SHARP GP1A58HR

GP1A58HR
GP1A58HR
OPIC Photointerrupter
■ Features
■ Outline Dimensions
1. High sensing accuracy ( Slit width: 0.5mm )
2. PWB mounting type
S
■ Applications
( Unit : mm )
Internal connection
Voltage regulator
diagram
Amp.
1
5
15k Ω
4
A58
2
1 Anode
2 Cathode
1. OA equipment such as printers, facsimiles, etc.
2. VCRs
2- φ 0.7
+
0.4 - 0.3
0.1
(1.5)
1
4
2.5
(1.27 )
2
*“OPIC” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Paramerter
Forward currnt
*1
Peak forward current
Reverse voltage
Power dissipation
Supply voltage
Output current
Power dissipation
Operating temperature
Storage temperature
*2
Soldering temperature
( Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CC
IO
PO
T opr
T stg
T sol
Rating
50
1
6
75
- 0.5 to + 17
50
250
- 25 to + 85
- 40 to + 100
260
+0.3
- 0.1
* Unspecified tolerances
shall be as follows ;
Dimensions(d) Tolerance
d<=6.0
± 0.1
6.0< d<=18.0 ± 0.2
* ( ) : Reference dimensions
6.5
3
5 - 0.45
(1.27)
(10.3)
5
C1.0
10.0
( Both sides of 5.2
detector and
emitter ) 0.5
Slit width
10.0MIN.
2 - 0.7
7.5
1A58HR
5-
3.5
(2.5)
13.7 ± 0.3
5.0 +- 0.2
0.1
3
3 V CC
4 VO
5 GND
Unit
mA
A
V
mW
mA
mA
mW
˚C
˚C
˚C
*1 Pulse width<= 100µ s, Duty ratio= 0.01
*2 For 5 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
GP1A58HR
■ Electro-optical Characteristics
Input
Output
Transfer
characterisitics
Parameter
Forward voltage
Reverse current
Operating supply voltage
Low level output voltage
High level output voltage
Low level supply current
High level supply current
*1
"Low→High" threshold input current
*2
Hysteresis
"Low→High"propagation delay time
Response "High→Low"propagation delay time
time
Rise time
Fall time
( Ta = 25˚C )
Symbol
VF
IR
VCC
VOL
VOH
I CCL
I CCH
I FLH
I FHL /I FLH
t PLH
t PHL
tr
tf
Conditions
I F = 8mA
V R = 3V
V CC = 5V, I F = 0mA, I OL = 16mA
V CC = 5V, I F = 8mA
V CC = 5V, I F = 0mA
V CC = 5V, I F = 8mA
V CC = 5V
V CC = 5V
V CE = 5V, I F = 8mA
R L = 280Ω
MIN.
4.5
4.9
0.55
-
TYP.
1.14
0.15
1.7
0.7
1.5
0.75
3.0
5.0
0.1
0.05
MAX.
1.4
10.0
17.0
0.4
3.8
2.2
8.0
0.95
9.0
15.0
0.5
0.5
*1 I FLH represents forward current when output changes from low to high.
*2 I FHL represents forward current when output changes from high to low.
■ Recommended Operating Conditions
Parameter
Output current
Forward current
Symbol
IO
IF
Operating temperature range
MIN.
10.0
Ta = 0 to + 70˚C
Fig. 1 Forward Current vs. Ambient
Temperature
Output power dissipation P O ( mW )
300
50
Forward current I F ( mA )
Unit
mA
mA
Fig. 2 Output Power Dissipation vs.
Ambient Temperature
60
40
30
20
10
0
- 25
MAX.
16.0
20.0
0
25
50
75 85
Ambient temperature Ta ( ˚C )
100
250
200
150
100
50
0
- 25
0
25
50
75 85
Ambient temperature Ta ( ˚C )
100
Unit
V
µA
V
V
V
mA
mA
mA
µs
µs
µs
µs
GP1A58HR
Fig. 4 Forward Current vs. Forward Voltage
50
200
40
( mA )
500
100
F
60
50
Forward current I
Low level output current I OL ( mA )
Fig. 3 Low Level Output Current vs.
Ambient Temperature
30
20
T a = 75˚C
50˚C
25˚C
0˚C
- 25˚C
20
10
5
10
2
0
- 25
1
0
25
50
75 85
Ambient temperature T a ( ˚C )
100
Fig. 5 Relative Threshold Input Current vs.
Supply Voltage
0
0.5
1
Relative threshold input current I FHL , I FLH
Relative threshold input current
T a = 25˚C
1.0
0.9
0.8
I FHL
0.7
0.6
I FLH = 1 at V CC = 5V
5
10
15
Supply voltage VCC ( V )
20
25
Fig. 7 Low Level Output Voltage vs.
Low Level Output Current
I FLH
1.2
1.0
I FHL
0.8
0.6
I FLH = 1 at T
a=
25˚C
0
25
50
75
Ambient temperature Ta ( ˚C )
100
0.6
VCC = 5V
T a = 25˚C
0.5
1.4
Fig. 8 Low Level Output Voltage vs.
Ambient Temperature
V CC = 5V
Low levle output voltage V OL ( V )
Low levle output voltage VOL ( V )
1.0
3.5
V CC = 5V
1.6
0.4
- 25
0.5
0
3
Fig. 6 Relative Threshold Input Current vs.
Ambient Temperature
1.1
I FLH
1.5
2
2.5
Forward voltage V F ( V )
0.2
0.1
0.05
0.02
0.5
0.4
0.3
I OL = 30mA
0.2
16mA
0.1
5mA
0.01
1
2
5
10
20
50
Low level output current I OL ( mA )
100
0
- 25
0
25
50
75
Ambient temperature T a ( ˚C )
100
GP1A58HR
Fig. 9 Supply Current vs. Ambient Temperature
Fig.10 Propagation Delay Time vs.
Forward Current
3.0
Supply current I CC ( mA )
2.5
V CC = 17V
2.0
10V
}
1.5
5V
I CCL
1.0
V CC = 17V
} I CCH
5V
0.5
10V
Propagation delay time t PLH ,t PHL ( µ s )
12
VCC = 5V
RL= 280Ω
T a = 25˚C
10
8
6
4
t PLH
2
0
0
- 25
0
25
50
75
0
100
20
10
30
40
50
60
Forward current I F ( mA )
Ambient temperature Ta ( ˚C )
Fig.11 Rise Time, Fall Time vs.
Load Resistance
Test Circuit for Response Time
0.8
IF = 5mA
T a = 25˚C
VCC = 5V
0.7
Rise time, fall time t r ,t f ( µ s )
t PHL
Voltage regulator
I F = 5mA
0.6
+ 5V
Input
280Ω
15kΩ
Output
t r=tf=0.01µ s
ZO=50 Ω
0.5
0.01 µ F
47Ω
0.4
Amp.
tr
GND
0.3
Input
0.2
0.1
0
0.1
t PLH
tf
0.2
0.5
1
2
5
10
Load resistance R L ( k Ω )
50%
20
50
Output
t PHL
V
90% OH
1.5V
10%
tr
■ Precautions for Use
( 1 ) In order to stabilize power supply line, connect a by-pass capacitor of more th an 0.01µ F
between Vcc and GND near the device.
( 2 ) In case of cleaning, use only the following type of cleaning solvent.
Ethyl alcohol, Methyl alcohol, Isopropyl alcohol
( 3 ) As for other general cautions, refer to the chapter “Precautions for Use ”.
tf
VOL