NEC UPD75212AGF

DATA SHEET
MOS INTEGRATED CIRCUIT
µPD75212A
4-BIT SINGLE-CHIP MICROCOMPUTER
DESCRIPTION
The µPD75212A is a microcomputer with a CPU capable of 1-, 4-, and 8-bit data processing, ROM, RAM, I/O ports,
a fluorescent display tube controller/driver, a watch timer, a timer/pulse generator capable of outputting 14-bit PWM,
a serial interface and a vectored interrupt function integrated on a single-chip.
The µPD75212A is a version of the µ PD75216A with a small ROM capacity (12K).
The µPD75212A uses the VCR, ECR and CD fluorescent display tubes as display devices and is most suitable for
applications requiring the timer/watch function and high-speed interrupt servicing. It can help to provide the unit
with many functions and to decrease performance costs.
Functions are described in detail in the following User’s Manual. Be sure to read when carrying out design work.
µPD75216A User’s Manual: IEM-988
FEATURES
•
•
•
•
Architecture equal to that of an 8-bit microcomputer
High-speed operation : Minimum instruction execution time : 0.95 µs (when operated at 4.19 MHz)
Instruction execution time variable function realizing a wide range of operating voltages
On-chip large-capacity program memory : 12K bytes
• Watch operation with an ultra low current consumption : 5 µA TYP. (at the 3 V operation)
• On-chip programmable fluorescent display tube controller/driver
• Timer function : 4 ch
• 14-bit PWM output capability with the voltage synthesizer type electronic tuner
• Buzzer output capability
• Interrupt function with importance attached to applications
• For power-off detection
• For remote controlled reception
• Product with an on-chip PROM : µPD75P216A, µPD75P218 (on-chip EPROM : WQFN package)
APPLICATION FIELD
VCR, CD player, ECR, etc.
The information in this document is subject to change without notice.
Document No. IC-2584D
(O. D. No. IC-7552D)
Date Published February 1994 P
Printed in Japan
The mark ★ shows major revised points.
© NEC Corporation 1990
µPD75212A
ORDERING INFORMATION
Ordering Code
µ PD75212ACW-×××
µ PD75212AGF-×××-3BE
Remarks
Package
64-pin plastic shrink DIP (750 mil)
64-pin plastic QFP (14 × 20 mm)
Quality Grade
Standard
Standard
××× is a ROM code number.
Please refer to “Quality grade on NEC Semiconductor Devices” (Document number IEI-1209) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.
2
µPD75212A
LIST OF FUNCTIONS
Item
Function
Instruction execution time
• 0.95, 1.91, 15.3 µs (Main system clock : 4.19 MHz operation)
• 122 µs (Subsystem clock : 32.768 kHz operation)
On-chip memory
ROM
12160 × 8 bits
RAM
512 × 4 bits
General register
• 4-bit manipulation : 8 × 4 banks
• 8-bit manipulation : 4 × 4 banks
Input/output port
33




