RFMD RF2689

RF2689
Preliminary
7
W-CDMA/GSM/DCS RECEIVE AGC
AND DEMODULATOR
Typical Applications
• Multimode W-CDMA/GSM/DCS/EDGE
• GSM Systems
• W-CDMA Systems
Product Description
1.00
0.90
Optimum Technology Matching® Applied
GaAs MESFET
SiGe HBT
Si CMOS
IF-
IF+
20
1
17
18
2.10
sq.
3 0.20
7
0.75
0.50
12°
MAX
0.05
0.23
0.13
0.50
4 PLCS
Dimensions in mm.
Note orientation of package.
NOTES:
1 Shaded lead is Pin 1.
2 Pin 1 identifier must exist on top surface of package by identification
mark or feature on the package body. Exact shape and size is optional.
3
Dimension applies to plated terminal: to be measured between 0.02 mm
and 0.25 mm from terminal end.
4 Package Warpage: 0.05 mm max.
5 Die Thickness Allowable: 0.305 mm max.
Package Style: LCC, 20-Pin, 4x4
Features
• 2.7V to 3.3V Operation
Gain
Control
GSM IN+ 2
0.65
0.30
4 PLCS
• Digitally Controlled Power Down Mode
VGC1
üSi Bi-CMOS
GaAs HBT
VGC2
Si BJT
0.60
0.24 typ
QUADRATURE
DEMODULATORS
The RF2689 is an integrated complete IF AGC amplifier
and quadrature demodulator designed for the receive
section of W-CDMA and GSM/DCS applications. It is
designed to amplify received IF signals, while providing
70dB of gain control range, a total of 90dB gain, and
demodulate to baseband I and Q signals. This circuit is
designed as part of RFMD’s multimode W-CDMA/GSM/
DCS chipset, which also includes the RF2688 W-CDMA/
GSM/DCS transmit modulator and IF AGC/Upconverter.
The IC is manufactured on an advanced 25GHz FT Silicon Bi-CMOS process, and is packaged in a 20-pin,
4mmx4mm, leadless chip carrier.
4.00
sq.
14 I OUT+
13 I OUT-
GSM IN- 3
• Digital LO Quadrature Divide-by-8
• IF AGC Amp with 70dB Gain Control
15 CALEN
DIV2
I/Q
Cal
16 FCLK
W-CDMA IN+ 4
• 80dB Maximum Voltage Gain
12 Q OUT+
W-CDMA IN- 5
11 Q OUT-
Div
12 or 4
Mode Control
& Biasing
6
8
7
9
10
VCC
LO
MODE A
MODE B
EN RX
DIV2
Functional Block Diagram
Rev A4 010815
19 VREF2V
Ordering Information
RF2689
RF2689 PCBA
W-CDMA/GSM/DCS Receive AGC and Demodulator
Fully Assembled Evaluation Board
RF Micro Devices, Inc.
7625 Thorndike Road
Greensboro, NC 27409, USA
Tel (336) 664 1233
Fax (336) 664 0454
http://www.rfmd.com
7-39
RF2689
Preliminary
Absolute Maximum Ratings
Parameter
Supply Voltage
Power Down Voltage (VPD)
Input RF Power
Ambient Operating Temperature
Storage Temperature
Parameter
Rating
Unit
-0.5 to +5
-0.5 to VCC +0.7
+3
-40 to +85
-40 to +150
VDC
VDC
dBm
°C
°C
Specification
Min.
Typ.
Max.
Caution! ESD sensitive device.
RF Micro Devices believes the furnished information is correct and accurate
at the time of this printing. However, RF Micro Devices reserves the right to
make changes to its products without notice. RF Micro Devices does not
assume responsibility for the use of the described product(s).
Unit
Condition
W-CDMA Mode
Temp=25°C, VCC =3V, ZLOAD =60kΩ diff.,
[email protected], ZSOURCE =500Ω
diff.
IF Frequency
W-CDMA IF Input Impedance
QUADRATURE
DEMODULATORS
7
LO Frequency
LO Input Level
LO Input Impedance
Maximum Voltage Gain
Minimum Voltage Gain
Gain Variation versus VCC and
Temperature
Gain Control Voltage
190
1200
2400
76
1520
-10
50
80
5
-3
10
+1
-20
0.3
MHz
Ω
Ω
0
MHz
dBm
Ω
dB
15
+3
dB
2.4
V
Input IP3
-52
-48
-5
0
5
56
2.0
Noise Figure
Inband Output 1dB Compression
Compression
1.5
dBm
7
58
VP-P
-48
-17
Baseband 3dB Bandwidth
2.25
2.5
Sideband Suppression
DC Offset
Baseband External Load
Output DC Voltage
IQ Amplitude Balance
IQ Phase Balance
7-40
20
VCC -1.3
VCC -1.6
+0.2
+2
dBm
dB
dBm
dBm
2.75
MHz
27
dB
+40
60
mV
kΩ
5
pF
VCC -1.9
+0.5
+5
V
dB
degree
Single-ended
Balance. An external resistor across the differential input is used to define the input
impedance.
