NEC UPD78064B

DATA SHEET
MOS INTEGRATED CIRCUIT
mPD78042F, 78043F, 78044F, 78045F
8-BIT SINGLE-CHIP MICROCOMPUTER
The mPD78042F, mPD78043F, mPD78044F, and m PD78045F are 8-bit single-chip microcomputers that incorporate many hardware peripherals such as an FIP® controller/driver, 8-bit resolution A/D converter, timer, serial
interface, and interrupt controller.
The one-time PROM and EPROM models that can operate in the same voltage range as that of masked ROM
models, and various development tools are provided.
The functions of these microcomputers are described in detail in the following User’s Manual. Be sure
to read this manual when you design a system using any of these microcomputers.
mPD78044F Sub-Series User’s Manual : U10908E
78K/0 Series User's Manual, Instruction: IEU-1372
FEATURES
• High-capacity ROM and RAM
Item
Product name
Program memory
(ROM)
mPD78042F
16K bytes
mPD78043F
24K bytes
mPD78044F
32K bytes
mPD78045F
40K bytes
Data memory
Internal high-speed RAM
512 bytes
Buffer RAM
64 bytes
FIP display RAM
48 bytes
1024 bytes
• Wide range of instruction execution time - from
high-speed (0.4 ms) to ultra low-speed (122 ms)
• I/O ports: 68
• FIP controller/driver: total display outputs: 34
•
•
•
•
8-bit resolution A/D converter: 8 channels
Serial interface: 2 channels
Timer: 6 channels
Power supply voltage: VDD = 2.7 to 5.5 V
★
APPLICATIONS
CD players, cassete tape recorders, tuners, minicomponent stereos, VCRs, microwave ovens, ECRs, etc.
ORDERING INFORMATION
Part number
Package
mPD78042FGF-¥¥¥-3B9
80-pin plastic QFP (14 ¥ 20 mm)
mPD78043FGF-¥¥¥-3B9
80-pin plastic QFP (14 ¥ 20 mm)
mPD78044FGF-¥¥¥-3B9
80-pin plastic QFP (14 ¥ 20 mm)
mPD78045FGF-¥¥¥-3B9
80-pin plastic QFP (14 ¥ 20 mm)
Remark ¥¥¥ indicates ROM code number.
The information in this document is subject to change without notice.
Document No. U10700EJ1V0DS00 (1st edition)
Date Published July 1996 P
Printed in Japan
The mark ★ shows major revised points.
©
1996
1990
mPD78042F, 78043F, 78044F, 78045F
★
78K/0 SERIES PRODUCT DEVELOPMENT
The 78K/0 series products were developed as shown below. The sub-series names are indicated in frames.
Products under
mass production
Products under
development
2
The Y Subseries is compatible with the I C bus.
For control
100-pin
100-pin
80-pin
80-pin
64-pin
64-pin
64-pin
64-pin
42/44-pin
µPD78078
µ PD78070A
µ PD78058F
µ PD78054
µPD78018F
µPD78014
µPD780001
µPD78002
µPD78083
µPD78078Y
µPD78070AY
µPD78058FY
µPD78054Y
µPD78018FY
µPD78014Y
µPD78002Y
For FIP driving
78K/0
series
100-pin
80-pin
64-pin
A timer added to the µPD78054 and external interface functions enhanced.
ROM-less product of the µ PD78078
Counter-measure against EMI noise added to the µPD78054
An UART and D/A converter added to the µPD78014 and I/O
function enhanced.
Low-voltage (1.8 V) versions of the µPD78014. ROM and RAM variations
enhanced.
An A/D converter and 16-bit timer added to the µ PD78002.
An A/D converter added to the µPD78002
Basic subseries for control
These products include an UART and can operate at a low voltage (1.8 V).
The I/O and FIP C/D of the µ PD78044F enhanced.
Total indication output pins: 53
A 6-bit U/D counter added to the µPD78024.
Total indication output pins: 34
Basic subseries for FIP driving. Total indication output pins: 26
µPD780208
µ PD78044F
µPD78024
For LCD driving
100-pin
100-pin
100-pin
µ PD780308
µPD780308Y
SIO of the µPD78064 enhanced and ROM/RAM expanded.
µ PD78064B
µPD78064
µ PD78064Y
Counter-measure against EMI noise added to the µ PD78064.
Basic subseries for LCD driving. These products include an UART.
Compatible with IEBusTM
80-pin
µ PD78098
An IEBus controller added to the µPD78054.
For LV
100-pin
2
µ PD78P0914
PWM output, LV digital code decoder, built-in Hsync counter.
mPD78042F, 78043F, 78044F, 78045F
The table below shows the main differences between subseries.
Function
Subseries name
For control
mPD78078
Timer
8-bit
8-bit
Serial
8-bit 16-bit Watch WDT
A/D
D/A
interface
4ch
8ch
2ch
3ch (UART : 1ch)
ROM
capacity
32K-60K
1ch
1ch
1ch
I/O
88 pins
1.8 V
61 pins
2.7 V
mPD78070A
–
mPD78058F
48K-60K
mPD78054
16K-60K
mPD78018F
8K-60K
mPD78014
8K-32K
mPD780001
8K
mPD78002
8K-16K
1ch
–
mPD78083
8K-16K
–
8ch
For FIP
mPD780208
32K-60K
driving
mPD78044F
16K-40K
68 pins
mPD78024
24K-32K
54 pins
For LCD
mPD780308
48K-60K
driving
mPD78064B
32K
mPD78064
16K-32K
mPD78098
32K-60K
2ch
1ch
1ch
1ch
8ch
2ch
mPD78P0914
32K
6ch
–
–
1ch
8ch
–
Compatible
2ch
VDD Min. External
value expansion
★
69 pins
2.0 V
–
2ch
53 pins
1.8 V
2.7 V
–
2ch
2ch
1ch
1ch
–
1ch
1ch
1ch
1ch
1ch
8ch
8ch
39 pins
–
53 pins
–
–
1ch (UART : 1ch)
33 pins
1.8 V
–
2ch
74 pins
2.7 V
–
1.8 V
–
3ch (UART : 1ch)
57 pins
2ch (UART : 1ch)
★
2.0 V
3ch (UART : 1ch)
69 pins
2.7 V
2ch
54 pins
4.5 V
with IEBus
For LV
★
3
mPD78042F, 78043F, 78044F, 78045F
FUNCTIONAL OUTLINE
Product name
Item
Internal
memory
mPD78043F
mPD78042F
ROM
16K bytes
Internal high-speed RAM
512 bytes
Buffer RAM
64 bytes
FIP display RAM
48 bytes
mPD78044F
32K bytes
24K bytes
mPD78045F
40K bytes
1024 bytes
General registers
8 bits ¥ 32 registers (8 bits ¥ 8 registers ¥ 4 banks)
Instruction
cycle
Variable instruction execution time
For main system clock
0.4 ms/0.8 ms/1.6 ms/3.2 ms/6.4 ms (at 5.0 MHz)
For subsystem clock
122 ms (at 32.768 kHz)
• Multiplication/division (8 bits ¥ 8 bits, 16 bits ÷ 8 bits)
Instruction set
• Bit (set, reset, test, Boolean algebra)
I/O ports (including those
Total
: 68 lines
multiplexed with FIP pins)
• CMOS input
:
• CMOS I/O
: 27 lines
• N-ch open-drain
:
• P-ch open-drain I/O
: 16 lines
• P-ch open-drain output
: 18 lines
FIP controller/driver
Total
2 lines
5 lines
: 34 lines
• Segments
: 9 to 24 lines
• Digits
: 2 to 16 lines
• 8-bit resolution ¥ 8 channels
A/D converter
★
• Power supply voltage: AVDD = 4.0 to 5.5 V
Serial interface
• 3-wire serial I/O/SBI/2-wire serial I/O selectable modes: 1 channel
• 3-wire serial I/O mode (with automatic transmission/
reception function of up to 64 bytes)
Timer
: 1 channel
• 16-bit timer/event counter
: 1 channel
• 8-bit timer/event counter
: 2 channels
• Watch timer
: 1 channel
• Watchdog timer
: 1 channel
• 6 bit up/down counter
: 1 channel
Timer output
3 lines (one for 14-bit PWM output)
Clock output
19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz
(Main system clock: at 5.0 MHz)
32.768 kHz (Subsystem clock: at 32.768 kHz)
Buzzer output
Vectored
interrupt
★
1.2 kHz, 2.4 kHz, 4.9 kHz (Main system clock: at 5.0 MHz)
Maskable interrupt
Internal 10 lines, external 4 lines
Non-maskable interrupt
Internal 1 line
Software interrupt
1 line
Text input
Internal 1 line
Power supply voltage
VDD = 2.7 to 5.5 V
Package
80-pin plastic QFP (14 ¥ 20 mm)
4
mPD78042F, 78043F, 78044F, 78045F
CONTENTS
1.
PIN CONFIGURATION (TOP VIEW) ........................................................................................
6
2.
BLOCK DIAGRAM .....................................................................................................................
8
3.
PINS FUNCTIONS .....................................................................................................................
9
3.1
PORT PINS ......................................................................................................................................
9
3.2
PINS OTHER THAN PORT PINS ...................................................................................................
11
3.3
PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS ........................................................
13
4.
MEMORY SPACE ......................................................................................................................
16
5.
PERIPHERAL HARDWARE FUNCTIONS ...............................................................................
17
6.
5.1
PORTS .............................................................................................................................................
17
5.2
CLOCK GENERATOR CIRCUIT ....................................................................................................
18
5.3
TIMER/EVENT COUNTER ..............................................................................................................
18
5.4
CLOCK OUTPUT CONTROL CIRCUIT .........................................................................................
21
5.5
BUZZER OUTPUT CONTROL CIRCUIT .......................................................................................
21
5.6
A/D CONVERTER ...........................................................................................................................
22
5.7
SERIAL INTERFACE ......................................................................................................................
22
5.8
FIP CONTROLLER/DRIVER ..........................................................................................................
24
INTERRUPT FUNCTION AND TEST FUNCTION ....................................................................
26
6.1
INTERRUPT FUNCTION.................................................................................................................
26
6.2
TEST FUNCTION ............................................................................................................................
29
7.
STANDBY FUNCTION ...............................................................................................................
30
8.
RESET FUNCTION ....................................................................................................................
30
9.
INSTRUCTION SET ...................................................................................................................
31
10. ELECTRICAL SPECIFICATIONS .............................................................................................
34
★
11. CHARACTERISTIC CURVE (REFERENCE VALUE) ..............................................................
58
★
12. PACKAGE DRAWING ...............................................................................................................
63
13. RECOMMENDED SOLDERING CONDITIONS ........................................................................
64
APPENDIX A DEVELOPMENT TOOLS .........................................................................................
65
APPENDIX B RELATED DOCUMENTS .........................................................................................
67
5
★
mPD78042F, 78043F, 78044F, 78045F
1. PIN CONFIGURATION (TOP VIEW)
• 80-pin plastic QFP (14 ¥ 20 mm)
mPD78042FGF-¥¥¥-3B9, mPD78043FGF-¥¥¥-3B9
P112/FIP20
P113/FIP21
P111/FIP19
P110/FIP18
P107/FIP17
P106/FIP16
VLOAD
P105/FIP15
P104/FIP14
P103/FIP13
P102/FIP12
P101/FIP11
P100/FIP10
P97/FIP9
P96/FIP8
P95/FIP7
mPD78044FGF-¥¥¥-3B9, mPD78045FGF-¥¥¥-3B9
P94/FIP6
1
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
64
P114/FIP22
P93/FIP5
2
63
P115/FIP23
P92/FIP4
3
62
P116/FIP24
P91/FIP3
4
61
P117/FIP25
P90/FIP2
5
60
P120/FIP26
P81/FIP1
6
59
P121/FIP27
P80/FIP0
7
58
P122/FIP28
VDD
8
57
P123/FIP29
P27/SCK0
9
56
P124/FIP30
P26/SO0/SB1
10
55
P125/FIP31
P25/SI0/SB0
11
54
P126/FIP32
P24/BUSY
12
53
P127/FIP33
P23/STB
13
52
VDD
P22/SCK1
14
51
P70
P21/SO1
15
50
P71
P03/INTP3/CI0
P16/ANI6
22
43
P30/TO0
P15/ANI5
23
42
P31/TO1
P14/ANI4
24
41
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
P32/TO2
P33/TI1
44
P34/TI2
21
P35/PCL
P02/INTP2
P17/ANI7
P36/BUZ
45
X2
20
P37
P01/INTP1
AVSS
X1
46
VSS
19
XT2
P00/INTP0/TI0
P73
P04/XT1
47
AVREF
IC
18
AVDD
48
P74
P10/ANI0
17
P11/ANI1
49
RESET
P12/ANI2
16
P72
P13/ANI3
P20/SI1
Cautions 1. Connect the IC (Internally Connected) pins directly to the VSS.
