SHARP GP1A17

GP1A17
GP1A17
Wide Gap Type, OPIC Photointerrupter
■ Features
■ Outline Dimensions
1. Built-in Schmidt trigger circuit
2. Wide gap between light emitter and detector ( 10mm )
3. Operating supply voltage V CC : 4.5 to 17V
4. TTL and CMOS compatible output
( Unit : mm )
Internal connection diagram
Voltage regulator
Amp.
1 Anode
5 (
10kΩ )
4
2 Cathode
2 - C2.0
(2.5)
( Detector center )
2 - φ 3.2± 0.2
32.0± 0.3
18.6
10.0
0.3
3.0
1A17
5-
0.45 ± 0.2
6.0 ± 0.2
2.0
Slit width
(Both sides
of detector
and emitter )
(1.5)
(1.27)
(15.24)
2
4 3
1
5
(1.27)
* Unspecified tolerances shall be
as follows ;
Dimensions Tolerance
d<=6.0
± 0.1
6.0< d<=18.0 ± 0.2
18.0< d<=25.0 ± 0.25
* ( ): Reference dimensions
*“ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Parameter
Forward current
*1
Peak forward current
Input
Reverse voltage
Power dissipation
Supply voltage
Output
Output current
Power dissipation
Operating tamperature
Storage temperture
*2
Soldering temperature
( Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CC
IO
PO
T opr
T stg
Tsol
Rating
50
1
6
75
- 0.5 to + 17
50
250
- 25 to + 85
- 40 to + 100
260
6.0MIN.
■ Applications
1. Copiers
2. Analyzers, measuring instruments, etc.
3
25.4± 0.2
3 V CC
4 VO
5 GND
5.0MIN.
2
15.2
1
Unit
mA
A
V
mW
V
mA
mW
˚C
˚C
˚C
*1 Pules width <=100 µ s, Duty ratio = 0.01
*2 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
GP1A17
■ Electro-optical Charcateristics
Input
Transfer
characteristics
Response time
Output
( Ta = 25˚C )
Parameter
Forward voltage
Reverse current
Operating supply voltage
Low level output voltage
High level output voltage
Low level supply current
High level supply current
*3
“ Low→High” threshold
input current
*4
Hysteresis
“Low→High” propagation delay time
“High→Low” propagation delay time
Rise time
Fall time
Symbol
VF
IR
V CC
V OL
V OH
I CCL
I CCH
Conditions
I F = 7mA
V R = 3V
I OL = 16mA, VCC= 5V, I F = 0
V CC= 5V, I F = 7mA
V CC= 5V, I F = 0
V CC= 5V, I F = 7mA
MIN.
4.5
4.9
-
TYP.
1.13
0.15
2.5
1.0
MAX.
1.4
10
17
0.4
5.0
3.0
Unit
V
µA
V
V
V
mA
mA
I FLH
V CC= 5V
-
3.0
7.0
mA
I FHL /I FLH
t PLH
t PHL
tr
tf
Vcc= 5V
0.55
-
0.65
3
5
0.1
0.05
0.95
9
15
0.5
0.5
-
V CC= 5V
I F = 7mA
R L = 280Ω
µs
*3 I FLH represents forward current when output goes from low to high.
*4 I FHL represents forward current when output goes from high to low.
Hysteresis stands for IFHL /I FLH .
■ Recommended Operating Conditions
Parameter
Low level output current
Forward current
Symbol
I OL
IF
Operating temperature
Ta = 0 to + 70˚C
MAX.
16
20
Unit
mA
mA
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
60
300
50
250
Output power dissipation PO ( mW )
Forward current I F ( mA )
Fig. 1 Forward Current vs. Ambient
Temperature
MIN.
10
40
30
20
10
0
- 25
0
25
50
75
Ambient temperature Ta ( ˚C )
85
100
200
150
100
50
0
- 25
0
25
50
75 85
Ambient temperature Ta ( ˚C )
100
GP1A17
Fig. 4 Forward Current vs. Forward Voltage
60
500
50
200
Forward current I F ( mA )
Low level output current I OL ( mA )
Fig. 3 Low Level Output Current vs.
Ambient Temperature
40
30
20
25˚C
0˚C
- 25˚C
T a = 75˚C
50˚C
100
50
20
10
5
10
2
0
- 25
1
0
25
50
75 85
100
0
0.5
1
Ambient temperature T a ( ˚C )
Fig. 5 Relative Threshold Input Current vs.
Supply Voltage
2.5
3
3.5
1.4
Relative threshold input current I FHL /I FLH
Relative threshold input current I FHL /I FLH
2
Fig. 6 Relative Threshold Input Current vs.
Ambient Temperature
1.2
T a = 25˚C
1.0
I FLH
0.8
I FHL
0.6
I FLH = 1 at V CC = 5V
0.4
10
5
0
15
V CC = 5V
1.2
I FLH
1.0
I FHL
0.8
0.6
I FLH = 1 at Ta= 25˚C
0.4
- 25
0.2
20
0
Supply voltage VCC ( V)
25
50
75
100
Ambient temperature Ta ( ˚C )
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
0.4
1.0
V CC = 5V
V CC = 5V
T a = 25˚C
0.5
Low level output voltage VOL ( V)
Low level output voltage VOL ( V)
1.5
Forward voltage VF ( V)
0.2
0.1
0.05
0.02
0.01
1
2
5
10
20
50
Low level output current I OL ( mA )
100
0.3
I OL = 30mA
0.2
16mA
5mA
0.1
0
- 25
0
25
50
75
Ambient temperature Ta ( ˚C )
100
GP1A17
Fig. 9 Supply Current vs. Supply Voltage
Fig.10 Propagation Delay Time vs.
Forward Current
7
Propagation delay time tPLH ,t PHL ( µ s )
7
Supply current ICCL/ICCH ( mA )
6
5
T a =- 25˚C
4
25˚C
3
85˚C
I CCL
2
1
T a =- 25˚C
25˚C
I CCH
t PHL
6
5
4
3
t PLH
2
V CC = 5V
R L = 280Ω
1
T a = 25˚C
85˚C
0
0
2
4
6
8
10
12
14
16
0
20
10
30
Forward current IF ( mA )
Supply voltage VCC ( V )
Fig.11 Rise Time, Fall Time vs. Load Resistance
Rise time, fall time t r , t f ( µ s )
0.5
V CC = 5V
I F = 7mA
T a = 25˚C
0.4
0.3
tr
0.2
0.1
tf
0
0.2
0.5
2
1
5
10
Load resistance R L ( kΩ )
Test Circuit for Response Time
Voltage regulator
10k Ω
VIN
t r= tf= 0.01µ s
ZO= 50Ω
Amp.
47 Ω
+ 5V
Input
50%
280 Ω
tPLH
VO
0.01 µ F
tPHL
90%
Output
10%
tr
tf
VOH
1.5V
VOL
■ Precautions for Use
( 1 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µF
between Vcc and GND near the device.
( 2 ) As for other general cautions, refer to the chapter “Precautions for Use” .
40
50