TI TRS3221CDBR

TRS3221
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
www.ti.com
SLLS814 – JULY 2007
FEATURES
APPLICATIONS
•
•
•
•
•
•
•
•
•
•
•
RS-232 Bus-Pin ESD Protection Exceeds
±15 kV Using Human-Body Model (HBM)
Meets or Exceeds the Requirements of
TIA/EIA-232-F and ITU v.28 Standards
Operates With 3-V to 5.5-V VCC Supply
Operates Up To 250 kbit/s
One Driver and One Receiver
Low Standby Current . . . 1 μA Typical
External Capacitors . . . 4 × 0.1 μF
Accepts 5-V Logic Input With 3.3-V Supply
Alternative High-Speed Pin-Compatible Device
(1 Mbit/s)
– TRSF3221
Auto-Powerdown Feature Automatically
Disables Drivers for Power Savings
•
•
•
•
Battery-Powered, Hand-Held, and Portable
Equipment
PDAs and Palmtop PCs
Notebooks, Subnotebooks, and Laptops
Digital Cameras
Mobile Phones and Wireless Devices
DB OR PW PACKAGE
(TOP VIEW)
EN
1
16
C1+
V+
C1C2+
C2VRIN
2
3
15
14
4
13
5
6
12
7
8
10
9
11
FORCEOFF
VCC
GND
DOUT
FORCEON
DIN
INVALID
ROUT
DESCRIPTION/ORDERING INFORMATION
The TRS3221 consists of one line driver, one line receiver, and a dual charge-pump circuit with ±15-kV ESD
protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of
TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the
serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to
5.5-V supply. These devices operate at data signaling rates up to 250 kbit/s and a maximum of 30-V/μs driver
output slew rate.
ORDERING INFORMATION
PACKAGE (1) (2)
TA
SSOP – DB
0°C to 70°C
TSSOP – PW
SSOP – DB
–40°C to 85°C
TSSOP – PW
(1)
(2)
ORDERABLE PART NUMBER
Tube of 50
TRS3221CDB
Reel of 2000
TRS3221CDBR
Tube of 50
TRS3221CPW
Reel of 2000
TRS3221CPWR
Tube of 50
TRS3221IDB
Reel of 2000
TRS3221IDBR
Tube of 50
TRS3221IPW
Reel of 2000
TRS3221IPWR
TOP-SIDE MARKING
RS21C
RS21C
RS21I
RS21I
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
Web site at www.ti.com.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2007, Texas Instruments Incorporated
TRS3221
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
www.ti.com
SLLS814 – JULY 2007
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
Flexible control options for power management are available when the serial port is inactive. The
auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of
operation, if the device does not sense a valid RS-232 signal on the receiver input, the driver output is disabled.
If FORCEOFF is set low and EN is high, both the driver and receiver are shut off, and the supply current is
reduced to 1 μA. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown
condition to occur. Auto-powerdown can be disabled when FORCEON and FORCEOFF are high. With
auto-powerdown enabled, the device is activated automatically when a valid signal is applied to the receiver
input. The INVALID output notifies the user if an RS-232 signal is present at the receiver input. INVALID is high
(valid data) if the receiver input voltage is greater than 2.7 V or less than –2.7 V, or has been between –0.3 V
and 0.3 V for less than 30 μs. INVALID is low (invalid data) if the receiver input voltage is between –0.3 V and
0.3 V for more than 30 μs. Refer to Figure 5 for receiver input levels.
FUNCTION TABLES
Each Driver (1)
INPUTS
DIN
(1)
FORCEON
FORCEOFF
VALID RIN
RS-232 LEVEL
OUTPUT
DOUT
DRIVER STATUS
X
X
L
X
Z
Powered off
L
H
H
X
H
H
H
H
X
L
Normal operation with
auto-powerdown disabled
L
L
H
Yes
H
H
L
H
Yes
L
L
L
H
No
Z
H
L
H
No
Z
Normal operation with
auto-powerdown enabled
Powered off by
auto-powerdown feature
H = high level, L = low level, X = irrelevant, Z = high impedance
Each Receiver (1)
INPUTS
(1)
OUTPUT
ROUT
RIN
EN
VALID RIN
RS-232 LEVEL
L
L
X
H
L
X
L
X
H
X
Z
Open
L
No
H
H = high level, L = low level, X = irrelevant, Z = high impedance
(off), Open = disconnected input or connected driver off
LOGIC DIAGRAM (POSITIVE LOGIC)
Auto-Powerdown
2
H
Submit Documentation Feedback
TRS3221
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
www.ti.com
SLLS814 – JULY 2007
Absolute Maximum Ratings
(1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
VCC
Supply voltage range (2)
–0.3
6
V
V+
Positive output supply voltage range (2)
–0.3
7
V
0.3
–7
V
13
V
V–
Negative output supply voltage range
V+ – V–
Supply voltage difference (2)
(2)
VI
Input voltage range
VO
Output voltage range
θJA
Package thermal impedance (3) (4)
TJ
Operating virtual junction temperature
Tstg
Storage temperature range
(1)
(2)
(3)
(4)
Driver (FORCEOFF, FORCEON, EN)
–0.3
6
Receiver
–25
25
Driver
Receiver (INVALID)
–13.2
13.2
–0.3
VCC + 0.3
DB package
82
PW package
108
–65
UNIT
V
V
°C/W
150
°C
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to network GND.
Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions (1)
See Figure 6
Supply voltage
VCC = 5 V
VIH
Driver and control high-level input voltage
DIN, FORCEOFF, FORCEON, EN
VIL
Driver and control low-level input voltage
DIN, FORCEOFF, FORCEON, EN
VI
Driver and control input voltage
DIN, FORCEOFF, FORCEON
VI
Receiver input voltage
TA
(1)
MIN
NOM
MAX
3
3.3
3.6
4.5
5
5.5
VCC = 3.3 V
VCC = 3.3 V
VCC = 5 V
TRS3221I
V
2
V
2.4
0.8
V
0
5.5
V
–25
25
V
0
70
–40
85
TRS3221C
Operating free-air temperature
UNIT
°C
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
II
Input
leakage
current
Supply
current
Powered off
Auto-powerdown
enabled
(1)
(2)
MAX
±0.01
±1
μA
0.3
1
mA
No load, FORCEOFF at GND
1
10
No load, FORCEOFF at VCC,
FORCEON at GND,
All RIN are open or grounded
1
10
FORCEOFF,
FORCEON, EN
No load,
FORCEOFF and
FORCEON at VCC
Auto-powerdown
disabled
ICC
TYP (2)
TEST CONDITIONS
VCC = 3.3 V or 5 V,
TA = 25°C
MIN
UNIT
μA
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Submit Documentation Feedback
3
TRS3221
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
www.ti.com
SLLS814 – JULY 2007
DRIVER SECTION
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
MIN TYP (2) MAX
TEST CONDITIONS
VOH
High-level output voltage
All DOUT at RL = 3 kΩ to GND,
DIN = GND
5
5.4
VOL
Low-level output voltage
All DOUT at RL = 3 kΩ to GND,
DIN = VCC
–5
–5.4
IIH
High-level input current
VI = VCC
IIL
Low-level input current
VI at GND
IOS
Short-circuit output
current (3)
VCC = 3.6 V,
VO = 0 V
VCC = 5.5 V,
VO = 0 V
ro
Output resistance
VCC, V+, and V– = 0 V,
VO = ±2 V
Ioff
(1)
(2)
(3)
Output leakage current
±0.01
FORCEOFF = GND
300
UNIT
V
V
±1
μA
±0.01
±1
μA
±35
±60
±35
±60
mA
Ω
10M
VO = ±12 V,
VCC = 3 V to 3.6 V
±25
VO = ±10 V,
VCC = 4.5 V to 5.5 V
±25
μA
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one
output should be shorted at a time.
Switching Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
Maximum data rate
(3)
tsk(p)
Pulse skew
SR(tr)
Slew rate,
transition region
(see Figure 1)
(1)
(2)
(3)
MIN TYP (2)
TEST CONDITIONS
CL = 1000 pF,
RL = 3 kΩ,
CL = 150 pF to 2500 pF, RL = 3 kΩ to 7 kΩ,
VCC = 3.3 V,
RL = 3 kΩ to 7 kΩ
See Figure 1
150
See Figure 2
MAX
250
UNIT
kbit/s
100
ns
CL = 150 pF to 1000 pF
6
30
CL = 150 pF to 2500 pF
4
30
V/μs
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V + 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Pulse skew is defined as |tPLH – tPHL| of each channel of the same device.
ESD Protection
TERMINAL
4
NAME
NO.
