SHARP GP1A20

GP1A20
GP1A20
OPIC Photointerrupter with Cover
Case
■ Features
■ Outline Dimensions
8.0
4. PWB mounting type package
2
1 Anode
2 Cathode
6.15
6.45
1.65
1.35
1.6
7.5
GP1A20
5-
2.5
8.0MIN.
7.0MIN.
+
3.0 - 0.3
0
13.9
15.6
1. Printers
2. Ticket vending machines
( 3.6) Detector
center
■ Applications
3
3 V CC
4 VO
5 GND
Slit width
(Both side of emitter and detector )
0.5
4.0
0.5
1. With cover case
2. High sensing accuracy ( Slit width : 0.5mm )
3. Operating supply voltage V CC : 4.5 to 17V
( Unit : mm )
Internal connection diagram
Voltage regulator
Amp.
1
5
10k Ω
4
0.45 +- 0.3
0.1
(1.5)
(5.445)
(1.27)
(1.27)
(0.75)
(0.75)
1.6
(10.6)
1.0
2
1
3
1.0
* Unspecified tolerances shall be as follows;
Dimensions(d) Tolerance
d<=6.0
± 0.15
6.0 < d<=16.0 ± 0.2
* ( ): Reference dimensions
5
4
*“ OPIC” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Parameter
Forward current
*1
Peak forward current
Input
Reverse voltage
Power dissipation
Supply voltage
Output
Output current
Power dissipation
Operating temperature
Storage temperature
*2
Soldering temperature
( Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CC
IO
PO
T opr
T stg
T sol
Rating
50
1
6
75
- 0.5 to + 17
50
250
- 25 to + 85
- 40 to + 100
260
Unit
mA
A
V
mW
V
mA
mW
˚C
˚C
˚C
*1 Pulse width <=100µ s, Duty ratio= 0.01
*2 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
GP1A20
■ Erectro-optical Characteristics
Output
Transfer
characteristics
Response
time
Input
Parameter
Forward voltage
Reverse current
Operating supply voltage
Low level output voltage
High level output voltage
Low level supply current
High level supply current
*3
“ Low→High” threshold input current
*4
Hysteresis
“ Low→High” propagation delay time
“ High→Low” propagation delay time
Rise time
Fall time
( Ta = 25˚C )
Symbol
VF
IR
V CC
V OL
V OH
I CCL
I CCH
I FLH
I FHL /I FLH
t PLH
t PHL
tr
tf
Conditions
I F = 10mA
V R = 3V
I OL = 16mA, V CC = 5V, I F = 0
V CC = 5V, I F = 10mA
V CC = 5V, I F = 0
V CC = 5V, I F = 10mA
V CC = 5V
V CC = 5V
V CC = 5V
I F = 10mA
R L = 280Ω
MIN.
4.5
4.9
0.55
-
TYP.
1.1
0.15
2.5
1.0
2.0
0.75
3
5
0.1
0.05
MAX.
1.4
10
17
0.4
5.0
3.0
9.5
0.95
9
15
0.5
0.5
*3 I FLH represents forward current when output changes from low to high.
*4 I FHL represents forward current when output changes from high to low.
Hysteresis stands for IFHL /I FLH .
■ Recommended Operating Conditions
Parameter
Low level output current
Forward current
Symbol
I OL
IF
Operating temperature
Ta = 0 to + 70˚C
300
50
250
Output power dissipation PO ( mW )
60
40
30
20
10
0
- 25
0
25
50
75 85
Ambient temperature Ta ( ˚C )
MAX.
16
20
Unit
mA
mA
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
F
( mA )
Fig. 1 Forward Current vs. Ambient
Temperature
Forward current I
MIN.
10
100
200
150
100
50
0
- 25
0
25
50
75 85
Ambient temperature Ta ( ˚C )
100
Unit
V
µA
V
V
V
mA
mA
mA
µs
GP1A20
Fig. 4 Forward Current vs. Forward Voltage
60
500
50
200
Forward current I F ( mA )
Low level output current I OL ( mA )
Fig. 3 Low Level Output Current vs.
Ambient Temperature
40
30
20
25˚C
0˚C
- 25˚C
Ta = 75˚C
50˚C
100
50
20
10
5
10
2
0
1
0
- 25
25
50
75 85
100
0
0.5
1
Ambient temperature Ta ( ˚C )
1.5
2
2.5
3
3.5
Forward voltage VF ( V)
Fig. 5 Relative Threshold Input Current vs.
Supply Voltage
Fig. 6 Relative Threshold Input Current vs.
Ambient Temperature
1.4
1.2
1.0
Relative threshold input current I FHL /I FLH
Relative threshold input current I FHL /I FLH
V CC = 5V
T a = 25˚C
I FLH
0.8
I FHL
0.6
0.4
I FLH = 1 at VCC = 5V
0.2
10
5
0
15
20
1.2
I FLH
1.0
I FHL
0.8
0.6
IFLH = 1 at Ta = 25˚C
0.4
- 25
0
Supply voltage VCC ( V)
25
50
75
100
Ambient temperature Ta ( ˚C )
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
1
0.4
V CC = 5V
T a = 25˚C
0.5
Low level output voltage VOL ( V)
Low level output voltage VOL ( V)
V CC = 5V
0.2
0.1
0.05
0.02
0.01
1
2
5
10
20
50
Low level output current I OL ( mA )
100
0.3
I OL = 30mA
0.2
16mA
5mA
0.1
0
- 25
0
25
50
75
Ambient temperature Ta ( ˚C )
100
GP1A20
Fig. 9 Supply Current vs. Supply Voltage
Fig.10 Propagation Delay Time vs.
Forward Current
7
( µs )
6
PHL
T a =- 25˚C
Propagation delay time t PLH , t
Supply current I CCL /ICCH ( mA)
5
4
25˚C
3
85˚C
ICCL
2
Ta =- 25˚C
25˚C
85˚C
1 ICCH
t PHL
6
5
4
3
t PLH
2
V CC = 5V
R L = 280 Ω
1
T a = 25˚C
0
0
2
6
4
8
10
12
14
16
0
20
10
30
Forward current I F ( mA )
Supply voltage VCC ( V )
Fig.11 Rise Time, Fall Time vs. Load Resistance
Rise time, fall time t r , t f ( µs )
0.5
V CC = 5V
I F = 10mA
T a = 25˚C
0.4
0.3
tr
0.2
0.1
tf
0
0.2
0.5
2
1
5
10
Load resistance RL ( kΩ )
Test Circuit for Response Time
Voltage regulator
(10kΩ )
Input
Amp.
47 Ω
50%
tPLH
VO
VIN
t r = tf = 0.01 µ s
ZO = 50 Ω
+ 5V
280 Ω
0.01 µ F
GND
tPHL
90%
Output
10%
tr
tf
VOH
1.5V
VOL
■ Precautions for Use
( 1 ) In this product, flux in the cleaning solvent may remain inside the slit of holder.
It sometimes causes lower output;therefore, cleaning is prrhibited.
( 1 ) In order to stabilize power supply line, connect a by-pass capacitor of more than 0.01 µF
between Vcc and GND near the device.
( 3 ) As for other general cautions< refer to the chapter “ Precautions for Use ” .
40
50