ETC INT5130

T E C H N I C A L
D A T A
S H E E T
INT5130
Integrated Powerline
MAC/PHY Transceiver
Features
§
§
§
§
§
§
§
§
§
§
§
§
§
§
Single-chip powerline networking controller with
IEEE802.3u MII interface
Implements Intellon’s PowerPacket™ technology which
is fully compliant with the HomePlug Powerline Alliance
Industry Specification v1.0
General purpose 8-wire serial PHY data interface
Selectable MDI/SPI PHY management interface
Up to 14 Mbps data rate on the powerline
Orthogonal Frequency Division Multiplexing (OFDM) with
patented signal processing techniques for high data
reliability in noisy media conditions
Intelligent channel adaptation maximizes throughput
under harsh channel conditions
Integrated quality-of-service (QoS) features such as
prioritized random access, contention-free access, and
segment bursting
56-bit DES Link Encryption with key management for
secure powerline communications
E2PROM interface for fast access to configuration
parameters allows system designs to leverage standard
Ethernet drivers
IEEE 1149.1 JTAG Test Access Port
3.3 V signaling, 5 V tolerant interface
Support for three status LEDs
144-pin LQFP package
Applications
§
§
§
§
§
Shared broadband Internet access
using standard in-home powerlines
Internet Appliances
PC file and application sharing
Peripheral and printer sharing
Networked gaming
General Description
The INT5130 IC is an integrated powerline MAC/PHY transceiver providing No New WiresTM communications
to any room, over any wire, at speeds of up to 14 Mbps. The INT5130 provides the ability to select between a
complete Media Independent Interface (MII) or a reduced General Purpose Serial Interface (GPSI) for
interconnection to the external MAC controller. The INT5130 also provides the option of selecting between a
Management Data Interface (MDI) or a simple Serial Peripheral Interface (SPI) for handling the management
and control of the MII/GPSI interface.
INTELLON CONFIDENTIAL
Rev 8.1
1
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
The INT5130 implements Intellon’s patented PowerPacket OFDM technology and is fully compliant with the
HomePlug Powerline Alliance Industry Specification v1.0. Specifically tailored to reliably deliver up to 14
Mbps over the difficult powerline communication environment, the INT5130 combats deep attenuation notches,
noises sources, and multi-path fading by allocating usable frequencies according to the signal to noise ratio
(SNR). Synchronization is achieved in low SNR channels without the use of pilot carriers. The MAC
implements a CSMA/CA scheme with prioritization and automatic repeat request (ARQ) for reliable delivery of
Ethernet packets via packet encapsulation. Built-in quality-of-service (QoS) features provide the necessary
bandwidth for multimedia payloads including voice, data, audio, and video. Prioritized random access along with
segment bursting minimizes the demands on the receiver resources and maximizes the throughput of the
network while still providing excellent latency response and jitter performance. The INT5130’s contention-free
access capability extends this concept of segment bursting to allow the transmission of multiple frames over
the powerline without relinquishing the control of the medium. Utilizing contention-free access, a single station
may act as a controller for the entire network.
System designers have the option of embedding PowerPacket-specific control information within the packet
stream for optimal control and performance or may choose to provide this information via the separate
E2PROM interface. Providing this configuration and control information through a separate E2PROM interface
allows the system designer to leverage standard Ethernet drivers.
The INT5130 operates on both 2.5V and 3.3V supplies, offers 5V I/O tolerance, and is packaged in a 144-pin
LQFP. Intellon offers a complete solution for powerline communication applications by providing the INT5130 in
conjunction with the INT1000 Analog Conversion IC.
Functional Block Diagram
INT5130
PowerPacket MAC
RESET
Interface Block
MDIO Control
MDCLK/MDIO
- OR SPI Control
SDI,SDO,SCLK,CS
PowerPacket PHY
ROM
RAM
Config
Regs
RISC
uProc
Core
MDI/SPI
Select
MII
RX[3:0],RXCLK,RXDV,RX_ER
TX[3:0],TXCLK,TXEN,TX_ER
COL,CRS
- OR GPSI
RXD,RXCLK,RXEN
TXD,TXCLK,TXEN
COL,TXBSY
MII/GPSI
Interface
Gain
Control
DMA
&
Link
Sequencer
Arbiter
PHY
Core
AFE
Interface
ADC
DAC
IFace
Buffer
RAM
MII/GPSI
Select
JTAG
Control
JTAG
Port
Configuration
EEPROM
Control
MDIO
Address
Select
E2PROM
Control
LED
Control
CLK IN
INTELLON CONFIDENTIAL
Rev 8.1
Power
&
GND
LEDs
CLK OUT
2
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Contents
Features .......................................................................................................................................................... 1
Applications.................................................................................................................................................... 1
General Description........................................................................................................................................ 1
Functional Block Diagram.............................................................................................................................. 2
Contents ......................................................................................................................................................... 3
Pin I/O.............................................................................................................................................................. 4
Pin Descriptions by Group............................................................................................................................. 5
Pin Diagram .................................................................................................................................................... 9
Functional Description................................................................................................................................. 10
MII Data Interface with MDI Control .......................................................................................................... 11
MII Interface............................................................................................................................................ 11
MDI Control Interface............................................................................................................................. 17
MII Management Register Set ............................................................................................................... 18
GPSI Interface with SPI Control................................................................................................................ 21
GPSI Interface........................................................................................................................................ 21
SPI Slave Interface ................................................................................................................................ 24
Clocks........................................................................................................................................................ 25
AFE Interface............................................................................................................................................. 26
ADC/DAC Interface ................................................................................................................................ 26
AGC Circuitry......................................................................................................................................... 29
SPI Master Interface.................................................................................................................................. 29
SPI Master Timing Diagram................................................................................................................... 30
SPI Master DC Characteristics.............................................................................................................. 30
LEDs .......................................................................................................................................................... 30
JTAG Port.................................................................................................................................................. 31
JTAG Timing Diagrams ......................................................................................................................... 31
JTAG DC Characteristics ...................................................................................................................... 32
Application Diagrams................................................................................................................................... 34
Electrical Specifications............................................................................................................................... 35
Recommended Operating Conditions......................................................................................................... 35
DC Characteristics ....................................................................................................................................... 35
Physical Dimensions.................................................................................................................................... 36
Ordering Information.................................................................................................................................... 37
INTELLON CONFIDENTIAL
Rev 8.1
3
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Pin I/O
Pin
No.
Signal
Pin
No.
1
2
3
4
VDD_C
VDD_C
VDD_IO
MII_TX3
37
38
39
40
5
6
VSS_C
MII_TX2
41
42
7
8
9
10
11
26
27
VDD_C
MII_TX1
VSS_IO
VSS_C
MII_TX0/
GPSI_TXD
MII_TXEN/
GPSI_TXEN
VDD_C
MII_TXCLK/
GPSI_TXCLK
VDD_Q
MII_TX_ER
VDD_C
MII_RX_ER/
GPSI_RXD
VSS_C
VSS_C
VSS_Q
MII_RXCLK/
GPSI_RXCLK
VDD_C
VDD_C
MII_RXDV/GPSI_
TXBSY
VSS_C
MII_RX3
28
29
Signal
Pin
No.
Signal
Pin
No.