Single-ended.
Pin-to-Pin voltage gain.
Note: 10dB additional voltage gain in input
match 50Ω to 500Ω.
Defined with external 10kΩ resistor in series
with VGC1 pin. Analog gain control.
Blockers at 10MHz and 20MHz offset.
Maximum Gain. VGC =2.4V
Minimum Gain. VGC =0.3V
Maximum Gain. VGC =2.4V
Minimum Gain VGC =0.3V
Measured differentially.
Out of band blocker causing 1dB of inband
gain compression. Blocker at 5MHz.
Maximum Gain. VGC =2.4V
Minimum Gain. VGC =0.3V
Butterworth third order, FC 2.5M+10%
Calibrated. FCLK =13MHz, 3dB rolloff from
1MHz offset
A measure of IQ gain match and IQ quadrature accuracy. Measured for baseband frequencies 100kHz to 2.5MHz.
Resistive Load Impedance.
Differentially across op pins.
Capacitive Load Impedance.
To ground.
VGC =0.3V, PIN =-30dBm
VGC =0.3V, PIN =-30dBm
Rev A4 010815
RF2689
Preliminary
Parameter
Specification
Min.
Typ.
Max.
Unit
Condition
GSM/DCS Mode
Temp=25°C, VCC =3V, ZLOAD =60kΩ diff.,
[email protected] -10dBm, ZSOURCE =500Ω
Minimum Voltage Gain
Gain Variation versus VCC and
Temperature
Gain Control Voltage
77
225
45
1080
-10
50
83
-15
-3
-10
+2
-20
0.3
Noise Figure
6
80
0
MHz
MHz
MHz
dBm
Ω
dB
-5
+3
dB
dB
2.4
V
8
82
dB
Input IP3
Inband Output 1dB Compression
Compression
-54
-5
1.5
GSM IF Input Impedance
Baseband 3dB Bandwidth
225
-49
0
2.5
dBm
dBm
VP-P
-65
-17
1200
2400
dBm
dBm
Ω
Ω
250
100
Sideband Suppression
DC Offset
Baseband External Load
Output DC Voltage
IQ Amplitude Balance
IQ Amplitude Balance
Rev A4 010815
20
VCC -1.3
VCC -1.6
+0.2
+2
275
kHz
400
27
kHz
dB
+60
60
mV
kΩ
5
pF
VCC -1.9
+0.5
+5
V
dB
degree
Single-ended.
VGC =0.5V to 2.4V
Pin-to-Pin voltage gain.
Note: 10dB additional voltage gain in input
match 50Ω to 500Ω.
Defined with external 10kΩ resistor in series
with GC pin. Analog gain control.
Maximum Gain. VGC =2.4V
Minimum Gain VGC =0.3V
Blockers at 800kHz and 1650kHz offset.
Maximum Gain. VGC =2.4V
Minimum Gain. VGC =0.3V
Maximum Gain. Measured differentially.
Out of band blocker causing 1dB of inband
gain compression. Blocker at 800kHz offset.
Maximum Gain. VGC =2.4V
Minimum Gain. VGC =0.3V
Single-ended
Balance. An external resistor across the differential input is used to define the input
impedance.
Butterworth third order, FC 250k+10%
3dB rolloff from 50kHz offset
Calibrated. FCLK =13MHz
Uncalibrated.
A measure of IQ gain match and IQ quadrature accuracy. Measured for baseband frequencies 100kHz to 2.5MHz.
Resistive Load Impedance.
Differentially across op pins.
Capacitive Load Impedance.
To ground.
VGC =0.3V, PIN =-30dBm
VGC =0.3V, PIN =-30dBm
7-41
7
QUADRATURE
DEMODULATORS
IF Frequency
2nd IF Frequency
LO Frequency
LO Input Level
LO Input Impedance
Maximum Voltage Gain
RF2689
Parameter
Preliminary
Specification
Min.
Typ.
Max.
Unit
13
MHz
Condition
Auto Calibration
FCLK Input Frequency1
FCLK Signal Level
FCLK Pin Input Impedance
Calibration Time
Current, Auto Cal.
Current, Once Auto Cal Finished
0.4
1.0
200
1
1
VP-P
kΩ
us
mA
uA
3.0
3.3
V
<1
5
8
5
9
6
10
6
12
µA
mA
mA
mA
mA
VCC
0.5
V
V
20
Single-ended.
Disabled after calibration.
DC Specifications
Supply Voltage
Current Consumption
Power Down
W-CDMA Standby
W-CDMA
GSM/DCS Standby
GSM/DCS
Logic Levels
VEN High Voltage
VEN Low Voltage
1Bondout
1.8
0
option available for 15.36MHz, 18MHz and 19MHz.
