitance Guide Line
Recommended decoupling capacitance added to power line at board.
Parameter
Symbol
Value
Unit
Decoupling Capacitance between VDD and VSS
CDC1
0.1 + 0.01
µF
Decoupling Capacitance between VDDQ and VSSQ
CDC2
0.1 + 0.01
µF
Note: 1. VDD and VDDQ pins are separated each other.
All VDD pins are connected in chip. All VDDQ pins are connected in chip.
2. VSS and VSSQ pins are separated each other
All VSS pins are connected in chip. All VSSQ pins are connected in chip.
Preliminary (April, 2000, Version 1.0)
4
AMIC Technology, Inc.
A43L8316
DC Electrical Characteristics
(Recommended operating condition unless otherwise noted, TA = 0 to 70°C)
Symbol
Icc1
Icc2 P
Icc2 PS
ICC2N
Parameter
Test Conditions
Speed
CAS
Latency
-7
-8
-10
Operating Current
Burst Length = 1
3
110
100
90
(One Bank Active)
tRC ≥ tRC(min), tCC ≥ tCC(min), IOL =
0mA
2
120
100
90
Precharge Standby
Current in powerdown mode
CKE ≤ VIL(max), tCC = 15ns
3
3
3
CKL ≤ VIL(max), tCC = ∞
2
2
2
25
25
25
CKE ≥ VIH(min), CS ≥ VIH(min), tCC = 15ns
Precharge Standby
Current in non
power-down mode
ICC2NS
Input signals are changed one time during 30ns
ICC3 PS
ICC3N
ICC3NS
Active Standby
Current in powerdown mode
Active Standby
current in non
power-down mode
(One Bank Active)
CKE ≥ VIH(min), CLK ≤ VIL(max), tCC = ∞
6
6
6
CKE ≤ VIL(max), tCC = 15ns
3
3
3
CKE ≤ VIL(max), CKE ≤ VIL(max) tCC = ∞
2
2
2
30
30
30
CKE ≥ VIH(min), CS ≥ VIH(min), tCC = 15ns
Input signals are changed one time during 30ns
CKE ≥ VIH(min), CLK ≤ VIL(max), tCC = ∞
Notes
mA
1
mA
mA
Input signals are stable.
ICC3 P
Unit
mA
mA
10
10
10
3
160
150
140
2
120
110
100
3
90
90
85
2
100
90
85
2
2
2
Input signals are stable.
Operating Current
IOL = 0mA, Page Burst
(Burst Mode)
All bank Activated, tCCD = tCCD (min)
ICC5
Refresh Current
tRC ≥ tRC (min)
ICC6
Self Refresh
Current
CKE ≤ 0.2V
ICC4
mA
1
mA
2
mA
Note: 1. Measured with outputs open. Addresses are changed only one time during tCC(min).
2. Refresh period is 64ms. Addresses are changed only one time during tCC(min).
Preliminary (April, 2000, Version 1.0)
5
AMIC Technology, Inc.
A43L8316
AC Operating Test Conditions
(VDD = 3.3V ±0.3V, TA = 0°C to +70°C)
Parameter
Value
AC input levels
VIH/VIL = 2.4V/0.4V
Input timing measurement reference level
1.4V
Input rise and all time (See note3)
tr/tf = 1ns/1ns
Output timing measurement reference level
1.4V
Output load condition
See Fig.2
3.3V
1200Ω
VOH(DC) = 2.4V, IOH = -2mA
VOL(DC) = 0.4V, IOL = 2mA
VTT =1.4V
50Ω
Output
OUTPUT
870Ω
ZO=50Ω
30pF
3pF
(Fig. 2) AC Output Load Circuit
(Fig. 1) DC Output Load Circuit
AC Characteristics
(AC operating conditions unless otherwise noted)
-7
Symbol
tCC
Parameter
CAS
Latency
Min.
3
7
CLK cycle time
-8
Max.
Min.
-10
Max.
8
1000
Min.
Unit
Note
ns
1
ns
1,2
Max.
10
1000
10
1000
2
8
15
CLK to valid
3
-
6
-
6
-
8
Output delay
2
-
7
-
7.5
-
10
tOH
Output data hold time
-
2.5
-
3
-
3
-
ns
2
3
2.5
tCH
CLK high pulse width
-
3
-
3.5
-
ns
3
2
3
tSAC
Preliminary (April, 2000, Version 1.0)
6
AMIC Technology, Inc.
A43L8316
AC Characteristics (continued)
(AC operating conditions unless otherwise noted)
-7
Symbol
tCL
tSS
Parameter
CAS
Latency
Min.
3
2.5
2
3
3
2
2
2.5
-8
-10
Unit
Note
Max.
Min.
Max.
Min.
Max.
-
3
-
3.5
-
ns
3
-
2
-
2.5
-
ns
3
1
-
1
-
1
-
ns
3
1
-
1
-
1
-
ns
2
-
6
-
6
3
8
CLK low pulse width
Input setup time
3
tSH
Input hold time
2
3
tSLZ
CLK to output in Low-Z
2
CLK to output
3
tSHZ
ns
In Hi-Z
2
-
7
-
7.5
3
10
*All AC parameters are measured from half to half.
Note : 1. Parameters depend on programmed CAS latency.
2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.
3. Assumed input rise and fall time (tr & tf) = 1ns.
If tr & tf is longer than 1ns, transient time compensation should be considered,
i.e., [(tr + tf)/2-1]ns should be added to the parameter.
Preliminary (April, 2000, Version 1.0)
7
AMIC Technology, Inc.
A43L8316
Operating AC Parameter
(AC operating conditions unless otherwise noted)
Version
Symbol
Parameter
CAS
Latency
Unit
Note
2
CLK
1
2
3
CLK
1
2
3
CLK
1
6
CLK
1
120
µs
10
CLK
1
-7
-8
-10
2
2
3
tRRD(min)
Row active to row active delay
tRCD(min)
RAS to CAS delay
tRP(min)
Row precharge time
tRAS(min)
tRAS(max)
Row active time
2
3
3
2
2
3
3
2
2
3
7
6
2
5
5
100
100
3
10
9
2
7
7
1
1
1
CLK
2
1
1
1
CLK
2
1
1
1
CLK
2
1
1
1
CLK
3
2
2
2
CLK
2
1
1
1
CLK
3
2
tRC(min)
Row cycle time
tCDL(min)
Last data in new col. Address delay
tRDL(min)
Last data in row precharge
tBDL(min)
Last data in to burst stop
tCCD(min)
Col. Address to col. Address delay
3
2
3
2
3
2
3
Number of valid output data
2
4
Note: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time
and then rounding off to the next higher integer.
2. Minimum delay is required to complete write.
3. All parts allow every cycle column address change.
4. In case of row precharge interrupt, auto precharge and read burst stop.
Preliminary (April, 2000, Version 1.0)
8
AMIC Technology, Inc.
A43L8316
Simplified Truth Table
Command
CKEn-1 CKEn
CS
RAS CAS
WE DQM BA A8/
A7~A0 Notes
AP
Register
Refresh
Mode Register Set
H
Auto Refresh
Self
Refresh
X
L
L
L
L
X
OP CODE
L
L
L
H
X
X
L
H
H
H
X
X
3
H
Entry
Exit
H
L
L
H
Bank Active & Row Addr.
H
Read &
Auto Precharge Disable
Column Addr. Auto Precharge Enable
H
H
X
X
X
X
L
L
H
H
X
V
X
L
H
L
H
X
V
X
L
H
L
L
X
Burst Stop
H
X
L
H
H
L
X
Bank Selection
Clock Suspend or
Active Power Down
H
X
H
L
Exit
L
H
Entry
H
L
Exit
L
H
Entry
Precharge Power Down Mode
DQM
No Operation Command
Column
Addr.
H
L
L
L
H
L
L
H
H
H
H
X
X
X
X
X
X
X
L
H
H
H
H
X
X
X
L
V
V
V
H
X
X
X
L
H
H
H
H
X
X
X
H
H
X
X
X
V
3
Row Addr.