Signal
73
74
75
76
VDD_C
DAC_CLK
VSS_C
TX_EN
109
110
111
112
VDD_C
VDD_IO
TEST1
TEST2
77
78
RX_EN
VDD_C
113
114
VSS_C
TCK
43
44
45
46
47
VDD_C
VDD_C
VDD_IO
MII_COL/
GPSI_COL
VSS_C
MII_CRS/
GPSI_RXEN
VDD_C
RESET_N
VSS_IO
VSS_C
VSS_C
79
80
81
82
83
VDD_IO
ADIO0
ADIO1
ADIO2
VSS_IO
115
116
117
118
119
VDD_C
TDO
VSS_C
VSS_C
VSS_C
48
CLKOUT
84
ADIO3
120
TDI
49
50
CLKIN
VDD_C
85
86
VSS_C
ADIO4
121
122
VDD_C
VDD_C
51
52
53
54
VDD_Q
SPI_CS
VDD_C
SPI_CLK
87
88
89
90
ADIO5
VSS_C
VSS_Q
ADIO6
123
124
125
126
VDD_C
TMS
VDD_C
MDI_SPIS_N
55
56
57
58
VSS_C
VSS_C
SPI_DI
VSS_C
91
92
93
94
VDD_Q
ADIO7
ADIO8
ADIO9
127
128
129
130
VSS_C
VSS_C
TRST_N
VSS_Q
59
60
61
SPI_DO
VDD_C
LED0_N
95
96
97
VDD_IO
AGC0
AGC1
131
132
133
62
63
VSS_C
LED1_N
98
99
AGC2
VDD_C
134
135
VDD_C
MII_RX2
64
65
VDD_IO
LED2_N
100
101
AGC3
VSS_C
136
137
30
31
VSS_C
MII_RX1
66
67
VSS_C
ADC_CAL
102
103
AGC4
AGC5
138
139
32
33
34
35
36
VDD_C
MII_RX0
VSS_C
VSS_IO
VSS_C
68
69
70
71
72
VDD_C
AGCENC_N
VSS_IO
ADC_CLK
VSS_C
104
105
106
107
108
VDD_C
AGC6
AGC7
VSS_IO
VSS_C
140
141
142
143
144
NC
VDD_C
MII_MDCLK/
SPIS_SCLK
VSS_C
MII_MDIO/
SPIS_SDO
VDD_IO
MDI_ADRSEL[1]/SPIS
_SDI
VSS_C
MDI_ADRSEL[0]/SPIS
_CS_N
VDD_C
MII_GPSI_N
VSS_IO
VSS_C
VSS_C
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Table 1: Pin I/O
INTELLON CONFIDENTIAL
Rev 8.1
4
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Pin Descriptions by Group
Signal Name
I/O Pad Description
Signal Description
Media Independent Interface (MII)
These pins are multiplexed with the GPSI pins and are selected when MII_GSPI_N signal is at VDD.
MII_RX[3:0]
Output
MII_RXCLK
Output
MII_RXDV
Output
MII_RX_ER
Output
MII_TX[3:0]
Input
MII_TXCLK
Output
MII_TXEN
Input
MII_TX_ER
Input
MII_CRS
Output
MII_COL
Output
MII Receive Data.
Data is transferred from the INT5130 to the external
MAC across these four lines one nibble at a time.
MII Receive Clock
The receive clock outputs a continuous 25MHz clock
to the external MAC.
MII Receive Data Valid
This signal indicates that the incoming data on the
MII_RX[3:0] pins are valid.
MII Receive Error
This signal indicates to the external MAC that an
error has occurred during the frame reception.
MII Transmit Data
Data is transferred to the INT5130 from the external
MAC across these four lines one nibble at a time.
MII Transmit Clock
The transmit clock outputs a continuous 25MHz
clock to the external MAC.
MII Transmit Enable
This signal indicates to the INT5130 that valid data
is present on the MII_TX[3:0] pins.
MII Transmit Error
MII_TX_ER is activated by the external host
controller when an error condition is detected during
packet transmission. The INT5130 will ignore any
MII transmission within which MII_TX_ER is
asserted. MII_TX_ER is ignored if MII_TXEN is not
asserted.
MII Carrier Sense
This signal indicates to the external host that traffic
is present on the powerline and the host should wait
until the signal goes invalid before sending additional
data. This signal is an asynchronous output signal.
MII Collision Detect
This signal indicates to the external host that a
collision has occurred on the MII interface. This
signal is an asynchronous output signal.
MII Management Data Interface (MDI)
These pins are multiplexed with the SPIS_SDO and SPIS_SCLK signals and are selected when MDI_SPIS_N is at VDD.
MII_MDIO
Input/Output
MII_MDCLK
Input
INTELLON CONFIDENTIAL
Rev 8.1
MII Management Data Input/Output
This bi-directional signal carries the data for the
Management Data Interface.
MII Management Data Clock
Clock reference for the MII_MDIO signal.
5
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
General Purpose Serial Interface (GPSI)
These pins are multiplexed with the MII pins and are selected when MII_GSPI_N signal is at VSS.
GPSI_RXD
Output
GPSI_RXCLK
Output
GPSI_TXD
Input
GPSI_TXCLK
Output
GPSI_RXEN
Output
GPSI_TXEN
Input
GPSI_TXBSY
Output
GPSI_COL
Output
GPSI Receive Data
This signal carries data received from the powerline
and delivers to the external host. Data is driven on
the falling edge of the GPSI_RXCLK.
GPSI Receive Clock
This signal is the timing reference for the serial data
transfer from the INT5130 to the external host. This
clock operates at 10 MHz.
GPSI Transmit Data
This signal carries data transmitted from the external
host to the INT5130 for transmission over the
powerline. Data is latched on the falling edge of the
GPSI_TXCLK.
GPSI Transmit Clock
This signal is the timing reference for the serial data
transfer from the external host to the INT5130. This
clock operates at 10 MHz.
GPSI Receive Enable
Indicates valid data is on the GPSI_RXD line.
GPSI Transmit Enable
Indicates when the external host is providing valid
data on GPSI_TXD.
GPSI Transmit Busy
The GPSI Transmit Busy signal is asserted within
120 GPSI clocks after GPSI_TXEN indicates a TX
frame is being sent by the local host. GPSI_TXBSY
stays true until the entire TX frame is loaded into an
internal buffer AND a new buffer is allocated to the
GPSI TX interface. This signal should be monitored
by the GPSI TX host. A new GPSI TX frame should
not be sent until GPSI_TXBSY returns to false to
prevent TX buffer overflows.
GPSI_TXBSY is an asynchronous output signal.
GPSI Collision Detect
This signal is driven false in GPSI mode.
SPI Slave Port
Selected when MDI_SPIS_N signal is at VSS.
SPIS_SDO
Output
SPIS_SDI
Input
SPIS_SCLK
Input
SPIS_CS_N
Input
INTELLON CONFIDENTIAL
Rev 8.1
SPI Slave Data Out
SPI data from the INT5130 to the external host.
SPI Slave Data In
SPI data from the external host to the INT5130.
This pin is shared with the MDI_ADRSEL[1].
SPI Slave Clock
Timing reference signal for SPI_SDI and SPI_SDO.
SPI Slave Chip Select
Enables SPI data transfers on the INT5130. This
pin is shared with the MDI_ADRSEL[0].
6
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
SPI Master Port (Configuration PROM Interface)
SPI_DO
Output
SPI_DI
Input
SPI_CLK
Output
SPI_CS
Output
SPI Master Data Out
INT5130 configuration data from the INT5130 to the
external E2PROM.
SPI Master Data In
INT5130 configuration data from the external
E2PROM to the INT5130.
SPI Master Clock
Timing reference signal for SPI_DI and SPI_DO.
SPI Master Chip Select
Enables data transfers on the SPI Master Interface.
LED Control
LED0_N
Output
LED1_N
Output
LED2_N
Output
LED0_N: Collision Detection
Activate for a duration of 10 ms upon detection of a
collision.
LED1_N: Activity Detection
Activate for a duration of 10 ms upon the receipt of
a properly addressed unicast or broadcast frame or
the transmission of a frame.
