NEC UPD442012AGY-DD85X-MJH

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD442012A-X
2M-BIT CMOS STATIC RAM
128K-WORD BY 16-BIT
EXTENDED TEMPERATURE OPERATION
Description
The µPD442012A-X is a high speed, low power, 2,097,152 bits (131,072 words by 16 bits) CMOS static RAM.
The µPD442012A-X has two chip enable pins (/CE1, CE2) to extend the capacity.
The µPD442012A-X is packed in 48-pin PLASTIC TSOP (I) (Normal bent).
Features
• 131,072 words by 16 bits organization
★
• Fast access time : 50, 55, 70, 85, 100, 120 ns (MAX.)
• Byte data control : /LB (I/O1 - I/O8), /UB (I/O9 - I/O16)
• Low voltage operation
(BB version : VCC = 2.7 to 3.6 V, BC version : VCC = 2.2 to 3.6 V, DD version : VCC = 1.8 to 2.2 V)
• Low VCC data retention : 1.0 V (MIN.)
• Operating ambient temperature : TA = –25 to +85 °C
• Output Enable input for easy application
• Two Chip Enable inputs : /CE1, CE2
Part number
Access time
Operating supply Operating ambient
ns (MAX.)
★
µPD442012A-BBxxX
50
Note 1
, 55, 70, 85
Supply current
voltage
temperature
At operating
At standby
At data retention
V
°C
mA (MAX.)
µA (MAX.)
µA (MAX.)
2.7 to 3.6
−25 to +85
4
2
30
Note 2
35
Note 3
40
Note 4
µPD442012A-BCxxX
70, 85, 100
2.2 to 3.6
30
★
µPD442012A-DDxxX
85, 100, 120
1.8 to 2.2
15
★
Notes 1. VCC ≥ 3.0 V
★
2. Cycle time ≥ 70 ns
★
3. Cycle time = 55 ns
★
4. Cycle time = 50 ns
3
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
Document No. M14671EJ7V0DS00 (7th edition)
Date Published July 2001 NS CP (K)
Printed in Japan
The mark ★ shows major revised points.
©
2000
µPD442012A-X
Ordering Information
Part number
★
★
Package
µPD442012AGY-BB55X-MJH
48-pin PLASTIC TSOP (I)
µPD442012AGY-BB70X-MJH
(12×18) (Normal bent)
Access time
Operating
Operating
ns (MAX.)
supply voltage
temperature
V
°C
2.7 to 3.6
−25 to +85
55, 50
Note
BB version
70
µPD442012AGY-BB85X-MJH
85
µPD442012AGY-BC70X-MJH
70
µPD442012AGY-BC85X-MJH
85
µPD442012AGY-BC10X-MJH
100
µPD442012AGY-DD85X-MJH
85
µPD442012AGY-DD10X-MJH
100
µPD442012AGY-DD12X-MJH
120
Note VCC ≥ 3.0 V
2
Remark
Data Sheet M14671EJ7V0DS
2.2 to 3.6
BC version
1.8 to 2.2
DD version
µPD442012A-X
Pin Configuration (Marking Side)
/xxx indicates active low signal.
×18) (Normal bent)
48-pin PLASTIC TSOP (I) (12×
[ µPD442012AGY-BBxxX-MJH ]
[ µPD442012AGY-BCxxX-MJH ]
[ µPD442012AGY-DDxxX-MJH ]
A15
A14
A13
A12
A11
A10
A9
A8
NC
NC
/WE
CE2
IC
/UB
/LB
NC
NC
A7
A6
A5
A4
A3
A2
A1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
A0 - A16
A16
NC
GND
I/O16
I/O8
I/O15
I/O7
I/O14
I/O6
I/O13
I/O5
VCC
I/O12
I/O4
I/O11
I/O3
I/O10
I/O2
I/O9
I/O1
/OE
GND
/CE1
A0
: Address inputs
I/O1 - I/O16 : Data inputs / outputs
/CE1, CE2
: Chip Enable 1, 2
/WE
: Write Enable
/OE
: Output Enable
/LB, /UB
: Byte data select
VCC
: Power supply
GND
: Ground
NC
: No Connection
IC
Note
: Internal Connection
Note Leave this pin unconnected or connect to GND.