L
H
Both Banks
3
3
Write &
Auto Precharge Disable
Column Addr. Auto Precharge Enable
Precharge
1,2
Column
Addr.
H
X
V
L
X
H
4
4
4,5
4
4,5
6
X
X
X
X
X
X
X
V
X
X
X
7
(V = Valid, X = Don’t Care, H = Logic High, L = Logic Low)
Note : 1. OP Code : Operand Code
A0~A8/AP,BA : Program keys. (@MRS)
2. MRS can be issued only at both banks precharge state.
A new command can be issued after 2 clock cycle of MRS.
3. Auto refresh functions as same as CBR refresh of DRAM.
The automatical precharge without Row precharge command is meant by “Auto”.
Auto/Self refresh can be issued only at both precharge state.
4. BA : Bank select address.
If “Low” at read, write, Row active and precharge, bank A is selected.
If “High” at read, write, Row active and precharge, bank B is selected.
If A8/AP is “High” at Row precharge, BA is ignored and both banks are selected.
5. During burst read or write with auto precharge, new read write command cannot be issued.
Another bank read write command can be issued at every burst length.
6. Burst stop command is valid at every burst length.
7. DQM sampled at positive going edge of a CLK masks the data-in at the very CLK (Write DQM latency is 0),
but makes the data-out Hi-Z state after 2 CLK cycles. (Read DQM latency is 2)
Preliminary (April, 2000, Version 1.0)
9
AMIC Technology, Inc.
A43L8316
Mode Register Filed Table to Program Modes
Register Programmed with MRS
Address
BA
Function
RFU
(Note 1)
A8
A7
A6
TM
A5
A4
CAS Latency
A3
A2
BT
A1
A0
Burst Length
(Note 2)
Test Mode
CAS Latency
Burst Type
Burst Length
A8
A7
Type
A6
A5
A4
Latency
A3
Type
A2
A1
A0
BT=0
BT=1
0
0
Mode Register Set
0
0
0
Reserved
0
Sequential
0
0
0
1
Reserved
0
1
Vendor
0
0
1
-
1
Interleave
0
0
1
2
Reserved
1
0
Use
0
1
0
2
0
1
0
4
4
1
1
Only
0
1
1
3
0
1
1
8
8
1
0
0
Reserved
1
0
0
Reserved
Reserved
Write Burst Length
BA
Length
1
0
1
Reserved
1
0
1
Reserved
Reserved
0
Burst
1
1
0
Reserved
1
1
0
Reserved
Reserved
1
Single Bit
1
1
1
Reserved
1
1
1
256(Full)
Reserved
(Note 3)
Power Up Sequence
1. Apply power and start clock, Attempt to maintain CKE = “H”, DQM = “H” and the other pins are NOP condition at inputs.
2. Maintain stable power, stable clock and NOP input condition for a minimum of 200µs.
3. Issue precharge commands for all banks of the devices.
4. Issue 2 or more auto-refresh commands.
5. Issue a mode register set command to initialize the mode register.
cf.) Sequence of 4 & 5 may be changed.
The device is now ready for normal operation.
Note : 1. RFU(Reserved for Future Use) should stay “0” during MRS cycle.
2. If BA is high during MRS cycle, “Burst Read Single Bit Write” function will be enabled.
3. The full column burst (256bit) is available only at Sequential mode of burst type.
Preliminary (April, 2000, Version 1.0)
10
AMIC Technology, Inc.
A43L8316
Burst Sequence (Burst Length = 4)
Initial address
Sequential
Interleave
A1
A0
0
0
0
1
2
3
0
1
2
3
0
1
1
2
3
0
1
0
3
2
1
0
2
3
0
1
2
3
0
1
1
1
3
0
1
2
3
2
1
0
Burst Sequence (Burst Length = 8)
Initial address
Sequential
Interleave
A2
A1
A0
0
0
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
0
1
1
2
3
4
5
6
7
0
1
0
3
2
5
4
7
6
0
1
0
2
3
4
5
6
7
0
1
2
3
0
1
6
7
4
5
0
1
1
3
4
5
6
7
0
1
2
3
2
1
0
7
6
5
4
1
0
0
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
1
0
1
5
6
7
0
1
2
3
4
5
4
7
6
1
0
3
2
1
1
0
6
7
0
1
2
3
4
5
6
7
4
5
2
3
0
1
1
1
1
7
0
1
2
3
4
5
6
7
6
5
4
3
2
1
0
Preliminary (April, 2000, Version 1.0)
11
AMIC Technology, Inc.
A43L8316
Device Operations
and is entered by asserting CS high. CS high disables
the command decoder so that RAS , CAS and WE , and
all the address inputs are ignored.
Clock (CLK)
The clock input is used as the reference for all SDRAM
operations. All operations are synchronized to the positive
going edge of the clock. The clock transitions must be
monotonic between VIL and VIH. During operation with
CKE high all inputs are assumed to be in valid state (low or
high) for the duration of set up and hold time around
positive edge of the clock for proper functionality and ICC
specifications.
Power-Up
The following sequence is recommended for POWER UP
1. Power must be applied to either CKE and DQM inputs to
pull them high and other pins are NOP condition at the
inputs before or along with VDD (and VDDQ) supply.
The clock signal must also be asserted at the same time.
2. After VDD reaches the desired voltage, a minimum
pause of 200 microseconds is required with inputs in
NOP condition.
3. Both banks must be precharged now.
4. Perform a minimum of 2 Auto refresh cycles to stabilize
the internal circuitry.
5. Perform a MODE REGISTER SET cycle to program the
CAS latency, burst length and burst type as the default
value of mode register is undefined.
At the end of one clock cycle from the mode register set
cycle, the device is ready for operation.
When the above sequence is used for Power-up, all the
out-puts will be in high impedance state. The high
impedance of outputs is not guaranteed in any other
power-up sequence.
cf.) Sequence of 4 & 5 may be changed.
Clock Enable (CLK)
The clock enable (CKE) gates the clock onto SDRAM. If
CKE goes low synchronously with clock (set-up and hold
time same as other inputs), the internal clock is suspended
form the next clock cycle and the state of output and burst
address is frozen as long as the CKE remains low. All
other inputs are ignored from the next clock cycle after
CKE goes low. When both banks are in the idle state and
CKE goes low synchronously with clock, the SDRAM
enters the power down mode form the next clock cycle.
The SDRAM remains in the power down mode ignoring the
other inputs as long as CKE remains low. The power down
exit is synchronous as the internal clock is suspended.
When CKE goes high at least “tSS + 1 CLOCK” before the
high going edge of the clock, then the SDRAM becomes
active from the same clock edge accepting all the input
commands.
Mode Register Set (MRS)
The mode register stores the data for controlling the
various operation modes of SDRAM. It programs the CAS
latency, addressing mode, burst length, test mode and
various vendor specific options to make SDRAM useful for
variety of different applications. The default value of the
mode register is not defined, therefore the mode register
must be written after power up to operate the SDRAM. The
mode register is written by asserting low on CS , RAS ,
Bank Select (BA)
This SDRAM is organized as two independent banks of
131,072 words X 16 bits memory arrays. The BA inputs is
latched at the time of assertion of RAS and CAS to select
the bank to be used for the operation. When BA is asserted
low, bank A is selected. When BA is asserted high, bank B
is selected. The bank select BA is latched at bank activate,
read, write mode register set and precharge operations.
CAS , WE (The SDRAM should be in active mode with
CKE already high prior to writing the mode register). The
state of address pins A0~A8/AP and BA in the same cycle
as CS , RAS , CAS , WE going low is the data written in
the mode register. One clock cycle is required to complete
the write in the mode register. The mode register contents
can be changed using the same command and clock cycle
requirements during operation as long as both banks are in
the idle state. The mode register is divided into various
fields depending on functionality. The burst length field
uses A0~A2, burst type uses A3, addressing mode uses
A4~A6, A7~A8/AP and BA are used for vendor specific
options or test mode. And the write burst length is
programmed using BA. A7~A8/AP and BA must be set to
low for normal SDRAM operation.