LED2_N: Link Detection
Turns on when initialization is complete successfully
and “network” is established.
Analog Front End Interface
ADC_CLK
Output
DAC_CLK
Output
TX_EN
Output
RX_EN
Output
ADIO[9:0]
Input/Output
AGC[7:0]
Output
ADC_CAL
Output
INTELLON CONFIDENTIAL
Rev 8.1
ADC Clock
ADC clock output to the INT1000 Analog Conversion
IC.
DAC Clock
DAC clock output to the INT1000 Analog Conversion
IC.
Analog Front End Transmit Enable
Transmit Enable signal
Analog Front End Receive Enable
Receive Enable signal
Analog/Digital I/O
ADC and DAC Data. Multiplexed parallel interface to
INT1000 Analog Conversion IC.
AGC Gain Select
Gain control driven by the INT5130 to set the AGC
level.
ADC Calibrate
This pin must remain low during normal operation of
the ADC. It is pulsed high to request a calibration
cycle. The ADC_CAL minimum pulse width is 4
clock cycles. While this signal is high the ADC
calibration registers are cleared and the calibration
control circuitry is reset. The ADC_CAL pulse will
go high 217 clock cycles (2.6 ms) after power on
reset drops, and will remain high for the required 4
clock cycles.
7
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
AGCENC_N
Input
AGC Encode
An inactive signal (logic 1) applied to this input
selects unitary AGC format. An active signal (logic
0) applied to this input selects encoded AGC format
TCK
Input
TDI
Input
TMS
Input
TDO
Output
TRST_N
Input
Test Clock
Test Clock for the IEEE 1149.1 JTAG Port
Test Data In
Data In for the IEEE 1149.1 JTAG Port
Test Mode Select
Test Mode Select for the IEEE 1149.1 JTAG Port
Test Data Out
Data Out for the IEEE 1149.1 JTAG Port
Test Reset
This pin will be used to reset the TAP controller. It
should be connected to ground when the JTAG port
is not in use.
Test Access Port
System Control
RESET_N
Input
CLKIN
Clock Pad
CLKOUT
Clock Pad
MDI_ADRSEL[1:0]
Input
MDI_SPIS_N
Input
MII_GPSI_N
Input
INTELLON CONFIDENTIAL
Rev 8.1
Reset
Resets logic circuitry, but not clock circuitry. Reset
is active low and should be held low for a minimum
of 100 ns.
Clock Input
100 MHz clock input. Driven by an external
oscillator or an external crystal (feedback path for
crystal implementation provided by CLKOUT) Note:
CLKIN connects directly to the 2.5 V core of the IC
and does not connect to the 3.3 V I/O ring.
Therefore, this pin is not 3.3 or 5 V tolerant.
Clock Output
100 MHz clock feedback path when a crystal is
implemented. This pin should be left as NO
CONNECT if an external oscillator is implemented on
CLKIN. Note: CLKOUT connects directly to the 2.5
V core of the IC and does not connect to the 3.3 V
I/O ring. Therefore, this pin is not 3.3 or 5 V
tolerant.
MDI PHY Address Selection
Address select used to compare against the upper
two bits of the MDI Address. These pins share
function with SPIS_CS_N and SPIS_SDI and should
be pulled-up or down with external resistors to set
the appropriate value which is read by the INT5130
during power up.
Management Data Interface/Serial Peripheral
Interface Slave Select.
Selects which PHY management signals are active.
Media Independent Interface/General Purpose
Serial Interface Select.
Selects which PHY data interface signals are active.
8
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
TEST1
Input
TEST2
Input
NC
---
Factory Test Pin 1
Tie to I/O Ground
Factory Test Pin 2
Tie to I/O Ground
No Connect
Power Supplies
VDD_C
VSS_C
VDD_IO
VSS_IO
VDD_Q
2.5v
3.3v
3.3v
VSS_Q
Digital Power
Digital Ground
I/O Power
I/O Ground
Quiet Power
Connect to I/O Power
Quiet Ground
Connect to I/O Ground
Table 2: Pin Descriptions by Group
INT5130
VDD_C
VDD_C
VDD_IO
MII_COL/GPSI_COL
VSS_C
MII_CRS/GPSI_RXEN
VDD_C
RESET_N
VSS_IO
VSS_C
VSS_C
CLKOUT
CLKIN
VDD_C
VDD_Q
SPI_CS
VDD_C
SPI_SCLK
VSS_C
VSS_C
SPI_DI
VSS_C
SPI_DO
VDD_C
LED0_N
VSS_C
LED1_N
VDD_IO
LED2_N
VSS_C
ADC_CAL
VDD_C
AGCENC_N
VSS_IO
ADC_CLK
VSS_C
VDD_C
VDD_C
VDD_IO
MII_TX3
VSS_C
MII_TX2
VDD_C
MII_TX1
VSS_IO
VSS_C
MII_TX0/GPSI_TXD
MII_TXEN/GPSI_TXEN
VDD_C
MII_TXCLK/GPSI_TXCLK
VDD_Q
MII_TX_ER
VDD_C
MII_RX_ER/GPSI_RXD
VSS_C
VSS_C
VSS_Q
MII_RXCLK/GPSI_RXCLK
VDD_C
VDD_C
MII_RXDV/GPSI_TXBSY
VSS_C
MII_RX3
VDD_C
MII_RX2
VSS_C
MII_RX1
VDD_C
MII_RX0
VSS_C
VSS_IO
VSS_C
VSS_C
VSS_IO
AGC7
AGC6
VDD_C
AGC5
AGC4
VSS_C
AGC3
VDD_C
AGC2
AGC1
AGC0
VDD_IO
ADIO9
ADIO8
ADIO7
VDD_Q
ADIO6
VSS_Q
VSS_C
ADIO5
ADIO4
VSS_C
ADIO3
VSS_IO
ADIO2
ADIO1
ADIO0
VDD_IO
VDD_C
RX_EN
TX_EN
VSS_C
DAC_CLK
VDD_C
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
VSS_C
VSS_C
VSS_IO
MII_GPSI_N
VDD_C
MDI_ADRSEL[0]/SPIS_CS_N
VSS_C
MDI_ADRSEL[1]/SPIS_SDI
VDD_IO
MII_MDIO/SPIS_SDO
VSS_C
MII_MDCLK/SPIS_SCLK
VDD_C
NC
VSS_Q
TRST_N
VSS_C
VSS_C
MDI_SPIS_N
VDD_C
TMS
VDD_C
VDD_C
VDD_C
TDI
VSS_C
VSS_C
VSS_C
TDO
VDD_C
TCK
VSS_C
TEST2
TEST1
VDD_IO
VDD_C
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
Pin Diagram
INTELLON CONFIDENTIAL
Rev 8.1
9
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Functional Description
The interfaces that provide data, status, and control to and from the INT5130 include…
•
•
•
•
•
•
External host interface provided via the Media Independent Interface (MII) format (described by
IEEE802.3u, Clause 22) or a General Purpose Serial Interface (GPSI).
Management control provided via the Management Data Interface (MDI) or the Serial Peripheral Interface
(SPI).
Analog Front End interface.
LEDs indicating network status.
Optional E2PROM interface providing a path to initialize the INT5130 with PowerPacket-specific
configuration information.
The JTAG port implements the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.
