NTE NTE904

NTE904
Integrated Circuit
General Purpose Transistor Array
(Two Isolated Transistors and a Darlington
Connected Transistor Pair)
Description:
The NTE904 consists of four general purpose silicon NPN transistors on a common monolithic substrate in a 12–Lead TO5 type metal can. Two of the four transistors are connected in the Darlington
configuration. The substrate is connected to a separate terminal for maximum flexibility.
The transistors of the NTE904 are well suited to a wide variety of applications in low power systems
in the DC through VHF range. They may be used as discrete transistors in conventional circuits but
in addition they provide the advantages of close electrical and thermal matching inherent in integrated
circuit construction.
Features:
D Matched Monolithic General Purpose Transistors
D Current Gain Matched to ±10%
D Base–Emitter Voltage Matched to ±2mV
D Operation from DC to 120MHz
D Wide Operating Current Range
D Low Noise Figure
Applications:
D General use in Signal Processing Systems in DC through VHF Range
D Custom Designed Differential Amplifiers
D Temperature Compenstaed Amplifiers
Absolute Maximum Ratings: (TA = +25°C unless otherwise specified)
Collector–Emitter Voltage (Each Transistor), VCEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15V
Collector–Base Voltage (Each Transistor), VCBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30V
Collector–Substrate Voltage (Each Transistor, Note 1), VCIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40V
Emitter–Base Voltage (Each Transistor), VEBO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V
Collector Current (Each Transistor), IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA
Power Dissipation, PD
Any One Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mW
Total package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450mW
Derate Above 85°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mW/°C
Operating Temperature Range, Topr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55° to +125°C
Storage Temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65° to +150°C
Note 1. The collector of each transistor is isolated from the substrate by an integral diode. The substrate (Pin10) must be connected to the most negative point in the external circuit to maintain
isolation between transistors and to provide for normal transistor action.
Electrical Characteristics: (TA = +25°C unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Unit
Static Characteristics
Collector Cutoff Current
Collector Cutoff Current (Darlington Pair)
ICBO
VCB = 10V, IE = 0
–
0.002
–
nA
ICEO
VCE = 10V, IB = 0
–
–
0.5
µA
ICEOD
VCE = 10V, IB = 0
–
–
5
µA
Collector–Emitter Breakdown Voltage
V(BR)CEO IC = 1mA, IB = 0
15
24
–
V
Collector–Base Breakdown Voltage
V(BR)CBO IC = 10µA, IE = 0
30
60
–
V
Emitter–Base Breakdown Voltage
V(BR)EBO IE = 10µA, IC = 0
5
7
–
V
Collector–Substrate Breakdown Voltage
V(BR)CIO
IC = 10µA, IC1 = 0
40
60
–
V
Collector–Emitter Saturation Voltage
VCE(sat)
IC = 10mA, IB = 1mA
–
0.23
0.5
V
Static Forward Current Transfer Ratio
hFE
VCE = 3V, IC = 10mA
50
100
–
VCE = 3V, IC = 1mA
60
100
200
VCE = 3V, IC = 10µA
54
–
–
VCE = 3V, IC1 = IC2 = 1mA
0.9
0.97
–
VCE = 3V, IC = 1mA
2000
5400
–
VCE = 3V, IC = 10µA
1000
2800
–
VCE = 3V, IE = 1mA
0.600 0.715 0.800
Magnitude of Static–Beta Ratio
(Isolated Transistors Q1 and Q2)
Static Forward Current Transfer Ratio
(Darlington Pair Q3 and Q4)
hFED
Base–Emitter Voltage
VBE
V
VCE = 3V, IE = 10mA
–
0.800 0.900
Input Offset Voltage
VCE = 3V, IE = 1mA
–
0.48
2.0
mV
Temperature Coefficient of Base–Emitter
Voltage (Q1 – Q2)
VCE = 3V, IE = 1mA
–
1.9
–
mV/°C
VCE = 3V, IE = 10mA
–
1.46
1.60
V
VCE = 3V, IE = 1mA
1.10
1.32
1.50
V
Temperature Coefficient of Base–Emitter
Voltage (Darlington Pair Q3–Q4)
VCE = 3V, IE = 1mA
–
4.4
–
mV/°C
Temperature Coefficient of Magnitude of
Input Offset Voltage
VCC = 6V, VEE = –6V,
IC1 = IC2 = 1mA
–
10
–
µV/°C
VCE = 3V, IC = 100µA,
f = 1kHz, RS = 1kΩ
–
3.25
–
dB
–
110
–
Base (Q3)–Emitter (Q4) Voltage
Darlington Pair
Low Frequency Noise Figure
VBED
NF
V
Low Frequency, Small–Signal Equivalent Circuit Characteristics
Forward Current Transfer Ratio
hfe
VCE = 3V, IC = 1mA, f = 1kHz
Short–Circuit Input Impedance
hie
–
3.5
–
kΩ
Open–Circuit Output Impedance
hoe
–
15.6
–
µmhos
Open–Circuit Reverse Voltage Transfer Ratio
hre
1.8 x 104 (Typ)
Admittance Characteristics
Forward Transfer Admittance
Yfe
Input Admittance
Yie
Output Admittance
Yoe
Gain–Bandwidth Product
fT
VCE = 3V, IC = 1mA, f = 1kHz
VCE = 3V, IC = 3mA
31–j1.5 (Typ)
mmho
0.3+j0.04 (Typ)
mmho
0.001+j0.03 (Typ)
mmho
300
500
–
MHz
Emitter–Base Capacitance
CEB
VEB = 3V, IE =0
–
0.6
–
pF
Collector–Base Capacitance
CCB
VCB = 3V, IC = 0
–
0.58
–
pF
Collector–Substrate Capacitance
CCI
VCI = 3V, IC = 0
–
2.8
–
pF
Pin Connection Diagram
(Top View)
Collector Q1
8
Base Q3 9
67 Emitter Q1
6 Base Q1
Substrate/Case 10
Collector Q3 11
5 Collector Q2
4 Emitter Q
2
12
Collector Q4
Emitter Q4
1
3 Base Q
2
12
Emitter Q3/Base Q4
.370 (9.4) Dia Max
.335 (8.5) Dia Max
.180
(4.57)
Max
.500
(12.7)
Min
.018 (0.48) Dia Typ
.245 (6.23) Dia
4
3
5
2
6
7
1
8
12
11
10
9