2. Connect the AVDD pin to the VDD pin.
3. Connect the AVSS pin to the VSS pin.
6
mPD78042F, 78043F, 78044F, 78045F
P00-P04
: Port 0
SCK0, SCK1 : Serial clock
P10-P17
: Port 1
PCL
: Programmable clock
P20-P27
: Port 2
BUZ
: Buzzer clock
P30-P37
: Port 3
STB
: Strobe
P70-P74
: Port 7
BUSY
: Busy
P80, P81
: Port 8
FIP0-FIP33 : Fluorescent indicator panel
P90-P97
: Port 9
VLOAD
P100-P107
: Port 10
X1, X2
: Crystal (main system clock)
P110-P117
: Port 11
XT1, XT2
: Crystal (subsystem clock)
P120-P127
: Port 12
: Negative power supply
RESET
: Reset
INTP0-INTP3 : Interrupt from peripherals
ANI0-ANI7
: Analog input
TI0-TI2
: Timer input
AVDD
: Analog power supply
TO0-TO2
: Timer output
AVSS
: Analog ground
CI0
: Counter input
AVREF
: Analog reference voltage
SB0, SB1
: Serial bus
VDD
: Power supply
SI0, SI1
: Serial input
VSS
: Ground
SO0, SO1
: Serial output
IC
: Internally connected
7
mPD78042F, 78043F, 78044F, 78045F
2. BLOCK DIAGRAM
TO0/P30
TI0/INTP0/P00
16-bit timer/
event counter
Port 0
P00
P01-P03
P04
TO1/P31
TI1/P33
8-bit timer/
event counter 1
Port 1
P10-P17
TO2/P32
TI2/P34
8-bit timer/
event counter 2
Port 2
P20-P27
Watchdog timer
Port 3
P30-P37
Watch timer
Port 7
P70-P74
CI0/INTP3/P03
6-bit up/down
counter
Port 8
P80, P81
SI0/SB0/P25
SO0/SB1/P26
SCK0/P27
Serial
interface 0
Port 9
P90-P97
Port 10
P100-P107
Port 11
P110-P117
Port 12
P120-P127
78K/0
CPU core
ROM
SI1/P20
SO1/P21
SCK1/P22
Serial
interface 1
STB/P23
BUSY/P24
ANI0/P10ANI7/P17
AVDD
AVSS
AVREF
A/D converter
RAM
FIP
controller/driver
FIP0-FIP33
VLOAD
INTP0/TI0/P00INTP3/CI0/P03
BUZ/P36
PCL/P35
Interrupt control
Buzzer output
Clock output
control
System control
VDD
VSS
IC
Remark The capacities of the internal ROM and RAM differ depending on the product.
8
RESET
X1
X2
XT1/P04
XT2
mPD78042F, 78043F, 78044F, 78045F
3. PINS FUNCTIONS
3.1
PORT PINS (1/2)
Pin name
I/O
Function
On reset
Shared by:
P00
Input
Port 0
Input only
Input
INTP0/TI0
P01
I/O
5-bit I/O port
Can be specified for input or output in 1-bit
Input
INTP1
P02
units. When used as an input port pin, a built-in
INTP2
P03
pull-up resistor can be used by software.
INTP3/CI0
P04Note 1
Input
P10-P17
I/O
Input only
Port 1
Input
XT1
Input
ANI0-ANI7
Input
SI1
8-bit I/O port
Can be specified for input or output in 1-bit units.
When used as an input port pin, a built-in pull-up resistor can be
used by software.Note 2
P20
I/O
Port 2
P21
8-bit I/O port
SO1
P22
Can be specified for input or output in 1-bit units.
SCK1
P23
When used as an input port pin, a built-in pull-up resistor can be
STB
P24
used by software.
BUSY
P25
SI0/SB0
P26
SO0/SB1
P27
SCK0
P30
I/O
Port 3
Input
TO0
P31
8-bit I/O port
TO1
P32
Can be specified for input or output in 1-bit units.
TO2
P33
Can directly drive LEDs.
TI1
P34
When used as an input port pin, a built-in pull-up resistor can be
TI2
P35
used by software.
PCL
P36
A pull-down resistor can be connected in 1-bit units by the mask
BUZ
P37
option.
—
Notes 1. When the P04/XT1 pins is used as an input port pin, bit 6 (FRC) of the processor clock control register
(PCC) must be set to 1. At this time, do not use the feedback resistor of the subsystem clock oscillator
circuit.
2. When the P10/ANI0 through P17/ANI7 pins are used as the analog input lines of the A/D converter, be
sure to place the port 1 in the input mode. In this case, the built-in pull-up resistors are automatically
unused.
9
mPD78042F, 78043F, 78044F, 78045F
3.1
PORT PINS (2/2)
Pin name
P70-P74
I/O
I/O
Function
Port 7
5-bit N-ch open-drain I/O port
Can be specified for input or output in 1-bit units.
Can directly drive LEDs.
A pull-up resistor can be connected in 1-bit units by the mask
On reset
Input
Shared by:
—
option.
P80, P81
Output
Port 8
2-bit P-ch open-drain high-voltage output port.
Can directly drive LEDs.
A pull-down resistor can be connected in 1-bit units by the
mask option (whether VLOAD or VSS is connected can be
Output
FIP0, FIP1
Output
FIP2-FIP9
specified in bit units).
P90-P97
Output
Port 9
8-bit P-ch open-drain high-voltage output port.
Can directly drive LEDs.
A pull-down resistor can be connected in 1-bit units by the
mask option (whether VLOAD or VSS is connected can be
specified in 4-bit units).
P100-P107
Output
Port 10
8-bit P-ch open-drain high-voltage output port.
Can directly drive LEDs.
A pull-down resistor can be connected in 1-bit units by the
mask option (whether VLOAD or VSS is connected can be
specified in 4-bit units).
Output
FIP10-FIP17
P110-P117
I/O
Port 11
8-bit P-ch open-drain high-voltage I/O port.
Can be specified for input or output in 1-bit units.
Can directly drive LEDs.
A pull-down resistor can be connected in 1-bit units by the
mask option (whether VLOAD or VSS is connected can be
specified in 4-bit units).
Input
FIP18-FIP25
P120-P127
I/O
Port 12
8-bit P-ch open-drain high-voltage I/O port
Can be specified for input or output in 1-bit units.
Can directly drive LEDs.
A pull-down resistor can be connected in 1-bit units by the mask
option (whether VLOAD or V SS is connected can be specified in
4-bit units).
Input
FIP26-FIP33
10
mPD78042F, 78043F, 78044F, 78045F
3.2
PINS OTHER THAN PORT PINS (1/2)
Pin name
INTP0
I/O
Input
Function
Valid edge (rising, falling, or both rising and falling edges) can
On reset
Input
Shared by:
P00/TI0
INTP1
be specified.
P01
INTP2
External interrupt input
P02
INTP3
Falling edge-active external interrupt input
Input
P03/CI0
Serial data input lines of serial interface
Input
P25/SB0
SI0
Input
SI1
SO0
P20
Output
Serial data output lines of serial interface
Input
SO1
SB0
P21
I/O
Serial data I/O lines of serial interface
Input
SB1
SCK0
P26/SB1
P25/SI0
P26/SO0
I/O
Serial clock I/O lines of serial interface
Input
SCK1
P27
P22
STB
Output
Automatic transmission/reception strobe output line of serial
interface
Input
P23
BUSY
Input
Automatic transmission/reception busy input line of serial interface
Input
P24
TI0
Input
External count clock input to 16-bit timer (TM0)
Input
P00/INTP0
TI1
External count clock input to 8-bit timer (TM1)
P33
TI2
External count clock input to 8-bit timer (TM2)
P34
TO0
Output
TO1
16-bit timer output (multiplexed with 14-bit PWM output)
Input
8-bit timer output
P30
P31
TO2
P32
CI0
Input
Clock input to 6-bit up/down counter
Input
P03/INTP3
PCL
Output
Clock output (for trimming main system clock and subsystem
clock)
Input
P35
BUZ
Output
Buzzer output
Input
P36
FIP0, FIP1
Output
High-voltage, high-current digit/segment output of FIP
Output
P80, P81
FIP2-FIP9
controller/driver
P90-P97
FIP10-FIP15
Output
High-voltage, high-current digit/segment output of FIP
controller/driver
Output
P100-P105
FIP16, FIP17
Output
High-voltage segment output of FIP controller/driver
Output
P106, P107
Input
P110-P117
FIP18-FIP25
FIP26-FIP33
VLOAD
P120-P127
—
Connects pull-down resistor to FIP controller/driver
—
—
11
mPD78042F, 78043F, 78044F, 78045F
3.2
PINS OTHER THAN PORT PINS (2/2)
Pin name
I/O
Function
On reset
Input
Shared by:
ANI0-ANI7
Input
A/D converter analog input lines
P10-P17
AVREF
Input
A/D converter reference voltage input line
—
—
AVDD
—
Analog power supply to A/D converter. Connected to the VDD pin.
—
—
AVSS
—
A/D converter ground line. Connected to the VSS pin.
—
—
RESET
Input
System reset input
—
—
X1
Input
Connect crystal for main system clock oscillation
—
—
X2
—
—
—
XT1
Input
XT2
—
VDD
—
VSS
IC
12
Connect crystal for subsystem clock oscillation
Input
P04
—
—
Positive power supply
—
—
—
Ground potential
—
—
—
Internal connection. Connected directly to the VSS pin.
—
—
mPD78042F, 78043F, 78044F, 78045F
3.3
PIN I/O CIRCUITS AND PROCESSING OF UNUSED PINS
Table 3-1 shows the I/O circuit type of each pin and the processing of unused pins.
For the configuration of the I/O circuit of each type, refer to Fig. 3-1.
Table 3-1
Pin name
P00/INTP0/TI0
I/O Circuit Type
I/O Circuit type
Recommended connections when unused
Input
Connected to VSS .
8-A
I/O
Individually connected to V SS with a resistor.
P04/XT1
16
Input
Connected to VDD or VSS .
P10/ANI0-P17/ANI7
11
I/O
Individually connected to V DD or VSS with a resistor.
P20/SI1
8-A
P21/SO1
5-A
P22/SCK1
8-A
P23/STB
5-A
P24/BUSY
8-A
P25/SI0/SB0
10-A
P01/INTP1
2
I/O
P02/INTP2
P03/INTP3/CI0
P26/SO0/SB1
P27/SCK0
P30/TO0
5-C
P31/TO1
P32/TO2
P33/TI1
8-B
P34/TI2
P35/PCL
5-C
P36/BUZ
P37
P70-P74
13-B
P80/FIP0, P81/FIP1
14-A
Output
Open
15-C
I/O
Individually connected to V DD or VSS with a resistor.
P90/FIP2-P97/FIP9
P100/FIP10-P107/FIP17
P110/FIP18-P117/FIP25
P120/FIP26-P127/FIP33
RESET
2
XT2
16
AV REF
—
Input
—
—
Open
Connected to VSS .
AV DD
Connected to V DD.
AV SS
Connected to VSS .
VLOAD
IC
Connected directly to VSS.
13
mPD78042F, 78043F, 78044F, 78045F
Fig. 3-1
Pin I/O Circuits (1/2)
Type 2
Type 8-A
V DD
Pull-up
enable
P-ch
V DD
IN
Data
P-ch
IN/OUT
Schmitt trigger input with hysteresis characteristics
Type 5-A
N-ch
Type 8-B
V DD
Pull-up
enable
Output
disable
V DD
Pull-up
enable
P-ch
P-ch
V DD
V DD
Data
P-ch
Data
IN/OUT
Output
disable
P-ch
IN/OUT
N-ch
Output
disable
N-ch
(Mask
option)
Input
enable
Type 5-C
Type 10-A
V DD
V DD
Pull-up
enable
Pull-up
enable
P-ch
V DD
Data
P-ch
V DD
Data
P-ch
P-ch
IN/OUT
Output
disable
Input
enable
14
N-ch
(Mask
option)
IN/OUT
Open-drain
Output disable
N-ch
mPD78042F, 78043F, 78044F, 78045F
Fig. 3-1
Pin I/O Circuits (2/2)
V DD
Type 11
Pull-up
enable
Type 15-C
P-ch
P-ch
IN/OUT
Data
P-ch
IN/OUT
Output
disable
V DD
P-ch
V DD
Data
VDD
N-ch
N-ch
P-ch
Comparator
(Mask
option)
+
–
N-ch
RD
N-ch
VREF (Threshold voltage)
VLOAD
(Mask
option)
Input enable
Type 13-B
Type 16
V DD
(Mask
option)
Feedback
cut-off
IN/OUT
P-ch
Data
Output disable
N-ch
V DD
RD
P-ch
Input buffer with intermediate
withstand voltage
XT1
XT2
Type 14-A
V DD
P-ch
V DD
P-ch
OUT
Data
N-ch
(Mask
option)
VLOAD
(Mask
option)
15
mPD78042F, 78043F, 78044F, 78045F
4. MEMORY SPACE
Fig. 4-1 shows the memory map for mPD78042F, mPD78043F, m PD78044F, and mPD78045F.