LEDS
ROM
MDI
or SPI
MII or
GPSI
TEST
E2PROM
Config
Regs
RAM
RISC uProcessor
Core
Link
Sequencer
PHY
Seq
ADIO(9:0)
PHY
Core
MII/GPSII
Interface
JTAG
Interface
DMA
PHY
DMA
Arbiter
AFE
Logic
AGC(7:0)
FIFOs
Buffer
RAM
SPI
Master
Interface Block
PowerPacket MAC
PowerPacket PHY
Figure 1: INT5130 Block Diagram
INTELLON CONFIDENTIAL
Rev 8.1
10
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
MII Data Interface with MDI Control
Data communication between the INT5130 and the external host controller is provided via the Media
Independent Interface or a reduced General Purpose Serial Interface. The MII_GPSI_N select pin is included
on the chip interface to configure the INT5130 in either MII mode or GPSI mode. Access to the INT5130’s
internal MII status and control registers is via the Management Data Interface or a SPI interface. The
MDI_SPIS_N select pin is included on the chip interface to configure the INT5130 in either MDI mode or SPI
mode. The information that follows describes the MII communication interface along with the MDI management
interface as a typical example.
INT5130
MII_RX(3:0)
MII_RXCLK
MII_RX_ER
MII_RXDV
MII_TXCLK
MII_TX_ER
PowerPacket PHY
MII_TX(3:0)
Interface Block
MII_COL
External
Host
Controller
PowerPacket MAC
MII_CRS
MII_TXEN
MII_MDCLK
MII_MDIO
Figure 2: MII Data Interface with MDI Control
MII Interface
MII is an industry standard, multi-vendor, interoperable interface between separate MAC and PHY devices.
It provides a simple interconnection between the INT5130 and IEEE802.3 Ethernet MAC controllers
(commonly referred to as external host controllers in this document) available from a variety of IC suppliers.
The MII consists of separate 4-bit data paths for transmit and receive data along with carrier sense and
collision detection. Data is transferred between the MAC and PHY over each 4-bit data path synchronous
with a clock signal supplied to the host by the INT5130. The MII interface also provides a two wire bidirectional serial management data interface (MDI). This interface provides access to the status and
control registers in the INT5130.
MII Timing Diagrams
Figure 3 below shows the transmission behavior of the MII interface. Figure 4 shows the receive
behavior of the MII interface. Figure 5 shows an unsuccessful attempt to transmit a packet, resulting in
a collision.
NOTE: MII_CRS is asynchronous to MII_TXCLK.
INTELLON CONFIDENTIAL
Rev 8.1
11
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
MII_TXCLK
MII_CRS
MII_TXEN
MII_TXD[3:1], MII_TX0
DATA
DATA
DATA
DATA
MII_COL
Figure 3: MII TX Waveform
MII_RXCLK
MII_CRS
MII_RXDV
MII_RXD[3:0]
DATA
DATA
DATA
DATA
Figure 4: MII RX Waveform
MII_CRS
MII_TXEN
MII_RXDV
MII_COL
Figure 5: MII TX With Collision Based On RX Activity
INTELLON CONFIDENTIAL
Rev 8.1
12
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
MII_RXCLK
tMII_RVAL
MII_RXD[3:0], MII_RXDV,
MII_RX_ER, MII_COL, MII_CRS
DATA
Figure 6: MII Receive Timing Diagram
MII_TXCLK
tMII_TSU
MII_TXD[3:1], MII_TX0,
MII_TXEN, MII_TX_ER
DATA
tMII_TH
Figure 7: MII Transmit Timing Diagram
MII DC Characteristics
Parameter
Symbol
Parameter Name
Test Condition
Min
Max
Unit
measured from Vilmax = 0.8V or
measured from Vihmin = 2.0V
0
25
ns
tMII_TSU
MII_TXEN, MII_TX0, MII_TX[3:1] measured from Vilmax = 0.8V or
setup to ↑ MII_TXCLK
measured from Vihmin = 2.0V
8
ns
tMII_TH
MII_TXEN, MII_TX0, MII_TX[3:1] measured from Vilmax = 0.8V or
hold to ↑ MII_TXCLK
measured from Vihmin = 2.0V
0
ns
Receive Timing
tMII_RVAL
MII_RX[3:0], MII_RXDV valid
from ↑ MII_RXCLK
Transmit Timing
Table 3: MII DC Characteristics
INTELLON CONFIDENTIAL
Rev 8.1
13
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
MII Signal Descriptions
The following description references Clause 22, Media Independent Interface specification, used in the
100 Mbps half-duplex mode. The MII is used as a data channel that transfers data back and forth with
flow controlled by the carrier sense signal (MII_CRS).
MII_TXCLK and MII_RXCLK
The INT5130 generates a stable, continuous 25 MHz square wave that is supplied on MII_TXCLK
and MII_RXCLK. These clocks provide the timing reference for the transfer of the MII_TXEN and
MII_TX signals, as well as MII_RX, MII_RX_ER, and MII_RXDV.
MII_RX_ER
MII_RX_ER is activated when the INT5130 detects an error in the receive stream as a result of
decoding.
MII_TX_ER
MII_TX_ER is activated by the external host controller when an error condition is detected during
packet transmission. The INT5130 will ignore any MII transmission within which MII_TX_ER is
asserted. MII_TX_ER is ignored if MII_TXEN is not asserted.
MII_TXEN
MII_TXEN from the external host provides the framing for the Ethernet packet. An active
MII_TXEN indicates to the INT5130 that data on MII_TX[3:0] should be sampled using MII_TXCLK.
MII_TX[3:0]
MII_TX[3:0] contains the data to be transmitted and transitions synchronously with respect to
MII_TXCLK. MII_TX[0] is the least significant bit. It is generally assumed that the data will contain
a properly formatted Ethernet frame. That is, the first bits on MII_TX[3:0] correspond to the
preamble, followed by SFD and the rest of the Ethernet frame (DA, SA, length/type, data, CRC).
MII_RXDV
MII_RXDV is asserted by the INT5130 to indicate that the INT5130 has decoded receive data to
present to the external host.
MII_RX[3:0]
MII_RX[3:0] contains the data recovered from the medium by the INT5130 and transitions
synchronously with respect to MII_RXCLK. MII_RX[0] is the least-significant bit. The INT5130
formats the frame such that the external MAC will be presented with expected preamble plus SFD.
MII_CRS
MII_CRS is used to tell the external host when the INT5130 is available for sending a packet.
MII_CRS is asynchronous to MII_TXCLK. When a packet is being transmitted, CRS is held high.
CRS will go low whenever the INT5130 is ready to accept another packet.
On transmit, the INT5130 asserts MII_CRS some time after MII_TXEN becomes active, and drops
MII_CRS after MII_TXEN goes inactive AND when the INT5130 is ready to receive another packet
from the external host for transmission. When MII_CRS has been negated for at least 900ns, the
external MAC may assert MII_TXEN again if there is another packet to send. This differs from
nominal behavior of MII_CRS in that MII_CRS can extend past the end of the packet by an
INTELLON CONFIDENTIAL
Rev 8.1
14
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
arbitrary amount of time, while the INT5130 is gaining access to the channel and transmitting the
packet.
MII_CRS does not affect the receive side of the channel. Once packets start arriving from the
powerline medium and begin transmission to the external host controller over the MII interface, the
external host MUST be ready to receive or the packet can be lost. Note that external MACs
programmed to run in 100 Mbps mode do not use a jabber timeout, so there is no timing restriction
on how long MII_CRS can be asserted.