QUADRATURE
DEMODULATORS
7
2.7
7-42
Rev A4 010815
RF2689
Preliminary
Mode Control
Logic
EN RX
Chip Enable
If EN =0 then the whole IC is powered down
Mode Control Truth Table
Mode
Power Down
GSM/DCS RX Warm-Up
GSM/DCS RX
W-CDMA RX Warm-Up
W-CDMA RX
EN RX
Mode B
Mode A
0
1
1
1
1
X
0
1
0
1
X
1
1
0
0
Auto Calibration Mode
The filters are automatically tuned when the CALEN pin goes high. The filters are reset to a nominal value whenever the
CALEN pin goes low. The auto calibration circuitry is independent of the “Mode A/B” and the EN RX control pins.
The EN RX and CALEN pins can be connected together if desired.
Truth Table
Power Down
GSM/DCS RX Warm-Up
W-CDMA GSM Input Amp
Input Amp
& 1st Mixer
0
0
0
0
GSM/DCS RX
0
1
W-CDMA RX Warm-Up
0
0
W-CDMA RX
1
0
Rev A4 010815
Fixed
Divider
0
1
(div 2)
1
(div 2)
1
(div 2)
1
(div 2)
GSM
Divider
0
0
(div 2)
1
(div 2)
0
0
Second
Dividers
0
0
(div 12)
1
(div 12)
1
(div 4)
0
(div 4)
VGA
Demod
0
0
0
0
1
1
0
0
1
1
Baseband
& Filters
0
0
1
(250kHz)
0
1
(2.5MHz)
7-43
7
QUADRATURE
DEMODULATORS
Mode
RF2689
Pin
1
Function
VGC1
2
3
4
GSM IN+
GSM INW-CDMA
IN+
Preliminary
Description
Interface Schematic
Analog gain control. Valid control voltage ranges are form 0.5V to 2.5V.
These voltages are valid with a 10kΩ resistor in series with GC pin.
GSM IF balanced input. Input internally DC-biased.
Same as pin 2.
W-CDMA IF balanced input. Input internally DC-biased.
BIAS
BIAS
1200 Ω
1200 Ω
W-CDMA IN+
5
QUADRATURE
DEMODULATORS
7
6
7
8
9
W-CDMA
INVCC
MODE A
LO
MODE B
10
11
12
EN RX
Q OUTQ OUT+
Same as pin 4.
W-CDMA IN-
See pin 4.
Supply
DCS/GSM/GSM RX/W-CDMA mode selection.
LO input pin. Input internally DC-biased.
Warm-up mode enable. The input LO buffers and divider chains are
enabled.
Chip enable.
Complementary output to Q OUT+.
Balanced baseband output.
VCC
VCC
Q OUT+
150 µA
Q OUT150 µA
13
14
I OUTI OUT+
Complementary output to I OUT+.
Balanced baseband output.
VCC
VCC
I OUT+
150 µA
I OUT150 µA
15
16
CALEN
FCLK
Calibration enable.
FCLK clock reference for the automatic calibration circuitry.
20 kΩ
17
18
19
20
Pkg
Base
7-44
IFIF+
VREF2V
VGC2
Die
Flag
Complementary output to IF+.
IF test point output.
2V voltage reference decouple.
Gain control decouple.
Ground.
Rev A4 010815
RF2689
Preliminary
Application Notes
Voltage Gain Measurement Set-up
The evaluation board uses a unity voltage gain Op-Amp to simulate the 60kΩ differential load impedance condition for
the chip. The 50Ω output impedance of Op-Amp makes the use of a 50Ω spectrum analyzer power measurement possible. The power gain measured will be considered as RAW Gain. The input impedance of the chip is 500Ω differential by
adding a parallel 680Ω resistor. The input transformer matches 50Ω to 500Ω and results in 10dB difference between
voltage gain and power gain, hence, the voltage gain of the chip is RAW Gain minus 10dB. Because the input transformer loss is 0.8dB, it needs to be added to the gain. Since the Op-Amp has the unity voltage gain, the voltage at the
evaluation board output is the same as the voltage at chip I or Q output. Therefore, the voltage gain of the chip with 60kΩ
load can be calculated by
Gv=RAW Gain-10+0.8(dB)
Input IP3 Measurement
The input IP3 measurement is based on a two tone inter-modulation test condition from the 3GPP standard, which specifies two tones with offset frequencies at 10MHz and 20MHz. Due to the on-chip baseband filtering, the two tone output
is attenuated and cannot be seen. Since the only parameter observable is the IM3 product, the input IP3 then is calculated by
IIP3=Pin+0.5*(Pin+RAW Gain-IM3)
NF=NO +174-RAW Gain-3-0.8(dB)
1dB Gain Compression Point Voltage at Baseband Output
The device has a relatively constant 1dB gain compression point versus VGC. Gain compression is tested with a CW signal with 60kΩ load differential.