Fig. 4-1
Memory Map
FFFFH
Special function
register (SFR)
256 × 8 bits
FF00H
FEFFH
FEE0H
FEDFH
General register
32 × 8 bits
Internal high-speed RAM Note
Data
memory
space
mmmmH
mmmmH – 1
FB00H
FAFFH
FAC0H
FABFH
nnnnH
Program area
Inhibited
1000H
0FFFH
Buffer RAM
64 × 8 bits
CALLF entry area
Inhibited
FA80H
FA7FH
FA50H
FA4FH
0800H
07FFH
FIP display RAM
48 × 8 bits
Program area
0080H
007FH
Inhibited
CALLT table area
nnnnH + 1
nnnnH
Program
memory
space
0040H
003FH
Internal ROM Note
Vector table area
0000H
0000H
Note The internal ROM and internal high-speed RAM capacities vary depending on the product. (See the table
below.)
Product name
16
Last Address of Internal
ROM
First address of internal
high-speed RAM
nnnnH
mmmmH
mPD78042F
3FFFH
FD00H
mPD78043F
5FFFH
mPD78044F
7FFFH
mPD78045F
9FFFH
FB00H
mPD78042F, 78043F, 78044F, 78045F
5. PERIPHERAL HARDWARE FUNCTIONS
5.1 PORTS
I/O ports are classified into the following five types:
• CMOS input (P00, P04)
:2
• CMOS input/output (P01 - P03, ports 1 - 3)
: 27
• N-ch open-drain input/output (port 7)
:5
• P-ch open-drain output (ports 8 - 10)
: 18
• P-ch open-drain input/output (ports 11 and 12)
: 16
Total
: 68
Table 5-1
Product
Port 0
Pin
Port Function
Function
P00, P04
Input-only port
P01-P03
I/O port. Can be specified for input or output in 1-bit units. When used as input port,
internal pull-up resistor can be connected through software.
Port 1
P10-P17
I/O port. Can be specified for input or output in 1-bit units. When used as input port,
internal pull-up resistor can be connected through software.
Port 2
P20-P27
I/O port. Can be specified for input or output in 1-bit units. When used as input port,
internal pull-up resistor can be connected through software.
Port 3
P30-P37
I/O port. Can be specified for input or output in 1-bit units. When used as input port,
internal pull-up resistor can be connected through software.
Pull-down resistor can be connected in 1-bit units by the mask option.
Can directly drive LED.
Port 7
P70-P74
N-ch open-drain I/O port. Can be specified for input or output in 1-bit units.
Pull-up resistor can be connected in 1-bit units by the mask option.
Can directly drive LED.
Port 8
P80, P81
P-ch open-drain output port with high withstand voltage. Pull-down resistor can be
connected in 2-bit units by the mask option (connection to VLOAD or VSS can be specified in
2-bit units).
Can directly drive LED.
Port 9
P90-P97
P-ch open-drain output port with high withstand voltage. Pull-down resistor can be
connected in 1-bit units by the mask option (connection to VLOAD or VSS can be specified in
4-bit units).
Can directly drive LED.
Port 10
P100-P107
P-ch open-drain output port with high withstand voltage. Pull-down resistor can be
connected in 1-bit units by the mask option (connection to VLOAD or VSS can be specified in
4-bit units).
Can directly drive LED.
Port 11
P110-P117
P-ch open-drain I/O port with high withstand voltage. Can be specified for input or output
in 1-bit units. Pull-down resistor can be connected in 1-bit units by the mask option
(connection to VLOAD or VSS can be specified in 4-bit units).
Can directly drive LED.
Port 12
P120-P127
P-ch open-drain I/O port with high withstand voltage. Can be specified for input or output
in 1-bit units.
Pull-down resistor can be connected in 1-bit units by the mask option (connection to
VLOAD or VSS can be specified in 4-bit units).
Can directly drive LED.
17
mPD78042F, 78043F, 78044F, 78045F
5.2
CLOCK GENERATOR CIRCUIT
The clock generator circuit has two kinds of generator circuits: the main system clock and subsystem clock.
The instruction time can be changed.
• 0.4 ms/0.8 ms/1.6 ms/3.2 ms/6.4 ms (with main system clock: 5.0 MHz)
• 122 ms (with subsystem clock: 32.768 kHz)
Fig. 5-1
Subsystem
clock oscillator
XT2
f XT
Clock output circuit
Selector
XT1/P04
Clock Generator Circuit Block Diagram
Noise
eliminator
Watch timer
Selector
fX
8
fX
16
Prescaler
1
Main system
clock oscillator
Prescaler
2
Clock to
hardware peripherals
fX
X2
fX
22
fX
2
fX
23
f XT
2
fX
24
Selector
X1
STOP
Standby
control
circuit
CPU clock (f CPU)
To INTP0
sampling clock
5.3
TIMER/EVENT COUNTER
Six channels of timer/event counters are provided.
• 16-bit timer/event counter : 1 channel
• 8-bit timer/event counter : 2 channels
• Watch timer
: 1 channel
• Watchdog timer
: 1 channel
• 6-bit up/down counter
: 1 channel
Table 5-2
Timer/Event Counter Groups and Configurations
Function
Group
16-bit timer/
event counter
Watch
timer
6-bit up/
down counter
1 channel
2 channels
External event counter
1 channel
2 channels
—
—
Timer output
1 output
2 outputs
—
—
—
PWM output
1 output
—
—
—
—
Pulse width measurement
1 input
—
—
—
—
Square wave output
1 output
2 outputs
—
—
—
Interrupt Request
1
2
—
1 channel
Watchdog
timer
Interval timer
Test input
18
8-bit timer/
event counter
1
—
1 input
1 channel
1
—
1 channel
1
—
—
mPD78042F, 78043F, 78044F, 78045F
Fig. 5-2
16-Bit Timer/Event Counter Block Diagram
Internal bus
16-bit compare
register (CR00)
INTTM0
PWM
pulse
output
control
circuit
Match
fX
Selector
f X/2
f X/22
f X/23
TI0/P00/INTP0
16-bit timer/event
counter output
control circuit
TO0/P30
16-bit timer register (TM0)
Edge
detector
Selector
Clear
INTP0
16-bit capture
register (CR01)
Internal bus
Fig. 5-3
8-Bit Timer/Event Counter Block Diagram
Internal bus
INTTM1
8-bit compare
register (CR10)
Selector
8-bit compare
register (CR20)
Match
Match
8-bit timer
register 1 (TM1)
TI1/P33
f X/2 -fX/210
f X/212
Selector
Clear
Selector
f X/212
TO2/P32
INTTM2
Selector
f X/2 -fX/210
Output
control
circuit
Selector
TI2/P34
8-bit timer
register 2 (TM2)
Clear
Output
control
circuit
TO1/P31
Internal bus
19
mPD78042F, 78043F, 78044F, 78045F
f XT
fW
Prescaler
fW
25
fW
26
fW
27
fW
28
Fig. 5-5
fX
23
f WDT
INTTM3
Watchdog Timer Block Diagram
Prescaler
f WDT
22
f WDT
23
f WDT
24
f WDT
25
f WDT
26
f WDT
28
Selector
f WDT
2
Control circuit
Selector
fX
24
INTWT
fW
213
fW
29
Selector
fW
24
fW
214
5-bit counter
Selector
Selector
f X/28
Watch Timer Block Diagram
Selector
Fig. 5-4
8-bit
counter
INTWDT
Maskable
interrupt
request
RESET
INTWDT
Nonmaskable
interrupt
request
Fig. 5-6 6-Bit Up/Down Counter Block Diagram
Selector
INTP3/INTUD
Clear
CI0/P03/INTP3
6-bit up/down counter
(UDC)
Edge detector
Load
Match
Underflow
6-bit up/down counter
compare register (UDCC)
Internal bus
Caution When using the 6-bit up/down counter, set the CI0/P03/INTP3 pin in the input mode (set bit 3 of
port mode register 0 (PM03) to 1).
20
mPD78042F, 78043F, 78044F, 78045F
5.4
CLOCK OUTPUT CONTROL CIRCUIT
Clocks of the following frequencies can be output to the clock:
• 19.5 kHz/39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz (with main system clock: 5.0 MHz)
• 32.768 kHz (with subsystem clock: 32.768 kHz)
Fig. 5-7
Clock Output Control Circuit Block Diagram
f X /2 3
f X /2 4
5
5.5
f X /2
7
f X /2
f XT
8
Selector
f X /2
f X /2 6
Sync circuit
Output control circuit
PCL/P35
BUZZER OUTPUT CONTROL CIRCUIT
Clocks of the following frequencies can be output to the buzzer:
• 1.2 kHz/2.4 kHz/4.9 kHz (with main system clock: 5.0 MHz)
f X /2
10
f X /2 11
f X /2 12
Selector
Fig. 5-8
Buzzer Output Control Circuit Block Diagram
Output control circuit
BUZ/P36
21
mPD78042F, 78043F, 78044F, 78045F
5.6
A/D CONVERTER
An 8-bit resolution 8-channel A/D converter is provided.
This A/D converter can be started in the following two modes:
• Hardware start
• Software start
Fig. 5-9
A/D Converter Block Diagram
Series resistor string
AVDD
ANI0/P10
AVREF
ANI2/P12
Voltage comparator
Selector
ANI3/P13
ANI4/P14
Tap selector
Sample & hold circuit
ANI1/P11
ANI5/P15
ANI6/P16
AVSS
Successive approximation
register (SAR)
ANI7/P17
INTP3/P03
Falling edge
detector
Control
circuit
INTAD
INTP3
A/D conversion result
register (ADCR)
Internal bus
5.7
SERIAL INTERFACE
Two channels of clocked serial interfaces are provided.
• Serial interface channel 0
• Serial interface channel 1
Table 5-3
Function
Serial Interface Groups and Functions
Serial interface channel 0
Serial interface channel 1
3-wire serial I/O mode
• (MSB/LSB first selectable)
SBI (serial bus interface) mode
• (MSB first)
—
2-wire serial I/O mode
• (MSB first)
—
3-wire serial I/O mode with
automatic transmission/
reception function
22
—
• (MSB/LSB first selectable)
• (MSB/LSB first selectable)
mPD78042F, 78043F, 78044F, 78045F
Fig. 5-10
Serial Interface Channel 0 Block Diagram
Selector
SO0/SB1/P26
Serial I/O shift
register 0 (SIO0)
Output
latch
Busy/acknowledge
output circuit
Bus release/
command/acknowledge
detector
Interrupt request
signal generator
Serial clock
counter
SCK0/P27
Serial clock
control circuit
Fig. 5-11
INTCSI0
f X/22 -fX/29
Selector
SI0/SB0/P25
Selector
Internal bus
TO2
Serial Interface Channel 1 Block Diagram
Internal bus
Automatic data transmission/reception
address pointer (ADTP)
Serial I/O shift register 1
(SIO1)
SI1/P20
Automatic data
transmission/
reception interval
specification register
(ADTI)
Buffer RAM
Match
SO1/P21
5-bit counter
STB/P23
BUSY/P24
SCK1/P22
Handshake
control
circuit
Serial clock
counter
Interrupt
request signal
generator
INTCSI1
fX/22-fX/29
Serial clock control
circuit
Selector
TO2
23
mPD78042F, 78043F, 78044F, 78045F
5.8
FIP CONTROLLER/DRIVER
An FIP controller/driver having the following features is provided:
(a) Automatic output of segment signals (DMA operation) and digit signals
by automatically reading display data
(b) Display mode registers (DSPM0 and DSPM1) that can control an FIP of 9 to 24 segments and 2 to 16 digits
(c) Port pins not used for FIP display can be used as output port or I/O port pins.
(d) Display mode register (DSPM1) can adjust luminance in eight steps.