Remark Refer to Package Drawing for the 1-pin index mark.
Data Sheet M14671EJ7V0DS
3
µPD442012A-X
Block Diagram
VCC
GND
A0
A16
Address
buffer
Row
decoder
I/O1 - I/O8
I/O9 - I/O16
Input data
controller
Memory cell array
2,097,152 bits
Sense amplifier /
Switching circuit
Column decoder
Address buffer
/CE1
CE2
/LB
/UB
/WE
/OE
4
Data Sheet M14671EJ7V0DS
Output data
controller
µPD442012A-X
Truth Table
/CE1
CE2
/OE
/WE
/LB
/UB
Mode
I/O
Supply current
I/O1 - I/O8
I/O9 - I/O16
H
×
×
×
×
×
Not selected
High impedance
High impedance
×
L
×
×
×
×
Not selected
High impedance
High impedance
×
×
×
×
H
H
Not selected
High impedance
High impedance
L
H
H
H
L
×
Output disable
High impedance
High impedance
×
L
Output disable
High impedance
High impedance
L
L
Word read
DOUT
DOUT
L
H
Lower byte read
DOUT
High impedance
H
L
Upper byte read
High impedance
DOUT
L
L
Word write
DIN
DIN
L
H
Lower byte write
DIN
High impedance
H
L
Upper byte write
High impedance
DIN
L
×
H
L
ISB
ICCA
Remark × : VIH or VIL
Data Sheet M14671EJ7V0DS
5
µPD442012A-X
Electrical Specifications
Absolute Maximum Ratings
Parameter
Symbol
Product
VCC
µPD442012A-BBxxX, µPD442012A-BCxxX
Supply voltage
Rating
µPD442012A-DDxxX
Input / Output voltage
VT
µPD442012A-BBxxX, µPD442012A-BCxxX
µPD442012A-DDxxX
Unit
–0.5
Note
to +4.0
–0.5
Note
to +2.7
V
–0.5
Note
to VCC+0.4 (4.0 V MAX.)
–0.5
Note
to VCC+0.4 (2.7 V MAX.)
V
Operating ambient temperature
TA
–25 to +85
°C
Storage temperature
Tstg
–55 to +125
°C
Note –3.0 V (MIN.) (Pulse width : 30 ns)
Caution Exposing the device to stress above those listed in Absolute Maximum Rating could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
Recommended Operating Conditions
Parameter
Symbol
Supply voltage
VCC
High level input voltage
VIH
Low level input voltage
VIL
Operating ambient
TA
Condition
µPD442012A-BBxxX µPD442012A-BCxxX µPD442012A-DDxxX
Unit
MIN.
MAX.
MIN.
MAX.
MIN.
MAX.
2.7
3.6
2.2
3.6
1.8
2.2
V
2.7 V ≤ VCC ≤ 3.6 V
2.4
VCC+0.4
2.4
VCC+0.4
–
–
V
2.2 V ≤ VCC < 2.7 V
–
–
2.0
VCC+0.3
–
–
1.8 V ≤ VCC < 2.2 V
–
–
–
–
1.6
–0.3
Note
–25
+0.5
+85
–0.3
Note
–25
+0.4
–0.2
+85
VCC+0.2
Note
–25
+0.2
V
+85
°C
temperature
Note –1.0 V (MIN.) (Pulse width : 20 ns)
Capacitance (TA = 25 °C, f = 1 MHz)
Parameter
Symbol
Test condition
MIN.
TYP.
MAX.