 FIP ® dual-function pin
 included
 FIP dedicated pin
 excluded
8
20
CMOS input pin
CMOS input/output pins
• Direct LED drive capability : 8
• On-chip pull-down resistor by mask option capability : 4
1
CMOS output pin
PWM/pulse output
4
P-ch open-drain,
high-voltage,
high-current output pin
• LED drive capability
• On-chip pull-down resistor by mask option capability
FIP controller/driver
•
•
•
•
•
Timer
4 channels
Serial interface
• MSB start/LSB start switchable
• Serial bus configuration capability
Vectored interrupt
External : 3, Internal : 5
Test input
External : 1, Internal : 1
System clock oscillator
• Ceramic/crystal oscillator for main system clock oscillation : 4.194304 MHz standard
• Crystal oscillator for subsystem clock oscillation : 32.768 kHz standard
Standby function
STOP/HALT mode
Mask option
• Power-on reset, power-on flag
• High-voltage port : Pull-down resistor or open-drain output
• Port 6 : Pull-down resistor
Operating temperature range
–40 to +85 °C
Operating voltage
2.7 to 6.0 V (standby data retention : 2.0 to 6.0 V)
Package
• 64-pin plastic shrink DIP (750 mil)
• 64-pin plastic QFP (14 × 20 mm)
No. of segments : 9 to 16 segments
No. of digits
: 9 to 16 digits
Dimmer function : 8 levels
On-chip pull-down resistor by mask option capability
Key scan interrupt generation
•
•
•
•
Timer/pulse generator : 14-bit PWM output enabled
Watch timer
: Buzzer output enabled
Timer/event counter
Basic interval timer
: Watchdog timer application capability
3
µPD75212A
CONTENTS
1. PIN CONFIGURATION (TOP VIEW) ......................................................................................................... 6
2. BLOCK DIAGRAM ...................................................................................................................................... 8
3. PIN FUNCTIONS ........................................................................................................................................ 9
3.1 PORT PINS ............................................................................................................................................................. 9
3.2 NON-PORT PINS .................................................................................................................................................. 10
3.3 PIN INPUT/OUTPUT CIRCUIT LIST .................................................................................................................... 11
3.4 UNUSED PINS TREATMENT .............................................................................................................................. 12
3.5 P00/INT4 PIN AND RESET PIN OPERATING PRECAUTIONS ......................................................................... 13
3.6 XT1, XT2 AND P50 PIN OPERATING PRECAUTIONS ..................................................................................... 13
4. MEMORY CONFIGURATION ................................................................................................................... 14
5. PERIPHERAL HARDWARE FUNCTIONS ................................................................................................. 17
5.1 PORTS .................................................................................................................................................................... 17
5.2 CLOCK GENERATOR ............................................................................................................................................ 18
5.3
5.4
5.5
5.6
BASIC INTERVAL TIMER ..................................................................................................................................... 19
WATCH TIMER ...................................................................................................................................................... 20
TIMER/EVENT COUNTER ................................................................................................................................... 21
TIMER/PULSE GENERATOR ............................................................................................................................... 22
5.7 SERIAL INTERFACE ............................................................................................................................................. 23
5.8 FIP CONTROLLER /DRIVER ................................................................................................................................ 25
5.9 POWER-ON FLAG (MASK OPTION) ................................................................................................................... 27
6. INTERRUPT FUNCTIONS ......................................................................................................................... 28
7. STANDBY FUNCTIONS ............................................................................................................................ 30
8. RESET FUNCTIONS .................................................................................................................................. 31
9. INSTRUCTION SET ................................................................................................................................... 34
10. MASK OPTION SELECTION .................................................................................................................... 43
11. APPLICATION BLOCK DIAGRAM ............................................................................................................ 44
11.1 VCR TIMER TUNER ............................................................................................................................................. 44
11.2 CD PLAYER .......................................................................................................................................................... 45
11.3 ECR ....................................................................................................................................................................... 45
12. ELECTRICAL SPECIFICATIONS ............................................................................................................... 46
13. CHARACTERISTIC CURVES .................................................................................................................... 59
14. PACKAGE INFORMATION ....................................................................................................................... 63
4
µPD75212A
15. RECOMMENDED SOLDERING CONDITIONS ........................................................................................ 66
APPENDIX A. DEVELOPMENT TOOLS ......................................................................................................... 67
APPENDIX B. RELATED DOCUMENTS ......................................................................................................... 68
5
µPD75212A
1. PIN CONFIGURATION (TOP VIEW)
P02/SO
P03/SI
P10/INT0
P11/INT1
P12/INT2
P13/TI0
VDD
S4
S5
S6
S7
S8
S9
VPRE
VLOAD
T15/S10
T14/S11
T13/S12/PH0
T12/S13/PH1
T11/S14/PH2
T10/S15/PH3
T9
T8
T7
T6
T5
T4
T3
T2
T1
T0
RESET
P53
P52
P51
P50
XT2
XT1
P20
P21
P22
P23/BUZ
P30
P31
P32
P33
P60
P61
P62
P63
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
52
32
P01/SCK
P42
53
31
P00/INT4
P43
54
30
S0
PPO
55
29
S1
X1
56
28
S2
X2
57
27
S3
VSS
58
26
VDD
XT1
59
25
S4
XT2
60
24
S5
P50
61
23
S6
P51
62
22
S7
P52
63
21
S8
P53
64
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20
S9
VLOAD
T15/S10
T14/S11
T13/S12/PH0
T12/S13/PH1
T11/S14/PH2
T10/S15/PH3
T9
T8
T7
T6
T5
T4
T3
T2
T1
T0
µPD75212AGF-×××-3BE
VPRE
P41
RESET
6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
µPD75212ACW-×××
P40
S3
S2
S1
S0
P00/INT4
P01/SCK
P02/SO
P03/SI
P10/INT0
P11/INT1
P12/INT2
P13/TI0
P20
P21
P22
P23/BUZ
P30
P31
P32
P33
P60
P61
P62
P63
P40
P41
P42
P43
PPO
X1
X2
VSS
µPD75212A
PIN NAME
P00-P03
: Port 0
SCK
P10-P13
P20-P23
P30-P33
P40-P43
:
:
:
:
Port
Port
Port
Port
SO
:
SI
:
INT0, INT1, INT4 :
INT2
:
Serial Output
Serial Input
External Vectored Interrupt 0, 1, 4
External Test Input 2
P50-P53
P60-P63
PH0-PH3
T0-T15
:
:
:
:
Port 5
Port 6
Port H
Digit Output 0-15
TI0
X1, X2
XT1, XT2
RESET
:
:
:
:
Timer Input 0
Main System Clock Oscillation 1, 2
Subsystem Clock Oscillation 1, 2
Reset Input
S0-S15
PPO
BUZ
: Segment Output 0-15
: Pulse Output
: Fixed Frequency Output
VLOAD, VPRE
: FIP Driver Power Supply Pin
1
2
3
4
: Serial Clock
7
INTBT
TI0/P13
PROGRAM
COUNTER(14)
ALU
CY
4
P00–P03
PORT1
4
P10–P13
PORT2
4
P20–P23
PORT3
4
P30–P33
PORT4
4
P40–P43
PORT5
4
P50–P53
PORT6
4
P60–P63
10
T0–T9
4
T10/S15/PH3–
T13/S12/PH0
2
T14/S11,T15/
S10
10
S0–S9
SP(8)
TIMER/EVENT
COUNTER
#0
BANK
INTT0
TIMER/PULSE
GENERATOR
PORT0
GENERAL REG.
2. BLOCK DIAGRAM
8
BASIC
INTERVAL
TIMER
PPO
INTTPG
SI/P03
SO/P02
SERIAL
INTERFACE
ROM
PROGRAM
MEMORY
12160 × 8 BITS
DECODE
AND
CONTROL
SCK/P01
RAM
DATA MEMORY
512 × 4 BITS
INTSIO
INT0/P10
FIP
CONTROLLER/
DRIVER
INT1/P11
INT2/P12
INT4/P00
INTERRUPT
CONTROL
INTW
WATCH
TIMER
f X/2 N
CLOCK
DIVIDER
SYSTEM CLOCK
GENERATOR
SUB
MAIN
VPRE
VLOAD
CPU CLOCK
Φ
STAND BY
CONTROL
INTKS
BUZ/P23
XT1 XT2 X1 X2
V
DD
VSS
RESET
4
PH0–PH3
µPD75212A
PORTH
µPD75212A
3. PIN FUNCTIONS
3.1
PORT PINS
I/O
DualFunction Pin
P00
Input
INT4
P01
Input/output
SCK
F
P02
Input/output
SO
G
P03
Input
SI
B
P10
Input
INT0
P11
INT1
P12
INT2
P13
TI0
P20
P21
*
Input / Output
Circuit Type *
Pin Name
Input/
output
–––
Function
4-bit input port (PORT0).
8-Bit
After Reset
I/O
×
Noise elimination function available
Input
B
Input
B
Input
E
Input
E
Input
E
Input
E
Noise elimination function available
4-bit input port (PORT1).
4-bit input/output port (PORT2).
×
–––
P22
–––
P23
BUZ
P30 to P33
Input/
output
–––
Programmable 4-bit input/output port (PORT3).
Input/output specifiable in bit-wise.
P40 to P43
Input/
output
–––
4-bit input/output port (PORT4).
LED direct drive capability.
P50 to P53
Input/
output
–––
4-bit input/output port (PORT5).
LED direct drive capability.
P60 to P63
Input/
output
–––
Programmable 4-bit input/output port (PORT6).
Input/output specifiable in bit-wise.
On-chip pull-down resistor available (mask
option). Suitable for key input.
×
Input
V
PH0
Output
T13/S12
4-bit P-ch open-drain, high-voltage, high-current
output port (PORTH).
LED direct drive capability. On-chip pull-down
resistor available (mask option).
×
Low level
(with an onchip pulldown resistor)
or high
impedance.
I
PH1
T12/S13
PH2
T11/S14
PH3
T10/S15
●
Schmitt-triggered inputs are circled.
9
µPD75212A
3.2
NON-PORT PINS
Pin Name
T0 to T9
I/O
DualFunction Pin
Output
–––
T10/S15 to
T13/S12
PH3 to PH0
T14/S11,
T15/S10
–––
Function
FIP controller/
driver output
pins.
Pull-down
resistor can be
incorporated in
bit-wise (mask
option).
Digit output high-voltage high-current
output.
Digit/segment output dual-function
high-voltage high-current output.
Extra pins can be used as PORTH.
Digit/segment output dual-function
high-voltage high-current output.
Static output also possible.
S9
Segment output high-voltage output.
Static output also possible.
S0 to S8
Segment high-voltage output.
After Reset
Input / Output
Circuit Type *
Low level
(With an onchip pulldown
resistor) or
high
impedance
(without a
pull-down
resistor)
I
High
impedance
D
PPO
Output
–––
Timer/pulse generator pulse output.
TI0
Input
P13
External event pulse input for timer/event counter.
SCK
Input/output
P01
Serial clock input/output.
Input
F
SO
Input/output
P02
Serial data output pin or serial data input/output.
Input