Refer to table for specific codes for various burst length,
addressing modes and CAS latencies.
Address Input (A0 ~ A8/AP)
The 17 address bits required to decode the 131,072 word
locations are multiplexed into 9 address input pins
(A0~A8/AP). The 11 bit row address is latched along with
RAS and BA during bank activate command. The 8 bit
column address is latched along with CAS , WE and BA
during read or write command.
NOP and Device Deselect
When RAS , CAS and WE are high, the SDRAM
performs no operation (NOP). NOP does not initiate any
new operation, but is needed to complete operations which
require more than single clock like bank activate, burst
read, auto refresh, etc. The device deselect is also a NOP
Preliminary (April, 2000, Version 1.0)
12
AMIC Technology, Inc.
A43L8316
Device Operations (continued)
Bank Activate
Burst Write
The bank activate command is used to select a random
row in an idle bank. By asserting low on RAS and
The burst write command is similar to burst read
command, and is used to write data into the SDRAM
consecutive clock cycles in adjacent addresses depending
on burst length and burst sequence. By asserting low on
CS , CAS and WE with valid column address, a write
burst is initiated. The data inputs are provided for the initial
address in the same clock cycle as the burst write
command. The input buffer is deselected at the end of the
burst length, even though the internal writing may not have
been completed yet. The writing can not complete to burst
length. The burst write can be terminated by issuing a
burst read and DQM for blocking data inputs or burst write
in the same or the other active bank. The burst stop
command is valid only at full page burst length where the
writing continues at the end of burst and the burst is wrap
around. The write burst can also be terminated by using
DQM for blocking data and precharging the bank “tRDL”
after the last data input to be written into the active row.
See DQM OPERATION also.
CS with desired row and bank addresses, a row access is
initiated. The read or write operation can occur after a time
delay of tRCD(min) from the time of bank activation.
tRCD(min) is an internal timing parameter of SDRAM,
therefore it is dependent on operating clock frequency. The
minimum number of clock cycles required between bank
activate and read or write command should be calculated
by dividing tRCD(min) with cycle time of the clock and then
rounding off the result to the next higher integer. The
SDRAM has two internal banks on the same chip and
shares part of the internal circuitry to reduce chip area,
therefore it restricts the activation of both banks
immediately. Also the noise generated during sensing of
each bank of SDRAM is high requiring some time for
power supplies recover before the other bank can be
sensed reliably. tRRD(min) specifies the minimum time
required between activating different banks. The number of
clock cycles required between different bank activation
must be calculated similar to tRCD specification. The
minimum time required for the bank to be active to initiate
sensing and restoring the complete row of dynamic cells is
determined by tRAS(min) specification before a precharge
command to that active bank can be asserted. The
maximum time any bank can be in the active state is
determined by tRAS(max). The number of cycles for both
tRAS(min) and tRAS(max) can be calculated similar to tRCD
specification.
DQM Operation
The DQM is used to mask input and output operation. It
works similar to OE during read operation and inhibits
writing during write operation. The read latency is two
cycles from DQM and zero cycle for write, which means
DQM masking occurs two cycles later in the read cycle and
occurs in the same cycle during write cycle. DQM
operation is synchronous with the clock, therefore the
masking occurs for a complete cycle. The DQM signal is
important during burst interrupts of write with read or
precharge in the SDRAM. Due to asynchronous nature of
the internal write, the DQM operation is critical to avoid
unwanted or incomplete writes when the complete burst
write is not required.
Burst Read
The burst read command is used to access burst of data
on consecutive clock cycles from an active row in an active
bank. The burst read command is issued by asserting low
on CS and CAS with WE being high on the positive
edge of the clock. The bank must be active for at least
tRCD(min) before the burst read command is issued. The
first output appears CAS latency number of clock cycles
after the issue of burst read command. The burst length,
burst sequence and latency from the burst read command
is determined by the mode register which is already
programmed. The burst read can be initiated on any
column address of the active row. The address wraps
around if the initial address does not start from a boundary
such that number of outputs from each I/O are equal to the
burst length programmed in the mode register. The output
goes into high-impedance at the end of the burst, unless a
new burst read was initiated to keep the data output
gapless. The burst read can be terminated by issuing
another burst read or burst write in the same bank or the
other active bank or a precharge command to the same
bank. The burst stop command is valid at every page burst
length.
Preliminary (April, 2000, Version 1.0)
Precharge
The precharge operation is performed on an active bank by
asserting low on CS , RAS , WE and A8/AP with valid
BA of the bank to be precharged. The precharge command
can be asserted anytime after tRAS(min) is satisfied from
the bank activate command in the desired bank. “tRP” is
defined as the minimum time required to precharge a bank.
The minimum number of clock cycles required to complete
row precharge is calculated by dividing “tRP” with clock
cycle time and rounding up to the next higher integer. Care
should be taken to make sure that burst write is completed
or DQM is used to inhibit writing before precharge
command is asserted. The maximum time any bank can
be active is specified by tRAS(max). Therefore, each bank
has to be precharged within tRAS(max) from the bank
activate command. At the end of precharge, the bank
enters the idle state and is ready to be activated again.
Entry to Power Down, Auto refresh, Self refresh and Mode
register Set etc, is possible only when both banks are in
idle state.
13
AMIC Technology, Inc.
A43L8316
Device Operations (continued)
operation is specified by “tRC(min)”. The minimum number
of clock cycles required can be calculated by driving “tRC”
with clock cycle time and then rounding up to the next
higher integer. The auto refresh command must be
followed by NOP’s until the auto refresh operation is
completed. Both banks will be in the idle state at the end of
auto refresh operation. The auto refresh is the preferred
refresh mode when the SDRAM is being used for normal
data transactions. The auto refresh cycle can be performed
once in 15.6us or a burst of 1024 auto refresh cycles once
in 16ms.
Auto Precharge
The precharge operation can also be performed by using
auto precharge. The SDRAM internally generates the
timing to satisfy tRAS(min) and “tRP” for the programmed
burst length and CAS latency. The auto precharge
command is issued at the same time as burst read or burst
write by asserting high on A8/AP. If burst read or burst
write command is issued with low on A8/AP, the bank is
left active until a new command is asserted. Once auto
precharge command is given, no new commands are
possible to that particular bank until the bank achieves idle
state.
Self Refresh
Both Banks Precharge
The self refresh is another refresh mode available in the
SDRAM. The self refresh is the preferred refresh mode for
data retention and low power operation of SDRAM. In self
refresh mode, the SDRAM disables the internal clock and
all the input buffers except CKE. The refresh addressing
and timing is internally generated to reduce power
consumption.
The self refresh mode is entered from all banks idle state
by asserting low on CS , RAS , CAS and CKE with high
on WE . Once the self refresh mode is entered, only CKE
state being low matters, all the other inputs including clock
are ignored to remain in the self refresh.
The self refresh is exited by restarting the external clock
and then asserting high on CKE. This must be followed by
NOP’s for a minimum time of “tRC” before the SDRAM
reaches idle state to begin normal operation. If the system
uses burst auto refresh during normal operation, it is
recommended to used burst 1024 auto refresh cycles
immediately after exiting self refresh.
Both banks can be precharged at the same time by using
Precharge all command. Asserting low on CS , RAS and
WE with high on A8/AP after both banks have satisfied
tRAS(min) requirement, performs precharge on both banks.
At the end of tRP after performing precharge all, both
banks are in idle state.
Auto Refresh
The storage cells of SDRAM need to be refreshed every
16ms to maintain data. An auto refresh cycle accomplishes
refresh of a single row of storage cells. The internal
counter increments automatically on every auto refresh
cycle to refresh all the rows. An auto refresh command is
issued by asserting low on CS , RAS and CAS with high
on CKE and WE . The auto refresh command can only be
asserted with both banks being in idle state and the device
is not in power down mode (CKE is high in the previous
cycle). The time required to complete the auto refresh
Preliminary (April, 2000, Version 1.0)
14
AMIC Technology, Inc.