(e) Hardware suitable for key scan application using segment pins
(f)
High-voltage output buffer (FIP driver) that can directly drive an FIP
(g) Display output pins can be connected to a pull-down resistor by the mask option.
Fig. 5-12
Selecting Display Modes
Selecting number of digits
0
0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
9
10
11
12
Selecting number of segments
13
14
15
16
17
18
19
20
21
22
23
24
Caution If the total number of digits and segments exceeds 34, the specified number of digits takes
precedence.
24
mPD78042F, 78043F, 78044F, 78045F
Fig. 5-13
FIP Controller/Driver Block Diagram
Internal bus
Display data memory
Digit signal
generator
Segment data latch
Port output latch
Buffer with high withstand voltage
FIP0/P80 FIP1/P81
FIP33/P127
25
mPD78042F, 78043F, 78044F, 78045F
6. INTERRUPT FUNCTION AND TEST FUNCTION
6.1
INTERRUPT FUNCTION
The following three types of interrupt functions are available:
• Non-maskable interrupt : 1
• Maskable interrupt
: 13
• Software interrupt
: 1
Table 6-1
Interrupt Source List
Note 2
Interrupt source
Note 1
Interrupt
type
Default
priority
Non-maskable
—
INTWDT
Watchdog timer overflow
(with watchdog timer mode 1 selected)
Maskable
0
INTWDT
Watchdog timer overflow
Name
Internal/
external
Vector
table
address
Internal
0004H
Trigger
Basic
configuration
type
(A)
(B)
(with interval timer mode selected)
Software
1
INTP0
2
Pin input edge detection
External
0006H
(C)
INTP1
0008H
(D)
3
INTP2
000AH
4
INTP3
000CH
INTUD
6-bit up/down counter match signal generation Internal
5
INTCSI0
End of serial interface channel 0 transfer
000EH
6
INTCSI1
End of serial interface channel 1 transfer
0010H
7
INTTM3
Reference time interval signal from watch
timer
0012H
8
INTTM0
16-bit timer/event counter match signal
generation
0014H
9
INTTM1
8-bit timer/event counter 1 match signal
generation
0016H
10
INTTM2
8-bit timer/event counter 2 match signal
generation
0018H
11
INTAD
End of A/D converter conversion
001AH
12
INTKS
Key scan timing from FIP controller/driver
001CH
—
BRK
Execution of BRK instruction
—
(B)
003EH
(E)
Notes 1. Default priority is the priority order when several maskable interrupts are generated at the same time.
0 is the highest order and the 12 is the lowest order.
2. Basic configuration types (A) to (E) correspond to (A) to (E) in Fig. 6-1.
26
mPD78042F, 78043F, 78044F, 78045F
Fig. 6-1
Basic Configuration of Interrupt Function (1/2)
(A) Internal non-maskable interrupt
Internal bus
Interrupt
request
Vector table
address
generator
Priority
control circuit
Standby
release signal
(B) Internal maskable interrupt
Internal bus
MK
Interrupt
request
IE
PR
ISP
Vector table
address
generator
Priority
control circuit
IF
Standby
release signal
(C) External maskable interrupt (INTP0)
Internal bus
Sampling clock
select register
(SCS)
Interrupt
request
Sampling
clock
External interrupt
mode register
(INTM0)
Edge
detector
MK
IF
IE
PR
Priority
control circuit
ISP
Vector table
address
generator
Standby
release signal
27
mPD78042F, 78043F, 78044F, 78045F
Fig. 6-1
Basic Configuration of Interrupt Function (2/2)
(D) External maskable interrupt (except INTP0)
Internal bus
External interrupt
mode register
(INTM0)
Interrupt
request
Edge
detector
MK
IE
PR
Priority
control circuit
IF
ISP
Vector table
address
generator
Standby
release signal
(E) Software interrupt
Internal bus
Interrupt
request
IF
: Interrupt request flag
IE
: Interrupt enable flag
ISP : In-service priority flag
28
MK
: Interrupt mask flag
PR
: Priority specification flag
Priority
control circuit
Vector table
address
generator
mPD78042F, 78043F, 78044F, 78045F
6.2
TEST FUNCTION
The following test function is available.
Test input source
Name
INTWT
Internal/external
Trigger
Overflow of watch timer
Fig. 6-2
Internal
Basic Configuration of Test Function
Internal bus
MK
Test input
source
(INTWT)
IF
IF
Standby
release signal
: Test request flag
MK : Test mask flag
29
mPD78042F, 78043F, 78044F, 78045F
7. STANDBY FUNCTION
The standby function is to reduce the current dissipation of the system and can be effected in the following two
modes:
• HALT mode : In this mode, the operating clock of the CPU is stopped. By using this mode in combination with
the normal operation mode, the system can be operated intermittently, so that the average current
dissipation can be reduced.
• STOP mode : Oscillation of the main system clock is stopped. All the operations on the main system clock are
stopped, and therefore, the current dissipation of the system can be minimized with only the
subsystem clock oscillating.
Fig. 7-1
Main system
clock operation
STOP
instruction
Interrupt
request
STOP mode
(Oscillation of main system
clock stopped)
Standby Function
CSS = 1
CSS = 0
Subsystem
clock operationNote
HALT instruction
Interrupt
request
HALT instruction
Interrupt
request
HALT mode
(Clock supply to CPU stopped.
Oscillation continues)
HALT modeNote
(Clock supply to CPU stopped.
Oscillation continues)
Note By stopping the main system clock, the current dissipation can be reduced. When the CPU operates on
the subsystem clock, stop the main system clock by setting bit 7 (MCC) of the processor clock control
register (PCC). The STOP instruction cannot be used.
Caution When the main system clock is stopped and the subsystem clock is operating, to switch again
from the subsystem clock to the main system clock, allow sufficient time for the oscillation to
settle before switching, by coding the program accordingly.
8. RESET FUNCTION
The system can be reset in the following two modes:
• External reset by RESET pin
• Internal reset by watchdog timer that detects hang up
30
mPD78042F, 78043F, 78044F, 78045F
9. INSTRUCTION SET
(1) 8-bit instruction
MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC,
ROLC, ROR4, ROL4, PUSH, POP, DBNZ
Second
operand
#byte
A
r
Note
sfr
saddr
!addr16
MOV
XCH
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
PSW
[DE]
[HL]
[HL + byte]
[HL + B]
[HL + C]
MOV
XCH
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
First
operand
A
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
XCH
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
r
MOV
MOV
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
sfr
MOV
MOV
saddr
MOV
ADD
ADDC
SUB
SUBC
AND
OR
XOR
CMP
MOV
B, C
1
None
ROR
ROL
RORC
ROLC
INC
DEC
★
DBNZ
!addr16
PSW
MOV
$addr16
DBNZ
INC
DEC
MOV
MOV
MOV
[DE]
MOV
[HL]
MOV
[HL + byte]
[HL + B]
[HL + C]
MOV
PUSH
POP
ROR4
ROL4
X
MULU
C
DIVUW
Note Except for r = A
31
mPD78042F, 78043F, 78044F, 78045F
(2) 16-bit instruction
MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW
Second
operand
#word
Note
AX
rp
sfrp
saddrp !addr16
SP
None
First
operand
AX
ADDW
SUBW
CMPW
rp
MOVW
MOVW
sfrp
MOVW
MOVW
saddrp
MOVW
MOVW
!addr16
MOVW
XCHW
MOVW
MOVW
MOVW
MOVW
Note
INCW
DECW
PUSH
POP
MOVW
SP
MOVW
MOVW
Note Only when rp = BC, DE, HL
(3) Bit manipulation instruction
MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR
Second
operand
A.bit
sfr.bit
saddr.bit PSW.bit
[HL].bit
CY
$addr16
None
A.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
sfr.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
saddr.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
PSW.bit
MOV1
BT
BF
BTCLR
SET1
CLR1
[HL].bit
MOV1
BT
BF
BTCLR
SET1
CLR1
First
operand
CY
32
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
MOV1
AND1
OR1
XOR1
SET1
CLR1
NOT1
mPD78042F, 78043F, 78044F, 78045F
(4) Call/Branch instruction
CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ
Second
operand
AX
!addr16
!addr11
[addr5] $addr16
CALL
BR
CALLF
CALLT
First
operand
Basic operation
BR
Compound
operation
BR
BC
BNC
BZ
BNZ
BT
BF
BTCLR
DBNZ
(5) Other instructions
ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP
33
mPD78042F, 78043F, 78044F, 78045F
★
10. ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)
Parameter
Power supply
voltage
Input voltage
Output voltage
Symbol
Conditions
Rating
–0.3 to +7.0
V
VLOAD
VDD – 40 to VDD + 0.3
V
AVDD
–0.3 to VDD + 0.3
V
AVREF
–0.3 to VDD + 0.3
V
AVSS
–0.3 to +0.3
V
VDD
VI1
P00-P04, P10-P17 (except when used as analog input pins),
P20-P27, P30-P37, X1, X2, XT2, RESET
–0.3 to VDD + 0.3
V
VI2
P70-P74
N-ch open drain
–0.3 to +16Note 1
V
VI3
P110-P117, P120-P127
P-ch open drain
VDD – 40 to VDD + 0.3
V
VO1
P01-P03, P10-P17, P20-P27, P30-P37
–0.3 to VDD + 0.3
V
+16Note 1
V
–0.3 to
VO2
P70-P74
VO3
P80, P81, P90-P97, P100-P107, P110-P117, P120-P127
Analog input voltage
VAN
ANI0-ANI7
Output current,
high
IOH
Output current,
low
IOL
VDD – 40 to VDD + 0.3
V
AVSS – 0.3 to AVREF + 0.3
V
P01-P03, P10-P17, P20-P27, P30-P37 per pin
–10
mA
P01-P03, P10-P17, P20-P27, P30-P37 total
–30
mA
P80, P81, P90-P97, P100-P107, P110-P117, P120-P127 per pin
–30
mA
P80, P81, P90-P97, P100-P107, P110-P117, P120-P127 total
–120
mA
30
mA
Analog input pin
P01-P03, P10-P17, P20-P27, P30-P37,
Peak value
P70-P74 per pin
rms value
15Note 2
mA
P70-P74 total
Peak value
100
mA
rms value
60Note 2
mA
Peak value
50
mA
rms value
20Note 2
mA
TA = –40 to +60 °C
800
mW
TA = +85 °C
600
mW
P01-P03, P10-P17, P20-P27, P30-P37 total
Total power
Unit
PTNote 3
dissipation
Operating
ambient
temperature
TA
–40 to +85
°C
Storage
temperature
Tstg
–65 to +150
°C
Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability;
exceeding the ratings could cause permanent damage. The parameters apply independently. The
device should be operated within the limits specified under DC and AC Characteristics.
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.
Notes 1. For pins to which pull-up resistors are connected by the mask option, the rating is –0.3 to VDD + 0.3.
2. To obtain the rms value, calculate [rms value] = [peak value] ¥ √duty.
34
mPD78042F, 78043F, 78044F, 78045F
Notes 3. Permissible total power loss differs depending on the temperature (see the following figure).
Total power loss PT [mW]
800
600
400
200
–40
0
+40
+80
Temperature [°C]
How to calculate total power loss
The following three power consumption are available for the mPD78042F. The sum of the three power consumption
should be less than the total power loss PT (80 % or less of ratings is recommended).
1
CPU power consumption: calculate VDD (MAX.) ¥ IDD1 (MAX.).
2
Output pin power consumption: Normal output and display output are available. Power consumption when
maximum current flows into each output pin.
3
Pull-down resistor power consumption: Power consumption by pull-down resistor connected to display
output pin by the mask option.
35
mPD78042F, 78043F, 78044F, 78045F
The following total power consumption calculation example assumes the case where the characters shown in the
figure on the next page are displayed.
Example: The operating conditions are as follows:
VDD = 5 V ±10 %, operating at 5.0 MHz
Supply current (I DD) = 21.6 mA
Display outputs: 11 grids ¥ 10 segments (cut width is 1/16)
It is assumed that up to 15 mA flows to each grid pin, and that up to 3 mA flows to each segment pin.
It is also assumed that all display outputs are turned off at key scan timings.
VO3 = VDD – 2 V (Voltage drop of 2 V is assumed.)
Display output voltage: grid
segment
VO3 = VDD – 0.4 V (Voltage drop of 0.4 V is assumed.)
Voltage applied to fluorescent indication panel (V LOAD) = –30 V
Mask-option pull-down resistor = 25 kΩ
The total power loss is calculated by determining power consumption
1
to
3
under the above
conditions.