DOUT
13
TEST CONDITIONS
HBM
Submit Documentation Feedback
TYP
UNIT
±15
kV
TRS3221
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
www.ti.com
SLLS814 – JULY 2007
RECEIVER SECTION
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
MIN
TYP (2)
VCC – 0.6
VCC – 0.1
TEST CONDITIONS
VOH
High-level output voltage
IOH = –1 mA
VOL
Low-level output voltage
IOL = 1.6 mA
MAX
V
0.4
VCC = 3.3 V
1.6
2.4
VCC = 5 V
1.9
2.4
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input hysteresis (VIT+ – VIT–)
Ioff
Output leakage current
FORCEOFF = 0 V
rI
Input resistance
VI = ±3 V to ±25 V
VCC = 3.3 V
0.6
1.1
VCC = 5 V
0.8
1.4
UNIT
V
V
V
0.5
V
±0.05
±10
μA
5
7
kΩ
3
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
(1)
(2)
Switching Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TYP (2)
UNIT
tPLH
Propagation delay time, low- to high-level output
CL = 150 pF,
See Figure 3
150
ns
tPHL
Propagation delay time, high- to low-level output
CL = 150 pF,
See Figure 3
150
ns
ten
Output enable time
CL = 150 pF, RL = 3 kΩ,
See Figure 4
200
ns
tdis
Output disable time
CL = 150 pF, RL = 3 kΩ,
See Figure 4
200
ns
tsk(p)
Pulse skew (3)
See Figure 3
50
ns
(1)
(2)
(3)
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V + 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Pulse skew is defined as |tPLH – tPHL| of each channel of the same device.
ESD Protection
TERMINAL
NAME
NO.
RIN
8
TEST CONDITIONS
HBM
Submit Documentation Feedback
TYP
UNIT
±15
kV
5
TRS3221
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
www.ti.com
SLLS814 – JULY 2007
AUTO-POWERDOWN SECTION
Electrical Characteristics
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)
PARAMETER
TEST CONDITIONS
MIN
VT+(valid)
Receiver input threshold
for INVALID high-level output voltage
FORCEON = GND,
FORCEOFF = VCC
VT–(valid)
Receiver input threshold
for INVALID high-level output voltage
FORCEON = GND,
FORCEOFF = VCC
–2.7
VT(invalid)
Receiver input threshold
for INVALID low-level output voltage
FORCEON = GND,
FORCEOFF = VCC
–0.3
VOH
INVALID high-level output voltage
IOH = –1 mA, FORCEON = GND,
FORCEOFF = VCC
VOL
INVALID low-level output voltage
IOL = 1.6 mA, FORCEON = GND,
FORCEOFF = VCC
MAX
UNIT
2.7
V
V
0.3
V
VCC – 0.6
V
0.4
V
Switching Characteristics
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)
PARAMETER
UNIT
tvalid
Propagation delay time, low- to high-level output
1
μs
tinvalid
Propagation delay time, high- to low-level output
30
μs
ten
Supply enable time
100
μs
(1)
6
TYP (1)
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Submit Documentation Feedback
TRS3221
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
www.ti.com
SLLS814 – JULY 2007
PARAMETER MEASUREMENT INFORMATION
50 Ω
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 250 kbits/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 1. Driver Slew Rate
3V
Generator
(see Note B)
RS-232
Output
50 Ω
RL
3V
FORCEOFF
Input
1.5 V
1.5 V
0V
CL
(see Note A)
tPHL
tPLH
VOH
Output
50%
50%
VOL
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 250 kbits/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 2. Driver Pulse Skew
50 Ω
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 3. Receiver Propagation Delay Times
Submit Documentation Feedback
7
TRS3221
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
SLLS814 – JULY 2007
PARAMETER MEASUREMENT INFORMATION (continued)
50 Ω
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
C. tPLZ and tPHZ are the same as tdis.
D. tPZL and tPZH are the same as ten.
Figure 4. Receiver Enable and Disable Times
8
Submit Documentation Feedback
www.ti.com
TRS3221
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
www.ti.com
SLLS814 – JULY 2007
PARAMETER MEASUREMENT INFORMATION (continued)
2.7 V
2.7 V
0V
Receiver
Input
ROUT
Generator
(see Note B)
3V
0V
−2.7 V
−2.7 V
−3 V
50 Ω
tvalid
tinvalid
VCC
AutoPowerdown
INVALID
CL = 30 pF
(see Note A)
FORCEOFF
FORCEON
DIN
DOUT
INVALID
Output
50% VCC
50% VCC
0V
ten
≈V+
V+
0.3 V
VCC
0V
0.3 V
Supply
Voltages
≈V−
V−
TEST CIRCUIT
VOLTAGE WAVEFORMS
Valid RS-232 Level, INVALID High
2.7 V
Indeterminate
0.3 V
0V
If Signal Remains Within This Region
For More Than 30 µs, INVALID Is Low†
−0.3 V
Indeterminate
−2.7 V
Valid RS-232 Level, INVALID High
† Auto-powerdown disables drivers and reduces supply
current to 1 µA.
