SHARP PC733

PC733
AC Input Type Photocoupler
PC733
❈ Lead forming type ( I type ) is also available. ( PC733I )
■ Features
■ Outline Dimensions
1. AC input response
2. High isolation voltage between input and
output ( Viso : 5 000Vrms )
3. Current transfer ratio
CTR : MIN. 15% at I F = ± 1mA, VCE = 5V
4. Low collector dark current
( ICEO : MAX. 10 - 7A at VCE = 20V)
5. TTL compatible output
6. Recognized by UL, file No. E64380
1
6.5 ± 0.5
4
2
1
3
2
3
7.62 ± 0.3
9.22 ± 0.5
3.7 ± 0.5
3.5 ± 0.5
0.5TYP.
Primary side mark
(Sunken place )
2.54 ± 0.25
0.5 ± 0.1
■ Absolute Maximum Ratings
Output
5
PC733
1. Telephone sets
2. Programmable controllers
3. System appliances, measuring instruments
4. Signal transmission between circuits of
different potentials and impedances
Input
Internal connection
diagram
6
5
4
1.2 ± 0.3
6
■ Applications
Parameter
Forward current
*1
Pead forward current
Power dissipation
Collector-emitter voltage
Emitter-collector voltage
Collector-base voltage
Emitter-base voltage
Collector current
Collector power dissipation
Total power dissipation
*2
Isolation voltage
Operating temperature
Storage temperature
*3
Soldering temperature
( Unit : mm )
θ
0.26 ± 0.1
θ = 0 to 13 ˚
1
2
Anode, cathode
Anode, cathode
4
5
Emitter
Collector
3
NC
6
Base
( Ta = 25˚C )
Symbol
IF
I FM
P
V CEO
V ECO
V CBO
V EBO
IC
PC
P tot
V iso
Topr
Tstg
Tsol
Rating
± 50
±1
70
35
6
35
6
50
150
170
5 000
- 25 to + 100
- 40 to + 125
260
Unit
mA
A
mW
V
V
V
V
mA
mW
mW
Vrms
˚C
˚C
˚C
*1 Pulse width<=100µs, Duty ratio : 0.001
*2 40 to 60% RH, AC for 1 minute
*3 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
θ
PC733
■ Electro-optical Characteristics
Input
Output
Transfer
characteristics
( Ta = 25˚C )
Parameter
Forward voltage
Peak forward voltage
Terminal capacitance
Collector dark current
Current transfer ratio
Collector-emitter saturation voltage
Isolation resistance
Floating capacitance
Cut-off frequency
Rise time
Response time
Fall time
Symbol
VF
V FM
Ct
I CEO
CTR
VCE ( sat )
R ISO
Cf
fC
tr
tf
60
120
50
100
40
30
20
10
0
- 25
0
25
50
75
100
Ambient temperature T a ( ˚C )
TYP.
1.2
50
0.1
1011
0.6
80
4
3
MAX.
1.4
3.0
400
10 - 7
300
0.2
1.0
18
18
Unit
V
V
pF
A
%
V
Ω
pF
kHz
µs
µs
80
70
60
40
20
0
- 25
125
Fig. 3 Collector Power Dissipation VS.
Ambient Temperature
0
25
75
100
50
Ambient temperature T a ( ˚C )
125
Fig. 4 Power Dissipation vs.
Ambient Temperature
200
200
170
Power dissipation Ptot ( mW )
Collector power dissipation P C ( mW )
MIN.
15
5 x 1010
15
-
Fig. 2 Diode Power Dissipation vs.
Ambient Temperature
Diode power dissipation P ( mW )
Forward current I F ( mA )
Fig. 1 Forward Current vs.
Ambient Temperature
Conditions
I F = ± 20mA
I FM = ± 0.5A
V = 0, f = 1kHz
V CE = 20V, I F = 0
I F = ± 1mA, V CE = 5V
I F = ± 20mA, I C = 1mA
DC500V, 40 to 60% RH
V = 0, f = 1MHz
V CE = 5V, I C = 2mA, R L = 100 Ω , - 3dB
V CE = 2V, I C = 2mA
R L = 100 Ω
150
100
50
0
- 25
0
25
50
75
Ambient temperature T a
100
( ˚C )
125
150
100
50
0
- 25
0
25
50
Ambient temperature T
75
a
( ˚C )
100
125
PC733
Fig. 6 Forward Current vs.