G
SI
Input
P03
Serial data input or normal input.
Input
B
INT4
Input
P00
Edge-detected vectored interrupt input (rising and falling
edge detection).
B
INT0
Input
P10
Edge-detected vectored interrupt input with noise
elimination function (detection edge selection possible).
B
B
INT1
P11
B
INT2
Input
P12
Edge-detected testable input (rising edge detection).
BUZ
Input/output
P23
Fixed frequency output (for buzzer or system clock
trimming).
X1, X2
Input
–––
Crystal/ceramic connect pin for main system clock
oscillation.
External clock input to X1 and its inverted clock input to
X2.
XT1
Input
–––
XT2
–––
Crystal connect pin for subsystem clock oscillation.
External clock input to XT1 and XT2 open.
–––
System reset input (low level active).
B
VPRE
–––
FIP controller/driver output buffer power supply.
I
VLOAD
–––
FIP controller/driver pull-down resistor connect pin.
I
VDD
–––
Positive power supply.
VSS
–––
GND potential.
RESET
*
10
Input
Schmitt-triggered inputs are circled.
Input
E
µPD75212A
3.3
PIN INPUT/OUTPUT CIRCUIT LIST
TYPE A
TYPE F
VDD
data
IN/OUT
Type D
output
disable
P-ch
IN
Type B
N-ch
Input/Output Circuit Consisting of Type D Push-Pull Output
and Type B Schmitt-Triggered Input
CMOS-Specified Input Buffer
TYPE B
TYPE G
VDD
P-ch output
disable
data
P-ch
IN/OUT
IN
N-ch
Type B
Schmitt-Triggered Input Having Hysteresis Characteristics
Input/Output Circuit Capable of Switching between Push-Pull
Output and N-ch Open-Drain Output (with P-ch OFF).
TYPE D
TYPE V
VDD
data
data
IN/OUT
P-ch
OUT
output
disable
Type D
output
disable
N-ch
Type A
Pull-down
Resistor
Push-Pull Output which can be Set to Output High Impedance
(with Both P-ch and N-ch Set to OFF)
TYPE E
TYPE I
VDD
data
output
disable
(Mask Option)
VDD
IN/OUT
Type D
data
P-ch
N-ch
Type A
P-ch
OUT
Pull-down Resistor
(Mask Option)
VLOAD
VPRE
Input/Output Circuit Consisting of Type D Push-Pull Output
and Type A Input Buffer
11
µPD75212A
3.4
UNUSED PINS TREATMENT
Pin
Recommended Connection
P00/INT4
Connect to VSS
P01/SCK
Connect to VSS or VDD
P02/SO
P03/SI
P10/INT0 to P12/INT2
Connect to VSS
P13/TI0
P20 to P22
Input state : Connect to VSS or V DD
P23/BUZ
Ouput state : Leave open
P30 to P33
P40 to P43
P50 to P53
P60 to P63
PPO
Leave open
S0 to S9
T15/S10 to T14/S11
T0 to T9
T10/S15/PH3 to T13/S12/PH0
XT1
Connect to VSS or VDD
XT2
Leave open
RESET when there is an on-
Connect to VDD
chip power-on reset circuit
VLOAD when there is no onchip load resistor
12
Connect to VSS or VDD
µPD75212A
3.5 P00/INT4 PIN AND RESET PIN OPERATING PRECAUTIONS
P00/INT4 and RESET pins have the function (especially for IC test) to test µPD75212A internal operations in
addition to the functions described in sections 3.1 and 3.2.
The test mode is set when a voltage larger than VDD is applied to one of these pins. If noise larger than VDD is
applied in normal operation, the test mode may be set thereby adversely affecting normal operation.
Since there is a display output pin having a high-voltage amplitude (35 V) next to the P00/INT4 and RESET pins,
if cables for the related signals are routed in parallel, wiring noise larger than VDD may be applied to the P00/INT4
and RESET pins causing errors.
Thus, carry out wiring so that wiring noise can be minimized, If noise still cannot be suppressed, take the measure
against noise using the following external components.
•
Connect diode with small VF (0.3 V or less) between
VDD and P00/INT4, RESET
•
Connect a capacitor between the pins and VDD.
VDD
VDD
VDD
VDD
P00/INT4, RESET
P00/INT4, RESET
3.6 XT1, XT2 AND P50 PIN OPERATING PRECAUTIONS
When selecting the 32.768 kHz subsystem clock connected to the XT1 and XT2 pins as the watch timer source
clock, the signal to be input or output to the P50 pin next to the XT2 pin must be a signal required to be switched
between high and low the minimum number of times (once or less per second).
If the P50 pin signal is switched frequently between high and low, a spike is generated in the XT2 pin because
of capacitance coupling of the P50 and XT2 pins and the correct watch functions cannot be achieved (the watch
becomes fast).
If it is necessary to allow the P50 pin signal to switch between high and low, mount an external capacitor to the
P50 pin as shown below.
µPD75212A
P50
XT1
XT2
0.0068 µ F
32.768 kHz
13
µPD75212A
4. MEMORY CONFIGURATION
• Program memory (ROM) ................................. 12160 words × 8 bits
• 0000H to 0001H : Vector table for writing program start address by reset
• 0002H to 000FH : Vector table for writing program start address by interrupt
• 0020H to 007FH : Table area to be referred to by GETI instruction
• Data Memory
• Data area ....................................................... 512 words × 4 bits (000H to 1FFH)
• Peripheral hardware area ............................ 128 words × 4 bits (F80H to FFFH)
14
µPD75212A
Fig. 4-1 Program Memory Map
Address
7
6
0000H
MBE
0002H
MBE RBE
0004H
MBE RBE
0006H
MBE RBE
0008H
MBE RBE
000AH
MBE RBE
000CH
MBE RBE
000EH
0
RBE Internal Reset Start Address (Most Significant 6 Bits)
Internal Reset Start Address (Least Significant 8 Bits)
MBE RBE
INTBT/INT4 Start Address
INTBT/INT4 Start Address
INT0 Start Address
INT0 Start Address
(Most Significant 6 Bits)
(Least Significant 8 Bits)
(Most Significant 6 Bits)
(Least Significant 8 Bits)
INT1 Start Address
INT1 Start Address
INTCSIO Start Address
INTCSIO Start Address
INTT0 Start Address
INTT0 Start Address
INTTPG Start Address
INTTPG Start Address
INTKS Start Address
INTKS Start Address
(Most Significant 6 Bits)
(Least Significant 8 Bits)
(Most Significant 6 Bits)
(Least Significant 8 Bits)
(Most Significant 6 Bits)
(Least Significant 8 Bits)
(Most Significant 6 Bits)
(Least Significant 8 Bits)
(Most Significant 6 Bits)
(Least Significant 8 Bits)
CALLF
!faddr
Instruction
Entry Address
BRCB
!caddr
Instruction
Branch Address
CALL !addr
Instruction
Subroutine Entry
Address
BR !addr
Instruction
Branch Address
0020H
GETI Instruction Reference Table
007FH
0080H
BR $ addr Instruction
Relative Branch
Address
(-15 to -1 and +2 to +16)
07FFH
Branch Destination
Address and
Subroutine Entry
Address to be Set
by GETI Instruction
0800H
0FFFH
1000H
BRCB
!caddr Instruction
Branch Address
1FFFH
2000H
2F7FH
Remarks
BRCB
!caddr Instruction
Branch Address
In all cases other than those listed above, branch to the address with only the lower 8 bits of the PC
changed is enabled by BR PCDE and BR PCXA instructions.
15
µPD75212A
Fig. 4-2 Data Memory Map
General
Register
Area
000H
(32 × 4)
01FH
020H
Bank 0
Stack Area
256 × 4
General
Static RAM
(512 × 4)
0FFH
100H
256 × 4
Bank 1
Display Data
Memory,
etc.
1BFH
1C0H
(64 × 4)
1FFH
Not Incorporated
F80H
Peripheral
Hardware
Area
128 × 4
FFFH
16
Bank 15
µPD75212A
5. PERIPHERAL HARDWARE FUNCTIONS
5.1 PORTS
I/O ports have the following three functions.
• CMOS input
:8
• CMOS input/output
: 20
• P-ch open-drain, high-voltage, high-current output : 4
Total
32
Table 5-1 Port Functions
Port Name
Function
Operation and Feature
Remarks
Always read or test possible irrespective of the dual-function
pin operating mode.
Shares the pins with SI, SO, SCK
and INT4.
Always read or test possible, P10 and P11 are inputs with the
noise elimination function.
Shares the pins with INT0 to INT
2 and TI0.
P23 shares the pin with BUZ.
PORT5
Can be set to the input or output mode in 4-bit units.
Ports 4 and 5 can input/output data in pairs in 8-bit units.
Ports 4 and 5 can directly drive LEDs.
PORT3
PORT6
Can be set bit-wise to the input or output mode. Port 6 can
incorporate a pull-down resistor as a mask option.
PORT0
4-bit input
PORT1
PORT2
PORT4
PORTH
4-bit
input/output
4-bit output
P-ch open-drain high-voltage, high-current output port. Can
drive an FIP and LED directly. Can incorporate a pull-down
resistor bit-wise as a mask option.
Shares the pins with T10/S15 to
T13/S12.
17
µPD75212A
5.2 CLOCK GENERATOR
The clock generator operations are determined by the processor clock control register (PCC) and the system clock
control register (SCC).
The clock generator has two types: main system clock and subsystem clock.
The instruction execution time can be changed.
• 0.95 µs, 1.91 µs, 15.3 µs (Main system clock: at 4.19 MHz operation)
• 122 µs (Subsystem clock: at 32.768 kHz operation)
Fig. 5-1 Clock Generator Block Diagram
XT1
XT2
Subsystem
Clock
Oscillator
fXT
Watch Timer
Timer/Pulse
Generator
Main System
Clock
Oscillator
fX
Selector
X1
X2
• FIP Controller
• Basic Interval Timer (BT)
• Timer/Event Counter
• Serial Interface
• Watch Timer
• INT0 Noise Eliminator
1/8~1/4096
fXX
Frequency Divider
1/2 1/6
SCC
Oscillation
Stop
Frequency
Divider
Selector
SCC3
SCC0
1/4
• CPU
• INT0 Noise Eliminator
• INT1 Noise Eliminator
PCC
Internal Bus
Φ
PCC0
PCC1
4
HALT F/F
HALT*
STOP*
PCC2
S
PCC3
R
PCC2 and
PCC3
Clear
STOP F/F
Q
Q
Wait Release Signal from BT
S
RES Signal (Internal Reset)
R
*
Instruction execution
Remarks
18
Standby Release Signal from
Interrupt Control Circuit
1.
2.
3.
4.
fX = Main system clock frequency
fXT = Subsystem clock frequency
fXX = System clock frequency
Φ = CPU clock
5.
6.
7.
PCC: Processor clock control register
SCC: System clock control register
1 clock cycle (tCY) of Φ is 1 machine cycle of an instruction. For tCY , see ”AC Characteristics“ in 12.
ELECTRICAL SPECIFICATIONS.
µPD75212A
5.3 BASIC INTERVAL TIMER
The basic interval timer has the following functions:
•
•
•
•
Interval timer operation to generate reference time
Watchdog timer application to detect inadvertent program loop
Wait time select and count upon standby mode release
Count contents read
Fig. 5-2 Basic Interval Timer Configuration
From Clock
Generator
fXX/2
fXX/2
Clear
5
7
fXX/2
Set
Basic Interval Timer
(8-Bit Frequency Divider)
MPX
fXX/2
Clear
9
BT
12
BT Interrupt
Request Flag
IRQBT
Vectored
Interrupt
Request
Signal
3
BTM3
SET1*
BTM2
BTM1
BTM0
Wait Release
Signal During
Standby Release
BTM
4
8
Internal Bus
*
Instruction execution
19
µPD75212A
5.4 WATCH TIMER
The µPD75212A incorporates one channel of watch timer. The watch timer has the following functions.
• Sets the test flag (IRQW) at 0.5-second intervals.
The standby mode can be released by IRQW.
• 0.5-second interval can be set with the main system clock and subsystem clock.
• The fast mode enables to set 128-time (3.91 ms) interval useful to program debugging and inspection.
• The fixed frequencies (2.048 kHz) can be output to the P23/BUZ pin for use to generate buzzer sound and trim
the system clock oscillator frequency.
• Since the frequency divider can be cleared, the watch can be started from zero second.
Fig. 5-3 Watch Timer Block Diagram
fW
(256 Hz : 3.91 ms)
7
2
From
Clock
Generator
fXX
128
(32.768 kHz)
Selector
fW
14
2
fW
Frequency Divider
(32.768 kHz)
fXT
(32.768 kHz)
INTW
IRQW
Set Signal
Selector
2Hz
0.5 sec
fW
16
(2.048 kHz)
Clear
Output Buffer
P23/BUZ
WM
PORT2.3
WM7 WM6 WM5 WM4
WM3WM2 WM1 WM0
P23
Output
Latch
Bit 2 of PMGB
Port 2
Input/Output
Mode
8
Internal Bus
Remarks
20
Values at f XX = 4.194304 MHz and fXT = 32.768 kHz are indicated in parentheses.
µPD75212A
5.5 TIMER/EVENT COUNTER
The µPD75212A incorporates one channel of timer/event counter. The timer/event counter has the following
functions.
• Program interval timer operation
• Event counter operation
• Count state read function
Fig. 5-4 Timer/Event Counter Block Diagram
Internal Bus
8
SET1 *
8
8
TM0
TMn7 TMn6 TMn5 TMn4 TMn3 TMn2
TMOD0
Modulo Register (8)
TMn1 TMn0
8
Match
Comparator (8)
INTT0
IRQT0
Set Signal
8
Input Buffer
P13/TI0

