HITACHI BB304C

BB304C
Build in Biasing Circuit MOS FET IC
UHF/VHF RF Amplifier
ADE-208-606C (Z)
4th. Edition
August 1998
Features
• Build in Biasing Circuit; To reduce using parts cost & PC board space.
• High gain;
(PG = 29 dB typ. at f = 200 MHz)
• Low noise characteristics;
(NF = 1.2 dB typ. at f = 200 MHz)
• Wide supply voltage range;
Applicable with 5V to 9V supply voltage.
• Withstanding to ESD;
Build in ESD absorbing diode. Withstand up to 200V at C=200pF, Rs=0 conditions.
• Provide mini mold packages; CMPAK-4(SOT-343mod)
Outline
CMPAK-4
2
3
1
4
1. Source
2. Gate1
3. Gate2
4. Drain
Notes: 1 Marking is “DW–”.
2. BB304C is individual type number of HITACHI BBFET.
BB304C
Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
Drain to source voltage
VDS
12
V
Gate1 to source voltage
VG1S
+10
–0
V
Gate2 to source voltage
VG2S
±10
V
Drain current
ID
25
mA
Channel power dissipation
Pch
100
mW
Channel temperature
Tch
150
°C
Storage temperature
Tstg
–55 to +150
°C
Electrical Characteristics (Ta = 25°C)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Drain to source breakdown voltage V(BR)DSS
12
—
—
V
I D = 200µA, VG1S = VG2S = 0
Gate1 to source breakdown voltage V(BR)G1SS
+10
—
—
V
I G1 = +10µA, VG2S = VDS = 0
Gate2 to source breakdown voltage V(BR)G2SS
±10
—
—
V
I G2 = +10µA, VG1S = VDS = 0
Gate1 to source cutoff current
I G1SS
—
—
+100
nA
VG1S = +9V, V G2S = VDS = 0
Gate2 to source cutoff current
I G2SS
—
—
±100
nA
VG2S = +9V, V G1S = VDS = 0
Gate1 to source cutoff voltage
VG1S(off)
0.4
—
1.0
V
VDS = 5V, VG2S = 4V
I D = 100µA
Gate2 to source cutoff voltage
VG2S(off)
0.5
—
1.0
V
VDS = 5V, VG1S = 5V
I D = 100µA
2
BB304C
Electrical Characteristics (Ta = 25°C)
Item
Symbol Min
Typ
Max
Unit
Test Conditions
Input capacitance
c iss
2.3
2.8
3.6
pF
VDS = 5V, VG1 = 5V, VG2S =4V
Output capacitance
c oss
0.9
1.3
2.0
pF
RG = 180kΩ, f = 1MHz
Reverse transfer capacitance c rss
0.003
0.02
0.05
pF
Drain current
I D(op) 1
9
14
19
mA
VDS = 5V, VG1 = 5V, VG2S = 4V
RG = 180kΩ
I D(op) 2
—
13
—
mA
VDS = 9V, VG1 = 9V, VG2S =6V
RG = 470kΩ
|yfs|1
22
27
34
mS
VDS = 5V, VG1 = 5V, VG2S =4V
RG = 180kΩ, f = 1kHz
|yfs|2
—
27
—
mS
VDS = 9V, VG1 = 9V, VG2S =6V
RG = 470kΩ, f = 1kHz
PG1
24
29
32
dB
VDS = 5V, VG1 = 5V, VG2S =4V
RG = 180kΩ, f = 200MHz
PG2
—
29
—
dB
VDS = 9V, VG1 = 9V, VG2S =6V
RG = 470kΩ, f = 200MHz
NF1
—
1.2
1.9
dB
VDS = 5V, VG1 = 5V, VG2S =4V
RG = 180kΩ, f = 200MHz
NF2
—
1.2
—
dB
VDS = 9V, VG1 = 9V, VG2S =6V
RG = 470kΩ, f = 200MHz
Forward transfer admittance
Power gain
Noise figure
3
BB304C
Main Characteristics
Test Circuit for Operating Items (I D(op) , |yfs|, Ciss, Coss, Crss, NF, PG)
VG2
VG1
RG
Gate 2
Gate 1
Drain
Source
A
ID
Power Gain, Noise Figure Test Circuit
1000p
1000p
47k
VT
VG2
VT
1000p
47k
1000p
47k
BBFET
Output(50Ω)
1000p
L2
Input(50Ω)
L1
10p max
1000p
1000p
36p
1SV70
RG
RFC
470k
1SV70
1000p
V D = V G1
L1 : φ1mm Enameled Copper Wire,Inside dia 10mm, 2Turns
L2 : φ1mm Enameled Copper Wire,Inside dia 10mm, 2Turns
RFC : φ1mm Enameled Copper Wire,Inside dia 5mm, 2Turns
4
Unit
Resistance (Ω)
Capacitance (F)
BB304C
Typical Output Characteristics
25
100
50
20
10
82
5
0
50
100
150
0
200
Ta (¡C)
Drain Current vs.