1
Power consumption of CPU: 5.5 V ¥ 21.6 mA = 118.8 mW
2
Power consumption at output pins:
total current for all grids
Grid:
(VDD – VO3) ¥
number of grids + 1
¥ digit width (1 – cut width) =
15 mA ¥ 11 grids
2V ¥
¥ (1 – 1/16) = 25.8 mW
11 grids + 1
total segment current for all dots to be lit
Segment: (V DD – VO3 ) ¥
number of grids + 1
=
3 mA ¥ 31 dots
0.4 V ¥
3
= 3.1 mW
11 grids + 1
Power consumption at pull-down resistors:
Grid:
Segment:
(VO3 – VLOAD) 2
number of grids
¥
¥ digit width =
pull-down resistance
number of grids + 1
(5.5 V – 2 V – (–30 V))2
11 grids
¥
¥ (1 – 1/16) = 38.6 mW
25 kΩ
11 grids + 1
(VO3 – VLOAD) 2
¥
number of dots to be lit
=
pull-down resistance
number of grids + 1
31 dots
(5.5 V – 0.4 V – (–30 V))2
¥
= 127.3 mW
25 kΩ
11 grids + 1
Total power consumption =
1
+
2
+
3
= 118.8 + 25.8 + 3.1 + 38.6 + 127.3 = 313.6 mW
In this example, the total power consumption does not exceed the rated value for the permissible total power loss
shown in the graph on the previous page. Therefore, the calculation result in this example (313.6 mW) satisfies the
requirement. If the total power consumption exceed the rated value for the permissible total power loss, the power
consumption must be reduced, by reducing the number of built-in pull-down resistors.
36
a
b
c
d
e
f
g
h
i
j
S9 S8 S7 S6 S5 S4 S3 S2 S1 S0
0
AM i
PM j
i
1
SUN
2
MON
3
4
5
6
7
SAT
8
9
g b
a
f
FRI
e d c
10 h
THU
j
WED
T0
j
TUE
T1
Bit 6
0
0
0
0
0
0
0
1
0
0
0
T2
Bit 7
0
0
0
0
0
0
0
0
1
0
1
T3
Bit 0
0
0
0
0
1
0
0
0
0
0
0
T4
Bit 1
1
1
1
0
0
1
1
0
0
0
0
T5
Bit 2
1
0
0
0
0
1
1
0
0
0
0
T6
Bit 3
1
1
0
0
0
0
0
0
0
0
0
T7
Bit 4
0
1
1
0
0
1
0
0
0
0
0
T8
Bit 5
1
0
1
1
0
1
1
0
1
1
0
T9
Bit 6
0
0
1
1
0
0
1
0
1
1
0
T10
Bit 7
0
0
1
0
0
1
0
0
0
0
0
FA7AH FA79H FA78H FA77H FA76H FA75H FA74H FA73H FA72H FA71H FA70H
FA6AH FA69H FA68H FA67H FA66H FA65H FA64H FA63H FA62H FA61H FA60H
Display data memory
10-Segment/11-Digit Display Example
FA6 × H
FA7 × H
mPD78042F, 78043F, 78044F, 78045F
37
mPD78042F, 78043F, 78044F, 78045F
MAIN SYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)
Resonator
Ceramic
resonator
Recommended circuit
VSS X1
X2
C1
Crystal
VSS X1
C2
X2
C1
External
clock
X1
C2
X2
µ PD74HCU04
Parameter
Conditions
Oscillation frequency
(fX)Note 1
MIN.
TYP.
1
Oscillation settling
timeNote 2
Oscillation frequency
(fX)Note 1
Oscillation settling
timeNote 2
1
VDD = 4.5 to 5.5 V
X1 input frequency
(fX)Note 1
X1 input high, low-level
width (tXH, tXL)
4.19
MAX.
Unit
5
MHz
4
ms
5
MHz
10
ms
30
1
5
MHz
100
500
ns
Notes 1. It indicates only the oscillator characteristics. For the instruction execution time, see the AC Characteristics.
2. Time required until oscillation becomes stable after V DD is applied or the STOP mode is disabled.
Cautions 1. If the main system clock oscillator is to be used, wire the area inside the broken line square
as follows to avoid influence of wiring capacitance:
• Make wiring as short as possible.
• Do not cross other signal lines.
• Do not get close to lines with fluctuating large current.
• Make sure that the connecting points of the capacitor of the oscillator always have the same
electric potential as VSS.
• Do not connect the oscillator to a ground pattern that conducts a large current.
• Do not take out signal from the oscillator.
2. When switching to the main system clock again after the subsystem clock has been used with
the main system clock stopped, be sure to set the program to provide enough time for the
oscillation to stabilize.
38
mPD78042F, 78043F, 78044F, 78045F
SUBSYSTEM CLOCK OSCILLATOR CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)
Resonator
Crystal
Recommended circuit
XT1
XT2 VSS
Parameter
Conditions
Oscillation frequency
(fXT)Note 1
MIN.
TYP.
MAX.
Unit
32
32.768
35
kHz
1.2
2
s
R
C3
C4
Oscillation settling
timeNote 2
VDD = 4.5 to 5.5 V
10
External
XT1
XT2
XT1 input frequency
(fXT)Note 1
32
100
kHz
XT1 input high, lowlevel width (tXTH , tXTL)
5
15
ms
Notes 1. It indicates only the oscillator characteristics. For the instruction execution time, see the AC Characteristics.
2. Time required until oscillation becomes stable after V DD reaching MIN. of oscillation voltage range.
Cautions 1. If the subsystem clock oscillator is to be used, wire the area inside the broken line square as
follows to avoid influence of wiring capacitance:
• Make wiring as short as possible.
• Do not cross other signal lines.
• Do not get close to lines with fluctuating large current.
• Make sure that the connecting points of the capacitor of the oscillator always have the same
electric potential as VSS.
• Do not connect the oscillator to a ground pattern that conducts a large current.
• Do not take out signal from the oscillator.
2. The subsystem clock oscillator is more likely to have malfunctions due to noise than the main
system clock oscillator because gain for the subsystem clock oscillator is made lower to
reduce current consumption. When using the subsystem clock, be careful about how to
connect wires.
39
mPD78042F, 78043F, 78044F, 78045F
RECOMMENDED OSCILLATOR CONSTANT
MAIN SYSTEM CLOCK: CERAMIC RESONATOR (TA = –40 to +85 °C)
Manufacturer
Murata Mfg. Co., Ltd.
Product name
Frequency
(MHz)
Recommended
circuit constant
Oscillator voltage range
C1 (pF)
C2 (pF)
MIN. (V)
MAX. (V)
Remark
Rd = 4.7 kΩNote
CSB1000J
1.00
100
100
2.7
5.5
CSA2.00MG040
2.00
100
100
2.7
5.5
CST2.00MG040
2.00
—
—
2.7
5.5
CSA4.00MG
4.00
30
30
2.7
5.5
CST4.00MGW
4.00
—
—
2.7
5.5
CSA5.00MG
5.00
30
30
2.7
5.5
CST5.00MGW
5.00
—
—
2.7
5.5
Built-in capacitor
CCR1000K2
1.00
150
150
2.7
5.5
Surface-mount type
CCR2.0MC3
2.00
—
—
2.7
5.5
Built-in capacitor,
surface-mount type
CCR4.0MC3
4.00
—
—
2.7
5.5
Built-in capacitor,
surface-mount type
FCR4.0MC5
4.00
—
—
2.7
5.5
Built-in capacitor
CCR5.0MC3
5.00
—
—
2.7
5.5
Built-in capacitor,
surface-mount type
FCR5.0MC5
5.00
—
—
2.7
5.5
Built-in capacitor
Matsushita Electronics
EFOEC2004A4
2.00
33
33
2.7
5.5
Built-in capacitor
Components Co., Ltd.
EFOS2004B5
2.00
33
33
2.7
5.5
Built-in capacitor,
surface-mount type
EFOEC3584A4
3.58
33
33
2.7
5.5
Built-in capacitor
EFOS3584B5
3.58
33
33
2.7
5.5
Built-in capacitor,
surface-mount type
EFOEC4004A4
4.00
33
33
2.7
5.5
Built-in capacitor
EFOS4004B5
4.00
33
33
2.7
5.5
Built-in capacitor,
surface-mount type
EFOEC5004A4
5.00
33
33
2.7
5.5
Built-in capacitor
EFOS5004B5
5.00
33
33
2.7
5.5
Built-in capacitor,
surface-mount type
TDK Corp.
Built-in capacitor
Built-in capacitor
Note When the CSB1000J (1.00 MHz) manufactured by Murata Mfg. is used, a limiting resistor (4.7 kΩ) is
necessary (see the figure in the next page). When one of other resonators is used, no limiting resistor is
required.
Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable
oscillation but do not guarantee accuracy of the oscillation frequency. If the application circuit
requires accuracy of the oscillation frequency, it is necessary to set the oscillation frequency
of the resonator in the application circuit. For this, it is necessary to directly contact the
manufacturer of the resonator that being used.
40
mPD78042F, 78043F, 78044F, 78045F
Recommended sample circuit for the main system clock when the CSB1000J manufactured by Murata Mfg.
is used
VSS
X1
X2
CSB1000J
C1
Rd
C2
VDD
41
mPD78042F, 78043F, 78044F, 78045F
CAPACITANCE (TA = 25 °C, VDD = VSS = 0 V)
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
Input
capacitance
CIN
f = 1 MHz Unmeasured pins returned to 0 V
15
pF
Output
capacitance
COUT
f = 1 MHz Unmeasured pins returned to 0 V
35
pF
Input/output
C IO
f = 1 MHz
Unmeasured pins returned to 0 V
P01-P03, P10-P17,
P20-P27, P30-P37
15
pF
P70-P74
20
pF
P110-P117, P120-P127
35
pF
capacitance
Remark Unless otherwise specified, the characteristics of the shared pin are the same as the characteristics of
the port pin.
POWER SUPPLY VOLTAGE (TA = –40 to +85 °C)
Parameter
MAX.
Unit
2.7Note 2
5.5
V
Display controller/driver
4.5
5.5
V
PWM mode of 16-bit
timer/event counter
(TM0)
4.5
5.5
V
A/D converter
4.0
5.5
V
Other hardware
2.7
5.5
V
CPUNote 1
Conditions
MIN.
TYP.
Notes 1. Except for system clock oscillator, display controller/driver, and PWM.
2. Operating power supply voltage differs depending on the cycle time. See the AC Characteristics.
42
mPD78042F, 78043F, 78044F, 78045F
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)
Parameter
High-level
input voltage
Symbol
TYP.
MAX.
Unit
VIH1
P21, P23
0.7VDD
VDD
V
VIH2
P00-P03, P20, P22, P24-P27, P33, P34, RESET
0.8VDD
VDD
V
VIH3
P70-P74
0.7VDD
15Note 1
V
VIH4
X1, X2Note 2
VDD – 0.5
VDD
V
VIH5
XT1/P04, XT2Note 2
VDD – 0.5
VDD
V
VDD – 0.3
VDD
V
0.65V DD
VDD
V
0.7VDD
VDD
V
0.7VDD
VDD
V
VDD – 0.5
VDD
V
VIH6
VIH7
Low-level
input voltage
MIN.
Conditions
P10-P17, P30-P32, P35-P37
P110-P117, P120-P127
N-ch open drain
VDD = 4.5 to 5.5 V
VDD = 4.5 to 5.5 V
VDD = 4.5 to 5.5 V
VIL1
P21, P23
0
0.3V DD
V
VIL2
P00-P03, P20, P22, P24-P27, P33, P34, RESET
0
0.2V DD
V
VIL3
P70-P74
0
0.3V DD
V
0
0.2V DD
V
0
0.4
V
0
0.4
V
0
0.3
V
0
0.3V DD
V
VDD – 35
0.3V DD
V
VIL4
X1, X2Note 2
VIL5
XT1/P04, XT2Note 2
VDD = 4.5 to 5.5 V
VDD = 4.5 to 5.5 V
VIL6
P10-P17, P30-P32, P35-P37
VIL7
P110-P117, P120-P127
High-level
output
voltage
VOH
P01-P03, P10-P17, P20-P27,
P30-P37, P80, P81, P90-P97,
P100-P107, P110-P117,
P120-P127
VDD = 4.5 to 5.5 V
IOH = –1 mA
VDD – 1.0
V
IOH = –100 mA
VDD – 0.5
V
Low-level
output
voltage
VOL1
P30-P37, P70-P74
VDD = 4.5 to 5.5 V,
IOL = 15 mA
P01-P03, P10-P17, P20-P27
VDD = 4.5 to 5.5 V,
IOL = 1.6 mA
SB0, SB1, SCK0
VDD = 4.5 to 5.5 V,
With open-drain and
pull-up (R = 1 kW)
VOL2
VOL3
P01-P03, P10-P17, P20-P27,
P30-P37, P70-P74
IOL = 400 mA
0.4
2.0
V
0.4
V
0.2V DD
V
0.5
V
Notes 1. Pins to which pull-up resistors are connected by the mask option become VDD.