A43L8316
Basic feature And Function Descriptions
1. CLOCK Suspend
1) Click Suspended During Write (BL=4)
2) Clock Suspended During Read (BL=4)
CLK
CMD
WR
RD
CKE
Masked by CKE
Masked by CKE
Internal
CLK
DQ(CL2)
D0
D1
D2
D3
DQ(CL3)
D0
D1
D2
D3
Q0
Q1
Q0
Q2
Q3
Q1
Q2
Not Written
Q3
Suspended Dout
Note: CLK to CLK disable/enable=1 clock
2. DQM Operation
2) Read Mask (BL=4)
1) Write Mask (BL=4)
CLK
CMD
WR
RD
DQM
Masked by CKE
DQ(CL2)
D0
DQ(CL3)
D0
D1
Masked by CKE
D3
D1
Q0
Hi-Z
Hi-Z
D3
DQM to Data-in Mask = 0CLK
Q1
Q3
Q1
Q2
Q3
DQM to Data-out Mask = 2
2) Read Mask (BL=4)
CLK
CMD
RD
CKE
DQM
DQ(CL2)
DQ(CL3)
Q0
Hi-Z
Hi-Z
Q2
Q1
Hi-Z
Hi-Z
Q4
Q3
Hi-Z
Hi-Z
Q6
Q7
Q8
Q5
Q6
Q7
* Note : 1. DQM makes data out Hi-Z after 2 clocks which should masked by CKE “L”.
2. DQM masks both data-in and data-out.
Preliminary (April, 2000, Version 1.0)
15
AMIC Technology, Inc.
A43L8316
3. CAS Interrupt (I)
1) Read interrupted by Read (BL=4) Note 1
CLK
CMD
RD
ADD
A
RD
B
DQ(CL2)
QA0
DQ(CL3)
QB0
QB1 QB2
QB3
QA0
QB0 QB1
QB2 QB3
tCCD
Note2
2) Write interrupted by Write (BL =2)
3) Write interrupted by Read (BL =2)
CLK
CMD
WR
WR
tCCD
WR
Note2
ADD
A
B
DQ
DA0
DB0
RD
tCCD
A
DB1
tCDL
Note3
Note2
B
DQ(CL2)
DA0
DQ(CL3)
DA0
QB0
QB1
QB0
QB1
tCDL
Note3
Note : 1. By “Interrupt”, It is possible to stop burst read/write by external command before the end of burst.
By “ CAS Interrupt”, to stop burst read/write by CAS access; read, write and block write.
2. tCCD : CAS to CAS delay. (=1CLK)
3. tCDL : Last data in to new column address delay. (= 1CLK).
Preliminary (April, 2000, Version 1.0)
16
AMIC Technology, Inc.
A43L8316
4.
CAS Interrupt (II) : Read Interrupted Write & DQM
(1) CL=2, BL=4
CLK
i) CMD
RD
DQM
DQ
ii) CMD
D0
D1
Hi-Z
D0
RD
D3
D1
D2
D3
D1
D2
D3
D1
D2
WR
DQM
Hi-Z
DQ
iv) CMD
D2
WR
RD
DQM
DQ
iii) CMD
WR
D0
RD
WR
DQM
DQ
Q0
Hi-Z
Note 1
D0
D3
(2) CL=3, BL=4
CLK
i) CMD
RD
WR
DQM
DQ
ii) CMD
D0
RD
DQM
DQ
iii) CMD
RD
D3
D1
D2
D3
D1
D2
D3
D1
D2
D3
D1
D2
WR
D0
WR
RD
DQM
WR
Hi-Z
DQ
v) CMD
D2
WR
D0
DQM
DQ
iv) CMD
D1
D0
RD
WR
DQM
DQ
Q0
Hi-Z
Note 2
D0
D3
* Note : 1. To prevent bus contention, there should be at least one gap between data in and data out.
2. To prevent bus contention, DQM should be issued which makes a least one gap between data in and data out.
Preliminary (April, 2000, Version 1.0)
17
AMIC Technology, Inc.
A43L8316
5. Write Interrupted by Precharge & DQM
CLK
CMD
Note 2
WR
PRE
Note 1
DQM
DQ
D0
D1
D2
D3
Masked by DQM
Note : 1. To inhibit invalid write, DQM should be issued.
2. This precharge command and burst write command should be of the same bank, otherwise it is not precharge
interrupt but only another bank precharge of dual banks operation.
6. Precharge
1) Normal Write (BL=4)
CLK
CMD
WR
DQ
D0
PRE
D1
D2
D3
t RDL
Note 1
2) Read (BL=4)
CLK
CMD
RD
Note 2
PRE
DQ(CL2)
Q0
DQ(CL3)
Q1
Q2
Q3
Q0
Q1
Q2
1
Q3
2
7. Auto Precharge
1) Normal Write (BL=4)
CLK
CMD
WR
DQ
D0
D1
D2
D3
Note 2
Auto Precharge Starts
2) Read (BL=4)
CLK
CMD
RD
DQ(CL2)
DQ(CL3)
Q0
Q1
Q2
Q3
Q0
Q1
Q2
Q3
Note 2
Auto Precharge Starts
* Note : 1. Number of valid output data after Row Precharge : 1,2 for CAS Latency = 2,3 respectively.
2. The row active command of the precharge bank can be issued after tRP from this point.
The new read/write command of other active bank can be issued from this point.
At burst read/write with auto precharge, CAS interrupt of the same/another bank is illegal.
Preliminary (April, 2000, Version 1.0)
18
AMIC Technology, Inc.
A43L8316
8. Burst Stop & Precharge Interrupt
2) Write Burst Stop (BL=8)
1) Write Interrupted by Precharge (BL=4)
CLK
CMD
CLK
WR
PRE
CMD
WR
D3
DQ
D0
STOP
DQM
DQ
D0
D1
D2
tRDL
D2
Note 1
tBDL (note 2)
3) Read Interrupted by Precharge (BL=4)
4) Read Burst Stop (BL=4)
CLK
CMD
D1
CLK
RD
PRE
DQ(CL2)
Q0
DQ(CL3)
CMD
Note 3
Q1
Q0
1
DQ(CL2)
Q1
2
DQ(CL3)
RD
STOP
Q0
Note 3
Q1
Q0
1
Q1
2
9. MRS
Mode Register Set
CLK
Note 4
CMD
MRS ACT
PRE
tRP
1CLK
Note : 1.tRDL : 1CLK, Last Data in to Row Precharge.
2. tBDL : 1CLK, Last Data in to Burst Stop Delay.
3. Number of valid output data after Row precharge or burst stop : 1,2 for CAS latency=2,3 respectively.
4. PRE : Both banks precharge if necessary.
MRS can be issued only at all bank precharge state.
Preliminary (April, 2000, Version 1.0)
19
AMIC Technology, Inc.
A43L8316
10. Clock Suspend Exit & Power Down Exit
2) Power Down (=Precharge Power Down) Exit
1) Clock Suspend (=Active Power Down) Exit
CLK
CLK
CKE
Internal
CLK
CKE
tSS
tSS
Internal
CLK
Note 1
RD
CMD
Note 2
NOP
CMD
ACT
11. Auto Refresh & Self Refresh
Note 3
1) Auto Refresh
~
~
CLK
Note 4
CKE
Note 5
PRE
AR
CMD
~~
~
~
~
~
Internal
CLK
CMD
tRP
tRC
Note 6
CLK
~
~
~
~
2) Self Refresh
Note 4
PRE
SR
CMD
~
~
CMD
~
~
~
~
CKE
tRP
tRC
* Note : 1. Active power down : one or more bank active state.
2. Precharge power down : both bank precharge state.
3. The auto refresh is the same as CBR refresh of conventional DRAM.
No precharge commands are required after Auto Refresh command.