From Clock 

Generator


T0
Count Register (8)
MPX
CP
Clear
Timer Operation Start
IRQT0
Clear
*
Instruction execution.
21
µPD75212A
5.6 TIMER/PULSE GENERATOR
The µPD75212A incorporates one channel of timer/pulse generator which can be used as a timer or a pulse
generator. The timer/pulse generator has the following functions.
(a)
Functions available in the timer mode
• 8-bit interval timer operation (IRQTPG generation) enabling the clock source to be varied at 5 levels
• Square wave output to PPO pin
(b)
Functions available in the PWM pulse generation mode
• 14-bit accuracy PWM pulse output to the PPO pin (Used as a digital-to-analog converter and applicable
to tuning)
2 15
• Fixed time interval (
= 7.81 ms : at 4.19 MHz operation) interrupt generation
fXX
If pulse output is not necessary, the PPO pin can be used as a 1-bit output port.
Note
If the STOP mode is set while the timer/pulse generator is in operation, miss-operation may result.
To prevent that from occurring, preset the timer/pulse generator to the stop state using its mode
register.
Fig. 5-5 Timer/Pulse Generator Block Diagram (Timer Mode)
Internal Bus
8
8
MODL
Modulo Register L (8)
MODH
Modulo Register H (8)
TPGM3
(Set to "1")
INTTPG
IRQTPG
Set Signal
Modulo Latch H (8)
8
Match
Comparator (8)
Output Buffer
Selector
T F/F
PPO
Frequency
Divider
fX
1/2
TPGM1
CP
Prescalar Select Latch (5)
Clear
22
Set
8
Count Register (8)
Clear
TPGM4TPGM5 TPGM7
µPD75212A
Fig. 5-6 Timer/Pulse Generator Block Diagram (PWM Pulse Generation Mode)
Internal Bus
8
8
MODH
Modulo Register H (8)
MODL
Modulo Register L (6)
(2)
TPGM3
MODL7-2 (6)
MODH (8)
Modulo Latch (14)
Output Buffer
TPGM1
fx
PWM Pulse Generator
1/2
Selector
PPO
Frequency Divider
INTTPG
TPGM5
(IRQTPG Set Signal)
215
(
= 7.81 ms : at 4.19 MHz operation)
fX
TPGM7
5.7 SERIAL INTERFACE
The µPD75212A serial interface has the following functions.
• Clocked 8-bit send/receive operation (simultaneous send/receive)
• Clocked 8-bit serial bus operation (data input/output from the SO pin. N-ch open-drain SO output)
• Start LSB/MSB switching
The above functions facilitate data communication with another microcomputer of µPD7500 series and 78K series
via serial bus and coupling with peripheral devices.
23
24
Fig 5-7 Serial Interface Block Diagram
Internal Bus
8
8
Selector
P03/SI
SET1 *2
SIO7
SIO
SIOM
Shift Register (8)
*1
P02/SO
8
SIO0
SIOM7SIOM6SIOM5SIOM4SIOM3SIOM2SIOM1SIOM0
SO Output
Latch
Serial Clock
Counter (3)
INTSIO
IRQSIO
Set Signal
Overflow
Clear
IRQSIO
Clear Signal
Serial Start
P01/SCK
R
Q
Φ
S
fxx/2
4
fxx/2
10
MPX
1. CMOS output and N-ch open drain output switchable output buffer.
2. Instruction execution
µPD75212A
*
µPD75212A
5.8 FIP CONTROLLER/DRIVER
The FIP controller/driver incorporated in the µPD75212A has the following functions:
• Generates the segment and digit signals by automatically reading the display data memory executing DMA
operation.
• Can select up to a total of 26 display devices in the range of 9 to 16 segments and 9 to 16 digits.
• Can apply the remaining display output as static output.
• Can adjust the brightness at 8 levels using the dimmer function.
• Can apply key scan operations.
• Generates interrupt at the key scan timing (IRQKS)
• Can generate key scan data output from the segment output pin.
• Owns the high-voltage output pin (40 V) which can directly drive the FIP.
• Segment special pins (S0 to S9) : VOD = 40 V, IOD = 3 mA
• Digit output pins (T0 to T15) : VOD = 40 V, IOD = 15 mA
• Can incorporate pull-down resistors bit-wise as mask options.
Differences between µPD75212A and µPD75238 display output function are shown in Table 5-2.
Table 5-2 Differences between µPD75212A and µPD75238 Display Output Function
µPD75212A
High-voltage output display
FIP output total
: 26
µPD75238
FIP output total
: 34
Segment output : 9 to 16
Segment output
: 9 to 24
Digit output
Digit output
: 9 to 16
: 9 to 16
Display data area
1C0H to 1FFH
1A0H to 1FFH
Output dual-function pin
S12 to S15
(PORTH)
S0 to S23
(PORT10 to PORT15)
Key scan register
KS0, KS1
KS0 to KS2
25
µPD75212A
Fig. 5-8 FIP Controller/Driver Block Diagram
Internal Bus
4
Display
Mode
Register
Display Data Memory
(64 × 4 Bits)
Key Scan Registers (KS0, KS1)
4
Digit
Select
Register
Key Scan
Flag (KSF)
4
Dimmer
Select
Register
Port H
12
4
INTKS
IRQKS
Generation
Signal
Digit Signal
Generator
Segment Data Latch (16)
4
4
Selector
10
2 2
4
4
Selector
2
10
4
High-Voltage Output Buffer
10
S0-S9
Note
2
4
T15/S10, T13/S12/PH0T14/S11 T10/S15/PH3
10
T0-T9
VLOAD VPRE
The FIP controller/driver can only operate in the high and intermediate-speeds (PCC = 0011B or
0010B) of the main system clock (SCC.0 = 0). It may cause errors with any other clock or in the
standby mode. Thus, be sure to stop FIP controller operation (DSPM.3 = 0) and then shift the unit
to any other clock mode or the standby mode.
26
µPD75212A
5.9
POWER-ON FLAG (MASK OPTION)
The power-on flag (PONF) is automatically set (1) when the power-on reset circuit is activated and the poweron reset signal is generated (See Fig. 8-1 Reset Signal Generator).
The PONF is mapped at bit 0 of address FD1H in the data memory space and can be tested by the memory bit
manipulation instructions (SKT, SKF, SKTCLR) or cleared (CLR1).
Note
The PONF cannot be set by SET1 instruction.
27
µPD75212A
6. INTERRUPT FUNCTIONS
The µPD75212A has eight types of interrupt sources and can generate multiple interrupts with priority order.
It is also equipped with two types of test sources. INT2 is an edge detected testable input.
The µPD75212A interrupt control circuit has the following functions:
• Hardware-controller vectored interrupt function which can control interrupt acknowledge with the interrupt
enable flag (IE×××) and the interrupt master enable flag (IME).
• Function of setting any interrupt start address.
• Multiple interrupt function which can specify priority order with the interrupt priority select register (IPS).
• Interrupt request flag (IRQ×××) test function. (Interrupt generation can be checked by software.)
• Standby mode release function. (Interrupt to be released by interrupt enable flag can be selected.)
28
Fig. 6-1 Interrupt Control Circuit Block Diagram
Internal Bus
4
2
2
IM1
IM0
INT
BT
Both Edges
Detection
Circuit
INT4
/P00
INT0
/P10
*
INT1
/P11
*
Edge
Detection
Circuit
Edge
Detection
Circuit
IRQ4
IRQ0
IRQ1
INTT0
IRQT0
Priority Control
Circuit
Vector
Table
Address
Generator
Circuit
IRQTPG
INTKS
IRQKS
INTW
IRQW
Noise eliminator
VRQn
Standby Release
Signal
IRQ2
29
µPD75212A
*
IST
Decoder
IRQSIO
Rising Edge
Detection
Circuit
IPS
XXX )
IRQBT
INTSIO
INTTPG
INT2
/P12
(IME)
Interrupt Enable Flag (IE
2
µPD75212A
7. STANDBY FUNCTIONS
Two standby modes (STOP mode and HALT mode) are available for the µPD75212A to decrease power
consumption in the program standby mode.
Table 7-1 Operation Status in Standby Mode
STOP Mode
HALT Mode
STOP instruction
HALT instruction
System clock when set
Setting enabled only with main system
clock.
Setting enabled with either main system
clock or subsystem clock.
Clock oscillator
Oscillation stops only with main system
clock.
Stops only with CPU clock Φ (Oscillation
continued).
Basic interval timer
Operation stopped.
Operation (IRQBT set at reference time
intervals).
Serial interface
Operation enabled only when external
SCK input is selected for serial clock.
Operation enabled when serial clock other
than Φ is specified.
Timer/event counter
Operation enabled only when TI0 pin
input is specified for count clock.
Operation enabled.
Timer/pulse generator
Operation stopped.
Operation enabled.
Watch timer
Operation enabled only fXT is selected for Operation enabled.
count clock.
FIP controller/driver
Operation disabled (display off mode set before disabling).
CPU
Operation stopped.
Operating State
Set instruction
Release signal
30
Interrupt request signal (except INT0, INT1, INT2) enabled by interrupt enable flag
or RESET input.
µPD75212A
8. RESET FUNCTIONS
The reset signal (RES) generator has a configuration shown in Fig. 8-1.
Fig. 8-1 Reset Signal Generator
RESET
Internal Reset Signal
(RES)
Power-On
Reset
Generator
SWB
SWA
Power-On Flag
(PONF)
Bit
Manipulation
Instruction
Execution
Internal Bus
Mask
Option
The power-on reset generator is a circuit to generate a one-shot pulse upon detection of the start-up of the power
voltage. This pulse is used in the following three ways according to SWA, SWB mask option specification shown
in Fig. 8-1. (Refer to 10. MASK OPTION SELECTION.)
31
µPD75212A
Fig. 8-2 Reset Operation by Power-On Reset
★
Supply Voltage
*
Wait
(31.3ms:4.19MHz)
0V
Internal Reset Signal
(RES)
HALT Mode
Operating
Mode
Internal Reset Operation
*
Wait time does not include a time from RES signal generation to oscillation start.
Fig. 8-3 Reset Operation by RESET Input
★
Wait
(31.3ms:4.19MHz)
RESET Input
Operating Mode or
Standby Mode
HALT Mode
Internal Reset Operation
Each hardware state after reset operation is shown in Table 8-1.
32
Operating
Mode
µPD75212A
Table 8-1 Hardware Statuses after Reset
Hardware
Program counter (PC)
PSW
Carry flag (CY)
★
RESET Input in Standby Mode
RESET Input upon Power-on
Reset or in Operation
Sets the low-order 6 bits of program
memory address 0000H to PC13-8 and
the contents of address 0001H to PC7-0.
Sets the low-order 6 bits of program
memory address 0000H to PC13-8 and
the contents of address 0001H to PC7-0.
Hold
Undefined
Skip flag (SK0 to SK2)
0
0
Interrupt status flag (IST0, IST1)
0
0
Sets bit 6 of program memory address
0000H to RBE and bit 7 to MBE.
Sets bit 6 of program memory address
0000H to RBE and bit 7 to MBE.
Undefined
Undefined
Hold*1
Undefined
General registers (X, A, H, L, D, E, B, C)
Hold
Undefined
Bank select registers (MBS, RBS)
0, 0
0, 0
Undefined
Undefined
Bank enable flags (MBE, RBE)
Stack pointer (SP)
Data memory (RAM)
Basic interval
timer
Counter (BT)
Mode register (BTM)
0
0
Timer/event
counter
Counter (T0)
0
0
FFH
FFH
0
0
Hold
Undefined
Modulo register (TMOD0)
Mode register (TM0)
Timer/pulse
generator
Modulo register (MODH, MODL)
Mode register (TPGM)
0
0
Watch timer
Mode register (WM)
0
0
Serial
interface
Shift register (SIO)
Hold
Undefined
Clock
generator
Processor clock control register (PCC)
0
0
System clock control register (SCC)
0
0
Interrupt
Interrupt request flag (IRQ×××)
Reset (0)
Reset (0)
Interrupt enable flag (IE×××)
0
0
Priority select register (IPS)
0
0
INT0 and INT1 mode registers (IM0, IM1)
0, 0
0, 0
Output buffer
Off
Off
Output latch
Clear (0)
Clear (0)
0
0
Hold
Undefined
0
0
1000B
1000B
0
0
Hold
Undefined
Off
Off
Hold
1 or undefined*2
Digital port
Mode register (SIOM)
Input/output mode register (PMGA, PMGB)
Port H
Output latch
FIP controller/
driver
Display mode register (DSPM)
Digit select register (DIGS)
Dimmer select register (DIMS)
Display data memory
Output buffer
Power on flag (PONF)
*
Only bit 4 set to 1, other bits set to 0 Only bit 4 set to 1, other bits set to 0
1. Data of data memory addresses 0F8H to 0FDH becomes indeterminate by RESET input.
2. 1 upon power-on reset, indeterminate after RESET input in operation.
33
µPD75212A
9. INSTRUCTION SET
(1)
Operand identifier and description
Enter an operand in the operand column of each instruction using the description method relating to the
operand identifier of the instruction (For details, refer to RA75X Assembler Package User’s Manual Language
Volume (EEU-730)). If more than one description method is available, select one. Capital alphabetic letters, plus