Unit
Input capacitance
CIN
VIN = 0 V
8
pF
Input / Output capacitance
CI/O
VI/O = 0 V
10
pF
Remarks 1. VIN : Input voltage
VI/O : Input / Output voltage
2. These parameters are not 100% tested.
6
Data Sheet M14671EJ7V0DS
µPD442012A-X
DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (1/2)
Parameter
Symbol
Test condition
µPD442012A-BBxxX
MIN.
TYP.
Unit
MAX.
Input leakage current
ILI
VIN = 0 V to VCC
–1.0
+1.0
µA
I/O leakage current
ILO
VI/O = 0 V to VCC, /CE1 = VIH or
–1.0
+1.0
µA
mA
CE2 = VIL or /WE = VIL or /OE = VIH
★
Operating supply current
★
ICCA1
ICCA2
/CE1 = VIL, CE2 = VIH,
Cycle time = 50 ns
–
40
II/O = 0 mA,
Cycle time = 55 ns
–
35
Minimum cycle time
Cycle time ≥ 70 ns
–
30
–
4
–
4
–
0.6
mA
µA
/CE1 = VIL, CE2 = VIH,
II/O = 0 mA, Cycle time = ∞
★
ICCA3
/CE1 ≤ 0.2 V, CE2 ≥ VCC – 0.2 V,
Cycle time = 1 µs, II/O = 0 mA,
VIL ≤ 0.2 V, VIH ≥ VCC – 0.2 V
Standby supply current
ISB
/CE1 = VIH or CE2 = VIL or /LB = /UB = VIH
ISB1
/CE1 ≥ VCC – 0.2 V, CE2 ≥ VCC – 0.2 V
0.3
4
ISB2
CE2 ≤ 0.2 V
0.3
4
ISB3
/LB = /UB ≥ VCC – 0.2 V,
0.3
4
/CE1 ≤ 0.2 V, CE2 ≥ VCC – 0.2 V
High level output voltage
VOH
IOH = –0.5 mA
Low level output voltage
VOL
IOL = 1.0 mA
2.4
V
0.4
V
Remarks 1. VIN : Input voltage
VI/O : Input / Output voltage
2. These DC characteristics are in common regardless of product specification.
Data Sheet M14671EJ7V0DS
7
µPD442012A-X
DC Characteristics (Recommended Operating Conditions Unless Otherwise Noted) (2/2)
Parameter
Symbol
µPD442012A-BCxxX
µPD442012A-DDxxX
MIN.
MAX.
MIN.
Test condition
TYP.
TYP.
Unit
MAX.
Input leakage current
ILI
VIN = 0 V to VCC
–1.0
+1.0
–1.0
+1.0
µA
I/O leakage current
ILO
VI/O = 0 V to VCC, /CE1 = VIH or
–1.0
+1.0
–1.0
+1.0
µA
mA
CE2 = VIL or /WE = VIL or /OE = VIH
Operating supply current
ICCA1
/CE1 = VIL, CE2 = VIH,
–
30
–
–
★
II/O = 0 mA,
VCC ≤ 2.7 V
–
25
–
–
★
Minimum cycle time
VCC ≤ 2.2 V
–
–
–
15
–
4
–
–
★
ICCA2
/CE1 = VIL, CE2 = VIH,
★
II/O = 0 mA,
VCC ≤ 2.7 V
–
2
–
–
★
Cycle time = ∞
VCC ≤ 2.2 V
–
–
–
1
–
4
–
–
★
ICCA3
/CE1 ≤ 0.2 V, CE2 ≥ VCC – 0.2 V,
Cycle time = 1 µs, II/O = 0 mA,
★
VIL ≤ 0.2 V,
VCC ≤ 2.7 V
–
3
–
–
★
VIH ≥ VCC – 0.2 V
VCC ≤ 2.2 V
–
–
–
3
–
0.6
–
–
VCC ≤ 2.7 V
–
0.6
–
–
VCC ≤ 2.2 V
–
–
–
0.6
0.3
4
–
–
VCC ≤ 2.7 V
0.25
3.5
–
–
VCC ≤ 2.2 V
–
–
0.2
3
0.3
4
–
–
VCC ≤ 2.7 V
0.25
3.5
–
–
VCC ≤ 2.2 V
–