During tRC from auto refresh command, any other command can not be accepted.
4. Before executing auto/self refresh command, both banks must be idle state.
5. MRS, Bank Active, Auto/Self Refresh, Power Down Mode Entry.
6. During self refresh mode, refresh interval and refresh operation are performed internally.
After self refresh entry, self refresh mode is kept while CKE is LOW.
During self refresh mode, all inputs expect CKE will be don’t cared, and outputs will be in Hi-Z state.
During tRC from self refresh exit command, any other command can not be accepted.
Before/After self refresh mode, burst auto refresh cycle (1024K cycles ) is recommended.
Preliminary (April, 2000, Version 1.0)
20
AMIC Technology, Inc.
A43L8316
12. About Burst Type Control
Basic
MODE
Sequential counting
Interleave counting
PseudoDecrement Sequential
Counting
PseudoMODE
Pseudo-Binary Counting
Random
MODE
Random column Access
tCCD = 1 CLK
At MRS A3=”0”. See the BURST SEQUENCE TABE.(BL=4,8)
BL=1,2,4,8 and full page wrap around.
At MRS A3=” 1”. See the BURST SEQUENCE TABE.(BL=4,8)
BL=4,8 At BL=1,2 Interleave Counting = Sequential Counting
At MRS A3 = “1”. (See to Interleave Counting Mode)
Starting Address LSB 3 bits A0-2 should be “000” or “111”.@BL=8.
--if LSB = “000” : Increment Counting.
--if LSB= “111” : Decrement Counting.
For Example, (Assume Addresses except LSB 3 bits are all 0, BL=8)
--@ write, LSB=”000”, Accessed Column in order 0-1-2-3-4-5-6-7
--@ read, LSB=”111”, Accessed Column in order 7-6-5-4-3-2-1-0
At BL=4, same applications are possible. As above example, at Interleave
Counting mode, by confining starting address to some values, PseudoDecrement Counting Mode can be realized. See the BURST SEQUENCE
TABLE carefully.
At MRS A3 = “0”. (See to Sequential Counting Mode)
A0-2 = “111”. (See to Full Page Mode)
Using Full Page Mode and Burst Stop Command, Binary Counting Mode can be
realized.
--@ Sequential Counting Accessed Column in order 3-4-5-6-7-1-2-3 (BL=8)
--@ Pseudo-Binary Counting,
Accessed Column in order 3-4-5-6-7-8-9-10 (Burst Stop command)
Note. The next column address of 256 is 0
Every cycle Read/Write Command with random column address can realize
Random Column Access.
That is similar to Extended Data Out (EDO) Operation of convention DRAM.
13. About Burst Length Control
At MRS A2,1,0 = “000”.
At auto precharge, tRAS should not be violated.
At MRS A2,1,0 = “001”.
2
At auto precharge, tRAS should not be violated.
4
At MRS A2,1,0 = “010”
8
At MRS A2,1,0 = “011”.
At MRS A2,1,0 = “111”.
Full Page
Wrap around mode (Infinite burst length) should be stopped by burst stop,
RAS interrupt or CAS interrupt.
At MRS BA=”1”.
BRSW
Read burst = 1,2,4,8, full page/write Burst =1
At auto precharge of write, tRAS should not be violated.
tBDL=1, Valid DQ after burst stop is 1,2 for CL=2,3 respectively
Burst Stop
Using burst stop command, it is possible only at full page burst length.
Before the end of burst, Row precharge command of the same bank
RAS Interrupt
Stops read/write burst with Row precharge.
(Interrupted by Precharge) tRDL=1 with DQM, valid DQ after burst stop is 1,2 for CL=2,3 respectively
During read/write burst with auto precharge, RAS interrupt cannot be issued.
Before the end of burst, new read/write stops read/write burst and starts new
read/write burst or block write.
CAS Interrupt
During read/write burst with auto precharge, CAS interrupt can not be issued.
1
Basic
MODE
Special
MODE
Random
MODE
Interrupt
MODE
Preliminary (April, 2000, Version 1.0)
21
AMIC Technology, Inc.
A43L8316
Power On Sequence & Auto Refresh
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CS
tRP
tRC
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
A8/AP
~
~
BA
~
~
ADDR
~
~
CAS
~
~
~
~
RAS
KEY
Ra
KEY
BS
KEY
Ra
~
~
~
~
~
~
~
~
~
~
~
~
WE
High level is necessary
~
~
High-Z
DQ
Precharge
(All Banks)
Auto Refresh
~
~
DQM
~
~
~
High level is necessary
~
~
CKE
Auto Refresh
Mode Regiser Set
Row Active
(A-Bank)
: Don't care
Preliminary (April, 2000, Version 1.0)
22
AMIC Technology, Inc.
A43L8316
Single Bit Read-Write-Read Cycles (Same Page) @CAS Latency=3, Burst Length=1
tCH
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
tCL
tCC
High
CKE
tRAS
tRC
tSH
*Note 1
CS
tSS
tRCD
tRP
tSH
RAS
tSS
tCCD
tSH
CAS
tSS
tSH
ADDR
Ra
tSS
Ca
Cb
tSS
Cc
Rb
tSH
*Note 2
BA
BS
A8/AP
Ra
*Note 2,3
*Note 2,3
*Note 2,3
*Note 4
*Note 2
BS
BS
BS
BS
BS
*Note 3
*Note 3
*Note 3
*Note 4
Rb
tSH
WE
tSS
tSS
tSH
DQM
tRAC
tSH
tSAC
Qa
DQ
tSLZ
tOH
Row Active
Read
Db
Qc
tSS
tSHZ
Write
Read
Row Active
Precharge
: Don't care
Preliminary (April, 2000, Version 1.0)
23
AMIC Technology, Inc.
A43L8316
* Note : 1. All inputs can be don’t care when CS is high at the CLK high going edge.
2. Bank active & read/write are controlled by BA.
BA
Active & Read/Write
0
Bank A
1
Bank B
3. Enable and disable auto precharge function are controlled by A8/AP in read/write command.
A8/AP
0
1
BA
Operation
0
Disable auto precharge, leave bank A active at end of burst.
1
Disable auto precharge, leave bank B active at end of burst.
0
Enable auto precharge, precharge bank A at end of burst.
1
Enable auto precharge, precharge bank B at end of burst.
4. A8/AP and BA control bank precharge when precharge command is asserted.
A8/AP
BA
Precharge
0
0
Bank A
0
1
Bank B
1
X
Both Bank
Preliminary (April, 2000, Version 1.0)
24
AMIC Technology, Inc.
A43L8316
Read & Write Cycle at Same Bank @Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
High
CKE
tRC
*Note 1
CS
tRCD
RAS
*Note 2
CAS
ADDR
Ra
Ca0
Rb
Cb0
BA
A8/AP
Ra
Rb
WE
DQM
tOH
DQ
(CL = 2)
Qa0
tRAC
*Note 3
Qa1
Qa2
tSAC
Qa3
Db0
Db1
*Note 4
tSHZ
Db2
Db3
tRDL
tOH
DQ
(CL = 3)
Qa0
tRAC
*Note 3
Row Active
(A-Bank)
Qa1
Qa3
tSHZ
tSAC
Read
(A-Bank)
Qa2
Precharge
(A-Bank)
Db0
*Note 4
Row Active
(A-Bank)
Db1
Db2
Db3
tRDL
Write
(A-Bank)
Precharge
(A-Bank)
: Don't care
*Note : 1. Minimum row cycle times is required to complete internal DRAM operation.
2. Row precharge can interrupt burst on any cycle. [CAS latency-1] valid output data available after Row
enters precharge. Last valid output will be Hi-Z after tSHZ from the clock.
3. Access time from Row address. tCC*(tRCD + CAS latency-1) + tSAC
4. Output will be Hi-Z after the end of burst. (1,2,4 & 8)
At Full page bit burst, burst is wrap-around.
Preliminary (April, 2000, Version 1.0)
25
AMIC Technology, Inc.