How to Calculate the Power Gain of the Demodulator
In the system analysis for cascaded gain, noise and IP, it is often required to calculate the power gain of the demodulator
chip itself in matched load condition. Below is an example on how to determine this power gain value.
For this example, the load impedance is 60kΩ differential, the output AC impedance of the I or Q port is 500Ω, the measured RAW Gain is 95dB.
First, the power gain from the input of the chip to the input of Op-Amp needs to be calculated. Since the voltage at the
50Ω load and the voltage at Op-Amp input are the same, the difference of the power gain across the Op-Amp is the ratio
of load impedances. Hence, the power gain to the Op-Amp input is 95dB-10log(60000/50)=95-30=65dB.
Second, the power gain of the demodulator itself with matched load is calculated. The mismatch coefficient a is determined by the mismatch coefficient equation
4R S R L
4 ⋅ 500 ⋅ 60000
α = 10 log -------------------------2- = 10 log -------------------------------------2 = – 15dB
( RS + RL )
( 500 + 60000 )
Rev A4 010815
7-45
QUADRATURE
DEMODULATORS
7
Noise Figure Measurement
The noise figure measurement is based on the noise figure definition NF=NO -NI -Gain, where NO is the output noise
density, NI is the input noise density (-174dBm/Hz when no input signal is applied) and Gain is the RAW Gain. The output noise density NO is measured at 1MHz offset when no signal input is applied. The NF is calculated by NF=NO 174dBm/Hz-RAW Gain. Since the I and Q re-combination will provide 3dB extra for signal-to-noise ratio, the actual
noise figure is should be reduced by 3dB. In addition, noise figure should be reduced by the input transformer loss of
0.8dB. Therefore, the NF is calculated by
RF2689
Preliminary
Since the power gain to the input of the Op-Amp GP’=αGP, where GP is the power gain of demodulator for matched load.
Therefore, the demodulator power gain is 65+15 = 80 dB.
AC Coupling in Evaluation Board
The output I and Q baseband signal is AC coupled for evaluation purposes only. The high-pass corner frequency is at
1/(2π RC)=1/(6.28*30kΩ*100nF)=56Hz.
I and Q Output DC Voltage and Its Offset
Although the I and Q output is AC coupled on the evaluation board, in most applications, it would be DC coupled to the
ADC input buffer. The DC voltage at the IC output is VCC -1.6V with a possible variation of ±0.3V due to temperature and
tolerance. The differential circuit asymmetry would cause common mode DC offset to the extent of ±40mV.
Baseband Filter Calibration Process
The BB (baseband) filter calibration process is same for both WCDMA and GSM/DCS. After calibration is done, the
WCDMA mode sets the circuitry to have a 3dB bandwidth of 2.5MHz, the GSM/DCS mode (if the chip has GSM/DCS
mode) sets the circuitry to have a 3dB bandwidth of 250kHz.
QUADRATURE
DEMODULATORS
7
The BB filter in the I and Q path needs to be calculated every time after power down. When the FCLK pin is connected to
a signal generator with 0dBm output level at 13.0MHz, a logic high at CALEN pin for 200µs will calibrate the filter to have
2.5MHz bandwidth with 10% accuracy when WCDMA mode is set, or to 250kHz bandwidth with 10% accuracy when
GSM mode is set. The calibration is done when the chip is powered on only. Calibration is independent from all other
conditions, e.g. the chip enable could be off.
The calibration circuitry consumes 400µA. When the calibration sequence is complete after 200µs, the ICC drops to
0mA.
The 3dB bandwidth is defined to be from the reference level at 1MHz for WCDMA and at 50kHz for GSM/DCS. The 3dB
bandwidth is independent of VGC and VCC.
The filter can also be calibrated with different clock frequencies from 10MHz to 30MHz to tune the bandwidth over -40%
to +60% from its default 3dB bandwidth (2.5MHz for WCDMA and 250kHz for GSM). The 3dB bandwidth is linear with
clock frequency.
7-46
Rev A4 010815
RF2689
Preliminary
VREF2V
IF+
IF-
FCLK
*
VGC2
Pin Out
20
19
18
17
16
*
VGC1 1
15 CALEN
GSM IN+ 2
14 I OUT+
GSM IN- 3
13 I OUT-
6
7
8
9
10
EN RX
*
MODE B
11 Q OUT-
LO
W-CDMA IN- 5
MODE A
12 Q OUT+
VCC
W-CDMA IN+ 4
*
* Represents "GND".