2. If the X1 pin is used for high-level voltage input, the X2 pin is used for low-level voltage input, or vice
versa. This is also true for the XT1/P04 pin and XT2 pin.
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.
43
mPD78042F, 78043F, 78044F, 78045F
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)
Parameter
High-level
input leakage
current
Low-level
input leakage
current
Symbol
ILIH1
MAX.
Unit
P00-P03, P10-P17,
P20-P27, P30-P37, RESET
3
mA
X1, X2, XT1/P04, XT2
20
mA
20
mA
3Note 1
mA
3Note 2
mA
Conditions
VIN = VDD
ILIH2
MIN.
TYP.
ILIH3
VIN = 15 V
P70-P74
ILIH4
P110-P117, P120-P127,
VIN = VDD
VDD = 4.5 to 5.5 V
VIN = 0 V
P00-P03, P10-P17,
P20-P27, P30-P37, RESET
–3
mA
X1, X2, XT1/P04, XT2
–20
mA
–3Note 3
mA
–10
mA
ILIL1
ILIL2
ILIL3
P70-P74
ILIL4
P110-P117, P120-P127
High-level
output
leakage
current Note 4
ILOH1
VOUT = VDD
P01-P03, P10-P17, P20-P27,
P30-P37, P80, P81, P90-P97,
P100-P107, P110-P117, P120-P127
3
mA
ILOH2
VOUT = 15 V
P70-74, N-ch open drain
20
mA
Low-level
output
leakage
current Note 4
ILOL1
VOUT = 0 V
P01-P03, P10-P17, P20-P27,
P30-P37, P70-P74
–3
mA
ILOL2
VOUT = VLOAD = VDD – 35 V
P80, P81, P90-P97, P100-P107,
P110-P117, P120-P127
–10
mA
Display output
current
IOD
VDD = 4.5 to 5.5 V, VO3 = V DD – 2 V
–15
–25
Mask option
R1
VIN = 0 V, P70-P74
20
40
90
kΩ
R2
VIN = 0 V,
P01-P03, P10-P17,
P20-P27, P30-P37
VDD = 4.5 to 5.5 V
15
40
90
kΩ
500
kΩ
P80, P81, P90-P97,
P100-P107, P110-P117,
P120-P127
VO3 – V LOAD = 35 V
25
65
135
kΩ
VO3 – V SS = 5 V
15
40
90
kΩ
40
80
150
kΩ
mA
pull-up resistor
Software pullup resistor
Mask option
pull-down
resistor
R3
R4
P30-P37, VIN = VDD
20
Notes 1. When P110 to P117 and P120 to P127 do not contain the pull-down resistors (according to the
specification of the mask option), a high-level input leakage current of 150 mA (MAX.) flows only during
1.5 clocks after a read instruction has been executed to read out port 11 or 12 (P11 or P12) or port mode
register 11 or 12 (PM11 or PM12). Outside the 1.5 clocks after a read instruction, the current is 3 mA
(MAX.).
2. When P110 to P117 and P120 to P127 do not contain the pull-down resistors (according to the
specification of the mask option), a high-level input leakage current of 90 mA (MAX.) flows only during
1.5 clocks after a read instruction has been executed to read out P11, P12, PM11, or PM12. Outside
the 1.5 clocks after a read instruction, the current is 3 m A (MAX.).
3. When P70 to P74 do not contain the pull-down resistors (according to the specification of the mask
option), a low-level input leakage current of –150 mA (MAX.) flows only during 1.5 clocks after a read
instruction has been executed to read out port 7 (P7) or port mode register 7 (PM7). Outside the 1.5
clocks after a read out instruction, the current is –3 m A (MAX.).
4. Current which flows in the built-in pull-up or pull-down resistor is not included.
Remark Unless otherwise specified, the characteristics of a shared pin are the same as those of a port pin.
44
mPD78042F, 78043F, 78044F, 78045F
DC CHARACTERISTICS (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)
Parameter
Symbol
Power supply
current Note 1
IDD1
IDD2
IDD3
IDD4
IDD5
IDD6
Conditions
TYP.
MAX.
Unit
%Note 2
MIN.
7.2
21.6
mA
5.0 MHz crystal oscillation
Operating mode
VDD = 5.0 V ±10
VDD = 3.0 V ±10 %Note 3
0.9
2.7
mA
5.0 MHz crystal oscillation
HALT mode
VDD = 5.0 V ±10 %
1.3
3.9
mA
VDD = 3.0 V ±10 %
550
1650
mA
32.768 kHz crystal oscillation
Operating modeNote 4
VDD = 5.0 V ±10 %
60
120
mA
VDD = 3.0 V ±10 %
35
70
mA
VDD = 5.0 V ±10 %
25
50
mA
VDD = 3.0 V ±10 %
5
10
mA
XT1 = 0 V
VDD = 5.0 V ±10 %
1
20
mA
STOP mode
Feedback resistor connected
VDD = 3.0 V ±10 %
0.5
10
mA
VDD = 5.0 V ±10 %
0.1
20
mA
VDD = 3.0 V ±10 %
0.05
10
mA
32.768 kHz crystal oscillation
HALT modeNote 4
XT1 = 0 V
STOP mode
Feedback resistor not connected
Notes 1. This current excludes the AV REF current, port current, and current which flows in the built-in pull-down
resistor (mask option).
2. When operating at high-speed mode (when the processor clock control register (PCC) is set to 00H)
3. When operating at low-speed mode (when the PCC is set to 04H)
4. When the main system clock is stopped
45
mPD78042F, 78043F, 78044F, 78045F
AC CHARACTERISTICS
(1) Basic operation (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)
Parameter
Symbol
Cycle time
(minimum
instruction
execution
time)
TCY
TI1, 2 input
frequency
fTI
MIN.
Conditions
Operated with main system clock
VDD = 4.5 to 5.5 V
TYP.
MAX.
Unit
32
ms
32
ms
125
ms
0
2
MHz
0
138
kHz
0.4
0.8
40Note 1
Operated with subsystem clock
tTIH
TI1, 2 input
high, low-level
tTIL
width
VDD = 4.5 to 5.5 V
VDD = 4.5 to 5.5 V
Interrupt
input high,
low-level
width
tINTH
INTP0
tINTL
INTP1-INTP3
RESET lowlevel width
tRSL
122
250
ns
3.6
ms
8/fsamNote 2
ms
10
ms
10
ms
Notes 1. Value when external clock input is used as subsystem clock. When crystal is used, the value becomes
114 ms.
2. Selection of fsam = fX/2N+1, fX/64, fX/128 is available (N = 0 to 4) by bits 0 and 1 (SCS0, SCS1) of sampling
clock select register (SCS).
TCY vs. VDD (with main system clock operated)
60
Cycle time TCY [ µ s]
30
Operation guarantee
range
10
2.0
1.0
0.5
0.4
0
1
2
3
4
5
Power supply voltage VDD [V]
46
6
mPD78042F, 78043F, 78044F, 78045F
(2) Serial interface (TA = –40 to +85 °C, VDD = 2.7 to 5.5 V)
(a) Serial interface channel 0
(i) Three-wire serial I/O mode (SCK0: Internal clock output)
Parameter
SCK0 cycle time
Symbol
TYP.
MAX.
Unit
ns
3200
ns
tKCY1/2 – 50
ns
tKL1
tKCY1 /2 – 150
ns
SI0 setup time to SCK0↑
tSIK1
100
ns
SI0 hold time from SCK0↑
tKSI1
400
ns
SCK0ØÆ SO0 output
delay time
tKH1
tKSO1
VDD = 4.5 to 5.5 V
MIN.
800
SCK0 high, low-level width
tKCY1
Conditions
VDD = 4.5 to 5.5 V
C = 100
pFNote
VDD = 4.5 to 5.5 V
300
ns
1000
ns
MAX.
Unit
Note C is a load capacitance of the SCK0 or SO0 output line.
(ii) Three-wire serial I/O mode (SCK0: External clock input)
Parameter
SCK0 cycle time
SCK0 high, low-level width
Symbol
tKCY2
tKH2
Conditions
VDD = 4.5 to 5.5 V
VDD = 4.5 to 5.5 V
tKL2
SI0 setup time to SCK0↑
tSIK2
SI0 hold time from SCK0↑
tKSI2
SCK0ØÆ SO0 output
delay time
tKSO2
SCK0 rise time and fall time
VDD = 4.5 to 5.5 V
C = 100 pFNote
tR2
VDD = 4.5 to 5.5 V
MIN.
TYP.
800
ns
3200
ns
400
ns
1600
ns
100
ns
400
ns
300
ns
1000
ns
160
ns
tF2
Note C is a load capacitance of the SO0 output line.
47
mPD78042F, 78043F, 78044F, 78045F
(iii) SBI mode (SCK0: Internal clock output)
Parameter
SCK0 cycle time
SCK0 high, low-level width
Symbol
tKCY3
tKH3
Conditions
VDD = 4.5 to 5.5 V
VDD = 4.5 to 5.5 V
tKL3
SB0, SB1 setup time to SCK0↑
tSIK3
VDD = 4.5 to 5.5 V
MIN.
TYP.
MAX.
Unit
800
ns
3200
ns
tKCY3/2 – 50
ns
tKCY3 /2 – 150
ns
100
ns
300
ns
tKCY3 /2
ns
SB0, SB1 hold time from
SCK0↑
tKSI3
SCK0ØÆSB0, SB1 output
delay time
tKSO3
SCK0↑ÆSB0, SB1Ø
tKSB
tKCY3
ns
SB0, SB1ØÆ SCK0Ø
tSBK
tKCY3
ns
SB0, SB1 high-level width
t SBH
tKCY3
ns
SB0, SB1 low-level width
tSBL
tKCY3
ns
R = 1 kW,
C = 100 pFNote
VDD = 4.5 to 5.5 V
0
250
ns
0
1000
ns
Note R is a load resistance of the SCK0, SB0, or SB1 output line, and C is its load capacitance.
(iv) SBI mode (SCK0: External clock input)
Parameter
SCK0 cycle time
SCK0 high, low-level width
Symbol
tKCY4
tKH4
Conditions
VDD = 4.5 to 5.5 V
VDD = 4.5 to 5.5 V
tKL4
SB0, SB1 setup time to SCK0↑
tSIK4
VDD = 4.5 to 5.5 V
MIN.
TYP.
MAX.
Unit
800
ns
3200
ns
400
ns
1600
ns
100
ns
300
ns
tKCY4 /2
ns
SB0, SB1 hold time from
SCK0↑
tKSI4
SCK0ØÆSB0, SB1 output
delay time
tKSO4
SCK0↑ÆSB0, SB1Ø
tKSB
tKCY4
ns
SB0, SB1ØÆSCK0Ø
tSBK
tKCY4
ns
SB0, SB1 high-level witdh
tSBH
tKCY4
ns
SB0, SB1 low-level width
tSBL
tKCY4
ns
SCK0 rise time and fall time
tR4
tF4
R = 1 kW,
C = 100 pFNote
VDD = 4.5 to 5.5 V
0
300
ns
0
1000
ns
Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.
48
160
ns
mPD78042F, 78043F, 78044F, 78045F
(v) Two-wire serial I/O mode (SCK0: Internal clock output)
Parameter
SCK0 cycle time
Symbol
tKCY5
Conditions
R = 1 kW,
C = 100 pFNote
VDD = 4.5 to 5.5 V
MIN.
TYP.
MAX.
Unit
1600
ns
3800
ns
SCK0 high-level width
tKH5
tKCY5/2 – 160
ns
SCK0 low-level width
tKL5
tKCY5/2 – 50
ns
SB0, SB1 setup time to SCK0↑
tSIK5
300
ns
SB0, SB1 hold time from
tKSI5
600
ns
SCK0↑
SCK0ØÆ SB0, SB1 output
delay time
tKSO5
VDD = 4.5 to 5.5 V
0
250
ns
0
1000
ns
Note R is a load resistance of the SCK0, SB0, or SB1 output line, and C is its load capacitance.
(vi) Two-wire serial I/O mode (SCK0: External clock input)
Parameter
SCK0 cycle time
Symbol
tKCY6
Conditions
VDD = 4.5 to 5.5 V
MIN.
TYP.
MAX.