320 ns
(32 Bit times)
320 ns
(32 Bit times)
320 ns
(32 Bit times)
MII_CRS
320 ns
(32 Bit times)
MII_TXEN
MII_TX[3:1], MII_TX0
P
P
Internal TX buffer available pulse
MII_RX[3:0]
P
P
P
MII_RXDV
Internal RX buffer available pulse
MII_COL
Case 1
Case 2
Case 3
Case 4
Case 5
TX only
RX Only
RX while TX, delayed TX buffer avail
RX while no TX buf avail
TX Buf avail
Figure 8: MII Flow Control Overview Part 1
INTELLON CONFIDENTIAL
Rev 8.1
15
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
MII_CRS
MII_TXEN
MII_TX[3:1], MII_TX0
P
P
P
MII_RX[3:0]
P
MII_RXDV
MII_COL
Case 6 Case 7
TX only TX overrun
Frame
dropped
Case 8
Collision
Figure 9: MII Flow Control Overview Part 2
MII Frame Structure
The frame structure transmitted on the MII or GPSI interface is the following sequence of fields:
Interframe Gap
Preamble
Start Frame Delimiter
Data
Interframe Gap
A period on the MII interface during which no data activity occurs on the MII.
Preamble
Begins a frame transmission that consists of 7 octets with the following bit values…
10101010 10101010 10101010 10101010 10101010 10101010 10101010
The preamble is stripped by the INT5130 when transmitting (the preamble is not transmitted on the
PLC medium) and pre-pended by the INT5130 when receiving.
Start Frame Delimiter
Indicates the start of a frame and follows the preamble. The SFD bit sequence is 10101011.
The start frame delimiter is stripped by the INT5130 when transmitting (the SFD is not transmitted
on the PLC medium) and pre-pended by the INT5130 when receiving.
INTELLON CONFIDENTIAL
Rev 8.1
16
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Data
Data sent over the MII interface consists of N bytes of data transmitted as 2N nibbles.
The de-assertion of the MII_TXEN signals the End Of Frame (EOF) for data transmitted on the
MII_TX[3:0] pins. Likewise, the de-assertion of the MII_RXDV signals the EOF for data transmitted on
MII_RX[3:0].
MACs Serial Bit Stream
LSB
D0
D1
D2
D3
D4
D5
D6
D7
First nibble
LSB
MII
Nibble
Stream
MSB
MSB
Second nibble
D0
D1
D2
D3
Figure 10: Partition of Serial Bit Stream to Nibble Stream
MDI Control Interface
The Management Data Interface connects the external host to the INT5130 for purposes of controlling the
INT5130 and gathering status. A specific frame format and protocol definition exists for exchanging
management frames over this interface. A register definition exists as well that specifies a basic register
set with an extension mechanism. The INT5130 implements the basic register set only.
MDI Timing Diagrams
MII_MDCLK
tMDI_RVAL
MII_MDIO
DATA
Figure 11: MDI Receive Timing Diagram
INTELLON CONFIDENTIAL
Rev 8.1
17
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
MII_MDCLK
tMDI_TSU
MII_MDIO
DATA
tMDI_TH
Figure 12: MDI Transmit Timing Diagram
MDI DC Characteristics
Parameter
Symbol
Parameter Name
Test Condition
Min
Max
Unit
measured from Vilmax = 0.8V or
measured from Vihmin = 2.0V
0
300
ns
Receive Timing
tMDI_RVAL
MII_MDIO valid from ↑
MII_MDCLK
Transmit Timing
tMDI_TSU
MII_MDIO setup to ↑
MII_MDCLK
measured from Vilmax = 0.8V or
measured from Vihmin = 2.0V
10
ns
tMDI_TH
MII_MDIO hold to ↑
MII_MDCLK
measured from Vilmax = 0.8V or
measured from Vihmin = 2.0V
10
ns
Table 4: MDI DC Characteristics
MDI Signal Descriptions
Management Data Input/Output
MII_MDIO is a bi-directional signal that is used to transfer status and control information between
the INT5130 and the external host. Control information is driven by the external host
synchronously with respect to MII_MDCLK and is sampled synchronously by the INT5130. Status
information is transferred from the INT5130 to the external host in the same manner.
Management Data Clock
MII_MDCLK is sourced by the external host as the timing reference for transfer of information on
the MII_MDIO signal.
MII Management Register Set
The IEEE 802.3u mandated management data registers for control and status are accessible via the
Management Data Interface (MDI). These registers are also accessible via the industry supported serial
peripheral interface. The MDI Port will only respond to addresses 0xbXX000 when the XX field (MSBits of
the MDI address) match the state of the MDI_ADRSEL[1:0] input signals. These registers can also be
INTELLON CONFIDENTIAL
Rev 8.1
18
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
accessed from the SPI Slave port when the MDI_SPIS_N select line has been tied low to select the SPI
Slave port.
PLCSR
Register Name
0
1
MII Mandated
Control Register
Status Register
X
X
Table 5: Powerline Control and Status Register (PLCSR) Summary
PRE
ST
OP
PHYAD
REGAD
TA
Data
Idle
READ
1...1
01
10
AAAAA
RRRRR
Z0
DDDDDDDDDDDDDDDD
Z
WRITE
1...1
01
01
AAAAA
RRRRR
10
DDDDDDDDDDDDDDDD
Z
Figure 13: MDI Frame Structure
PRE (Preamble)
At the beginning of each MDI transaction, the external host shall send a sequence of 32 contiguous
logic “1” bits on the MDIO signal so the INT5130 can establish synchronization. The INT5130
needs to observe this 32 bit sequence on the MII_MDIO signal before it responds to any
transaction.
ST (Start of Frame)
Indicated by a “01” pattern.
OP (Operation Code)
“10” indicates a READ. “01” indicates a WRITE.
PHYAD (PHY Address)
The PHY Address is 5 bits, allowing up the 32 unique PHY addresses. The INT5130 will respond to
PHY addresses indicated by 0bXX000. The “XX” bits of the PHY address are controlled by the
INT5130 interface pins MDI_ADRSEL(0:1). This allows the designer to assign the INT5130 to one
of 4 unique PHY addresses.
REGAD (Register Address)
The Register Address is 5 bits and is used to index the maximum of 32 individual registers in the
MDI address space. The INT5130 only implements the two mandated MII registers. 0b00000 will
index the MII Control Register and 0b00001 will index the MII Status Register.
TA (Turnaround)
The turnaround time is a 2 bit time spacing between the Register Address field and the Data field to
avoid contention during a read transaction.
For reads, both the external host and the INT5130 will remain in tri-state for the first bit time. The
INT5130 will drive a “0” during the second bit time.
INTELLON CONFIDENTIAL
Rev 8.1
19
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
For writes, the external host will drive a “1” for the first bit time and a “0” bit for the second bit time.
Data
The data field is 16 bits. The first data bit transmitted and received shall be bit 15 of the register
being addressed.
INTELLON CONFIDENTIAL
Rev 8.1
20
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
GPSI Interface with SPI Control
The General Purpose Serial Interface (GPSI) is a flexible, bi-directional serial interface that can be utilized in
place of the MII. It provides a straightforward interface to a communications controller through a synchronous
serial data stream for transmit and receive data. When using the GPSI interface, the management interface
can either be MDI or SPI, selected by the MDI_SPIS_N pin. The information that follows describes the GPSI
communication interface along with the SPI management interface as a typical example.
GPSI_RXD
INT5130
GPSI_RXCLK
GPSI_RXEN
GPSI_COL
GPSI_TXBSY
PowerPacket PHY
GPSI_TXEN
Interface Block
External
Host
Controller
PowerPacket MAC
GPSI_TXD
GPSI_TXCLK
SPIS_SDO
SPIS_SDI
SPIS_SCLK
SPIS_CS_N
Figure 14: GPSI Data Interface with SPI Control
GPSI Interface
GPSI is an interoperable interface providing a simple interconnection between the INT5130 and embedded
microcontrollers. Data is transferred between the host controller and the INT5130 over separate 1-bit
transmit and receive data paths synchronous with clock signals supplied to the host by the INT5130.