QUADRATURE
DEMODULATORS
7
Rev A4 010815
7-47
RF2689
Preliminary
Application Schematic
FCLK
C9
10 nF
C8
10 nF
C11
10 pF
R1
10 kΩ
VGC
*
C1
6 pF
L1
68 nH
R6
680 Ω
C5
GSM IN 1 nF
C2
5.1 pF
WCDMA IN
L2
150 nH
R7
680 Ω
QUADRATURE
DEMODULATORS
7
C10
10 nF
19
18
17
16
*
1
15
ENCAL
2
14
I OUT P
3
13
I OUT N
4
12
Q OUT P
5
11
Q OUT N
*
C6
1 nF
20
6
7
8
9
10
*
C20
1 nF
VCC MODEA LO IN MODEB ENRX
7-48
Rev A4 010815
RF2689
Preliminary
Evaluation Board Schematic
(Download Bill of Materials from www.rfmd.com.)
TP1
VREF2V
JP3
1
-5V
2
+
C21
1 uF(16V)
+
TP3
IFN
Drawing 2689400 Rev J3
FCLK
C11
10 pF
3
C22
1 uF(16V) CON3
C8
1 nF
C9
100 pF
TP4
I OUT P
ENCAL
+5V
C14
100 nF
R1
10 kΩ
VGC
*
J1
GSM
50 Ω µstrip
C1
6 pF
C3*
DNI
J2
WCDMA
L1
68 nH
R6
680 Ω
C5
100 pF
C2
5.1 pF
50 Ω µstrip
L2
150 nH
C4*
DNI
C6
100 pF
R7
680 Ω
20
19
18
17
16
1
*
15
2
14
3
13
4
12
5
11
*
6
7
8
9
10
R12*
DNI
R2
10 kΩ
C13
100 nF
R3
10 kΩ
R14
20 kΩ
3 +
2
TP5
I OUT N
*
-
U2
7
8
4
R13*
DNI
C18
100 nF
R4
10 kΩ
C19
100 nF
R5
10 kΩ
R15
20 kΩ
+5V C16
100 nF
R16
20 kΩ
U3
7
3 +
8
6
2
-
4
5
CLC426
7
C10
ENRX 10 nF
6
ENCAL
R17
20 kΩ
VCC
5
MODEB
4
MODEA
3
MODEA
MODEB
ENRX
C20
100 pF
C23*
DNI
50 Ω µstrip
6
5
CLC426
TP6
Q OUT P
JP1
8
R18
51 Ω
J5
IOUT
-5V
C15
100 nF
50 Ω µstrip
R19
51 Ω
J6
QOUT
-5V
C17
100 nF
7
TP7
Q OUT N
50 Ω µstrip
J4
LO IN
C24*
DNI
VGC
2
1
HDR 8
C12
100 nF
QUADRATURE
DEMODULATORS
+5V
TP2
IFP
VCC
+ C7
1 uF
R11
1M
Rev A4 010815
Note: Parts with * following reference designator should not be populated on evaluation board.
R10
1M
R9
1M
R8
1M
7-49
RF2689
Preliminary
Evaluation Board Layout
3.098” x 3.000”
Board Thickness 0.152”, FR-4 Multi Layer
QUADRATURE
DEMODULATORS
7
7-50
Rev A4 010815
Preliminary
RF2689
QUADRATURE
DEMODULATORS
7
Rev A4 010815
7-51
RF2689
Preliminary
QUADRATURE
DEMODULATORS
7
7-52
Rev A4 010815
RF2689
Preliminary
BaseBand Filter Measurement (Caliberated)
Base Band Filter Respose (Caliberated)
IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.0V, VGC=2.4V)
9.00
8.0
6.0
8.00
Pout [dBm] @ 2.4 Vgc
4.0
Pout [dBm]
7.00
2.0
6.00
Amplitude (dBm)
Amplitude (dBm)
(VCC=3.0V, VGC=2.4V, IF=225.05MHz, LO=1080MHz @ -10dBm)
0.0
-2.0
-4.0
5.00
4.00
3.00
-6.0
2.00
-8.0
1.00
-10.0
-12.0
0.00
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0.0
50.0
100.0
150.0
Frequency (MHz)
20.0
15.0
300.0
350.0
7
Igc [uA]
Igc [uA]
5.0
10.0
0.0
5.0
-5.0
0.0
-10.0
-5.0
-15.0
-10.0
-20.0
-15.0
-25.0
QUADRATURE
DEMODULATORS
15.0
IGC (uA)
IGC (uA)
250.0
IGC versus VGC
(VCC=3.0V, IF=225MHz, LO=1080MHz @ -10dBm)
IGC versus VGC
(IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.0V, Temp. +25oC)
10.0
200.0
Frequency (kHz)
-20.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
0.2
0.4
0.6
0.8
1.0
VGC (V)
1.2
1.4
1.6
1.8
2.0
2.2
2.4
VGC (V)
Voltage Gain versus POUT (1dB Compression)
Voltage Gain versus Power Out (GSM-1dB Compression)
IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.0V, VGC=2.4V)