Unit
1600
ns
3800
ns
SCK0 high-level width
tKH6
650
ns
SCK0 low-level width
tKL6
800
ns
SB0, SB1 setup time to SCK0↑
tSIK6
100
ns
SB0, SB1 hold time from
SCK0↑
tKSI6
tKCY6 /2
ns
SCK0ØÆ SB0, SB1 output
delay time
tKSO6
SCK0 rise time and fall time
tR6
tF6
R = 1 kW,
C = 100 pFNote
VDD = 4.5 to 5.5 V
0
300
ns
0
1000
ns
160
ns
Note R is a load resistance of the SB0 or SB1 output line, and C is its load capacitance.
49
mPD78042F, 78043F, 78044F, 78045F
(b) Serial interface channel 1
(i) Three-wire serial I/O mode (SCK1: Internal clock output)
Parameter
SCK1 cycle time
Symbol
TYP.
MAX.
Unit
ns
3200
ns
tKCY7/2 – 50
ns
tKL7
tKCY7 /2 – 150
ns
SI1 setup time to SCK1↑
tSIK7
100
ns
SI1 hold time from SCK1↑
tKSI7
400
ns
SCK1ØÆ SO1 output delay
time
tKH7
tKSO7
VDD = 4.5 to 5.5 V
MIN.
800
SCK1 high, low-level width
tKCY7
Conditions
VDD = 4.5 to 5.5 V
C = 100
pFNote
VDD = 4.5 to 5.5 V
300
ns
1000
ns
MAX.
Unit
Note C is a load capacitance of the SCK1 or SO1 output line.
(ii) Three-wire serial I/O mode (SCK1: External clock input)
Parameter
SCK1 cycle time
SCK1 high, low-level width
Symbol
tKCY8
tKH8
Conditions
VDD = 4.5 to 5.5 V
VDD = 4.5 to 5.5 V
tKL8
SI1 setup time to SCK1↑
tSIK8
SI1 hold time from SCK1↑
tKSI8
SCK1ØÆ SO1 output delay
time
tKSO8
SCK1 rise time and fall time
tR8
tF8
VDD = 4.5 to 5.5 V
C = 100
pFNote
Note C is a load capacitance of the SO1 output line.
50
VDD = 4.5 to 5.5 V
MIN.
TYP.
800
ns
3200
ns
400
ns
1600
ns
100
ns
400
ns
300
ns
1000
ns
160
ns
mPD78042F, 78043F, 78044F, 78045F
(iii) 3-wire serial I/O mode with automatic transmission/reception function (SCK1: internal clock
output)
Parameter
SCK1 cycle time
Symbol
TYP.
MAX.
Unit
ns
3200
ns
tKCY9/2 – 50
ns
tKL9
tKCY9 /2 – 150
ns
SI1 setup time to SCK1↑
tSIK9
100
ns
SI1 hold time from SCK1↑
tKSI9
400
ns
SCK1ØÆSO1 output delay time
tKSO9
tKH9
VDD = 4.5 to 5.5 V
MIN.
800
SCK1 high, low-level width
tKCY9
Conditions
VDD = 4.5 to 5.5 V
C = 100 pFNote
VDD = 4.5 to 5.5 V
300
ns
1000
ns
SCK1↑ÆSTB•
tSBD
tKCY9 /2 – 100
tKCY9/2 + 100
ns
Strobe signal high level width
tSBW
tKCY9 – 30
tKCY9 + 30
ns
Busy signal setup time (to busy tBYS
100
ns
100
ns
signal detection timing)
Busy signal hold time (to busy
signal detection timing)
tBYH
Busy inactive Æ SCK1Ø
tSPS
2tKCY9
ns
Note C is a load capacitance of the SCK1 or SO1 output line.
(iv) 3-wire serial I/O mode with automatic transmission/reception function (SCK1: external clock
input)
Parameter
SCK1 cycle time
Symbol
TYP.
MAX.
Unit
ns
3200
ns
400
ns
tKL10
1600
ns
SI1 setup time to SCK1↑
tSIK10
100
ns
SI1 hold time from SCK1↑
tKSI10
400
ns
SCK1ØÆ SO1 output delay
time
tKSO10
SCK1 rise time and fall time
tR10
tF10
tKH10
VDD = 4.5 to 5.5 V
MIN.
800
SCK1 high, low-level width
tKCY10
Conditions
VDD = 4.5 to 5.5 V
C = 100 pFNote
VDD = 4.5 to 5.5 V
300
ns
1000
ns
160
ns
Note C is a load capacitance of the SO1 output line.
51
mPD78042F, 78043F, 78044F, 78045F
AC timing test points (except X1, XT1 input)
0.8VDD
0.8VDD
Test points
0.2VDD
0.2VDD
Clock timing
1/fX
tXH
tXL
VDD – 0.5 V
X1 input
0.4 V
1/fXT
tXTH
tXTL
VDD – 0.5 V
XT1 input
0.4 V
TI timing
1/fTI
tTIL
TI1, TI2
52
tTIH
mPD78042F, 78043F, 78044F, 78045F
Serial transfer timing
3-wire serial I/O mode:
tKCY1, 2, 7, 8
tKL1, 2, 7, 8
tKH1, 2, 7, 8
tR2, 8
tF2, 8
SCK0, SCK1
tSIK1, 2, 7, 8
tKSI1, 2, 7, 8
Input data
SI0, SI1
tKSO1, 2, 7, 8
SO0, SO1
Output data
SBI mode (bus release signal transfer):
tKCY3, 4
tKL3, 4
tKH3, 4
tR4
tF4
SCK0
tKSB
tSBL
tSBH
tSIK3, 4
tSBK
tKSI3, 4
SB0, SB1
tKSO3, 4
SBI mode (command signal transfer):
tKCY3, 4
tKL3, 4
tKH3, 4
SCK0
tKSB
tSIK3, 4
tSBK
tKSI3, 4
SB0, SB1
tKSO3, 4
53
mPD78042F, 78043F, 78044F, 78045F
2-wire serial I/O mode:
tKCY5, 6
tKH5, 6
tKL5, 6
tR6
tF6
SCK0
tSIK5, 6
tKSO5, 6
tKSI5, 6
SB0, SB1
3-wire serial I/O mode with automatic transmission/reception function:
SO1
SI1
D2
D2
D1
D1
D0
D7
D0
D7
tKSI9, 10
tKH9, 10
tSIK9, 10
tKSO9, 10
tF10
SCK1
tR10
tKL9, 10
tKCY9, 10
tSBD
tSBW
STB
3-wire serial I/O mode with automatic transmission/reception function (busy processing):
SCK1
7
8
9Note
10Note
tBYS
10 + nNote
tBYH
1
tSPS
BUSY
(Active high)
Note SCK does not become low actually at this point, but is indicated so to conform to the timing specification.
54
mPD78042F, 78043F, 78044F, 78045F
A/D CONVERTER CHARACTERISTICS (TA = –40 to +85 °C, AVDD = VDD = 4.0 to 5.5 V, AVSS = VSS = 0 V)
Parameter
Symbol
Conditions
Resolution
MIN.
TYP.
MAX.
Unit
8
8
8
bit
0.8
%
19.1
200
ms
Total errorNote 1
Conversion
timeNote 2
tCONV
1 MHz - f X - 5.0 MHz
Sampling timeNote 3
tSAMP
2.86
30
ms
Analog signal input
voltage
VIAN
AVSS
AVREF
V
Reference voltage
AVREF
4.0
AVDD
V
AVREF resistor
RAVREF
4
AVDD current
AIDD
kΩ
14
200
400
mA
Notes 1. Quantization error (±1/2LSB) is not included. This parameter is indicated as the ratio to the full-scale
value.
2. Set the A/D conversion time to 19.1 ms or more.
3. Sampling time depends on the conversion time.
55
mPD78042F, 78043F, 78044F, 78045F
DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS
(TA = –40 to +85 °C)
Parameter
Symbol
Data retention supply
voltage
VDDDR
Data retention supply
current
IDDDR
Release signal set time
tSREL
Oscillation stabilization
wait time
tWAIT
Conditions
MIN.
TYP.
2.0
VDDDR = 2.0 V
Subsystem clock stopped
Feedback resistor not connected
0.1
MAX.
Unit
5.5
V
10
mA
ms
0
Release by RESET
217/fX
ms
Release by interrupt
Note
ms
Note Selection of 212/fX, 214/fX to 217/fX is available by bits 0 to 2 (OSTS0 to OSTS2) of oscillation settling time
select register (OSTS).
Data retention timing (STOP mode release by RESET)
Internal reset operation
HALT mode
Operating mode
STOP mode
Data retention mode
VDD
VDDDR
tSREL
STOP instruction execution
RESET
tWAIT
Data retention timing (standby release signal: STOP mode release by interrupt signal)
HALT mode
Operating mode
STOP mode
Data retention mode
VDD
VDDDR
tSREL
STOP instruction execution
Standby release signal
(interrupt request)
tWAIT
56
mPD78042F, 78043F, 78044F, 78045F
Interrupt input timing
tINTH
tINTL
INTP0-INTP2
tINTL
INTP3
RESET input timing
tRSL
RESET
57
mPD78042F, 78043F, 78044F, 78045F
11. CHARACTERISTIC CURVE (REFERENCE VALUE)
IDD vs. VDD (Main system clock: 5.0 MHz)
(TA = 25 °C)
10.0
PCC = 00H
5.0
PCC = 01H
PCC = 02H
PCC = 03H
PCC = 04H
PCC = 30H
HALT (X1 and XT1 oscillate)
1.0
0.5
Supply current IDD [mA]
★
fX = 5.0 MHz
fXT = 32.768 kHz
0.1
PCC = B0H
0.05
HALT (X1 stops but XT1 oscillates)
STOP (X1 stops but XT1 oscillates)
0.01
0.005
0.001
0
2
3
4
5
Supply voltage VDD [V]
58
6
7
8
mPD78042F, 78043F, 78044F, 78045F
IDD vs. fX
(VDD = 3 V, TA = 25 °C)
4
PCC = 00H
Supply current IDD [mA]
3
2
PCC = 01H
PCC = 02H
1
0
PCC = 03H
PCC = 04H
HALT
(X1 oscillates)
0
1
2
3
4
5
6
Clock oscillation frequency fX [MHz]
IDD vs. fX
(VDD = 5 V, TA = 25 °C)
7
6
PCC = 00H
Supply current IDD [mA]
5
4
PCC = 01H
3
PCC = 02H
2
PCC = 03H
PCC = 04H
HALT
(X1 oscillates)
1
0
0
1
2
3
4
5
6
Clock oscillation frequency fX [MHz]
59
mPD78042F, 78043F, 78044F, 78045F
VOL vs. IOL (Port 1)
(TA = 25 °C)
VDD = 6 V
30
VDD = 5 V
Low-level output currnt IOL [mA]
VDD = 4 V
VDD = 3 V
20
10
0
0
0.5
1.0
1.5
Low-level output voltage VOL [V]
VOL vs. IOL (Ports 0, 2, and 3)
(TA = 25 °C)
VDD = 6 V VDD = 5 V
30
Low-level output current IOL [mA]
VDD = 4 V
VDD = 3 V
20
10
0
0
0.5
1.0
Low-level output voltage VOL [V]
60
1.5
mPD78042F, 78043F, 78044F, 78045F
VOL vs. IOL (Port 7)
(TA = 25 °C)
VDD = 6 V
Low-level output current IOL [mA]
30
VDD = 5 V
VDD = 4 V
VDD = 3 V
20
10
0
0
0.5
1.0
1.5
Low-level output voltage VOL [V]
61
mPD78042F, 78043F, 78044F, 78045F
VDD – VOH vs. IOH (Port 0 - Port 3)
High-level output current IOH [mA]
(TA = 25 °C)
VDD = 5 V
VDD = 6 V VDD = 4 V
–10
VDD = 3 V
–5
0
0
0.5
1.0
1.5
High-level output voltage VDD – VOH [V]
VDD – VOH vs. IOH (Port 8 - Port 12)
(TA = 25 °C)
VDD = 6 V VDD = 5 V
High-level output current IOH [mA]
–30
VDD = 4 V
VDD = 3 V
–20
–10
0
0
1.0
2.0
High-level output voltage VDD – VOH [V]
62
3.0
mPD78042F, 78043F, 78044F, 78045F
12. PACKAGE DRAWING
★
80 PIN PLASTIC QFP (14 20)
A
B
41
40
64
65
detail of lead end
S
C D
Q
R
25
24
80
1
F
G
J
H
I
M
K
P
M
N
NOTE
Each lead centerline is located within 0.15 mm (0.006 inch) of
its true position (T.P.) at maximum material condition.