and minus signs are keywords. Describe them as they are.
In the case of immediate data, describe appropriate numerical values or labels.
Symbols can be described as labels in place of mem, fmem, pmem, bit, etc. (For details, refer to µ PD75216A
User’s Manual (IEM-988)). Available labels are limited for fmem and pmem.
Identifier
*
34
Description Method
reg
reg 1
X, A, B, C, D, E, H, L
X, B, C, D, E, H, L
rp
rp1
rp2
rp’
rp’1
XA, BC, DE, HL
BC, DE, HL
BC, DE
XA, BC, DE, HL, XA’, BC’, DE’, HL’
BC, DE, HL, XA’, BC’, DE’, HL’
rpa
rpa1
HL, HL+, HL-, DE, DL
DE, DL
n4
n8
4-bit immediate data or label
8-bit immediate data or label
mem
bit
8-bit immediate data or label*
2-bit immediate data or label
fmem
pmem
FB0H to FBFH and FF0H to FFFH immediate data or labels
FC0H to FFFH immediate data or labels
addr
caddr
faddr
0000H to 2F7FH immediate data or labels
12-bit immediate data or label
11-bit immediate data or label
taddr
20H to 7FH immediate data (bit0 = 0) or label
PORTn
IE×××
RBn
MBn
PORT0 to PORT6
IEBT, IESIO, IET0, IETPG, IE0, IE1, IEKS, IEW, IE4
RB0 to RB3
MB0, MB1, MB15
For 8-bit data processing, only even addresses can be specified.
µPD75212A
(2)
Legend for operation description
A
: A register; 4-bit accumulator
B
: B register
C
D
E
H
:
:
:
:
C register
D register
E register
H register
L
X
XA
BC
:
:
:
:
L register
X register
Register pair (XA); 8-bit accumulator
Register pair (BC)
DE
HL
XA’
BC’
:
:
:
:
Register pair (DE)
Register pair (HL)
Expanded register pair (XA’)
Expanded register pair (BC’)
DE’
HL’
PC
SP
:
:
:
:
Expanded register pair (DE’)
Expanded register pair (HL’)
Program counter
Stack pointer
CY
PSW
MBE
RBE
:
:
:
:
Carry flag; Bit accumulator
Program status word
Memory bank enable flag
Register bank enable flag
PORTn
IME
IPS
IE×××
:
:
:
:
Port n (n
Interrupt
Interrupt
Interrupt
RBS
MBS
PCC
•
:
:
:
:
Register bank select register
Memory bank select register
Processor clock control register
Address and bit delimiter
(××)
××H
: Contents addressed by ××
: Hexadecimal data
= 0 to 6)
master enable flag
priority select register
enable flag
35
µPD75212A
(3)
Description of symbols in the addressing area column
*1
MB = MBE • MBS
(MBS = 0, 1, 15)
*2
MB = 0
*3
MBE = 0 : MB = 0 (00H to 7FH)
MB = 15 (80H to FFH)
MBE = 1 : MB = MBS (MBS = 0, 1, 15)
*4
MB = 15, fmem = FB0H to FBFH,
FF0H to FFFH
*5
MB = 15, pmem = FC0H to FFFH
*6
addr = 0000H to 2F7FH
*7
addr = (Current PC) – 15 to (Current PC) – 1,
(Current PC) + 2 to (Current PC) + 16
*8
caddr = 0000H to 0FFFH
1000H to 1FFFH
2000H to 2F7FH
*9
faddr = 0000H to 07FFH
*10
taddr = 0020H to 007FH
Remarks
(4)
(PC13, 12 = 00B) or
(PC13, 12 = 01B) or
(PC13, 12 = 10B)
1.
MB indicates accessible memory bank.
2.
3.
4.
In *2, MB = 0 irrespective of MBE and MBS.
In *4 and *5, MB = 15 irrespective of MBE and MBS.
*6 to *10 indicate addressable areas.
Data Memory
Addressing
Program Memory
Addressing
Description of the machine cycle column
S indicates the number of machine cycles required for skip operation by an instruction having skip function.
The S value varies as follows:
• When not skipped ................................................................................................... S = 0
• When 1-byte or 2-byte instructions are skipped ................................................. S = 1
• When 3-byte instructions are skipped (BR !addr, CALL !addr instruction) ..... S = 2
Note
GETI instruction is skipped in one machine cycle.
One machine cycle is equal to one cycle(=tCY) of CPU clock Φ and three time periods are available
according to PCC setting.
36
µPD75212A
Note 1 Mnemonic
Transfer
MOV
Note 2
XCH
Note
MOVT
Operands
No. of Machine
Bytes
Cycle
Operation
Addressing
Area
Skip
Condition
A, #n4
1
1
A←n4
Stack A
reg1, #n4
2
2
reg1←n4
XA, #n8
2
2
XA←n8
Stack A
HL, #n8
2
2
HL←n8
Stack B
rp2, #n8
2
2
rp2←n8
A, @HL
1
1
A←(HL)
*1
A, @HL+
1
2+S
A←(HL), then L←L+1
*1
L=0
A, @HL–
1
2+S
A←(HL), then L←L–1
*1
L = FH
A, @rpa1
1
1
A←(rpa1)
*2
XA, @HL
2
2
XA←(HL)
*1
@HL, A
1
1
(HL)←A
*1
@HL, XA
2
2
(HL)←XA
*1
A, mem
2
2
A←(mem)
*3
XA, mem
2
2
XA←(mem)
*3
mem, A
2
2
(mem)←A
*3
mem, XA
2
2
(mem)←XA
*3
A, reg
2
2
A←reg
XA, rp'
2
2
XA←rp'
reg1, A
2
2
reg1←A
rp'1, XA
2
2
rp'1←XA
A, @HL
1
1
A↔(HL)
*1
A, @HL+
1
2+S
A↔(HL), then L←L+1
*1
L=0
A, @HL–
1
2+S
A↔(HL), then L←L–1
*1
L = FH
A, @rpa1
1
1
A↔(rpa1)
*2
XA, @HL
2
2
XA↔(HL)
*1
A, mem
2
2
A↔(mem)
*3
XA, mem
2
2
XA↔(mem)
*3
A, reg1
1
1
A↔reg1
XA, rp'
2
2
XA↔rp'
XA, @PCDE
1
3
XA←(PC13–8+DE)ROM
XA, @PCXA
1
3
XA←(PC13–8+XA)ROM
1. Instruction Group
2. Table reference
37
µPD75212A
Note
Mnemonic
Bit transfer
MOV1
ADDS
ADDC
Operation
SUBS
SUBC
AND
OR
XOR
Note
38
Operand
No. of Machine
Bytes
Cycle
Operation
Addressing
Area
Skip
Condition
CY, fmem.bit
2
2
CY←(fmem.bit)
*4
CY, pmem.@L
2
2
CY←(pmem7–2+L3–2.bit(L1–0))
*5
CY, @H+mem.bit
2
2
CY←(H+mem3–0.bit)
*1
fmem.bit, CY
2
2
(fmem.bit)←CY
*4
pmem.@L, CY
2
2
(pmem 7–2+L3–2.bit(L 1–0))←CY
*5
@H+mem.bit, CY
2
2
(H+mem3–0.bit)←CY
*1
A, #n4
1
1+S
A←A+n4
carry
XA, #n8
2
2+S
XA←XA+n8
carry
A, @HL
1
1+S
A←A+(HL)
XA, rp'
2
2+S
XA←XA+rp'
carry
rp'1, XA
2
2+S
rp'1←rp'1+XA
carry
A, @HL
1
1
A, CY←A+(HL)+CY
XA, rp'
2
2
XA, CY←XA+rp'+CY
rp'1, XA
2
2
rp'1, CY←rp'1+XA+CY
A, @HL
1
1+S
A←A–(HL)
XA, rp'
2
2+S
XA←XA–rp'
borrow
rp'1, XA
2
2+S
rp'1←rp'1–XA
borrow
A, @HL
1
1
A, CY←A–(HL)–CY
XA, rp'
2
2
XA, CY←XA–rp'–CY
rp'1, XA
2
2
rp'1, CY←rp'1–XA–CY
A, #n4
2
2
A←A n4
A, @HL
1
1
A←A (HL)
XA, rp'
2
2
XA←XA rp'
rp'1, XA
2
2
rp'1←rp'1 XA
A, #n4
2
2
A←A
n4
A, @HL
1
1
A←A
(HL)
XA, rp'
2
2
XA←XA
rp'1, XA
2
2
rp'1←rp'1
A, #n4
2
2
A←A
n4
A, @HL
1
1
A←A
(HL)
XA, rp'
2
2
XA←XA
rp'1, XA
2
2
rp'1←rp'1
Instruction Group
*1
*1
*1
*1
*1
*1
rp'
XA
*1
rp'
XA
carry
borrow
µPD75212A
Increment/decrement
Note 2
Note 1 Mnemonic
Operation
Addressing
Area
Skip
Condition
A
1
1
CY←A0, A 3←CY, An–1←An
NOT
A
2
2
A←A
INCS
reg
1
1+S
reg←reg+1
reg = 0
rp1
1
1+S
rp1←rp1+1
rp1 = 00H
@HL
2
2+S
(HL)←(HL)+1
*1
(HL) = 0
mem
2
2+S
(mem)←(mem)+1
*3
(mem) = 0
reg
1
1+S
reg←reg–1
reg = FH
rp'
2
2+S
rp'←rp'–1
rp = FFH
reg, #n4
2
2+S
Skip if reg = n4
reg = n4
@HL, #n4
2
2+S
Skip if (HL) = n4
*1
(HL) = n4
A, @HL
1
1+S
Skip if A = (HL)
*1
A = (HL)
XA, @HL
2
2+S
Skip if XA = (HL)
*1
XA = (HL)
A, reg
2
2+S
Skip if A = reg
A = reg
XA, rp'
2
2+S
Skip if XA = rp'
XA = rp'
SET1
CY
1
1
CY←1
CLR1
CY
1
1
CY←0
SKT
CY
1
1+S
NOT1
CY
1
1
DECS
Compare
Carry flag
manipulation
No. of Machine
Bytes
Cycle
RORC
SKE
Note
Operands
Skip if CY = 1
CY = 1
CY←CY
1. Instruction Group
2. Accumulator manipulation
39
µPD75212A
Note
Mnemonic
SET1
CLR1
Memory bit manipulation
SKT
SKF
SKTCLR
AND1
OR1
XOR1
BR
40
No. of Machine
Bytes
Cycle
Operation
Addressing
Area
Skip
Condition
mem.bit
2
2
(mem.bit)←1
*3
fmem.bit
2
2
(fmem.bit)←1
*4
pmem.@L
2
2
(pmem7–2+L3–2.bit(L1–0))←1
*5
@H + mem.bit
2
2
(H+mem3–0.bit)←1
*1
mem.bit
2
2
(mem.bit)←0
*3
fmem.bit
2
2
(fmem.bit)←0
*4
pmem.@L
2
2
(pmem7–2+L3–2.bit(L1–0))←0
*5
@H+mem.bit
2
2
(H+mem3–0.bit)←0
*1
mem.bit
2
2+S
Skip if (mem.bit) = 1
*3
(mem.bit) = 1
fmem.bit
2
2+S
Skip if (fmem.bit) = 1
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if (pmem7–2+L3–2.bit(L1–0)) = 1
*5
(pmem.@L) = 1
@H+mem.bit
2
2+S
Skip if (H+mem3–0.bit) = 1
*1
(@H+mem.bit) = 1
mem.bit
2
2+S
Skip if (mem.bit) = 0
*3
(mem.bit) = 0
fmem.bit
2
2+S
Skip if (fmem.bit) = 0
*4
(fmem.bit) = 0
pmem.@L
2
2+S
Skip if (pmem7–2+L3–2.bit(L1–0)) = 0
*5
(pmem.@L) = 0
@H+mem.bit
2
2+S
Skip if (H+mem3–0.bit) = 0
*1
(@H+mem.bit) = 0
fmem.bit
2
2+S
Skip if (fmem.bit) = 1 and clear
*4
(fmem.bit) = 1
pmem.@L
2
2+S
Skip if (pmem7–2+L3–2.bit(L1–0))=1 and clear
*5
(pmem.@L) = 1
@H+mem.bit
2
2+S
Skip if (H+mem3–0.bit)=1 and clear
*1
(@H+mem.bit)=1
CY, fmem.bit
2
2
CY←CY (fmem.bit)
*4
CY, pmem.@L
2
2
CY←CY (pmem7–2+L3–2.bit(L 1–0))
*5
CY, @H+mem.bit
2
2
CY←CY (H+mem3–0.bit)
*1
CY, fmem.bit
2
2
CY←CY (fmem.bit)
*4
CY, pmem.@L
2
2
CY←CY (pmem7–2+L3–2.bit(L1–0))
*5
CY, @H+mem.bit
2
2
CY←CY (H+mem3–0.bit)
*1
CY, fmem.bit
2
2
CY←CY
(fmem.bit)
*4
CY, pmem.@L
2
2
CY←CY
(pmem7–2+L3–2.bit(L1–0))
*5
CY, @H+mem.bit
2
2
CY←CY
(H+mem3–0.bit)
*1
addr
—
—
PC13–0←addr
*6
(Optimum instruction is
selected from among BR !addr,
BRCB !caddr and BR $addr by an
assembler.)
Branch
Note
Operands
!addr
3
3
PC13–0←addr
*6
$addr
1
2
PC13–0←addr
*7
BRCB
!caddr
2
2
PC13–0←PC13,12+caddr11–0
*8
BR
PCDE
2
3
PC13–0←PC13–8+DE
PCXA
2
3
PC13–0←PC13–8+XA
Instruction Group
µPD75212A
Note
Mnemonic
Operands
!addr
3
3
(SP–4) (SP–1) (SP–2)←PC11–0
(SP–3)← MBE, RBE, PC13, 12
PC13–0←addr, SP←SP–4
*6
CALLF
!faddr
2
2
(SP–4) (SP–1) (SP–2)←PC11–0
(SP–3)← MBE, RBE, PC13, 12
PC13–0←000, faddr, SP←SP–4
*9
1
3
MBE, RBE, PC13, 12←(SP+1)
Subroutine stack control
Unconditional
1
3+S
RETI
1
3
×, ×, PC13, 12←(SP+1)
PC11–0←(SP) (SP+3) (SP+2)
PSW←(SP+4) (SP+5), SP←SP+6
rp
1
1
(SP–1) (SP–2)←rp, SP←SP–2
BS
2
2
(SP–1)←MBS, (SP–2)←RBS, SP←SP–2
rp
1
1
rp←(SP+1) (SP), SP←SP+2
BS
2
2
MBS←(SP+1), RBS←(SP), SP←SP+2
2
2
IME (IPS.3)←1
2
2
IE×××←1
2
2
IME (IPS.3)←0
IE×××
2
2
IE×××←0
A, PORTn
2
2
A←PORTn
XA, PORTn
2
2
XA←PORTn+1, PORTn
PORTn, A
2
2
PORTn←A
PORTn, XA
2
2
PORTn+1, PORTn←XA
HALT
2
2
Set HALT Mode (PCC.2←1)
STOP
2
2
Set STOP Mode (PCC.3←1)
NOP
1
1
No Operation
RBn
2
2
RBS←n
(n = 0 to 3)
MBn
2
2
MBS←n
(n = 0, 1, 15)
EI
Interrupt
control
MBE, RBE, PC13, 12←(SP+1)
PC11–0←(SP) (SP+3) (SP+2)
SP←SP+4
then skip unconditionally
RETS
POP
Input/output
Skip
Condition
PC11–0←(SP) (SP+3) (SP+2)
SP←SP+4
PUSH
Special CPU control
Addressing
Area
Operation
CALL
RET
*
No. of Machine
Bytes
Cycle
IE×××
DI
IN
*
OUT *
SEL
(n = 0 to 6)
(n = 4)
(n = 2 to 6)
(n = 4)
*10
MBE = 0 or MBE = 1 and MBS = 15 must be set for execution of IN/OUT instruction.
Note
Instruction Group
41
µPD75212A
Note
Mnemonic
taddr
Special
GETI *
Operands
*
1
3
Operation
• TBR instruction
PC13–0←(taddr)4–0+(taddr+1)
---------------------------------------------------• TCALL instruction
(SP–4)(SP–1)(SP–2)←PC11–0
(SP–3)← MBE, RBE, PC13, 12
PC13–0←(taddr)4–0+(taddr+1)
SP←SP–4
---------------------------------------------------• (taddr) (taddr+1) instruction
executed in the case of
instruction except TBR and
TCALL instructions
Addressing
Area
Skip
Condition
*10
------------------------
-----------------------Depends on
instructions
referred to.
TBR and TCALL instructions are assembled pseudo-instructions to define the GETI instruction table.
Note
42
No. of Machine
Bytes
Cycle
Instruction Group
µPD75212A
10. MASK OPTION SELECTION
The µPD75212A has the following mask options enabling or disabling on-chip components.
(1)
Pin
Pin
Mask Option
Pull-down resistor incorporation enabled bit-wise
P60 to P63
T0/T9
T10/S15/PH3 to T13/S12/PH0
T14/S11, T15/S10
S0 to S9
Deletion of subsystem clock oscillator feedback resistor
possible
XT1, XT2
Note
1. In a system not using subsystem clocks, power consumption in the STOP mode can be decreased by
removing the feedback resistor from the oscillator.
2. The feedback resistor must be incorporated when using subsystem clock.
(2)
Power-on reset generator, power-on flag (PONF)
One of the following three can be selected.
Switch Selection
(See Fig. 8-1)
Power-On Reset Generator
Power-On Flag (PONF)
Internal Reset Signal (RES)
SWA
SWB
ON
ON
Incorporated
Incorporated
Generate automatically
ON
OFF
Incorporated
Incorporated
Not generate automatically
OFF
OFF
Not incorporated
Not incorporated
–––––
43
µPD75212A
11. APPLICATION BLOCK DIAGRAM
11.1 VCR TIMER TUNER
Main Power Supply
+
Super Capacitor
Power
Failure
Detection
Electronic
Tuner
Tape Count Pulse
Tape Up/Down
LPF
VDD
INT4
PPO
VSS
T0–T9 10
µPD75212A