(IF=225MHz, LO=1080MHz, VCC=3.0V, VGC=2.4V)
82.0
84.0
81.0
Voltage Gain [dB]
Voltage Gain [dB]
82.0
80.0
78.0
Voltage Gain (dB)
Voltage Gain (dB)
79.0
77.0
76.0
75.0
80.0
78.0
76.0
74.0
73.0
74.0
72.0
71.0
600
72.0
700
800
900 1000 1100 1200 1300 1400 1500 1600 1700 1800
POUT (mV-peak)
Rev A4 010815
800.0
900.0
1000.0 1100.0
1200.0 1300.0 1400.0 1500.0
1600.0
POUT (mV-peak)
7-53
RF2689
Preliminary
Voltage Gain versus VGC (W-CDMA, Temp +25oC, -40oC,
o
+85 C)
90.0
100.0
Gain @2.7V,Temp.+25C
Gain @2.7V,Temp.- 40C
80.0
Gain @2.7V,Temp.+25C
Gain @2.7V,Temp.- 40C
Gain @2.7V,Temp.+85C
Gain @2.7V,Temp.+85C
70.0
60.0
Voltage Gain (dB)
Voltage Gain (dB)
o
(IF=225.05MHz, LO=1080MHz @ -10dBm, VCC=2.7V, VGC=2.4V to 0.3V)
(IF=190MHz, LO=1520MHz @ -10dBm, VCC=2.7V, VGC=2.4V to
0.3V)
80.0
o
Voltage Gain versus VGC (GSM, Temp. +25 C, -40 C, +85 C)
o
60.0
50.0
40.0
30.0
40.0
20.0
0.0
20.0
-20.0
10.0
0.0
-40.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
0.2
0.4
0.6
0.8
1.0
o
o
o
(IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.0V, VGC=2.4V to 0.3V)
1.8
2.0
2.2
2.4
Gain @3.0V,Temp.+25C
Gain @3.0V,Temp.- 40C
Gain @3.0V,Temp.+85C
90.0
Gain @3.0V,Temp +25C
Gain @3.0V,Temp.- 40C
80.0
Gain @3.0V,Temp.+85C
60.0
Voltage Gain (dB)
Voltage Gain (dB)
70.0
60.0
50.0
40.0
30.0
40.0
20.0
0.0
20.0
-20.0
10.0
-40.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
0.2
2.4
0.4
0.6
0.8
1.0
90.0
Voltage Gain versus VGC (W-CDMA)
(IF=190MHz, LO=1520MHz @ -10dBm,
VCC=3.3V, VGC=2.4V to 0.3V, Temp=-25oC, -40oC, +85oC)
1.6
1.8
2.0
2.2
2.4
o
o
o
(IF=225.05MHz, LO=1080MHz @ -10dBm, VCC=3.3V, VGC=2.4V to 0.3V)
100.0
Gain @3.3V,Temp.+25C
80.0
Gain @3.3V,Temp.- 40C
Gain @3.3V,Temp - 40C
Gain @3.3V,Temp.+85C
Gain @3.3V,Temp.+85C
70.0
1.4
Voltage Gain versus VGC (GSM, Temp. +25 C, -40 C, +85 C)
Gain @3.3V,Temp.25C
80.0
1.2
VGC (V)
VGC (V)
60.0
60.0
Voltage Gain (dB)
Voltage Gain (dB)
QUADRATURE
DEMODULATORS
1.6
40oC,+85oC) (IF=225MHz, LO=1080MHz, VCC=3.0V, VGC=2.4V to 0.3V)
100.0
80.0
1.4
Voltage Gian versus VGC (GSM, Temp=+25oC, -
Voltage Gain versus VGC (W-CDMA, Temp. +25 C, -40 C, +85 C)
7
1.2
VGC (V)
VGC (V)
50.0
40.0
30.0
40.0
20.0
0.0
20.0
-20.0
10.0
0.0
-40.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VGC (V)
7-54
1.6
1.8
2.0
2.2
2.4
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
VGC (V)
Rev A4 010815
RF2689
Preliminary
Voltage Gain versus VGC (W-CDMA, Temp. -40oC)
Voltage Gain versus VGC (GSM, Temp. -40oC)
IF Freq. 190MHz, LO Freq. 1520MHz @ -10 dBm, VCC=3.3V, 3.0V, 2.7V,
(IF=225MHz, LO=1080MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
VGC=2.4V to 0.3V)
90.0
100.0
Gain @3.3V,Temp - 40C
Gain @3.3V,Temp.- 40C
Gain @3.0V,Temp.- 40C
Gain @2.7V,Temp.- 40C
80.0
Gain @3.0V,Temp.- 40C
Gain @2.7V,Temp.- 40C
80.0
70.0
Voltage Gain (dB)
Voltage Gain (dB)
60.0
60.0
50.0
40.0
30.0
40.0
20.0
0.0