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 5 kbits/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 5. INVALID Propagation Delay Times and Driver Enabling Time
Submit Documentation Feedback
9
TRS3221
3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER
WITH ±15-kV ESD PROTECTION
www.ti.com
SLLS814 – JULY 2007
APPLICATION INFORMATION
EN
1
16
2
VCC
C1+
15
+
3
C1
+
+
−
−
V+
AutoPowerdown
C3†
4
GND
−
14
6
C2−
7
−
RIN
12
C2
11
V−
10
C4
+
DOUT
C2+
+
−
CBYPASS = 0.1 µF
C1−
13
5
FORCEOFF
8
9
FORCEON
DIN
INVALID
ROUT
5 kΩ
† C3 can be connected to VCC or GND.
NOTES: A. Resistor values shown are nominal.
B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be
connected as shown.
VCC vs CAPACITOR VALUES
VCC
C1
C2, C3, and C4
3.3 V ± 0.3 V
5 V ± 0.5 V
3 V to 5.5 V
0.1 µF
0.047 µF
0.1 µF
0.1 µF
0.33 µF
0.47 µF
Figure 6. Typical Operating Circuit and Capacitor Values
10
Submit Documentation Feedback
PACKAGE OPTION ADDENDUM
www.ti.com
24-Jul-2010
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
TRS3221CDB
ACTIVE
SSOP
DB
16
80
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Contact TI Distributor
or Sales Office
TRS3221CDBG4
ACTIVE
SSOP
DB
16
80
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Contact TI Distributor
or Sales Office
TRS3221CDBR
ACTIVE
SSOP
DB
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
TRS3221CDBRG4
ACTIVE
SSOP
DB
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
TRS3221CPW
ACTIVE
TSSOP
PW
16
TRS3221CPWG4
ACTIVE
TSSOP
PW
16
TRS3221CPWR
ACTIVE
TSSOP
PW
16
2000
Green (RoHS
& no Sb/Br)
TRS3221CPWRG4
ACTIVE
TSSOP
PW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
TBD
TBD
Call TI
Call TI
Purchase Samples
Call TI
Call TI
Purchase Samples
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
TRS3221IDB
ACTIVE
SSOP
DB
16
TBD
Call TI
Call TI
Purchase Samples
TRS3221IDBG4
ACTIVE
SSOP
DB
16
TBD
Call TI
Call TI
Purchase Samples
TRS3221IDBR
ACTIVE
SSOP
DB
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
TRS3221IDBRG4
ACTIVE
SSOP
DB
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
TRS3221IPW
ACTIVE
TSSOP
PW
16
90
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Contact TI Distributor
or Sales Office
TRS3221IPWG4
ACTIVE
TSSOP
PW
16
90
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Contact TI Distributor
or Sales Office
TRS3221IPWR
ACTIVE
TSSOP
PW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
TRS3221IPWRG4
ACTIVE
TSSOP
PW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Request Free Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
24-Jul-2010
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
30-Jul-2010
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
12.0
16.0
Q1
TRS3221CDBR
SSOP
DB
16
2000
330.0
16.4
8.2
6.6
2.5
TRS3221CPWR
TSSOP
PW
16
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
TRS3221IDBR
SSOP
DB
16
2000
330.0
16.4
8.2
6.6
2.5
12.0
16.0
Q1
TRS3221IPWR
TSSOP
PW
16
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
30-Jul-2010
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TRS3221CDBR
SSOP
DB
16
2000
346.0
346.0
33.0
TRS3221CPWR
TSSOP
PW
16
2000
346.0
346.0
29.0
TRS3221IDBR
SSOP
DB
16
2000
346.0
346.0
33.0
TRS3221IPWR
TSSOP
PW
16
2000
346.0
346.0
29.0
Pack Materials-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DLP® Products
www.dlp.com
Communications and
Telecom
www.ti.com/communications
DSP
dsp.ti.com
Computers and
Peripherals
www.ti.com/computers
Clocks and Timers
www.ti.com/clocks
Consumer Electronics
www.ti.com/consumer-apps
Interface
interface.ti.com
Energy
www.ti.com/energy
Logic
logic.ti.com
Industrial
www.ti.com/industrial
Power Mgmt
power.ti.com
Medical
www.ti.com/medical
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Space, Avionics &
Defense
www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions www.ti.com/lprf
Video and Imaging
www.ti.com/video
Wireless
www.ti.com/wireless-apps
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2010, Texas Instruments Incorporated