INT1 


S0–S15 16
Fluorescent Display Panel (FIP)
16 Segments × 10 Digits

Timer

Tuner

Remote

Controlled

Reception

Tape Counter 
Key Matrix
(16 × 4)
PORT6
SCK
System Controller
SO
Microcomputer SI
SCK
SO
µ PD75104/75106
EEPROM™
INT0
µ PD6252
BUZ
µ PC2800A
X1
44
Remote Controlled
Signal
X2
XT1
XT2
BZ
Piezoelectric Buzzer
µPD75212A
11.2 CD PLAYER
T0–S13 14
SCK
SI/SO
SIO
Servo
Control IC
Fluorescent Display Panel (FIP)
12 Segments × 14 Digits
S0–S11 12
Loading
Circuit
µPD75212A
Key Matrix
(12 × 4)
PORT6
BUZ
BZ
Remote Controlled
Signal
INT0
µ PC2800A
X1
X2
11.3 ECR
Main Power Supply
Power
Failure
Detection
+
VDD
VSS
INT4
T0–T15 16
S0–S9 10
Fluorescent Display Panel (FIP)
10 Segments × 16 Digits
RAM
µ PD75212A
Key Matrix
(10 × 4)
Printer
PPO
BZ
X1
X2
XT1
XT2
45
µPD75212A
12. ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)
PARAMETER
SYMBOL
Power supply voltage
Input voltage
TEST CONDITIONS
RATING
UNIT
VDD
–0.3 to +7.0
V
VLOAD
VDD –40 to VDD +0.3
V
VPRE
VDD –12 to VDD +0.3
V
VI
–0.3 to VDD +0.3
V
–0.3 to VDD +0.3
V
VDD –40 to VDD +0.3
V
VO
Pins except display output pins
VOD
Display output pins
Output voltage
Output current high
Output current low
IOL
PT
Total loss*1
★
IOH
1 pin except display output pins
–15
mA
S0 to S9
1 pin
–15
mA
T0 to T15
1 pin
–30
mA
Total of pins except display output pins
–20
mA
Total of display output pins
–120
mA
1 pin
17
mA
Total of pins
60
mA
Plastic QFP
450
mW
Plastic shrink DIP
600
mW
Operating temperature
Topt
–40 to +85
°C
Storage temperature
Tstg
–65 to +150
°C
Note
Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter, or even
momentarily. In other words, the absolute maximum ratings are rated values at which the product is on
the verge of suffering physical damage, and therefore, the product must be used under conditions which
ensure that the absolute maximum ratings are not exceeded.
OPERATING VOLTAGE (Ta = –40 to +85 °C)
MIN.
MAX.
UNIT
CPU *2
*3
6.0
V
Display controller
4.5
6.0
V
Time/pulse generator
4.5
6.0
V
Other hardware *2
2.7
6.0
V
PARAMETER
TEST CONDITIONS
CAPACITANCE ( Ta = 25 °C, VDD = 0 V )
PARAMETER
Input capacitance
SYMBOL
CIN
Except display output
Output capacitance
COUT
Display output
Input /output capacitance
46
TEST CONDITIONS
CIO
f = 1 MHz
Unmeasured pin returned
to 0 V
MIN.
TYP.
MAX.
UNIT
15
pF
15
pF
35
pF
15
pF
µPD75212A
*
1. Calculation of total loss
Design so that the sum of the following three power consumption values for the µPD75212ACW/GF will be
less than the total loss PT (It is recommended to use the system with 80 % or less of the rating).
: Given as VDD (MAX.) × IDD1 (MAX.)
: There are normal output pin loss and display output pin loss. It is necessary
to add a loss derived from the flow of maximum current to each output pin.
➂ Pull-down register loss : Power loss due to a pull-down resistor incorporated in the display output pin
➀ CPU loss
➁ Output pin loss
by mask option.
Example
Suppose 4-LED output with 9SEG × 11DIGIT, VDD = 5 V + 10 % and 4.19 MHz oscillation and let a current of
3 mA, 15 mA and up to 10 mA flow to the segment pin, timing pin and LED output pin, respectively.
Further, let the voltage of fluorescent display tube (VLOAD voltage) be –30 V and normal voltage be small.
➀ CPU loss : 5.5 V × 9.0 mA = 49.5 mW
➁ Pin loss : Segment pin ..... 2 V × 3 mA × 9 = 54 mW
Timing pin ......... 2 V × 15 mA = 30 mW
10
× 2 V × 10 mA × 4 = 53 mW
15
(30 + 5.5 V)2
× 10 = 504.1 mW
Pull-down resistor loss ........
25 kΩ
LED output ........
➂
PT = ➀ + ➁ + ➂ = 690.6 mW
In this example, since the allowable total loss is 600 mW for the shrink DIP package, it is necessary to
decrease power consumption by decreasing the number of on-chip pull-down resistors. In this example,
power consumption can be adjusted to 577.8 mW by incorporating pull-down resistors in only 11 digit
outputs and 7 segment outputs and externally mounting pull-down resistors to the 2 remaining segment
outputs.
2. Except the system clock oscillator, display controller and timer/pulse generator.
3. The operating voltage range varies depending on the cycle time. Refer to the section describing AC
characteristics.
47
µPD75212A
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V )
RESONATOR RECOMMENDED CIRCUIT
X1
Ceramic
resonator*1
X2
C1
C2
X1
TEST CONDITIONS
Oscillator frequency
(fXX) *2
VDD = Oscillation
voltage range
Oscillation
stabilization time *3
After VDD reaches the
minimum value in
the oscillation
voltage range
Oscillator frequency
(fXX) *2
X2
Crystal
resonator*1
MIN.
C2
X1
X2
External
clock
µPD74HCU04
TYP.
2.0
2.0
VDD = 4.5 to 6.0 V
C1
*
PARAMETER
Oscillation stabilization
time *3
4.19
MAX.
UNIT
5.0 *4
MHz
4
ms
5.0 *4
MHz
10
ms
30
ms
X1 input frequency
(fX) *2
2.0
5.0 *4
MHz
X1 input high and low
level widths (tXH, tXL)
100
250
ns
1. Refer to RECOMMENDED OSCILLATOR CONSTANTS.
2. Oscillator characteristics only. Refer to the description of AC characteristics for details of instruction execution
time.
3. Time required for oscillation to become stabilized after VDD reaches the minimum value in the oscillation
voltage range or STOP mode release.
4. When oscillator frequency is “4.19 < fXX <
– 5.0 MHz”, do not select “PCC = 0011” as instruction execution time.
If “PCC = 0011” is selected, 1 machine cycle becomes less than 0.95 µs, with the result that the specified MIN.
value of 0.95 µs cannot be observed.
★
Note
When the main system clock oscillator is used, the following should be noted concerning wiring in the area
in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.
• The wiring should be kept as short as possible.
• No other signal lines should be crossed. Keep away from lines carrying a high fluctuating current.
• The oscillator capacitor grounding point should always be at the same potential as VSS. Do not connect
to a ground pattern carrying a high current.
• A signal should not be taken from the oscillator.
48
µPD75212A
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (Ta = –40 to +85 °C, VDD = 2.7 to 6.0 V)
RESONATOR RECOMMENDED CIRCUIT
XT1
R
C3
C4
XT1
External
clock
*
TEST CONDITIONS
Oscillator frequency
(fXT) *2
XT2
Crystal
resonator*1
PARAMETER
XT2
MIN.
TYP.
MAX.
UNIT
32
32.768
35
kHz
1.0
2
s
10
s
VDD = 4.5 to 6.0 V
Oscillation stabilization
time *3
XT1 input frequency
(fXT)
32
100
kHz
XT1 input high and low
level widths (tXTH, tXTL)
10
32
µs
Leave Open
1. Recommended resonators are shown in following page.
2. Oscillator characteristics only. Refer to the description of AC characteristics for instruction execution time.
3. Oscillation stabilization time is a time required for oscillation to become stabilized after VDD reaches the
minimum value in the oscillation voltage range.
Note
When the subsystem clock oscillator is used, the following should be noted concerning wiring in the area
in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc.
• The wiring should be kept as short as possible.
• No other signal lines should be crossed. Keep away from lines carrying a high fluctuating current.
• The oscillator capacitor grounding point should always be at the same potential as VSS. Do not connect
to a ground pattern carrying a high current.
• A signal should not be taken from the oscillator.
The subsystem clock oscillator is a low-amplitude circuit in order to achieve a low consumption current,
and is more prone to misoperation due to noise than the main system clock oscillator. Particular care is
therefore required with the wiring method when the subsystem clock is used.
49
★
µPD75212A
RECOMMENDED OSCILLATOR CONSTANTS
MAIN SYSTEM CLOCK : CERAMIC OSCILLATOR (Ta = –40 to +85 °C)
MANUFACTURER
EXTERNAL
CAPACITANCE (pF)
PRODUCT NAME
C1
C2
30
30
OSCILLATION