20.0
-20.0
10.0
0.0
-40.0
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
0.2
2.4
0.4
0.6
0.8
1.0
VGC (V)
1.2
1.4
1.6
1.8
2.0
2.2
2.4
VGC (V)
Voltage Gain versus VGC (W-CDMA, Temp. 25oC)
Voltage Gain versus VGC (GSM, Temp. +25oC)
(IF Freq. 190MHz, LO Freq. 1520MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
IF=225MHz, LO=1080MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
90.0
Gain @3.3V,Temp.25C
Gain @3.0V,Temp.25C
Gain @2.7V,Temp.25C
80.0
7
100.0
Gain @3.3V,Temp.+25C
Gain @3.0V,Temp.+25C
Gain @2.7V,Temp.+25C
80.0
QUADRATURE
DEMODULATORS
0.2
60.0
60.0
Voltage Gain (dB)
Voltage Gain (dB)
70.0
50.0
40.0
30.0
40.0
20.0
0.0
20.0
-20.0
10.0
0.0
-40.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
0.2
2.4
0.4
0.6
0.8
1.0
VGC (V)
2.0
2.2
2.4
2.2
2.4
2.7V, VGC=2.4V to 0.3V)
100.0
Gain @3.3V,Temp.+85C
Gain @3.0V,Temp.+85C
Gain @3.3V,Temp.+85C
Gain @3.0V,Temp.+85C
Gain @2.7V,Temp.+85C
80.0
Gain @2.7V,Temp.+85C
60.0
Voltage Gain (dB)
Voltage Gain (dB)
1.8
(IF=225MHz, LO=1080MHz @ -10dBm, VCC=3.3V, 3.0V,
VGC=2.4V to 0.3V)
70.0
1.6
Voltage Gain versus VGC (GSM, Temp. +85oC)
(IF Freq. 190MHz, LO Freq. 1520MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V,
80.0
1.4
VGC (V)
Voltage Gain versus VGC (W-CDMA, Temp. +85oC)
90.0
1.2
50.0
40.0
30.0
60.0
40.0
20.0
20.0
0.0
10.0
0.0
-20.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VGC (V)
Rev A4 010815
1.6
1.8
2.0
2.2
2.4
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
VGC (V)
7-55
RF2689
10.0
Preliminary
IIP3 versus VGC (W-CDMA, Temp. +25oC, -40oC, +85oC)
IIP3 versus VGC (GSM, Temp. +25oC, -40oC, +85oC)
(IF=190MHz, LO=1520MHz @ -20dBm, VCC=2.7V, VGC=2.4V to
0.3V)
(IF Freq. 225.80MHz/226.650MHz, LO=1080MHz @ -10dBm, VCC=2.7V,
IIP3 @2.7V,Temp. +25C
IIP3 @2.7V,Temp.+25C
IIP3 @2.7V,Temp.- 40C
IIP3 @2.7V,Temp. +85C
0.0
VGC=2.4V to 0.3V)
0.0
IIP3 @2.7V,Temp. - 40C
-10.0
IIP3 @2.7V,Temp. +85C
-10.0
IIP3 (dBm)
IIP3 (dBm)
-20.0
-20.0
-30.0
-30.0
-40.0
-40.0
-50.0
-50.0
-60.0
-60.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
0.2
0.4
0.6
0.8
1.0
VGC (V)
10.0
1.4
1.6
2.2
2.4
(IF=225MHz, LO=1080MHz @ -10dBm, VCC=3.0V, VGC=2.4V to
0.3V)
0.0
IIP3 @3.0V,Temp.+25C
IIP3 @3.0V,Temp.- 40C
IIP3 @3.0V,Temp.+85C
IIP3 @3.0V,Temp.+25C
-10.0
IIP3 @3.0V,Temp.- 40C
IIP3 @3.0V,Temp.+85C
-20.0
IIP3 (dBm)
IIP3 (dBm)
-10.0
-20.0
-30.0
-30.0
-40.0
-40.0
-50.0
-50.0
-60.0
-60.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
0.2
0.4
0.6
0.8
1.0
VGC (V)
10.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
VGC (V)
IIP3 versus VGC (W-CDMA, Temp. +25oC, -40oC, +85oC)
IIP3 vs VGC (GSM, Temp=+25oC, -40oC, +85oC)
(IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.3V, VGC=2.4V to
0.3V)
IF=225.80/226.650MHz, LO=1080MHz @ -10dBm, VCC=3.3V, VGC=2.4V to 0.3V)
0.0
IIP3 @3.3V,Temp. +25C
IIP3 @3.3V,Temp.25C
IIP3 @3.3V,Temp. - 40C
IIP3 @3.3V,Temp.- 40C
0.0
-10.0