GPSI Timing Diagrams
The figures below show the transmission and reception of packets and the corresponding behavior of
the GPSI interface. A packet is transferred from the host when GPSI_TXEN goes high. An
unsuccessful attempt is made to transmit a packet in Case 5. The received packet is passed to the
host when GPSI_RXEN is high.
INTELLON CONFIDENTIAL
Rev 8.1
21
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
GPSI_TXEN
GPSI_TXD
P
P
P
P
GPSI_TXBSY
Internal TX buffer available pulse
GPSI_RXEN
P
P
Case 1
Case 2
Case 3
Case 4
Case 5
TX only
RX Only
RX & TX
TX, buf avail
TX, No buf avail,
Frame dropped
GPSI_RXD
Internal RX buffer available pulse
GPSI_COL
Figure 15: GPSI Flow Control Diagram
tGPSI_THIGH
tGPSI_TPER
GPSI_TXCLK
t GPSI_TDELAY
tGPSI_TDELAY
GPSI_TXD
GPSI_TXEN
tGPSI_TTXBSYH
GPSI_TXBSY
GPSI_COL
Figure 16: GPSI Transmit Timing Diagram
t GPSI_RPER
t GPSI_RHIGH
tGPSI_RLOW
GPSI_RXCLK
t GPSI_RSU
t GPSI_RRXENH
GPSI_RXD
t GPSI_RDH
GPSI_RXEN
GPSI_COL
Figure 17: GPSI Receive Timing Diagram
INTELLON CONFIDENTIAL
Rev 8.1
22
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
GPSI DC Characteristics
Parameter
Symbol
Parameter Name
Test Condition
Min
Max
Unit
Receive Timing
tGPSI_RPER
GPSI_RXCLK Period
tGPSI_RHIGH
GPSI_RXCLK High Time
@ 1.5 V
99.99
100.01
ns
@ 1.5 V
40
60
ns
tGPSI_RLOW
GPSI_RXCLK Low Time
@ 1.5 V
40
60
ns
tGPSI_RSU
GPSI_RXD and GPSI_RXEN Setup to
@ 1.5 V
↑ GPSI_RXCLK
15
ns
tGPSI_RDH
GPSI_RXD Hold after ↑ GPSI_RXCLK @ 1.5 V
15
ns
tGPSI_RRXENH
GPSI_RXEN Hold after ↓
GPSI_RXCLK
@ 1.5 V
0
ns
Transmit Timing
tGPSI_TPER
GPSI_TXCLK Period
tGPSI_THIGH
GPSI_TXCLK High Time
@ 1.5 V
99.99
100.01
ns
@ 1.5 V
40
60
ns
70
ns
tGPSI_TDELAY
GPSI_TXD and GPSI_TXEN Delay
from ↑ GPSI_TXCLK
@ 1.5 V
0
tGPSI_TRXENH
GPSI_RXEN Hold after ↓ GPSI_TXEN @ 1.5 V
0
ns
Table 6: GPSI DC Characteristics
GPSI Signal Descriptions
GPSI_TXCLK and GPSI_RXCLK: The INT5130 generates a stable, continuous 10 MHz square
wave that is supplied on GPSI_TXCLK and GPSI_RXCLK. These clocks provide the timing
reference for the transfer of the GPSI_TXEN and GPSI_TXD signal, as well as GPSI_RXEN and
GPSI_RXD.
GPSI_RXD: GPSI_RXD contains the data recovered from the medium by the INT5130 and
transitions synchronously with respect to GPSI_RXCLK. The INT5130 properly formats the frame
such that the external host controller will be presented with the expected preamble plus SFD.
GPSI_RXEN: GPSI_RXEN is asserted by the INT5130 to indicate that the INT5130 has decoded
receive data to present to the external host controller.
GPSI_TXBSY: GPSI_TXBSY is an optionally used signal to tell the external host controller when the
INT5130 is available for sending packets. When a packet is being transmitted, GPSI_TXBSY is held
high. GPSI_TXBSY will go low whenever the INT5130 is ready to send another packet. If this signal
is not used, the transmitting logic must pace the packet transmissions to ensure that no packets are
lost due to buffer overflow.
INTELLON CONFIDENTIAL
Rev 8.1
23
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
On transmit, the INT5130 asserts GPSI_TXBSY some time after GPSI_TXEN becomes active, and
drops GPSI_TXBSY after GPSI_TXEN goes inactive AND when the INT5130 is ready to accept
another packet for transmission. When GPSI_TXBSY falls, the external host controller may assert
GPSI_TXEN again if there is another packet to send.
GPSI_TXBSY does not affect nor reflect the receive side of the channel. Once packets start arriving
off of the powerline medium and begin transmission to the external host controller over the GPSI
interface, the external host controller MUST be ready to receive or the packet can be lost.
GPSI_TXEN: GPSI_TXEN from the external host provides the framing for the Ethernet packet. An
active GPSI_TXEN indicates to the INT5130 that data on GPSI_TXD should be sampled using
GPSI_TXCLK.
GPSI_TXD: GPSI_TXD contains the data to be transmitted and transitions synchronously with
respect to GPSI_TXCLK. It is generally assumed that the data will contain a properly formatted
Ethernet frame (see MII Frame Structure above). That is, the first bits on GPSI_TXD correspond to
the preamble, followed by Start Frame Delimiter (SFD) and the rest of the Ethernet frame (DA, SA,
length/type, data, CRC).
SPI Slave Interface
The INT5130 implements a SPI Slave port that when connected to an external host controller containing a
SPI Master, can be used to control access to the two configuration registers. The SPI Slave port uses a
16-bit control field (msb first) consisting of a 6-bit command field, a 5-bit reserved field, and a 5-bit address
field to control access to the two configuration registers detailed above. Following the control field, the 16bit register contents are written or read based on the command field.
Register function
10
5
14 13 12 11
Command Field
4
3
2
1
0
Control Field
8
7
6
5
Reserved Field
4
3
2
1
0
L
L
L
L
H
L
H
L
L
L
L
L
L
L
H
H
H
L
L
L
L
L
L
H
L
H
L
L
L
L
L
H
H
H
L
15
Write PLCSR0
(Control Register)
Read PLCSR0
(Control Register)
Write PLCSR1
(Status Register)
Read PLCSR1
(Status Register)
9
4
3
2
1
Address Field
4
3
2
1
0
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
0
Table 7: SPI Slave Command Summary
INTELLON CONFIDENTIAL
Rev 8.1
24
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
SPI SlaveTiming Diagram
tSPIS_LOW
SPIS_SCLK
tSPIS_HIGH
tSPIS_SU
SPIS_SDI
MSB IN
BITS 6-1
LSB IN
tSPIS_H
SPIS_SDO
MSB OUT
BITS 6-1
LSB OUT
t SPIS_SDOVD
tSPIS_CSLAG
SPIS_CS_N
tSPIS_CSLEAD
Figure 18: SPI Slave Signal Timing
SPI Slave DC Characteristics
Parameter
Symbol
tSPIS_F
Parameter Name
SPIS_SCLK Frequency
Test Condition
Min
Max
2.1
tSPIS_HIGH
SPIS_SCLK High Time
@ 1.5 V
400
ns
tSPIS_LOW
SPIS_SCLK Low Time
@ 1.5 V
400
ns
tSPIS_SDOVD
SPIS_SDO Valid Output Delay from SPIS_SCLK
@ 1.5 V
0
tSPIS_CSLEAD
SPIS_CS Lead to SPIS_SCLK
@ 1.5 V
500
500
Unit
MHz
ns
ns
tSPIS_CSLAG
SPIS_CS Lag from SPIS_SCLK
@ 1.5 V
1500
ns
tSPIS_SU
SPIS_SDI Setup Time to SPIS_SCLK
@ 1.5 V
200
ns
tSPIS_H
SPIS_SDI Hold Time to SPIS_SCLK
@ 1.5 V
200
ns
Table 8: SPI Slave DC Characteristics
Clocks
The INT5130 runs from a single 100MHz oscillator input and generates a 50MHz clock to feed the ADC, a
50MHz clock to feed the DAC, the 25MHz MII clock, and the 10MHz GPSI clock. The 100MHz clock input
directly feeds the clock distribution network that clocks up to 60% of the digital logic. Note: Both CLKIN and
CLKOUT connect directly to the 2.5 V core of the IC and do not connect to the 3.3 V I/O ring. Therefore these
pins are not 3.3V or 5V tolerant.