–
0.2
3
0.3
4
–
–
Standby supply current
ISB
/CE1 = VIH or CE2 = VIL or
/LB = /UB = VIH
ISB1
/CE1 ≥ VCC – 0.2 V,
CE2 ≥ VCC – 0.2 V
ISB2
ISB3
High level output voltage
Low level output voltage
VOH
VOL
CE2 ≤ 0.2 V
/LB = /UB ≥ VCC – 0.2 V,
/CE1 ≤ 0.2 V,
VCC ≤ 2.7 V
0.25
3.5
–
–
CE2 ≥ VCC – 0.2 V
VCC ≤ 2.2 V
–
–
0.2
3
IOH = –0.5 mA
2.4
–
VCC ≤ 2.7 V
1.8
–
VCC ≤ 2.2 V
–
1.5
IOL = 1.0 mA
–
VCC ≤ 2.7 V
0.4
–
VCC ≤ 2.2 V
–
0.4
VI/O : Input / Output voltage
2. These DC characteristics are in common regardless of product specification.
8
Data Sheet M14671EJ7V0DS
µA
V
0.4
Remarks 1. VIN : Input voltage
mA
V
µPD442012A-X
AC Characteristics (Recommended Operating Conditions Unless Otherwise Noted)
AC Test Conditions
[ µPD442012A-BB55X, µPD442012A-BB70X, µPD442012A-BB85X ]
Input Waveform (Rise and Fall Time ≤ 5 ns)
0.9 VCC
VCC/2
Test points
VCC/2
VCC/2
Test points
VCC/2
0.1 VCC
Output Waveform
Output Load
1TTL + 50 pF
[ µPD442012A-BC70X, µPD442012A-BC85X, µPD442012A-BC10X ]
Input Waveform (Rise and Fall Time ≤ 5 ns)
0.9 VCC
VCC/2
Test points
VCC/2
VCC/2
Test points
VCC/2
0.1 VCC
Output Waveform
Output Load
1TTL + 30 pF
[ µPD442012A-DD85X, µPD442012A-DD10X, µPD442012A-DD12X ]
Input Waveform (Rise and Fall Time ≤ 5 ns)
0.9 VCC
VCC/2
Test points
VCC/2
VCC/2
Test points
VCC/2
0.1 VCC
Output Waveform
Output Load
1TTL + 30 pF
Data Sheet M14671EJ7V0DS
9
µPD442012A-X
★
Read Cycle (1/3) (BB version)
Parameter
µPD442012A-BB55X
Symbol
µPD442012A
µPD442012A
-BB70X
-BB85X
VCC ≥ 3.0 V
MIN.
MAX.
MIN.
50
MAX.
55
MIN.
MAX.
MIN.
70
Unit
Condition
MAX.
Read cycle time
tRC
85
ns
Address access time
tAA
50
55
70
85
ns
/CE1 access time
tCO1
50
55
70
85
ns
CE2 access time
tCO2
50
55
70
85
ns
/OE to output valid
tOE
30
30
35
40
ns
/LB, /UB to output valid
tBA
50
55
70
85
ns
Output hold from address change
tOH
10
10
10
10
ns
/CE1 to output in low impedance
tLZ1
10
10
10
10
ns
CE2 to output in low impedance
tLZ2
10
10
10
10
ns
/OE to output in low impedance
tOLZ
5
5
5
5
ns
/LB, /UB to output in low impedance
tBLZ
10
10
10
10
ns
/CE1 to output in high impedance
tHZ1
20
20
25
30
ns
CE2 to output in high impedance
tHZ2
20
20
25
30
ns
/OE to output in high impedance
tOHZ
20
20
25
30
ns
/LB, /UB to output in high impedance
tBHZ
20
20
25
30
ns
Note 1
Note 2
Notes 1. The output load is 1TTL + 50 pF.