VOLTAGE RANGE (V)
MIN.
MAX.
4.0
6.0
REMARKS
CSA 2.00MG
CSA 4.19MG
CSA 4.91MG
Murata Mfg. Co., Ltd.
CAT 2.00MG
CST 4.19MG
On-chip C type
Not required Not required
CST 4.91MG
47
47
33
33
30
30
KBR–2.0MS
KBR–4.0MS
Kyocera Corp.
KBR–4.19MS
4.0
6.0
4.0
6.0
KBR–4.19MS
FCR 3.58M2
FCR 4.00M2
TDK
FCR 4.19M2
FCR 4.19MC
Not required Not required
On-chip C type
MAIN SYSTEM CLOCK : CRYSTAL RESONATOR (Ta = –40 to +85 °C)
MANUFACTURER
FREQUENCY
(MHz)
Kinseki
Note
LOAD
HOLDER CAPACITANCE
CL (pF)
2.00
HC–18/U
4.19
HC–49/U
4.91
HC-43/U
16
EXTERNAL
CAPACITANCE (pF)
OSCILLATION
VOLTAGE RANGE (V)
C1
C2
MIN.
MAX.
20
20
4.0
6.0
REMARKS
Carry out fine adjustment of crystal oscillator frequency on the external capacitance C1.
SUBSYSTEM CLOCK : 32.768 kHz CRYSTAL RESONATOR (Ta = –10 to +60 °C)
MANUFACTURER
Kinseki
Citizen Watch Co.
Note
50
LOAD
MODEL CAPACITANCE
NAME
CL (pF)
EXTERNAL
CAPACITANCE (pF)
OSCILLATION
VOLTAGE RANGE (V)
C3
(pF)
C4
(pF)
R
(kΩ)
P–3
12
22
22
330
CFS–308
14
22
33
330
MIN.
(V)
MAX.
(V)
2.7
6.0
Carry out fine adjustment of crystal oscillator frequency on the external capacitance C3.
REMARKS
µPD75212A
DC CHARACTERISTICS (Ta = –40 to 85 °C, VDD = 2.7 to 6.0 V)
PARAMETER
Input voltage high
SYMBOL
TEST CONDITIONS
MIN.
MAX.
UNIT
VIH1
Except below
0.7 V DD
VDD
V
VIH2
Ports 0, 1, RESET
0.75 VDD
VDD
V
VIH3
X1, X2, XT1
VDD–0.4
VDD
V
0.65 VDD
Port 6
VDD
V
VIH4
0.7 V DD
VDD
V
VDD = 4.5 to 6.0 V
Input Voltage low
TYP.
VIL1
Except below
0
0.3 V DD
V
VIL2
Ports 0, 1, 6, RESET
0
0.2 V DD
V
VIL3
X1, X2, XT1
0
0.4
V
VOH
All output pins
V DD = 4.5 to 6.0 V, IOH = –1 mA VDD–1.0
Output voltage high
Ports 4, 5
Output voltage low
VOL
IOH = –100 µA
V
VDD–0.5
V
0.4
V DD = 4.5 to 6.0 V, IOL = 15 mA
V DD = 4.5 to 6.0 V, IOL = 1.6 mA
All output pins
IOL = 400 µA
2.0
V
0.4
V
0.5
V
3
µA
20
µA
–3
µA
–20
µA
Input leakage current
high
ILIH1
Input leakage current
low
ILIL1
ILIL2
X1, X2, XT1
Output leakage current high
ILOH
All output pins VOUT = VDD
3
µA
Output leakage current
low
ILOL1
Except display output VOUT = 0 V
–3
µA
–10
µA
Except X1,X2,XT1
VIN = VDD
ILIH2
X1, X2, XT1
Except X1,X2,XT1
VIN = 0 V
ILOL2
Display output
S0 to S9
Display output current
IOD
T0 to T15
Built-in pull-down
resistor (mask option)
RP6
RL
IDD1
IDD2
IDD4
IDD5
VPRE = VDD – 9 ±1 V*1
VDD =
4.5 to 6.0 V VPRE = 0 V
VOD =
VPRE = VDD – 9 ±1 V*1
VDD – 2 V
VPRE = 0 V
Port 6
VIN = VDD
VDD = 4.5 to 6.0 V
Display output
VOD – VLOAD = 35 V
–3
–5.5
mA
–1.5
–3.5
mA
–15
–22
mA
–7
–15
mA
20
80
200
kΩ
1000
kΩ
70
135
kΩ
VDD = 5 V ±10 %*3
3.0
9.0
mA
VDD = 3 V ±10 %*4
0.55
1.5
mA
VDD = 5 V ±10 %
600
1800
µA
VDD = 3 V ±10 %
200
600
µA
VDD = 3 V ±10 %
32 kHz crystal
oscillation*5
HALT mode VDD = 3 V ±10 %
40
120
µA
5
15
µA
VDD = 5 V ±10 %
0.5
20
µA
VDD = 3 V ±10 %
0.1
10
µA
4.19 MHz
crystal
oscillation
C1 = C2 =
15 pF
Supply current*2
IDD3
VOUT = VLOAD = VDD – 35 V
XT1 = 0 V
STOP mode
20
HALT mode
25
51
µPD75212A
*
1. The following external circuit is recommended.
µPD75212A
+5 V
VDD
RD9, 1EL
RD9, 1EL :Zener Diode (NEC)
Zener Voltage = 8.29 to 9.30 V
VPRE
68 kΩ
VLOAD
–30 V
VSS
2. Current to the on-chip pull-down resistor and power-on reset circuit (mask option) is not included.
3. When the processor clock control register (PCC) is set to 0011 and is operated in the high-speed mode.
4. When the PCC register is set to 0000 and is operated in the low-speed mode.
5. When the system clock control register (SCC) is set to 1001 and is operated with the subsystem clock with
main system clock oscillation stopped.
POWER-ON RESET CIRCUIT CHARACTERISTICS (MASK OPTION) (Ta = –40 to +85 °C)
PARAMETER
SYMBOL
Power-on reset
operating voltage high
VDDH
Power-on reset
operating voltage low
MAX.
UNIT
4.5
6.0
V
VDDL
0
0.2
V
Power supply voltage
rise time
tr
10
*1
µs
Power supply voltage
off time
toff
1
Power-on reset circuit*2
current consumption
*
TEST CONDITIONS
MIN.
VDD = 5 V ±10 %
VDD = 2.7 V
VDDH
VDD
VDDL
toff
52
s
10
100
µA
2
20
µA
IDDPR
1. 2 17/fXX (31.3 ms at fXX = 4.19 MHz)
2. Current with on-chip power-on reset circuit or power-on flag.
Remarks
TYP.
Start the power supply smoothly.
tr
µPD75212A
AC CHARACTERISTICS (Ta = –40 to +85 °C , VDD = 2.7 to 6.0 V)
PARAMETER
SYMBOL
TEST CONDITIONS
Operation with main
system clock
CPU clock cycle time
(minimum instruction
execution time = 1
machine cycle) *1
tCY
TI0 input frequency
fTI
MIN.
VDD = 4.5 to 6.0 V
Operation with subsystem clock
VDD = 4.5 to 6.0 V
TI0 input high and lowlevel widths
tTIH,
SCK high and low-level
widths
tKH,
0.95
32
µs
3.8
32
µs
125
µs
0
0.6
MHz
0
165
kHz
122
µs
3
µs
Input
0.8
µs
Output
0.95
µs
Input
3.2
µs
Output
3.8
µs
Input
0.4
µs
tKCY/2–50
ns
1.6
µs
tKCY/2–150
ns
tTIL
tKCY
UNIT
0.83
VDD = 4.5 to 6.0 V
VDD = 4.5 to 6.0 V
SCK cycle time
MAX.
114
TYP.
VDD = 4.5 to 6.0 V
Output
tKL
Input
Output
SI setup time (to SCK↑)
tSIK
100
ns
SI hold time (from SCK↑)
tKSI
400
ns
SO output delay time
from SCK↓
tKSO
Interrupt input high and
low-level widths
RESET low-level width
VDD = 4.5 to 6.0 V
ns
1000
ns
INT0
*2
µs
INT1
2tCY
µs
INT2, 4
10
µs
10
µs
tINTH,
tINTL
tRSL
300
53
µPD75212A
tCY VS VDD
(Main System Clock in Operation)
1. CPU clock (Φ) cycle time is determined by the
oscillator frequency of the connected resonator,
the system clock control register (SCC) and the
40
processor clock control register (PCC). The cycle
time tCY characteristics for power supply voltage
VDD when the main system clock is in operation is
shown below.
6
2. 2tCY or 128/fXX is set by interrupt mode register
(IM0) setting.
32
30
5
Operation Guaranteed
Range
4
Cycle Time tCY [µs]
*
3
2
1
0.5
0
1
2
3
4
5
Power Supply Voltage VDD [V]
54
6
µPD75212A
AC Timing Test Points (Except X1 and XT1 Inputs)
0.75 VDD
0.75 VDD
Test Points
0.2 VDD
0.2 VDD
Clock Timing
1/fX
tXL
tXH
X1 Input
VDD – 0.4 V
0.4 V
1/fXT
tXTL
tXTH
XT1 Input
VDD – 0.4 V
0.4 V
TI0 Timing
1/fTI
tTIL
tTIH
TI0
55
µPD75212A
Serial Transfer Timing
tKCY
tKH
tKL
SCK
tSIK
SI
tKSI
Input Data
tKSO
SO
Output Data
Interrupt Input Timing
tINTL
INT0,1,2,4
RESET Input Timing
tRSL
RESET
56
tINTH
µPD75212A
DATA MEMORY STOP MODE LOW POWER SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40
to +85 °C)
PARAMETER
SYMBOL
Data retention power
supply voltage
VDDDR
Data retention power
supply current *1
IDDDR
Release signal set time
tSREL
Oscillation stabilization
wait time *2
tWAIT
*
TEST CONDITIONS
MIN.
TYP.
2.0
VDDDR = 2.0V
0.1
MAX.
UNIT
6.0
V
10
µA
µs
0
Release by RESET
Release by interrupt request
217/fX
ms
*3
ms
1. Current to the on-chip pull-down resistor and power-on reset circuit (mask option) is not included.
2. Oscillation stabilization wait time is time to stop CPU operation to prevent unstable operation upon oscillation
start.
3. According to the setting of the basic interval timer mode register (BTM) (see below).
BTM3
BTM2
BTM1
BTM0
Wait Time (Values at fXX = 4.19 MHz in parentheses)
—
0
0
0
220/fXX (approx. 250 ms)
—
0
1
1
217/fXX (approx. 31.3 ms)
—
1
0
1
215/fXX (approx. 7.82 ms)
—
1
1
1
213/fXX (approx. 1.95 ms)
Data Retention Timing (STOP Mode Release by RESET)
Internal Reset Operation
HALT Mode
Operating Mode
STOP Mode
Data Retention Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
RESET
tWAIT
57
µPD75212A
Data Retention Timing (Standby Release Signal: STOP Mode Release by Interrupt Signal)
HALT Mode
Operating Mode
STOP Mode
Data Retention Mode
VDD
VDDDR
tSREL
STOP Instruction Execution
Standby Release Signal
(Interrupt Request)
tWAIT
58
µPD75212A
13. CHARACTERISTIC CURVES
IDD vs VDD
(Ta = 25 °C)
5000
High-Speed
Mode (0011)
Medium-Speed
Mode (0010)
Low-Speed
Mode (0000)
1000
HALT Mode
(0100)
Supply Current IDD [µA]
500
Subsystem
Clock
Operating
Mode
100
Subsystem
Clock HALT
Mode
50
STOP Mode
(1000)
 Power-on 
 reset