L
ITEM
MILLIMETERS
INCHES
A
23.6±0.4
0.929±0.016
B
20.0±0.2
0.795 +0.009
–0.008
C
14.0±0.2
0.551 +0.009
–0.008
D
17.6±0.4
0.693±0.016
F
1.0
0.039
G
0.8
0.031
H
0.35±0.10
0.014 +0.004
–0.005
I
0.15
0.006
J
0.8 (T.P.)
0.031 (T.P.)
K
1.8±0.2
0.071 +0.008
–0.009
L
0.8±0.2
0.031 +0.009
–0.008
M
0.15 +0.10
–0.05
0.006 +0.004
–0.003
N
0.10
0.004
P
2.7
0.106
Q
0.1±0.1
0.004±0.004
R
S
5°±5°
5°±5°
3.0 MAX.
0.119 MAX.
P80GF-80-3B9-3
Remark The shape and material of the ES version are the same as those of the corresponding mass-produced
product.
63
mPD78042F, 78043F, 78044F, 78045F
★
13. RECOMMENDED SOLDERING CONDITIONS
The conditions listed below shall be met when soldering the m PD78042F, m PD78043F, m PD78044F, or
mPD78045F.
For details of the recommended soldering conditions, refer to our document Semiconductor Device Mounting
Technology Manual (C10535E).
Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under
different conditions.
Table 13-1
Soldering Conditions for Surface-Mount Devices
¥¥¥
¥¥¥-3B9: 80-pin plastic QFP (14 ¥ 20 mm)
mPD78042FGF-¥¥¥
¥¥¥-3B9: 80-pin plastic QFP (14 ¥ 20 mm)
mPD78043FGF-¥¥¥
¥¥¥
¥¥¥
¥¥¥-3B9: 80-pin plastic QFP (14 ¥ 20 mm)
mPD78044FGF-¥¥¥
¥¥¥-3B9: 80-pin plastic QFP (14 ¥ 20 mm)
¥¥¥
mPD78045FGF-¥¥¥
Soldering process
Soldering conditions
Recommended conditions
Infrared ray reflow
Peak package's surface temperature: 235 °C
Reflow time: 30 seconds or less (210 °C or more)
Maximum allowable number of reflow processes: 3
IR35-00-3
VPS
Peak package's surface temperature: 215 °C
Reflow time: 40 seconds or less (200 °C or more)
Maximum allowable number of reflow processes: 3
VP15-00-3
Wave soldering
Solder temperature: 260 °C or less
Flow time: 10 seconds or less
Number of flow processes: 1
Preheating temperature : 120 °C max.
(measured on the package surface)
WS60-00-1
Partial heating method
Terminal temperature: 300 °C or less
Heat time: 3 seconds or less (for one side of a device)
—
Caution Do not apply two or more different soldering methods to one chip (except for partial heating
method for terminal sections).
64
mPD78042F, 78043F, 78044F, 78045F
APPENDIX A DEVELOPMENT TOOLS
The following tools are available for development of systems using the mPD78042F, mPD78043F, m PD78044F,
or mPD78045F.
Language processing software
RA78K/0Notes 1, 2, 3, 4
Assembler package common to 78K/0 series
CC78K/0Notes 1, 2, 3, 4
C compiler package common to 78K/0 series
DF78044Notes 1, 2, 3, 4
Device file for mPD78044A subseries
CC78K/0-LNotes 1, 2, 3, 4
C compiler library source file common to 78K/0 series
PROM writing tools
PG-1500
PROM programmer
PA-78P048GF
PA-78P048KL-S
Programmer adapter connected to PG-1500
PG-1500 controllerNotes 1, 2
Control program for PG-1500
Debugging tools
IE-78000-R
In-circuit emulator common to 78K/0 series
IE-78000-R-ANote 8
In-circuit emulator common to 78K/0 series (for integrated debugger)
IE-78000-R-BK
Break board common to 78K/0 series
IE-78044-R-EM
Emulation board for evaluating mPD78044A subseries
EP-78130GF-R
Emulation probe common to mPD78134
EV-9200G-80
Socket mounted on target system created for 80-pin plastic QFP
SM78K0Notes 5, 6, 7
System simulator common to 78K/0 series
ID78K0Notes 4, 5, 6, 7, 8
Integrated debugger for IE-78000-R-A
SD78K/0Notes 1, 2
Screen debugger for IE-78000-R
DF78044Notes 1, 2, 5, 6, 7
Device file common to mPD78044A subseries
★
★
Real-time OS
RX78K/0Notes 1, 2, 3, 4
Real-time OS for 78K/0 series
MX78K0Notes 1, 2, 3, 4
OS for 78K/0 series
Notes 1. PC-9800 series (MS-DOSTM) based
2. IBM PC/ATTM and compatible (PC DOSTM/IBM DOSTM/MS-DOS) based
3. HP9000 series 300TM (HP-UXTM) based
4. HP9000 series 700TM (HP-UX) based, SPARCstationTM (SunOSTM) based, EWS-4800 series (EWSUX/V) based
5. PC-9800 series (MS-DOS + Windows TM) based
6. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
7. NEWSTM (NEWS-OSTM) based
★
8. Under development
65
mPD78042F, 78043F, 78044F, 78045F
Fuzzy inference development support system
FE9000Note 1/FE9200Note 3
Fuzzy knowledge data creation tool
FT9080Note 1/FT9085 Note 2
Translator
FI78K0Notes 1, 2
Fuzzy inference module
FD78K0Notes 1, 2
Fuzzy inference debugger
Notes 1. PC-9800 series (MS-DOS) based
2. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS) based
3. IBM PC/AT and compatible (PC DOS/IBM DOS/MS-DOS + Windows) based
Remarks 1. Please refer to the 78K/0 Series Selection Guide (U11126E) for information on third party development tools.
2. RA78K/0, CC78K/0, SM78K/0, ID78K0, SD78K/0, and RX78K/0 are used in combination with
DF78044.
66
mPD78042F, 78043F, 78044F, 78045F
APPENDIX B RELATED DOCUMENTS
• Documents Related to Devices
Document No.
Document name
Japanese
English
mPD78044F Sub-Series User’s Manual
U10908J
U10908E
mPD78042F, 78043F, 78044F, 78045F Data Sheet
U10700J
This manual
mPD78P048A Data Sheet
U10611J
U10611E
mPD78044A, 78044F Sub-Series Special Function Registers
U10701J
78K/0 Series User’s Manual, Instruction
IEU-849
78K/0 Series Instruction Summary Sheet
U10903J
—
78K/0 Series Instruction Set
U10904J
—
—
IEU-1372
• Documents Related to Development Tools (User’s Manual)
Document No.
Document name
Japanese
RA78K Series Assembler Package
Operation
EEU-809
EEU-1399
Language
EEU-815
EEU-1404
EEU-817
EEU-1402
Operation
EEU-656
EEU-1280
Language
EEU-655
EEU-1284
Programming Know-How
EEA-618
EEA-1208
RA78K Series Structured Assembler Preprocessor
CC78K Series C Compiler
CC78K/0 Compiler Application Note
English
CC78K Series Library Source File
EEU-777
—
PG-1500 PROM Programmer
EEU-651
EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Base
EEU-704
EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Base
EEU-5008
U10540E
IE-78000-R
EEU-810
U11376E
IE-78000-R-A
U10057J
U10057E
IE-78000-R-BK
EEU-867
EEU-1427
IE-78044-R-EM
EEU-833
EEU-1424
EP-78130GF-R
EEU-943
EEU-1470
SM78K0 System Simulator
Reference
EEU-5002
U10181E
SM78K Series System Simulator
External Parts User Open
Interface Specifications
U10092J
U10092E
ID78K0 Integrated Debugger
Reference
U11151J
SD78K/0 Screen Debugger
Tutorial
EEU-852
PC-9800 Series (MS-DOS) Base
Reference
EEU-816
SD78K/0 Screen Debugger
Tutorial
EEU-5024
EEU-1414
IBM PC/AT (PC DOS) Base
Reference
U11279J
EEU-1413
★
★
—
U10539E
—
Caution The above documents may be revised without notice. Use the latest versions when you design
an application system.
67
mPD78042F, 78043F, 78044F, 78045F
• Documents Related to Software to Be Incorporated into the Product (User’s Manual)
Document No.
Document name
Japanese
78K/0 Series Real-Time OS
OS for 78K/0 Series MX78K0
English
Basic
EEU-912
—
Installation
EEU-911
—
Technical
EEU-913
—
Basic
EEU-5010
—
Tool for Creating Fuzzy Knowledge Data
EEU-829
EEU-1438
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development
EEU-829
EEU-1444
78K/0 Series Fuzzy Inference Development Support System,
Fuzzy Inference Module
EEU-858
EEU-1441
78K/0 Series Fuzzy Inference Development Support System,
EEU-921
EEU-1458
Support System, Translator
Fuzzy Inference Debugger
• Other Documents
Document No.
Document name
Japanese
★
English
IC PACKAGE MANUAL
C10943X
SMD Surface Mount Technology Manual
C10535J
C10535E
Quality Grades on NEC Semiconductor Device
IEI-620
IEI-1209
NEC Semiconductor Device Reliability/Quality Control System
C10983J
C10983E
Electrostatic Discharge (ESD) Test
MEM-539
Guide to Quality Assurance for Semiconductor Device
MEI-603
Guide for Products Related to Micro-Computer: Other Companies
MEI-604
—
MEI-1202
—
Caution The above documents may be revised without notice. Use the latest versions when you design
an application system.
68
mPD78042F, 78043F, 78044F, 78045F
[MEMO]
69
mPD78042F, 78043F, 78044F, 78045F
Cautions on CMOS Devices
Countermeasures against static electricity for all MOSs
Caution When handling MOS devices, take care so that they are not electrostatically charged.
Strong static electricity may cause dielectric breakdown in gates. When transporting or storing
MOS devices, use conductive trays, magazine cases, shock absorbers, or metal cases that NEC
uses for packaging and shipping. Be sure to ground MOS devices during assembling. Do not
allow MOS devices to stand on plastic plates or do not touch pins.
Also handle boards on which MOS devices are mounted in the same way.
CMOS-specific handling of unused input pins
Caution Hold CMOS devices at a fixed input level.
Unlike bipolar or NMOS devices, if a CMOS device is operated with no input, an intermediatelevel input may be caused by noise. This allows current to flow in the CMOS device, resulting
in a malfunction. Use a pull-up or pull-down resistor to hold a fixed input level. Since unused
pins may function as output pins at unexpected times, each unused pin should be separately
connected to the VDD or GND pin through a resistor.
If handling of unused pins is documented, follow the instructions in the document.
Statuses of all MOS devices at initialization
Caution The initial status of a MOS device is unpredictable when power is turned on.
Since characteristics of a MOS device are determined by the amount of ions implanted in
molecules, the initial status cannot be determined in the manufacture process. NEC has no
responsibility for the output statuses of pins, input and output settings, and the contents of
registers at power on. However, NEC assures operation after reset and items for mode setting
if they are defined.
When you turn on a device having a reset function, be sure to reset the device first.
FIP is a trademark of NEC Corporation.
IEBus is trademark of NEC Corporation.
MS-DOS and Windows are trademarks of Microsoft Corporation.
IBM DOS, PC/AT, and PC DOS are trademarks of IBM Corporation.
HP9000 series 300, HP9000 series 700, and HP-UX are trademarks of Hewlett-Packard.
SPARCstation is a trademark of SPARC International, Inc.
SunOS is a trademark of Sun Microsystems, Inc.
NEWS and NEWS-OS are trademarks of SONY Corporation.
70
mPD78042F, 78043F, 78044F, 78045F
Regional Information
Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:
• Device availability
• Ordering information
• Product release schedule
• Availability of related technical literature
• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)
• Network requirements
In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.
NEC Electronics Inc. (U.S.)
NEC Electronics (Germany) GmbH
NEC Electronics Hong Kong Ltd.
Mountain View, California
Tel: 800-366-9782
Fax: 800-729-9288
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490
NEC Electronics Hong Kong Ltd.
France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics (France) S.A.
NEC Electronics Singapore Pte. Ltd.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics (France) S.A.
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99
NEC Electronics Taiwan Ltd.
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby Sweden
Tel: 8-63 80 820
Fax: 8-63 80 388
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689
J96. 3
71
mPD78042F, 78043F, 78044F, 78045F
Note that “preliminary” is not indicated in this document, even though the related documents may be
preliminary versions.
The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited
without governmental license, the need for which must be judged by the customer. The export or re-export of this product
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this
document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on
a customer designated "quality assurance program" for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.
Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.
The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.
M4 94. 11
72