Gate2 to Source Voltage
8
10
V DS (V)
25
V DS = V G1 = 9 V
V DS = 9 V
R G = 390 k Ω
3
15
390 k
Ω
470 k Ω
10
5
RG
1.2
2.4
3.8
Gate2 to Source Voltage
560 k Ω
680 k Ω
820 k Ω
1M Ω
MΩ
5
1.
=
4.8
6.0
VG2S (V)
Drain Current
30 k Ω
I D (mA)
Ω
270 k
20
0
2
4
6
Drain to Source Voltage
Ω
1M
Ω
= 1.5 M
Drain Current vs. Gate1 Voltage
25
I D (mA)
kΩ
0
7
4
Ω
0kΩ
6
5 k
0
68 0 kΩ
15
RG
Ambient Temperature
Drain Current
0k
Ω
39 33
0
0
k
k
Ω
Ω
150
V G2S = 6 V
V G1 = VDS
27
I D (mA)
200
Drain Current
Channel Power Dissipation
Pch (mW)
Maximum Channel Power
Dissipation Curve
20
6V
15
5V
4V
10
3V
2V
5
V G2S = 1 V
0
2
4
6
8
Gate1 Voltage V G1 (V)
10
5
BB304C
Drain Current vs. Gate1 Voltege
Drain Current vs. Gate1 Voltege
15
10
V DS = 9 V
R G = 470 k Ω
I D (mA)
20
25
6V
5V
4V
3V
2V
5
Drain Current
Drain Current
I D (mA)
25
20
V DS = 9 V
R G = 560 k Ω
15
6V
5V
4V
3V
10
2V
5
V G2S = 1 V
6
30
2
4
6
8
Gate1 Voltage VG1 (V)
Forward Transfer Admittance
vs. Gate1 Voltage
6V
V DS = 9 V
R G = 390 k Ω
5V
4V
24 f = 1 kHz
3V
2V
18
12
6
V G2S = 1 V
0
2
4
6
8
Gate1 Voltage VG1 (V)
0
10
Forward Transfer Admittance |y fs | (mS)
Forward Transfer Admittance |y fs | (mS)
0
V G2S = 1 V
10
2
4
6
8
Gate1 Voltage VG1 (V)
10
Forward Transfer Admittance
vs. Gate1 Voltage
30
V DS = 9 V
R G = 470 k Ω
24 f = 1 kHz
6V
5V
4V
3V
2V
18
12
6
V G2S = 1 V
0
2
4
6
8
Gate1 Voltage VG1 (V)
10
BB304C
Power Gain vs. Gate Resistance
40
30
24
V DS = 9 V
R G = 560 k Ω
f = 1 kHz
6V 5V 4V
35
Power Gain PG (dB)
Forward Transfer Admittance |y fs | (mS)
Forward Transfer Admittance
vs. Gate1 Voltage
3V
18
2V
12
6
25
20
15
V G2S = 1 V
0
30
2
4
6
8
Gate1 Voltage VG1 (V)
10
0.1
10
Noise Figure vs. Gate Resistance
V DS = 9 V
V G1 = 9 V
V G2S = 6 V
f = 200 MHz
35
Power Gain PG (dB)
Noise Figure NF (dB)
10
40
2
1
30
25
20
15
0
0.1
0.2
0.5
1
2
5
Gate Resistance R G (M Ω )
Power Gain vs. Drain Current
4
3
V DS = 9 V
V G1 = 9 V
V G2S = 6 V
f = 200 MHz
0.2
0.5
1
2
5
Gate Resistance R G (M Ω)
10
10
0
V DS = 9 V
V G1 = 9 V
V G2S = 6 V
R G = variable
f = 200 MHz
5
10
15
Drain Current ID
20
25
30
(mA)
7
BB304C
Noise Figure vs. Drain Current
Drain Current vs. Gate Resistance
30
V DS = 9 V
V G1 = 9 V
V G2S = 6 V
R G = variable
f = 200 MHz
3
2
1
0
5
10
15
20
25
Drain Current I D (mA)
Noise Figure NF (dB)
4
25
20
15
10
5
0
0.1
30
Gain Reduction vs.
Gate2 to Source Voltage
Input Capacitance Ciss (pF)
Gain Reduction GR (dB)
20
10
8
1
2
5
10
6
V DS = 9 V
V G1 = 9 V
V G2S = 6 V
R G = 470 k Ω
f = 200 MHz
30
0
0.5
Input Capacitance vs.