circuit
and


power-on
flag


 incorporated 
10
5
X1
X2
XT1
XT2
330 kΩ
32.768 kHz
4.19 MHz
15 pF
15 pF
3
4
Supply Voltage V DD [V]
5
22 pF
33 pF
1
0
Remarks
1
2
6
Values of the processor clock control register (PCC) are indicated in parenthesis.
59
µPD75212A
IOL vs VOL (Ports 0, 2, 3, 6)
(Ta = 25 °C)
20
VDD = 5 V
VDD = 6 V
VDD = 4 V
Output Current Low IOL [mA]
15
VDD = 3 V
10
VDD = 2.7 V
5
0
0
1
2
3
4
5
Output Voltage Low VOL [V]
IOH vs (VDD – VOH ) (Ports 0, 2, 3, 6)
(Ta = 25 °C)
–20
VDD = 5 V
–15
Output Current High IOH [mA]
VDD = 6 V
VDD = 4 V
–10
VDD = 3 V
–5
VDD = 2.7 V
0
0
1
2
3
VDD– VOH [V]
60
4
5
µPD75212A
IOL vs VOL (Ports 4, 5)
(Ta = 25 °C)
20
VDD = 5 V
6V
4V
VDD = 3 V
Output Current Low IOL [mA]
15
VDD = 2.7 V
10
5
0
0
1
2
3
Output Voltage Low VOL [V]
4
5
IOH vs (VDD – VOH) (Ports 4, 5)
(Ta = 25 °C)
–20
VDD = 6 V
Output Current High IOH [mA]
–15
VDD = 5 V
VDD = 4 V
–10
VDD = 3 V
–5
VDD = 2.7 V
0
0
1
2
3
4
5
VDD– VOH [V]
61
µPD75212A
IOD vs (VDD to VOD) (T0 to T15)
(Ta = 25 °C)
–40.0
VDD – VPRE = 8 V
–30.0
Display Output Current IOD [mA]
VDD – VPRE = 10 V
VDD – VPRE = 6 V
–20.0
VDD – VPRE = 4 V
–10.0
0
0
1
2
3
VDD– VOD [V]
4
5
IOD vs (VDD – VOD) (S0 to S9)
(Ta = 25 °C)
–10.0
Display Output Current IOD [mA]
VDD – VPRE = 10 V
VDD – VPRE = 8 V
VDD – VPRE = 6 V
–5.0
VDD – VPRE = 4 V
0
0
1
2
3
VDD– VOD [V]
62
4
5
µPD75212A
14. PACKAGE INFORMATION
64 PIN PLASTIC SHRINK DIP (750 mil)
64
33
1
32
A
K
H
G
J
I
L
F
D
N
M
NOTE
M
B
C
ITEM MILLIMETERS
R
INCHES
1) Each lead centerline is located within 0.17 mm (0.007 inch) of
its true position (T.P.) at maximum material condition.
A
58.68 MAX.
2.311 MAX.
B
1.78 MAX.
0.070 MAX.
2) Item "K" to center of leads when formed parallel.
C
1.778 (T.P.)
0.070 (T.P.)
D
0.50±0.10
0.020 +0.004
–0.005
F
0.9 MIN.
0.035 MIN.
G
3.2±0.3
0.126±0.012
H
0.51 MIN.
0.020 MIN.
I
4.31 MAX.
0.170 MAX.
J
5.08 MAX.
0.200 MAX.
K
19.05 (T.P.)
0.750 (T.P.)
L
17.0
0.669
M
0.25 +0.10
–0.05
0.010 +0.004
–0.003
N
0.17
0.007
R
0~15°
0~15°
P64C-70-750A,C-1
63
µPD75212A
64 PIN PLASTIC QFP (14×20)
A
B
detail of lead end
33
32
51
52
C
D
S
R
Q
64
1
20
19
F
G
H
I
M
J
K
M
P
N
L
NOTE
Each lead centerline is located within 0.20 mm (0.008 inch) of
its true position (T.P.) at maximum material condition.
64
ITEM
MILLIMETERS
INCHES
A
23.6±0.4
0.929±0.016
B
20.0±0.2
0.795 +0.008
–0.009
C
14.0±0.2
0.551+0.009
–0.008
D
17.6±0.4
0.693±0.016
F
1.0
0.039
G
1.0
0.039
H
0.40±0.10
0.016 +0.004
–0.005
0.008
I
0.20
J
1.0 (T.P.)
0.039 (T.P)
K
1.8±0.2
0.071 +0.008
–0.009
L
0.8±0.2
0.031 +0.009
–0.008
M
0.15 +0.10
–0.05
0.006 +0.004
–0.003
N
P
Q
R
S
0.10
0.004
2.7
0.106
0.1±0.1
0.004±0.004
5°±5°
5°±5°
3.0 MAX.
0.119 MAX.
P64GF-100-3B8,3BE,3BR-2
µPD75212A
64-pin ceramic QFP for ES (reference) (unit : mm)
14.2
64
52
51
19
20
33
32
18.0
1
0.4
0.15
2.25
1.0
20
12.0
Note
Bottom
View
1. Care is needed since the metal cap is connected to pin 26 and set to the positive
power supply level.
2. Care is needed since the lead of the base is
formed obliquely.
3. The lead length is not stipulated since the
cutting of the lead ends is not progresscontrolled.
65
µPD75212A
15. RECOMMENDED SOLDERING CONDITIONS
This product should be soldered and mounted under the conditions recommended below.
For details of recommended soldering conditions, refer to the information document “Semiconductor Device
Mount Manual” (IEI-1207).
For soldering methods and conditions other than those recommended below, contact our salesman.
Table 15-1 Surface Mounting Type Conditions
µPD75212AGF-×××-3BE : 64-pin plastic QFP (14 × 20 mm)
Soldering Method
*
Soldering Conditions
Recommended
Condition Symbol
Wave soldering
Solder bath temperature: 260 °C or less, Duration: 10 sec. max.
Number of times: Once, Time limit: 7 days* (thereafter 10 hours prebaking required
at 125 °C)
Preheating temperature : 120 °C max. (package surface temperature)
WS60-107-1
Infrared reflow
Package peak temperature: 230 °C, Duration: 30 sec. max. (at 210 °C or above),
Number of times: Once, Time limit: 7 days*(thereafter 10 hours prebaking required
at 125 °C)
IR-30-107-1
VPS
Package peak temperature: 215 °C, Duration: 40 sec. max. (at 200 °C or above),
Number of times: Once, Time limit: 7 days* (thereafter 10 hours prebaking required
at 125 °C)
VP15-107-1
Pin part heating
Pin part temperature: 300 °C or below , Duration: 3 sec. max. (per device side)
–––
For the storage period after dry-pack decompression storage conditions are max. 25 °C, 65 % RH.
Note Use of more than one soldering method should be avoided (except in the case of pin part heating).
Notice
A Version of this product with improved recommended soldering condition is available. For details
(improvements such as infrared reflow peak temperature extension (235 °C), number of times: twice,
relaxation of time limit, etc.), contact NEC sales personnel.
Table 15-2 Insertion Type Soldering Conditions
µPD75212ACW-××× : 64-pin plastic shrink DIP (750 mil)
Soldering Method
Wave soldering
(lead part only)
Solder bath temperature: 260 °C or below , Duration: 10 sec. max.
Pin part heating
Pin part temperature: 260 °C or below , Duration: 10 sec. max.
Note
66
Soldering Conditions
Ensure that the application of wave soldering is limited to the lead part and no solder touches the main
unit directly.
µPD75212A
APPENDIX A. DEVELOPMENT TOOLS
The following development tools are available for the development of systems using the µPD75212A.
IE-75000-R*1
IE-75001-R
In-circuit emulator for the 75X series
IE-75000-R-EM*2
Emulation board for the IE-75000-R and IE-75001-R
EP-75216ACW-R
Emulation probe for µPD75216ACW
Software
Hardware
EP-75216AGF-R
*
EV-9200G-64
Emulation probe for µPD75216AGF provided with the 64-pin conversion
socket EV-9200G-64
PG-1500
PROM programmer
PA-75P216ACW
PROM programmer adapter for µPD75P216ACW/75P218CW in
connection with PG-1500
PA-75P218GF
PROM programmer adapter for µPD75P218GF in connection with
PG-1500
PA-75P218KB
PROM programmer adapter for µPD75P218KB in connection with
PG-1500.
IE control program
Host machine
PG-1500 controller
• PC-9800 series (MS-DOS™ Ver.3.30 to Ver.5.00A*3)
RA75X relocatable assembler
• IBM PC/AT™ (PC DOS™ Ver.3.1)
1. Maintenance product
2. Not incorporated in the IE-75001-R
3. The task swap function, which is provided with Ver.5.00/5.00A, is not available with this software.
Remarks
For development tools manufactured by a third party, see the 75X Series Selection Guide (IF-151).
67
µPD75212A
APPENDIX B. RELATED DOCUMENTS
Device Related Documents
Document Name
Document No.
User’s Manual
Instruction Application Table
Application Note
75X Series Selection Guide
Development Tools Related Documents
Document Name
Document No.
Hardware
IE-75000-R/IE-75001-R User’s Manual
IE-75000-R-EM User’s Manual
EP-75216ACW-R User’s Manual
EP-75216AGF-R User’s Manual
Software
PG-1500 User’s Manual
RA75X Assembler Package User’s Manual
Operation Volume
Language Volume
PG-1500 Controller User’s Manual
Other Documents
Document Name
Document No.
Package Manual
Surface Mount Technology Manual
Quality Grade on NEC Semiconductor Devices
NEC Semiconductor Device Reliability & Quality Control
Electrostatic Discharge (ESD) Test
Semiconductor Devices Quality Guarantee Guide
Microcomputer Related Products Guide Other Manufactures Volume
Note
68
The contents of the above related documents are subjected to change without notice. The latest documents
should be used for design, etc.
µPD75212A
69
µPD75212A
[MEMO]
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights
or other intellectual property rights of NEC Corporation or others.
The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear
reactor control systems and life support systems. If customers intend to use NEC devices for above applications
or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact
our sales people in advance.
Application examples recommended by NEC Corporation
Standard : Computer, Office equipment, Communication equipment, Test and Measurement equipment,
Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.
Special
: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,
Anticrime systems, etc.
M4 92.6
EEPROM is a trademark of NEC Corporation.
FIP is a trademark of NEC Corporation.
MS-DOS is a trademark of Microsoft Corporation.
PC DOS, PC/AT are trademarks of IBM Corporation.