2. The output load is 1TTL + 5 pF.
Read Cycle (2/3) (BC version)
Parameter
Symbol
µPD442012A
µPD442012A
µPD442012A
-BC70X
-BC85X
-BC10X
MIN.
Read cycle time
tRC
MAX.
70
MIN.
MAX.
85
MIN.
Unit
MAX.
100
ns
Address access time
tAA
70
85
100
ns
/CE1 access time
tCO1
70
85
100
ns
CE2 access time
tCO2
70
85
100
ns
/OE to output valid
tOE
35
40
50
ns
100
ns
70
85
/LB, /UB to output valid
tBA
Output hold from address change
tOH
10
10
10
ns
/CE1 to output in low impedance
tLZ1
10
10
10
ns
CE2 to output in low impedance
tLZ2
10
10
10
ns
/OE to output in low impedance
tOLZ
5
5
5
ns
/LB, /UB to output in low impedance
tBLZ
10
10
10
ns
/CE1 to output in high impedance
tHZ1
25
30
35
ns
CE2 to output in high impedance
tHZ2
25
30
35
ns
/OE to output in high impedance
tOHZ
25
30
35
ns
/LB, /UB to output in high impedance
tBHZ
25
30
35
ns
Notes 1. The output load is 1TTL + 30 pF.
2. The output load is 1TTL + 5 pF.
10
Data Sheet M14671EJ7V0DS
Condition
Note 1
Note 2
µPD442012A-X
Read Cycle (3/3) (DD version)
Parameter
Symbol
µPD442012A
µPD442012A
µPD442012A
-DD85X
-DD10X
-DD12X
MIN.
MAX.
MIN.
85
MAX.
100
MIN.
Unit
Condition
MAX.
Read cycle time
tRC
120
ns
Address access time
tAA
85
100
120
ns
/CE1 access time
tCO1
85
100
120
ns
CE2 access time
tCO2
85
100
120
ns
/OE to output valid
tOE
40
50
60
ns
/LB, /UB to output valid
tBA
85
100
120
ns
Output hold from address change
tOH
10
10
10
ns
/CE1 to output in low impedance
tLZ1
10
10
10
ns
CE2 to output in low impedance
tLZ2
10
10
10
ns
/OE to output in low impedance
tOLZ
5
5
5
ns
/LB, /UB to output in low impedance
tBLZ
10
10
10
ns
/CE1 to output in high impedance
tHZ1
30
35
40
ns
CE2 to output in high impedance
tHZ2
30
35
40
ns
/OE to output in high impedance
tOHZ
30
35
40
ns
/LB, /UB to output in high impedance
tBHZ
30
35
40
ns
Note 1
Note 2
Notes 1. The output load is 1TTL + 30 pF.
2. The output load is 1TTL + 5 pF.
Read Cycle Timing Chart
tRC
Address (Input)
tAA
tOH
/CE1 (Input)
tHZ1
tCO1
tLZ1
CE2 (Input)
tCO2
tHZ2
tLZ2
/OE (Input)
tOE
tOHZ
tOLZ
/LB, /UB (Input)
tBA
tBHZ
tBLZ
I/O (Output)
Remark
High impedance
Data out
In read cycle, /WE should be fixed to high level.
Data Sheet M14671EJ7V0DS
11
µPD442012A-X
★
Write Cycle (1/3) (BB version)
Parameter
µPD442012A-BB55X
Symbol
µPD442012A
µPD442012A
-BB70X
-BB85X
VCC ≥ 3.0 V
MIN.
Write cycle time
MAX.
MIN.
MAX.
MIN.
MAX.
MIN.