IIP3 @3.3V,Temp. +85C
IIP3 @3.3V,Temp. +85C
-10.0
IIP3 (dBm)
-20.0
IIP3 (dBm)
QUADRATURE
DEMODULATORS
2.0
IIP3 versus VGC (GSM, Temp. +25oC, -40oC, +85oC)
(IF=190MHz, LO=1520MHz @ -10dBm, VCC=3.0V, VGC=2.4V to
0.3V)
0.0
1.8
VGC (V)
IIP3 versus VGC (W-CDMA, Temp. +25oC, -40oC, +85oC)
7
1.2
-20.0
-30.0
-30.0
-40.0
-40.0
-50.0
-50.0
-60.0
-60.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VGC (V)
7-56
1.6
1.8
2.0
2.2
2.4
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
VGC (V)
Rev A4 010815
RF2689
Preliminary
IIP3 versus VGC (W-CDMA, Temp. -40oC)
(IF Freq. 190MHz, LO Freq. 1520MHz @ -10dBm,
VCC=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
IIP3 versus VGC (GSM, Temp -40oC)
(IF=225MHz, LO=1080MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
0.0
0.0
IIP3 @3.3V,Temp.- 40C
IIP3 @3.0V,Temp.- 40C
IIP3 @2.7V,Temp.- 40C
IIP3 @3.3V,Temp. - 40C
IIP3 @3.0V,Temp.- 40C
IIP3 @2.7V,Temp. - 40C
-10.0
-10.0
IIP3 (dBm)
IIPE (dBm)
-20.0
-20.0
-30.0
-30.0
-40.0
-40.0
-50.0
-50.0
-60.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
0.2
0.4
0.6
0.8
1.0
VGC (V)
1.4
1.6
1.8
2.0
2.2
2.4
VGC (V)
IIPE versus VGC (W-CDMA, Temp. 25oC)
IIP3 versus VGC (GSM,Temp. +25oC)
(IF Freq. 190MHz, LO Freq. 1520MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V,
(IF=225MHz, LO=1080MHz @ -10dBm, Vcc=3.3V, 3.0V, 2.7V, VGC=2.4V to 0.3V)
VGC=2.4V to 0.3V)
7
0.0
IIP3 @3.3V,Temp.25C
IIP3 @3.0V,Temp.25C
IIP3 @2.7V,Temp.25C
-5.0
IIP3 @3.3V,Temp. +25C
-5.0
QUADRATURE
DEMODULATORS
0.0
IIP3 @3.0V,Temp.+25C
-10.0
-10.0
-15.0
-15.0
-20.0
-20.0
IIP3 (dBm)
IIP3 (dBm)
1.2
-25.0
-30.0
-25.0
-30.0
-35.0
-35.0
-40.0
-40.0
-45.0
-45.0
-50.0
IIP3 @2.7V,Temp. +25C
-50.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
VGC (V)
VGC (V)
IIP3 versus VGC (W-CDMA, Temp. +85oC)
IIP3 versus VGC (GSM, Temp. +85oC)
(IF Freq. 190MHz, LO Freq. 1520MHz @ -10dBm, VCC=3.3V, 3.0V, 2.7V,
VGC=2.4V to 0.3V)
5.0
0.0
IIP3 @3.3V,Temp. +85C
0.0
-5.0
IIP3 @3.3V,Temp. +85C
IIP3 @3.0V,Temp.+85C
IIP3 @2.7V,Temp. +85C
-5.0
IIP3 @2.7V,Temp. +85C
2.4
(IF=225MHz, LO=1080MHz @ -10dBm, Vcc=3.3V, 3.0V, 2.7V, VGC=2.4V to
0.3V)
IIP3 @3.0V,Temp.+85C
-10.0
-10.0
2.2
-15.0
IIP3 (dBm)
IIP3 (dBm)
-15.0
-20.0
-25.0
-20.0
-25.0
-30.0
-30.0
-35.0
-35.0
-40.0
-40.0
-45.0
-45.0
-50.0
-50.0
0.2
0.4
0.6
0.8
1
1.2
1.4
VGC (V)
Rev A4 010815
1.6
1.8
2
2.2
2.4
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
VGC (V)
7-57
RF2689
Preliminary
NF versus VGC (W-CDMA)
NF versus VGC (GSM)
(IF=225.05MHz, LO=1080MHz @ -10dBm, VCC=3.0V, VGC=2.4V to 0.3V)
if=191MHz, LO=1520MHz @ -10dBm, VCC=3.0V, VGC=2.4V to
0.3V)
60.0
90.0
N.F[dB]
80.0
N.F[dB]
50.0
70.0
60.0
NF (dB)
NF (dB)
40.0
30.0
50.0
40.0
30.0
20.0
20.0
10.0
10.0
0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VGC (V)
1.6
1.8
2.0
2.2
2.4
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
VGC (V)
QUADRATURE
DEMODULATORS
7
7-58
Rev A4 010815