A43L8316
Page Read & Write Cycle at Same Bank @Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
High
CS
tRCD
RAS
*Note 2
CAS
ADDR
Ra
Ca0
Cb0
Cc0
Cd0
BA
A8/AP
Ra
tRDL
tCDL
WE
*Note 2
*Note1
*Note3
DQM
DQ
(CL=2)
Qa0
DQ
(CL=3)
Row Active
(A-Bank)
Read
(A-Bank)
Qa1
Qb0
Qb1
Dc0
Dc1
Dd0
Dd1
Qa0
Qa1
Qb0
Dc0
Dc1
Dd0
Dd1
Write
(A-Bank)
Read
(A-Bank)
Write
(A-Bank)
Precharge
(A-Bank)
: Don't care
*Note : 1. To write data before burst read ends, DQM should be asserted three cycle prior to write
command to avoid bus contention.
2. Row precharge will interrupt writing. Last data input, tRDL before Row precharge, will be written.
3. DQM should mask invalid input data on precharge command cycle when asserting precharge
before end of burst. Input data after Row precharge cycle will be masked internally.
Preliminary (April, 2000, Version 1.0)
26
AMIC Technology, Inc.
A43L8316
Page Read Cycle at Different Bank @Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
High
*Note 1
CS
RAS
*Note 2
CAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
CAe
BA
A8/AP
RAa
RBb
WE
DQM
DQ
(CL=2)
QAa0 QAa1 QAa2
DQ
(CL=3)
QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1
QAa0 QAa1 QAa2
Row Active
(A-Bank)
Row Active
(B-Bank)
QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1
Read
(A-Bank)
Read
(B-Bank)
Read
(B-Bank)
Read
(A-Bank)
Precharge
(A-Bank)
Read
(A-Bank)
: Don't care
* Note : 1. CS can be don’t care when RAS,
CAS and WE are high at the clock high going edge.
2. To interrupt a burst read by row precharge, both the read ad the precharge banks must be the same.
Preliminary (April, 2000, Version 1.0)
27
AMIC Technology, Inc.
A43L8316
Page Write Cycle at Different Bank @Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
High
CS
RAS
*Note 2
CAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
BA
A8/AP
RAa
RBb
DAa0 DAa1 DAa2
DQ
DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0 DBd1
tCDL
tRDL
WE
*Note 1
DQM
Row Active
(B-Bank)
Row Active with
(A-Bank)
Write
(B-Bank)
Precharge
(Both Banks)
Write
(A-Bank)
Write
(A-Bank)
Write
(B-Bank)
: Don't care
* Note:
1. To interrupt burst write by Row precharge, DQM should be asserted to mask invalid input data.
2. To interrupt burst write by Row precharge, both the write and precharge banks must be the same.
Preliminary (April, 2000, Version 1.0)
28
AMIC Technology, Inc.
A43L8316
Read & Write Cycle at Different Bank @Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
High
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CAc
BA
A8/AP
RAa
RBb
RAc
tCDL
*Note 1
WE
DQM
DQ
(CL=2)
QAa0 QAa1 QAa2 QAa3
DQ
(CL=3)
QAa0 QAa1 QAa2 QAa3
Row Active
(A-Bank)
Read
(A-Bank)
Precharge
(A-Bank)
DBb0 DBb1 DBb2 DBb3
QAc0 QAc1 QAc2
DBb0 DBb1 DBb2 DBb3
QAc0 QAc1
Write
(B-Bank)
Row Active
(B-Bank)
Read
(A-Bank)
Row Active
(A-Bank)
: Don't care
* Note : tCDL should be met to complete write.
Preliminary (April, 2000, Version 1.0)
29
AMIC Technology, Inc.
A43L8316
Read & Write Cycle with Auto Precharge I @Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
High
CS
RAS
CAS
ADDR
RAa
RBb
RAa
RBb
CAa
CBb
BA
A8/AP
WE
DQM
DQ
(CL=2)
QAa0
DQ
(CL=3)
Row Active
(A-Bank)
Read with
Auto Precharge
(A-Bank)
QAa1 QAa2 QAa3
DBb0 DBb1 DBb2 DBb3
QAa0 QAa1 QAa2 QAa3
DBb0 DBb1 DBb2 DBb3
Auto Precharge
Start Point
(A-Bank)
Write with
Auto Precharge
(B-Bank)
Auto Precharge
Start Point
(B-Bank)
Row Active
(B-Bank)
: Don't care
*Note : tRCD should be controlled to meet minimum tRAS before internal precharge start.
(In the case of Burst Length=1 & 2, BRSW mode)
Preliminary (April, 2000, Version 1.0)
30
AMIC Technology, Inc.
A43L8316
Read & Write Cycle with Auto Precharge II @Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
High
CS
RAS
CAS
ADDR
Ra
Rb
Ra
Rb
Ca
Cb
Ra
Ca
BA
A8/AP
Ra
WE
DQM
Qa0
DQ
(CL=2)
DQ
(CL=3)
Row Active
(A-Bank)
Read with
Auto Pre
Charge
(A-Bank)
Qa1
Qb0
Qb1
Qb2
Qb3
Qa0
Qa1
Qb0
Qb1
Qb2
Read without
Auto Precharge
(B-Bank)
Auto Precharge
Strart Point
(A-Bank) *Note 1
Precharge
(B-Bank)
Qb3
Row Active
(A-Bank)
Da0
Da1
Da0
Da1
Write with
Auto Precharge
(A-Bank)
Row Active
(B-Bank)
: Don't care
* Note :
When Read(Write) command with auto precharge is issued at A-Bank after A and B Bank activation.
- if read(Write) command without auto precharge is issued at B-Bank before A Bank auto precharge starts, A Bank
auto precharge will start at B Bank read command input point.
- Any command can not be issued at A Bank during tRP after A Bank auto precharge starts.
Preliminary (April, 2000, Version 1.0)
31
AMIC Technology, Inc.
A43L8316
Read & Write Cycle with Auto Precharge III @Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
High
CS
RAS
CAS
ADDR
Ra
Ca
Rb
Cb
BA
A8/AP
Ra
Rb
WE
DQM
DQ
(CL=2)
Qa0
DQ
(CL=3)
Qa1
Qa2
Qa3
Qa0
Qa1
Qa2
Qb0
Qa3
Qb1
Qb2
Qb3
Qb0
Qb1
Db2
Db3
* Note 1
Row Active
(A-Bank)
Read with
Auto Preharge
(A-Bank)
Auto Precharge Read with
Start Point Auto Precharge
(B-Bank)
(A-Bank)
Row Active
(B-Bank)
Auto Precharge
Start Point
(B-Bank)
: Don't care
* Note : Any command to A-bank is not allowed in this period.
tRP is determined from at auto precharge start point
Preliminary (April, 2000, Version 1.0)
32
AMIC Technology, Inc.
A43L8316
Read Interrupted by Precharge Command & Read Burst Stop Cycle (@Burst Length = Full Page)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
High
CS
RAS
CAS
ADDR
RAa
CAa
CAb
BA
* Note 1
A8/AP
* Note 1
RAa
WE
DQM
* Note 2
DQ
(CL=2)
1
1
QAa0 QAa1 QAa2 QAa3 QAa4
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5
2
DQ
(CL=3)
QAa0
Row Active
(A-Bank)
Read
(A-Bank)
QAa1 QAa2 QAa3 QAa4
Burst Stop
2
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5
Read
(A-Bank)
Precharge
(A-Bank)
: Don't care
* Note : 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.
2. About the valid DQ’s after burst stop, it is same as the case of RAS interrupt.
Both cases are illustrated above timing diagram. See the label 1,2 on them.
But at burst write, burst stop and RAS interrupt should be compared carefully.
Refer the timing diagram of “Full page write burst stop cycle”.
3. Burst stop is valid at every burst length.
Preliminary (April, 2000, Version 1.0)
33
AMIC Technology, Inc.