Unit
MAX.
tWC
50
55
70
85
ns
/CE1 to end of write
tCW1
45
50
55
70
ns
CE2 to end of write
tCW2
45
50
55
70
ns
/LB, /UB to end of write
tBW
45
50
55
70
ns
Address valid to end of write
tAW
45
50
55
70
ns
Address setup time
tAS
0
0
0
0
ns
Write pulse width
tWP
40
45
50
55
ns
Write recovery time
tWR
0
0
0
0
ns
Data valid to end of write
tDW
25
25
30
35
ns
Data hold time
tDH
0
0
0
0
ns
/WE to output in high impedance
tWHZ
Output active from end of write
tOW
20
20
5
5
25
30
5
Condition
5
ns
Note
ns
Note The output load is 1TTL + 5 pF.
Write Cycle (2/3) (BC version)
Parameter
Symbol
µPD442012A
µPD442012A
µPD442012A
-BC70X
-BC85X
-BC10X
MIN.
MAX.
MIN.
MAX.
MIN.
Unit
MAX.
Write cycle time
tWC
70
85
100
ns
/CE1 to end of write
tCW1
55
70
80
ns
CE2 to end of write
tCW2
55
70
80
ns
/LB, /UB to end of write
tBW
55
70
80
ns
Address valid to end of write
tAW
55
70
80
ns
Address setup time
tAS
0
0
0
ns
Write pulse width
tWP
50
55
60
ns
Write recovery time
tWR
0
0
0
ns
Data valid to end of write
tDW
30
35
40
ns
Data hold time
tDH
0
0
0
ns
/WE to output in high impedance
tWHZ
Output active from end of write
tOW
25
5
30
5
Note The output load is 1TTL + 5 pF.
12
Data Sheet M14671EJ7V0DS
35
5
Condition
ns
ns
Note
µPD442012A-X
Write Cycle (3/3) (DD version)
Parameter
Symbol
µPD442012A
µPD442012A
µPD442012A
-DD85X
-DD10X
-DD12X
MIN.
Write cycle time
MAX.
MIN.
MAX.
MIN.
Unit
MAX.
tWC
85
100
120
ns
/CE1 to end of write
tCW1
70
80
100
ns
CE2 to end of write
tCW2
70
80
100
ns
/LB, /UB to end of write
tBW
70
80
100
ns
Address valid to end of write
tAW
70
80
100
ns
Address setup time
tAS
0
0
0
ns
Write pulse width
tWP
55
60
85
ns
Write recovery time
tWR
0
0
0
ns
Data valid to end of write
tDW
35
40
60
ns
Data hold time
tDH
0
0
0
ns
/WE to output in high impedance
tWHZ
Output active from end of write
tOW
30
5
35
5
40
5
Condition
ns
Note
ns
Note The output load is 1TTL + 5 pF.
Data Sheet M14671EJ7V0DS
13
µPD442012A-X
Write Cycle Timing Chart 1 (/WE Controlled)
tWC
Address (Input)
tCW1
/CE1 (Input)
tCW2
CE2 (Input)
tAW
tAS
tWP
tWR
/WE (Input)
tBW
/LB, /UB (Input)
tOW
tWHZ
I/O (Input / Output)
Indefinite data out
tDW
High
impedance
tDH
Data in
High
impedance
Indefinite data out
Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
2. Do not input data to the I/O pins while they are in the output state.
Remarks 1. Write operation is done during the overlap time of a low level /CE1, a low level /WE, a low level
/LB (or low level /UB) and a high level CE2.
2. If /CE1 changes to low level at the same time or after the change of /WE to low level, or if CE2
changes to high level at the same time or after the change of /WE to low level, the I/O pins will
remain high impedance state.
3. When /WE is at low level, the I/O pins are always high impedance. When /WE is at high level,
read operation is executed. Therefore /OE should be at high level to make the I/O pins high
impedance.