The oscillator must have ±25 PPM RMS maximum tolerance including initial accuracy, temperature/voltage
range and 5 years of aging. This oscillator must have a symmetry no worse than 40/60, jitter of 75 ps and 4 ns
rise and fall time. The oscillator must be rated over the desired temperature range and ±10% voltage range.
The INT5130 uses a crystal input cell to receive the clock input.
INTELLON CONFIDENTIAL
Rev 8.1
25
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
AFE Interface
The INT5130 provides a simple parallel interface to the analog front end (AFE). The analog data is clocked into
or out of the INT5130 on a 10-bit bi-directional parallel data bus under control of transmit or receive enable
signals and sample clock references provided to the AFE from the INT5130. The INT5130 also provides a
parallel byte-wide automatic gain control interface.
ADIO[9:0]
TX_EN
RX_EN
ADC_CLK
INT1000
ADC / DAC IC
DAC_CLK
ADC_CAL
INT5130
AGC[7:0]
ADC_CAL
Pull-up
or
Pull-down
AGC
Circuitry
Figure 19: AFE Interface to INT5130
ADC/DAC Interface
The INT5130 outputs a sequential stream of digital time samples of the OFDM waveforms for transmission.
The digital transmit signal is passed on to the INT1000 Integrated Converter. The INT1000 consists of a
10-bit ADC and 10-bit DAC on a multiplexed 10-bit bi-directional data bus. The ADC digitizes the analog
OFDM receive signal for input to the INT5130. The DAC converts digital samples into analog waveforms.
ADC/DAC Timing Diagrams
DAC_CLK
TX_EN
ADIO[9:0]
TX DATA
TX DATA
TX DATA
RX DATA
RX DATA
RX DATA
ADC_CLK
RX_EN
Figure 20: AFE TX and RX activity
INTELLON CONFIDENTIAL
Rev 8.1
26
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
tAFE_H
2.0V
DAC_CLK,
ADC_CLK
tAFE_L
1.5V
0.8V
tAFE_R
tAFE_FT
tAFE_PW
Figure 21: AFE Clock Waveforms
DAC_CLK
tAFE_RVAL
ADIO[9:0], RX_EN, TX_EN
DATA
Figure 22: AFE Transmit Timing Diagram
ADC_CLK
tAFE_TSU
DATA
ADIO[9:0]
tAFE_TH
Figure 23: AFE Receive Timing Diagram
INTELLON CONFIDENTIAL
Rev 8.1
27
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
DAC DC Characteristics
Symbol
Parameter
Conditions
Number of Bits
Data Format
Sample Rate
DAC DATA OUTPUTS
VOH
HIGH level output voltage
1, 2
VOL
LOW level output voltage
1, 3
TAFE_RVAL Propagation Delay Time
1
DAC CLOCK OUTPUT
tAFE_PW
DAC Clock Pulse Width
1
tAFE_R
DAC Clock Rise Time
1
tAFE_FT
DAC Clock Fall Time
1
tJ
DAC Clock Jitter
1
Conditions: 1) VDD = 3.3V, CL = 15pF, RL = 1KΩ
2) IOH = -1mA
3) IOL = 1mA
Min
Typical
Max
10
Straight Binary
Unit
Bits
50
MSPS
2.4
0.4
15.0
V
V
ns
15
2
2
75
ns
ns
ns
ps rms
5.0
8.2
10
Table 9: DAC DC Characteristics
ADC DC Characteristics
Symbol
Parameter
Conditions
Number of Bits
Data Format
Sample Rate
ADC DATA INPUTS
VIH
HIGH level input voltage
1
VIL
LOW level input voltage
1
TA
Aperture Delay Time
1
tAFE_TSU
Data Setup Time
1
tAFE_TH
Data Hold Time
1
ADC CLOCK OUTPUT
VOH
HIGH level output voltage
1
VOL
LOW level output voltage
1
tAFE_H
ADC/DAC Clock Pulse Width
1
High
tAFE_L
ADC/DAC Clock Pulse Width
1
Low
tAFE_R
ADC/DAC Clock Rise Time
1
tAFE_FT
ADC/DAC Clock Fall Time
1
tJ
ADC/DAC Clock Jitter
1
Conditions: 1) VDD = 3.3V, CL = 15pF, RL = 1KΩ
Min
Typical
Max
10
Straight Binary
50
Unit
Bits
MSPS
2.0
0.8
2.7
3
3
2.1
V
V
ns
ns
ns
10
0.9
15
V
V
ns
10
15
ns
2
2
75
ns
ns
ps rms
Table 10: ADC DC Characteristics
INTELLON CONFIDENTIAL
Rev 8.1
28
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
AGC Circuitry
The INT5130 receives 10-bit digitized samples from the INT1000 and uses them to adjust the Switched
Gain Amplifier (SGA) gain to maintain optimum signal level at the input of the ADC. The AGC[7:0] control
bus is used to pass a Gain Control Value (GCV) to the SGA. If the AGCENC_N input pin is low, the GCV is
encoded on pins [3:0] of the AGC[7:0] control bus. If the AGCENC_N input pin is high, the GCV is decoded
on pins [7:0] of the AGC[7:0] control bus with pins [7:4] selecting the gain switch setting for the first stage
amplifier and pins [3:0] selecting the gain switch setting for the second stage amplifier.
GCV (AGCENC_N = 0)
AGC[3:0]
0000
0001
0010
0011
0100
0101
0110
0111
GCV (AGCENC_N = 1)
AGC[7:4] AGC[3:0]
0000
0000
1000
1000
0100
1000
0010
1000
0001
1000
0001
0100
0001
0010
0001
0001
Front End Gain
(dB)
OFF
0
8
16
24
32
40
48
Note
Mute RX during TX mode
Table 11: RX Gain Control Values
AGC DC Characteristics
Symbol
Parameter
Conditions
VOH
HIGH level output voltage
1
VOL
LOW level output voltage
1
tR
Rise time
1
tF
Fall time
1
Conditions: 1) VDD = 3.3V, CL = 15pF, RL = 1KΩ
Min
2.1
Typical
Max
0.9
5
5
Unit
V
V
ns
ns
Table 12: AGC IDC Characteristics
SPI Master Interface
The SPI Master interface gives the system designer the option of providing the INT5130 with the necessary
configuration information from a simple, SPI-controlled E2PROM as opposed to supplying this information via
PowerPacket MAC management frames (transmitted over the MII interface). The information stored in the
E2PROM is intended to initialize the INT5130 with specific information that will not be changed throughout its
normal course of operation. For specific features that require real-time control, such as those features found
within the Set Transmit Characteristics MAC management frame, this information must be provided via the MAC
management frames and not from the E2PROM.
The E2PROM must be an Atmel AT93C46 programmed in 8-bit mode, or equivalent.