Gate2 to Source Voltage
60
40
0.2
Gate Resistance R G (M Ω )
Drain Current I D (mA)
50
V DS = 9 V
V G1 = 9 V
V G2S = 6 V
5
4
3
2
V DS = 9 V
V G1 = 9 V
R G = 470 k Ω
f = 1 MHz
1
0
6
7
1
2
3
4
5
Gate2 to Source Voltage V G2S (V)
1
2
3
4
5
6
Gate2 to Source Voltage V G2S (V)
BB304C
S21 Parameter vs. Frequency
S11 Parameter vs. Frequency
.8
1
.6
90¡
1.5
Scale: 1 / div.
60¡
120¡
2
.4
3
30¡
150¡
4
5
.2
10
.2
0
.4
.6 .8 1
1.5 2
3 45
10
180¡
0¡
—10
—5
—4
—.2
—3
—.4
—30¡
—150¡
—2
—.6
—.8
—1
—90¡
Test Condition : V DS = 9 V , V G1 = 9 V
V G2S = 6 V , R G = 470 k Ω
50 1000 MHz (50 MHz step)
Test Condition : V DS = 9 V , V G1 = 9 V
V G2S = 6 V , R G = 470 k Ω
50 1000 MHz (50 MHz step)
S12 Parameter vs. Frequency
90¡
S22 Parameter vs. Frequency
Scale: 0.002 / div.
.8
60¡
120¡
—60¡
—120¡
—1.5
1
.6
1.5
2
.4
3
30¡
150¡
4
5
.2
10
180¡
0¡
.2
0
.4
.6 .8 1
1.5 2
3 45
10
—10
—5
—4
—.2
—30¡
—150¡
—3
—.4
—60¡
—120¡
—90¡
Test Condition : V DS = 9 V , V G1 = 9 V
V G2S = 6 V , R G = 470 k Ω
50 1000 MHz (50 MHz step)
—2
—.6
—.8
—1
—1.5
Test Condition : V DS = 9 V , V G1 = 9 V
V G2S = 6 V , R G = 470 k Ω
50 1000 MHz (50 MHz step)
9
BB304C
Sparameter (VDS = VG1 = 9V, VG2S = 6V, RG = 470kΩ, Zo = 50Ω)
S11
S21
S12
S22
f (MHz) MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
50
0.996
–5.3
2.74
174.0
0.00096
98.6
0.985
–1.9
100
0.993
–10.9
2.73
168.0
0.00130
84.4
0.991
–4.5
150
0.987
–16.6
2.68
162.3
0.00203
83.6
0.990
–6.5
200
0.978
–21.9
2.66
156.3
0.00285
72.3
0.988
–9.4
250
0.972
–27.4
2.63
150.4
0.00335
69.7
0.985
–11.6
300
0.954
–33.2
2.57
144.3
0.00385
68.3
0.982
–14.0
350
0.943
–38.2
2.50
138.7
0.00455
63.2
0.979
–16.2
400
0.925
–43.2
2.43
133.3
0.00488
55.4
0.975
–18.4
450
0.910
–48.0
2.37
128.0
0.00526
59.8
0.971
–21.0
500
0.893
–52.5
2.30
122.6
0.00522
56.1
0.967
–23.0
550
0.880
–57.4
2.24
117.5
0.00498
53.2
0.962
–25.2
600
0.861
–62.1
2.17
112.7
0.00512
49.1
0.957
–27.3
650
0.847
–66.1
2.10
108.1
0.00497
53.4
0.952
–29.4
700
0.829
–69.9
2.02
103.6
0.00455
53.6
0.947
–31.6
750
0.816
–74.1
1.96
99.1
0.00418
51.6
0.943
–33.7
800
0.804
–78.2
1.91
94.8
0.00372
55.7
0.937
–35.8
850
0.791
–82.4
1.85
80.4
0.00329
62.4
0.933
–38.0
900
0.779
–86.1
1.79
86.3
0.00275
73.0
0.928
–40.0
950
0.764
–89.5
1.73
82.2
0.00233
82.4
0.921
–42.1
1000
0.753
–92.4
1.68
78.3
0.00258
105.1
0.918
–44.2
10
BB304C
Package Dimensions
Unit: mm
1.3
0.65 0.65
+ 0.1
+ 0.1
0.3 — 0.05
0.3 — 0.05
3
0.425
2.0 –0.2
+ 0.1
0.16 — 0.06
2.1 –0.3
1.25
2
0 ~ 0.1
1
4
+ 0.1
0.4 — 0.05
0.65
0.6
0.425
+ 0.1
0.3 — 0.05
0.9 –0.1
0.2
1.25
Hitahi Code
EIAJ
JEDEC
CMPAK-4
SC-82AB
11
BB304C
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia (Singapore)
: http://www.has.hitachi.com.sg/grp3/sicd/index.htm
Asia (Taiwan)
: http://www.hitachi.com.tw/E/Product/SICD_Frame.htm
Asia (HongKong) : http://www.hitachi.com.hk/eng/bo/grp3/index.htm
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322
Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,
Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.
12