14
Data Sheet M14671EJ7V0DS
µPD442012A-X
Write Cycle Timing Chart 2 (/CE1 Controlled)
tWC
Address (Input)
tAS
tCW1
/CE1 (Input)
tCW2
CE2 (Input)
tAW
tWP
tWR
/WE (Input)
tBW
/LB, /UB (Input)
tDW
High impedance
Data in
I/O (Input)
tDH
High
impedance
Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
2. Do not input data to the I/O pins while they are in the output state.
Remark
Write operation is done during the overlap time of a low level /CE1, a low level /WE, a low level /LB (or low
level /UB) and a high level CE2.
Data Sheet M14671EJ7V0DS
15
µPD442012A-X
Write Cycle Timing Chart 3 (CE2 Controlled)
tWC
Address (Input)
tCW1
/CE1 (Input)
tAS
tCW2
CE2 (Input)
tAW
tWP
tWR
/WE (Input)
tBW
/LB, /UB (Input)
tDW
High impedance
I/O (Input)
Data in
tDH
High
impedance
Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
2. Do not input data to the I/O pins while they are in the output state.
Remark
Write operation is done during the overlap time of a low level /CE1, a low level /WE, a low level /LB (or low
level /UB) and a high level CE2.
16
Data Sheet M14671EJ7V0DS
µPD442012A-X
Write Cycle Timing Chart 4 (/LB, /UB Controlled)
tWC
Address (Input)
tCW1
/CE1 (Input)
tCW2
CE2 (Input)
tAW
tWP
tWR
/WE (Input)
tAS
tBW
/LB, /UB (Input)
tDW
High impedance
I/O (Input)
Data in
tDH
High
impedance
Cautions 1. During address transition, at least one of pins /CE1, CE2, /WE should be inactivated.
2. Do not input data to the I/O pins while they are in the output state.
Remark
Write operation is done during the overlap time of a low level /CE1, a low level /WE, a low level /LB (or low
level /UB) and a high level CE2.
Data Sheet M14671EJ7V0DS
17
µPD442012A-X
Low VCC Data Retention Characteristics (TA = –25 to +85 °C)
Parameter
Symbol
Test Condition
µPD442012A
µPD442012A
µPD442012A
-BBxxX
-BCxxX
-DDxxX
Unit
MIN. TYP. MAX. MIN. TYP. MAX. MIN. TYP. MAX.
Data retention
VCCDR1
/CE1 ≥ VCC − 0.2 V,
1.0
3.6
1.0
3.6
1.0
2.2
V
CE2 ≥ VCC − 0.2 V
supply voltage
VCCDR2
CE2 ≤ 0.2 V
1.0
3.6
1.0
3.6
1.0
2.2
VCCDR3
/LB = /UB ≥ VCC − 0.2 V,
1.0
3.6
1.0
3.6
1.0
2.2
/CE1 ≤ 0.2 V, CE2 ≥ VCC − 0.2 V
★
Data retention
ICCDR1
VCC = 1.2 V, /CE1 ≥ VCC − 0.2 V,
0.15
2
0.15
2
0.15
2
µA
CE2 ≥ VCC − 0.2 V
supply current
ICCDR2
VCC = 1.2 V, CE2 ≤ 0.2 V
0.15
2
0.15
2
0.15
2
ICCDR3
VCC = 1.2 V, /LB = /UB ≥ VCC − 0.2 V,
0.15
2
0.15
2
0.15
2
/CE1 ≤ 0.2 V, CE2 ≥ VCC − 0.2 V
Chip deselection
tCDR
0
0
0
ns
Note
ns
to data retention
mode
Operation
tR
tRC
Note
recovery time
Note tRC : Read cycle time
18
Data Sheet M14671EJ7V0DS
tRC
Note
tRC
µPD442012A-X
Data Retention Timing Chart
(1) /CE1 Controlled
tCDR
Data retention mode
tR
VCC
VCC (MIN.)
Note
/CE1
VIH (MIN.)
VCCDR (MIN.)
/CE1 ≥ VCC – 0.2 V
VIL (MAX.)