INTELLON CONFIDENTIAL
Rev 8.1
29
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
SPI Master Timing Diagram
tSPI_HIGH
SPI_SCLK
tSPI_SU
tSPI_LOW
tSPI_H
DATA
SPI_DI
tSPI_DIVD
tSPI_CSVD
DATA
SPI_DO
tSPI_CSL
SPI_CS
Figure 24: SPI Master Signal Timing Diagram
SPI Master DC Characteristics
Parameter
Symbol
tSPI_F
Parameter Name
SPI_SCLK Frequency
Test Condition
Min
Max
6.125
Unit
MHz
tSPI_HIGH
SPI_SCLK High Time
@ 1.5 V
70
90
ns
tSPI_LOW
SPI_SCLK Low Time
@ 1.5 V
70
90
ns
tSPI_DIVD
tSPI_CSVD
SPI_DI Valid Output Delay from SPI_SCLK
@ 1.5 V
0
15
ns
@ 1.5 V
@ 1.5 V
0
1000
15
tSPI_CSL
SPI_CS Valid Output Delay from SPI_SCLK
SPI_CS Low Time
ns
ns
tSPI_SU
SPI_DO Setup Time to SPI_SCLK
@ 1.5 V
50
ns
tSPI_H
SPI_DO Hold Time to SPI_SCLK
@ 1.5 V
0
ns
Table 13: SPI Master DC Characteristics
LEDs
Signal
LED0_N
Status
Collision
LED1_N
Activity
LED2_N
Link
INTELLON CONFIDENTIAL
Rev 8.1
Description
LED0_N: Collision Detection
Activate for a duration of 250 ms upon
detection of a collision.
LED1_N: Activity Detection
Activate for a duration of 250 ms upon the
receipt of a properly addressed unicast or
broadcast frame or the transmission of a
frame.
LED2_N: Link Detection
Turns on when initialization is complete
successfully and “network” is established.
30
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Table 14: LED Descriptions
JTAG Port
The JTAG port is implements the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.
JTAG Timing Diagrams
tJTAG_H
2.0V
TCK
tJTAG_L
1.5V
0.8V
tJTAG_R
tJTAG_FT
tJTAG_P
Figure 25: JTAG (IEEE 1149.1) TCK Waveform
INTELLON CONFIDENTIAL
Rev 8.1
31
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
TCK
tJTAG_SU
TDI, TMS
tJTAG_H
tJTAG_VD
TDO
tJTAG_OVD
tJTAG_OFD
Output
Signals
tJTAG_ISU
Input
Signals
tJTAG_IH
Figure 26: JTAG(IEEE 1149.1) Test Signal Timing
JTAG DC Characteristics
INTELLON CONFIDENTIAL
Rev 8.1
32
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Parameter
Symbol
tJTAG_F
Parameter Name
TCK Frequency
Test Condition
Min
Max
10
Unit
MHz
tJTAG_P
TCK Period
tJTAG_H
TCK High Time
tJTAG_L
TCK Low Time
tJTAG_R
TCK Rise Time
4
ns
tJTAG_FT
TCK Fall Time
4
ns
tJTAG_SU
TDI, TMS Setup Time
8
ns
tJTAG_H
TDI, TMS Hold Time
10
ns
tJTAG_VD
TDO Valid Delay
3
tJTAG_FD
TDO Float Delay
tJTAG_OVD
All Outputs (Non-Test) Valid Delay
tJTAG_OFD
All Outputs (Non-Test) Float Delay
tJTAG_ISU
All Inputs (Non-Test) Setup Time
8
ns
tJTAG_IH
All Inputs (Non-Test) Hold Time
7
ns
100
ns
@ 2.0V
45
ns
@ 0.8V
45
ns
3
30
ns
50
ns
25
ns
36
ns
Table 15: JTAG (IEEE 1149.1) DC Characteristics
INTELLON CONFIDENTIAL
Rev 8.1
33
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Application Diagrams
LEDs
Powerline
EEPROM
LEDs
AGC
Amplifier
PCI
802.3 MAC
Controller for
PCI
MII
MDI
INT5130
Integrated
Powerline
MAC/PHY
Transceiver
Coupler
INT1000
Analog
Conversion IC
Line Driver
Figure 27: PCI to MII Application Diagram
LEDs
Powerline
AGC
Amplifier
USB
802.3 MAC
Controller for
USB
GPSI
SPI
INT5130
Integrated
Powerline
MAC/PHY
Transceiver
Coupler
INT1000
Analog
Conversion IC
Line Driver
Figure 28: USB to MII Application Diagram
LEDs
Powerline
AGC
Amplifier
USB
Embedded IC
with integrated
802.3 MAC
Controller
GPSI
SPI
INT5130
Integrated
Powerline
MAC/PHY
Transceiver
Coupler
INT1000
Analog
Conversion IC
Line Driver
Figure 29: Embedded Application Diagram
INTELLON CONFIDENTIAL
Rev 8.1
34
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Electrical Specifications
Recommended Operating Conditions
Parameter
Core Supply Voltage
I/O Supply Voltage
Operational Temperature
Symbol
Min
Typ
Max
Unit
VDD
VCC
TA
2.3
3.0
0
2.5
3.3
2.7
3.6
+70
V
V
°C
Note: Recommended Operating Conditions are those values beyond which operation is not guaranteed.
DC Characteristics
Parameter
Symbol
Input HIGH Voltage
Input LOW Voltage
Output HIGH Voltage
Output LOW voltage
Input Current
VIH
VIL
VOH
VOL
II
Supply Current
Supply Current
IDD
ICC
Test Conditions
Min
Typ
Max
2.0
0.8
IOH = -1mA
IOL = 1mA
2.4
0.4
15
-15
465
25
Unit
V
V
V
V
µA
mA
mA
Note: Any signal applied to the INT5130 clock pins, CLKIN and/or CLKOUT should not exceed 2.5 Volts.
INTELLON CONFIDENTIAL
Rev 8.1
35
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Physical Dimensions
.866 [22.00]
.787 [20.00]
.020 [0.50]
.004 [0.09]
.009 [0.22]
.866 [22.00]
.024 [0.60]
.039 [1.00]
.787 [20.00]
DETAIL "A"
123
SEE DETAIL "A"
.059 [1.50]
PACKAGE OUTLINE
LQFP 144 LEAD
DIMENSIONS NOMINAL
BRACKETED DIMENSIONS ARE MM
.055 [1.40]
Figure 30: Physical Dimensions
INTELLON CONFIDENTIAL
Rev 8.1
36
ADVANCE INFORMATION
INT5130 Integrated Powerline MAC/PHY Transceiver Technical Data Sheet
Ordering Information
The INT5130 is available as part of the INT5130 Chipset, which includes both the INT5130 Integrated
Powerline MAC/PHY Transceiver and the INT1000 Analog Conversion IC. Ordering information for the chipset
is provided below.
Catalog Part Number
INT5130 CS
INTELLON CONFIDENTIAL
Rev 8.1
Package Type
INT5130: 144-pin LQFP
INT1000: 64-pin LQFP
37
Operating Range
Commercial
ADVANCE INFORMATION
Intellon Corporation
5100 West Silver Springs Blvd.
Ocala, FL 34482
(352) 237-7416
(352) 237-7616 (Fax)
2880 Lakeside Drive
Suite #247
Santa Clara, CA 95054
(408) 567-1400
(408) 567-1401
www.intellon.com
2001 Intellon Corporation. Intellon Corporation reserves the right to make changes to this document without notice. Intellon Corporation
makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. Intellon Corporation
assumes no liability arising out of the application or use of any product or circuit. Intellon Corporation specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
Intellon, PowerPacket, and No New Wires are registered trademarks of Intellon Corporation. HomePlug is a registered trademark of the
HomePlug Powerline Alliance.
INTELLON CONFIDENTIAL
Rev 8.1
38
ADVANCE INFORMATION
014070108.1