A43L8316
Write Interrupted by Precharge Command & Write Burst Stop Cycle (@ Burst Length = Full Page)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
High
CS
RAS
CAS
ADDR
RAa
CAa
CAb
BA
* Note 1
A8/AP
* Note 1
RAa
tBDL
tRDL
WE
* Note 3
DQM
* Note 2
DAa0
DQ
Row Active
(A-Bank)
DAa1
Write
(A-Bank)
DAa2
DAa3 DAa4
DAb0 DAb1 DAb2 DAb3 DAb4 DAb5
Burst Stop
Write
(A-Bank)
Precharge
(A-Bank)
: Don't care
* Note : 1. At full page mode, burst is wrap-around at the end of burst. So auto precharge is impossible.
2. Data-in at the cycle of burst stop command cannot be written into corresponding memory cell.
It is defined by AC parameter of tBDL(=1CLK).
3. Data-in at the cycle of interrupted by precharge cannot be written into the corresponding memory cell.
It is defined by AC parameter of tRDL(1=CLK).
DQM at write interrupted by precharge command is needed to ensure tRDL of 1CLK.
DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst.
Input data after Row precharge cycle will be masked internally.
4. Burst stop is valid only at every burst length.
Preliminary (April, 2000, Version 1.0)
34
AMIC Technology, Inc.
A43L8316
Burst Read Single Bit Write Cycle @Burst Length=2, BRSW
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
QAd0
QAd1
18
19
CLOCK
CKE
High
CS
RAS
* Note 2
CAS
ADDR
RAa
CAa
RBb
CAb
RAc
CBc
CAd
BA
A8/AP
RAa
RBb
RAc
WE
DQM
DQ
(CL=2)
DAa0
DQ
(CL=3)
DAa0
Row Active
(A-Bank)
QAb0
QAb1
DBc0
QAb0 QAb1
DBc0
Row Active
(A-Bank)
Row Active
(B-Bank)
Write
(A-Bank)
QAd0
Read
(A-Bank)
QAd1
Precharge
(A-Bank)
Write with
Auto Precharge
(B-Bank)
Read with
Auto Precharge
(A-Bank)
: Don't care
* Note : 1. BRSW mode is enabled by setting BA “High” at MRS (Mode Register Set).
At the BRSW Mode, the burst length at write is fixed to “1” regardless of programed burst length.
2. When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated.
Auto precharge is executed at the burst-end cycle, so in the case of BRSW write command,
The next cycle starts the precharge.
Preliminary (April, 2000, Version 1.0)
35
AMIC Technology, Inc.
A43L8316
Clock Suspension & DQM Operation Cycle @CAS Latency = 2, Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
CS
RAS
CAS
ADDR
Ra
Ca
Cb
Cc
BA
A8/AP
Ra
WE
* Note 1
DQM
Qa0
DQ
Qa1
Qa2
Qa3
tSHZ
Row Active
Read
Clock
Suspension
Qb0
Qb1
Dc0
Dc2
tSHZ
Read
Write
DQM
Read DQM
Write
Clock
Suspension
: Don't care
* Note : DQM needed to prevent bus contention.
Preliminary (April, 2000, Version 1.0)
36
AMIC Technology, Inc.
A43L8316
Active/Precharge Power Down Mode @CAS Lantency=2, Burst Length=4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
~
~
~
~
tSS
~
~
0
CLOCK
* Note 2
tSS
tSS
tSS
CKE
~
~
* Note 1
*Note 3
~
~
~
~
~
~
CS
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
ADDR
Ra
~
~
~
~
~
~
~
~
BA
~
~
~
~
~
~
A8/AP
Ra
~
~
~
~
Precharge
Power-down
Entry
Qa0
~
~
~
~
~
~
~
~
~
~
DQ
~
~
DQM
~
~
~
~
WE
Ca
~
~
CAS
~
~
RAS
Precharge
Power-down
Exit
Row Active
Read
Qa1
Qa2
Precharge
Active
Power-down
Exit
Active
Power-down
Entry
: Don't care
* Note : 1. All banks should be in idle state prior to entering precharge power down mode.
2. CKE should be set high at least “1CLK + tSS” prior to Row active command.
3. Cannot violate minimum refresh specification. (16ms)
Preliminary (April, 2000, Version 1.0)
37
AMIC Technology, Inc.
A43L8316
Self Refresh Entry & Exit Cycle
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
* Note 4
* Note 2
tSS
CKE
* Note 1
tRC min.
~
~
~
~
~
~
~
~
CLOCK
* Note 6
~
~
* Note 3
~
~
~
~
tSS
* Note 5
~
~
~
~
~
~
RAS
~
~
~
~
CS
* Note 7
* Note 7
~
~
~
~
~
~
~
~
CAS
~
~
~
~
~
~
~
~
ADDR
~
~
~
~
~
~
~
~
BA
~
~
~
~
~
~
~
~
A8/AP
~
~
~
~
~
~
~
~
WE
Hi-Z
~
~
~
~
~
~
~
~
DQ
~
~
~
~
DQM
Hi-Z
Self Refresh Exit
Self Refresh Entry
Auto Refresh
: Don't care
* Note : TO ENTER SELF REFRESH MODE
1. CS , RAS &
CAS with CKE should be low at the same clock cycle.
2. After 1 clock cycle, all the inputs including the system clock can be don’t care except for CKE.
3. The device remains in self refresh mode as long as CKE stays “Low”.
(cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.
TO EXIT SELF REFRESH MODE
4. System clock restart and be stable before returning CKE high.
5. CS starts from high.
6. Minimum tRC is required after CKE going high to complete self refresh exit.
7. 1K cycle of burst auto refresh is required before self refresh entry and after self refresh exit.
If the system uses burst refresh.
Preliminary (April, 2000, Version 1.0)
38
AMIC Technology, Inc.
A43L8316
Mode Register Set Cycle
0
1
2
Auto Refresh Cycle
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10
CKE
High
~
~
~
~
CLOCK
High
~
~
*Note 2
tRC
~
~
~
RAS
~
* Note 1
~
~
CAS
Ra
~
~
Key
~
* Note 3
ADDR
~
~
CS
~
~
~
WE
~
DQ
Hi-Z
~
~
~
~
DQM
Hi-Z
Auto Refresh
MRS
New Command
New
Command
: Don't care
* Both banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.
MODE REGISTER SET CYCLE
* Note : 1. CS , RAS ,
CAS & WE activation at the same clock cycle with address key will set internal
mode register.
2. Minimum 2 clock cycles should be met before new RAS activation.
3. Please refer to Mode Register Set table.
Preliminary (April, 2000, Version 1.0)
39
AMIC Technology, Inc.
A43L8316
Function Truth Table (Table 1)
Current
State
IDLE
CS
RAS CAS
WE
BA
Address
Action
Note
H
X
X
X
X
X
NOP
L
H
H
H
X
X
NOP
L
H
H
L
X
X
ILLEGAL
2
L
H
L
X
BA
CA, A8/AP
ILLEGAL
2
L
L
H
H
BA
RA
Row Active; Latch Row Address
L
L
H
L
BA
PA
NOP
4
L
L
L
H
X
X
Auto Refresh or Self Refresh
5
L
L
L
L
Mode Register Access
5
OP Code
H
X
X
X
X
X
NOP
L
H
H
H
X
X
NOP
Row
L
H
H
L
X
X
ILLEGAL
Active
L
H
L
H
BA
CA,A8/AP
Begin Read; Latch CA; Determine AP
L
H
L
L
BA
CA,A8/AP
Begin Write; Latch CA; Determine AP
L
L
H
H
BA
RA
ILLEGAL
L
L
H
L
BA
PA
Precharge
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP(Continue Burst to End →Row Active)
L
H
H
H
X
X
NOP(Continue Burst to End →Row Active)
L
H
H
L
X
X
Term burst →Row Active
L
H
L
H
BA
CA,A8/AP
Term burst; Begin Read; Latch CA; Determine AP
3
L
H
L
L
BA
CA,AP
Term burst; Begin Write; Latch CA; Determine AP
3
L
L
H
H
BA
RA
ILLEGAL
2
L
L
H
L
BA
PA
Term Burst; Precharge timing for Reads
3
L
L
L
X
X
X
ILLEGAL
Read
Write
Read with
Auto
Precharge
2
2
H
X
X
X
X
X
NOP(Continue Burst to End→Row Active)
L
H
H
H
X
X
NOP(Continue Burst to End→Row Active)
L
H
H
L
X
X
ILLEGAL
L
H
L
H
BA
CA,A8/AP
Term burst; Begin Read; Latch CA; Determine AP
3
L
H
L
L
BA
CA,A8/AP
Term burst; Begin Read; Latch CA; Determine AP
3
L
L
H
H
BA
RA
ILLEGAL
2
L
L
H
L
BA
A8/AP
Term Burst; Precharge timing for Writes
3
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP(Continue Burst to End→Precharge)
L
H
H
H
X
X
NOP(Continue Burst to End→Precharge)
L
H
H
L
X
X
ILLEGAL
L
H
L
H
BA
CA,A8/AP
ILLEGAL
2
L
H
L
L
BA
CA,A8/AP
ILLEGAL
2
L
L
H
X
BA
RA, PA
ILLEGAL
L
L
L
X
X
X
ILLEGAL
Preliminary (April, 2000, Version 1.0)
40
2
AMIC Technology, Inc.