GND
Note BB version : 2.7 V, BC version : 2.2 V, DD version : 1.8 V
Remark
On the data retention mode by controlling /CE1, the input level of CE2 must be ≥ VCC − 0.2 V or ≤ 0.2 V.
The other pins (Address, I/O, /WE, /OE, /LB, /UB) can be in high impedance state.
(2) CE2 Controlled
tCDR
Data retention mode
tR
VCC
VCC (MIN.)
Note
VIH (MIN.)
VCCDR (MIN.)
CE2
VIL (MAX.)
CE2 ≤ 0.2 V
GND
Note BB version : 2.7 V, BC version : 2.2 V, DD version : 1.8 V
Remark On the data retention mode by controlling CE2, the other pins (/CE1, Address, I/O, /WE, /OE, /LB, /UB)
can be in high impedance state.
Data Sheet M14671EJ7V0DS
19
µPD442012A-X
(3) /LB, /UB Controlled
tCDR
Data retention mode
tR
VCC
VCC (MIN.)
Note
/LB, /UB
VIH (MIN.)
VCCDR (MIN.)
/LB, /UB ≥ VCC – 0.2 V
VIL (MAX.)
GND
Note BB version : 2.7 V, BC version : 2.2 V, DD version : 1.8 V
Remark
On the data retention mode by controlling /LB and /UB, the input level of /CE1 and CE2 must be
≥ VCC − 0.2 V or ≤ 0.2 V. The other pins (Address, I/O, /WE, /OE) can be in high impedance state.
20
Data Sheet M14671EJ7V0DS
µPD442012A-X
Package Drawing
48-PIN PLASTIC TSOP(I) (12x18)
1
detail of lead end
48
F
G
R
Q
24
L
25
S
E
P
I
A
J
C
S
D
K
N
B
M M
S
NOTES
ITEM
MILLIMETERS
1. Each lead centerline is located within 0.10 mm of
its true position (T.P.) at maximum material condition.
A
12.0±0.1
B
0.45 MAX.
2. "A" excludes mold flash. (Includes mold flash : 12.4 mm MAX.)
C
0.5 (T.P.)
D
0.22±0.05
E
0.1±0.05
F
1.2 MAX.
G
1.0±0.05
I
16.4±0.1
J
0.8±0.2
K
0.145±0.05
L
0.5
M
0.10
N
0.10
P
18.0±0.2
Q
3° +5°
−3°
R
S
0.25
0.60±0.15
S48GY-50-MJH1-1
Data Sheet M14671EJ7V0DS
21
µPD442012A-X
Recommended Soldering Conditions
Please consult with our sales offices for soldering conditions of the µPD442012A-X.
Types of Surface Mount Device
µPD442012AGY-BBxxX-MJH : 48-pin PLASTIC TSOP (I) (12×18) (Normal bent)
µPD442012AGY-BCxxX-MJH : 48-pin PLASTIC TSOP (I) (12×18) (Normal bent)
µPD442012AGY-DDxxX-MJH : 48-pin PLASTIC TSOP (I) (12×18) (Normal bent)
22
Data Sheet M14671EJ7V0DS
µPD442012A-X
NOTES FOR CMOS DEVICES
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS
Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using
insulators that easily build static electricity. Semiconductor devices must be stored and transported
in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work bench and floor should be grounded. The operator should be grounded using
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need
to be taken for PW boards with semiconductor devices on it.
2
HANDLING OF UNUSED INPUT PINS FOR CMOS
Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused
pin should be connected to V DD or GND with a resistor, if it is considered to have a possibility of
being an output pin. All handling related to the unused pins must be judged device by device and
related specifications governing the devices.
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES
Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the
reset signal is received. Reset operation must be executed immediately after power-on for devices
having reset function.
Data Sheet M14671EJ7V0DS
23
µPD442012A-X
• The information in this document is current as of July, 2001. The information is subject to change
without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
and/or types are available in every country. Please check with an NEC sales representative for
availability and additional information.
• No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
• NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
• Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
• While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
• NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).
M8E 00. 4