Forward Voltage
Fig. 5 Peak Forward Current vs. Duty Ratio
10 000
T a = 25˚C
T a = 75˚C
200
2 000
1 000
500
200
100
50
20
50˚C
100
25˚C
0˚C
50
- 25˚C
Forward current I F ( mA )
Peak forward current I FM ( mA )
500
Pulse width<=100µ s
5 000
20
10
5
2
10
1
5
5 10 - 3 2
10
5
-2 2
5
10
-1 2
5
0
1
0.5
1.0
Duty ratio
2.0
2.5
3.0
3.5
Fig. 8 Collector Current vs.
Collector-emitter Voltage
Fig. 7 Current Transfer Ratio vs.
Forward Current
50
100
Collector current I C ( mA )
V CE = 5V
R BE =
Current transfer ratio CTR ( % )
1.5
Forward voltage V F ( V )
80
T a = 25˚C
60
40
R BE =
P C ( MAX.)
I F = 50mA
40
T a = 25˚C
40mA
30mA
30
20
20mA
10mA
10
5mA
0
0
1
2
3
4
5
6
7
Collector-emitter voltage V
CE
8
(V)
20
0
0.1
0.2
0.5
1
2
5
10
20
50 80
Forward current I F ( mA )
Relative current transfer ratio ( % )
150
I F = 1mA
V CE = 5V
R BE =
100
50
0
-25
0
25
50
75
Ambient temperature Ta ( ˚C )
100
Fig.10 Collector-emitter Saturation Voltage
vs. Ambient Temperature
Collector-emitter saturation voltage V CE(sat ) ( mV )
Fig. 9 Relative Current Transfer Ratio vs.
Ambient Temperature
150
I F = 20mA
125
I C = 1mA
R BE =
100
75
50
25
0
- 25
0
25
50
75
Ambient temperature Ta ( ˚C )
100
9
10
PC733
Fig.11-b Collector-base Dark Current vs.
Ambient Temperature
Fig.11-a Collector Dark Current vs.
Ambient Temperature
-5
10
-6
10
-7
10
-8
10
-9
10
- 10
10
- 11
10
-8
V CE = 20V
R BE =
V CB = 30V
R BE =
5
Collector dark current I CBO ( A )
Collector dark current I
CEO
(A)
10
2
10
-9
5
2
10
- 10
5
2
0
- 25
25
50
Ambient temperature T
10
75 100
a ( ˚C )
Fig.12 Response Time vs. Load Resistance
- 11
0
25
50
75
Ambient temperature T
a
100
( ˚C )
125
Fig.13 Frequency Response
500
V CE = 2V
I C = 2mA
R BE =
T a = 25˚C
100
Response time ( µ s )
50
tr
20
tf
10
5
td
2
V CE = 5V
I C = 2mA
R BE =
T a = 25˚C
0
Voltage gain A v ( dB )
200
ts
1
RL = 10k Ω 1k Ω
100 Ω
- 10
0.5
- 20
0.2
0.1
0.1
1
0.5
10
1
2
5
10
20
50 100 200
500
Frequency f ( kHz )
Load resistance R L ( k Ω )
Fig.14 Collector-emitter Saturation Voltage vs.
Forward Current
Test Circuit for Response Time
10
I C = 1mA
VCC
Output
Input
RD
RL
10%
Output
90%
td
ts
tr
tf
Test Circuit for Frequency Response
VCC
RD
Collector-emitter
saturation voltage VCE ( sat ) ( V )
Input
8
Output
3mA
5mA
6
7mA
10mA
4
2
0
RL
0
2
4
6
8
Forward current I
● Please refer to the chapter “Precautions for Use ”.
R BE =
T a = 25˚C
2mA
10
F
( mA )
12
14
16