A43L8316
Function Truth Table (Table 1, Continued)
Current
State
CS
RAS CAS
WE
BA
Address
Action
Note
H
X
X
X
X
X
NOP(Continue Burst to End→Precharge)
L
H
H
H
X
X
NOP(Continue Burst to End→Precharge)
Write with
L
H
H
L
X
X
ILLEGAL
Auto
L
H
L
H
BA
CA,A8/AP
ILLEGAL
2
Precharge
L
H
L
L
BA
CA,A8/AP
ILLEGAL
2
L
L
H
X
BA
RA, PA
ILLEGAL
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP→Idle after tRP
L
H
H
H
X
X
NOP→Idle after tRP
L
H
H
L
X
X
ILLEGAL
L
H
L
X
BA
CA,A8/AP
ILLEGAL
2
L
L
H
H
BA
RA
ILLEGAL
2
L
L
H
L
BA
PA
NOP→Idle after tRP
2
L
L
L
X
X
X
ILLEGAL
4
H
X
X
X
X
X
NOP→Row Active after tRCD
L
H
H
H
X
X
NOP→Row Active after tRCD
L
H
H
L
X
X
ILLEGAL
L
H
L
X
BA
CA,A8/AP
ILLEGAL
2
L
L
H
H
BA
RA
ILLEGAL
2
L
L
H
L
BA
PA
ILLEGAL
2
L
L
L
X
X
X
ILLEGAL
2
H
X
X
X
X
X
NOP→Idle after tRC
L
H
H
X
X
X
NOP→Idle after tRC
L
H
L
X
X
X
ILLEGAL
L
L
H
X
X
X
ILLEGAL
L
L
L
X
X
X
ILLEGAL
Precharge
Row
Activating
Refreshing
Abbreviations
RA = Row Address
NOP = No Operation Command
BA = Bank Address
CA = Column Address
2
AP = Auto Precharge
PA = Precharge All
Note: 1. All entries assume that CKE was active (High) during the preceding clock cycle and the current clock cycle.
2. Illegal to bank in specified state : Function may be legal in the bank indicated by BA, depending on the state of
that bank.
3. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
4. NOP to bank precharging or in idle state. May precharge bank indicated by BA (and PA).
5. Illegal if any banks is not idle.
Preliminary (April, 2000, Version 1.0)
41
AMIC Technology, Inc.
A43L8316
Function Truth Table for CKE (Table 2)
Current
State
Self
Refresh
Both
Bank
Precharge
Power
Down
All
Banks
Idle
Any State
Other than
Listed
Above
CKE
n-1
H
CKE
n
X
X
X
L
H
H
X
L
H
L
L
H
L
L
L
CS
RAS CAS
WE
Address
Action
Note
X
X
X
INVALID
X
X
X
Exit Self Refresh→ABI after tRC
6
H
H
H
X
Exit Self Refresh→ABI after tRC
6
L
H
H
L
X
ILLEGAL
H
L
H
L
X
X
ILLEGAL
H
L
L
X
X
X
ILLEGAL
L
X
X
X
X
X
NOP(Maintain Self Refresh)
H
X
X
X
X
X
X
INVALID
L
H
H
X
X
X
X
Exit Power Down→ABI
7
L
H
L
H
H
H
X
Exit Power Down→ABI
7
L
H
L
H
H
L
X
ILLEGAL
L
H
L
H
L
X
X
ILLEGAL
L
H
L
L
X
X
X
ILLEGAL
L
L
X
X
X
X
X
NOP(Maintain Power Down Mode)
H
H
X
X
X
X
X
Refer to Table 1
H
L
H
X
X
X
X
Enter Power Down
8
H
L
L
H
H
H
X
Enter Power Down
8
H
L
L
H
H
L
X
ILLEGAL
H
L
L
H
L
X
X
ILLEGAL
H
L
L
L
H
X
X
ILLEGAL
H
L
L
L
L
H
X
Enter Self Refresh
H
L
L
L
L
L
X
ILLEGAL
L
L
X
X
X
X
X
NOP
H
H
X
X
X
X
X
Refer to Operations in Table 1
H
L
X
X
X
X
X
Begin Clock Suspend next cycle
9
L
H
X
X
X
X
X
Exit Clock Suspend next cycle
9
L
L
X
X
X
X
X
Maintain clock Suspend
8
Abbreviations : ABI = All Banks Idle
Note: 6. After CKE’s low to high transition to exit self refresh mode. And a time of tRC(min) has to be elapse after CKE’s low
to high transition to issue a new command.
7. CKE low to high transition is asynchronous as if restarts internal clock.
A minimum setup time “tSS + one clock” must be satisfied before any command other than exit.
8. Power-down and self refresh can be entered only from the all banks idle state.
9. Must be a legal command.
Preliminary (April, 2000, Version 1.0)
42
AMIC Technology, Inc.
A43L8316
Ordering Information
Part No.
Cycle Time (ns)
A43L8316V-7
7
A43L8316V-8
A43L8316V-10
Access Time
Package
143
6 ns @ CL = 3
50 TSOP (II)
8
125
6 ns @ CL = 3
50 TSOP (II)
10
100
8 ns @ CL = 3
50 TSOP (II)
Preliminary (April, 2000, Version 1.0)
Clock Frequency (MHz)
43
AMIC Technology, Inc.
A43L8316
Package Information
TSOP 50L (Type II) Outline Dimensions
unit: inches/mm
Detail "A"
50
26
R0.15 REF.
0.25
E
E1
R0.15 REF.
θ
L
L1
1
25
D
e
D
b
A
A1
A2
c
Detail "A"
0.1
Seating Plane
Dimensions in inches
Symbol
Min
Nom
Max
Dimensions in mm
Min
Nom
Max
A
-
-
0.047
-
-
1.20
A1
0.002
-
-
0.05
-
0.15
A2
0.037
0.040
0.041
0.95
1.00
1.05
b
0.012
-
0.018
0.30
-
0.45
c
0.005
-
0.008
0.12
-
0.21
D
0.821
0.825
0.829
20.855
20.955
21.055
E
0.455
0.463
0.471
11.56
11.76
11.96
E1
0.396
0.400
0.404
10.06
10.16
10.26
e
-
0.031
-
-
0.800
-
L
0.016
0.020
0.024
0.40
0.50
0.60
5°
0°
L1
θ
0.031 REF
0°
-
0.80 REF
-
5°
Notes:
1. The maximum value of dimension D includes end flash.
2. Dimension E does not include resin fins.
3. Dimension S includes end flash.
Preliminary (April, 2000, Version 1.0)
44
AMIC Technology, Inc.