SHARP PC866

PC866 Series
PC866 Series
Low Driving Current Type
Photocoupler
■ Features
■ Outline Dimensions
1. Low driving current ( single Tr. output )
( CTR : MIN. 100 % at I F = 1mA )
2. High collector-emitter voltage ( VCEO : 80V)
3. Isolation voltage between input and output
( Viso : 5 000V rms )
4. Also available burn-in type
( PC866Q / PC8D66Q/ PC8Q66Q )
( Unit : mm )
PC866/PC866Q
International connection
diagram
4
3
2.54
3
6.5 ± 0.5
4
Anode mark
866
1
0.9 ± 0.2
2
1
2
1.2 ± 0.3
7.62 ± 0.3
4.58 ± 0.5
2.7 ± 0.5
3.0 ± 0.5
0.5TYP.
1. Telephone sets
2. Computer terminals
3. System appliances, measuring instruments
3.5 ± 0.5
■ Applications
0.5 ± 0.1
θ
0.26 ± 0.1
θ
θ = 0 to 13 ˚
1 Anode
2 Cathode
3 Emitter
4 Collector
PC8Q66/PC8Q66Q
International connection diagram
16
15
14
13
12
11
10
9
6
7
8
10
9
7
8
PC8D66/PC8D66Q
International connection
diagram
2.54 ± 0.25
8
7
6
5
8
7
6
5
6.5 ± 0.5
1
2
3
4
3 4
0.9 ± 0.2
7.62
±0.3
2.7 ± 0.5
3.5 ± 0.5
15
θ
0.26 ± 0.1
0.5 ± 0.1
1
2
5
6
3
4
7
8
Anode
Cathode
Emitter
Collector
θ
5
14
13
12
11
PC8Q66
1
θ = 0 to 13 ˚
3.5 ± 0.5
3.0 ± 0.5
0.5TYP.
9.66 ± 0.5
4
2.54 ± 0.25
16
6.5 ± 0.5
1.2 ± 0.3
3
2
1.2 ± 0.3
3 4 5
6
0.9 ± 0.2
±
0.5
19.82
7.62
2.7 ± 0.5
2
3.0 ± 0.5
1
2
1 3 5 7 Anode
2 4 6 8 Cathode
9 11 13 15 Emitter
10 12 14 16 Collector
Anode mark
PC8D66
0.5TYP.
Anode mark
1
0.5
±0.1
θ
θ = 0 to 13 ˚
0.26 ± 0.1
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
θ
PC866 Series
■ Absolute Maximum Ratings
Input
Output
( Ta = 25˚C )
Parameter
Forward current
*1
Peak forward current
Reverse voltage
Power dissipation
Collector-emitter voltage
Emitter-collector voltage
Collector current
Collector power dissipation
Total power dissipation
*2
Isolation voltage
Operating temperature
Storage temperature
*3
Soldering temperature
Symbol
IF
I FM
VR
P
V CEO
V ECO
IC
PC
P tot
V iso
T opr
T stg
T sol
Rating
50
1
6
70
80
6
50
150
200
5 000
- 30 to + 100
- 55 to + 125
260
Unit
mA
A
V
mW
V
V
mA
mW
mW
V rms
˚C
˚C
˚C
*1 Pulse width <=100µs, Duty ratio : 0.001
*2 40 to 60% RH, AC for 1 minute
*3 For 10 seconds
■ Electoro-optical Characteristics
Input
Output
Transfer
characteristics
Parameter
Forward voltage
Peak forward voltage
Reverse current
Terminal capacitance
Collector dark current
Collector-emitter breakdown voltage
Emitter-collector breakdown voltage
Current transfer ratio
Collector-emitter saturation voltage
Isolation resistance
Floating capacitance
Cut-off frequency
Response time
( Ta = 25˚C )
Symbol
VF
V FM
IR
Ct
I CEO
BV CEO
BV ECO
CTR
V CE(sat)
R ISO
Cf
fc
Rise time
Fall time
tr
tf
Conditions
I F = 10mA
I FM = 0.5A
V R = 4V
V = 0, f = 1kHz
V CE = 24V, I F = 0
I C = 0.1mA, I F = 0
I E = 10 µA, I F = 0
I F = 1mA, V CE = 0.5V
I F = 1mA, I C = 0.2mA
DC500V, 40 to 60% RH
V = 0, f = 1MHz
V CE = 5V, I C = 2mA, R L = 100 Ω
- 3dB
V CE = 2V, I C = 2mA
R L = 100 Ω
MIN.
80
6
100
5 x 1010
-
TYP.
1.2
30
1011
0.6
MAX.
1.4
3.0
10
250
100
0.4
1.0
Unit
V
V
µA
pF
nA
V
V
%
V
Ω
pF
-
50
-
kHz
-
8
8
-
µs
PC866 Series
Fig. 2 Diode Power Dissipation vs.
Ambient Temperature
60
120
50
100
Diode power dissipation P ( mW )
Forward current I F ( mA )
Fig. 1 Forward Current vs.
Ambient Temperature
40
30
20
10
0
- 30
0
25
50
75
Ambient temperature T
a
100
( ˚C )
80
70
60
40
25
20
0
- 30
125
0
25
75
50
Ambient temperature T
Fig. 3 Collector Power Dissipation vs.
Ambient Temperature
a
100
125
( ˚C )
Fig. 4 Power Dissipation vs.
Ambient Temperature
250
150
Power dissipation P tot ( mW )
Collector power dissipation PC ( mW )
200
100
50
0
- 30
0
25
50
75
100
200
150
100
50
0
- 30
125
0
Fig. 5 Peak Forward Current vs. Duty Ratio
10 000
FM ( mA )
2 000
Peak forward current I
500
50
75
100
125
Fig. 6 Forward Current vs. Forward Voltage
Pulse width <=100 µs
5 000
25
Ambient temperature T a ( ˚C )
Ambient temperature T a ( ˚C )
500
T a = 25˚C
T a = 75˚C
200
25˚C
0˚C
50
- 25˚C
Forward current I
F
( mA )
1 000
50˚C
100
200
100
50
20
10
20
10
5
2
1
5
5
10
-3
2
5
10
-2 2
5
Duty ratio
10
-1 2
5
1
0
0.5
1.0
1.5
2.0
2.5
Forward voltage V F ( V )
3.0
3.5
PC866 Series
Fig. 8 Collector Current vs.
Collector-emitter Voltage
Fig. 7 Current Transfer Ratio vs.
Forward Current
50
500
V CE = 0.5V
T a = 25˚C
I F = 30mA
Collector current I C ( mA)
Current transfer ratio CTR ( % )
P C ( MAX.)
40
400
300
200
20mA
30
10mA
20
5mA
10
100
1mA
0
0.1
1
0
0
5
1
2
3
4
Collector-emitter voltage V CE ( V)
Forward current I F ( mA )
Fig. 9 Relative Current Transfer Ratio vs.
Ambient Temperature
0.16
I F = 1mA
V CE = 0.5V
100
50
0
- 30
0
20
40
60
80
Fig.10 Collector-emitter Saturation Voltage
vs. Ambient Temperature
Collector-emitter saturation voltage V CE(sat) ( V )
Relative current transfer ratio ( % )
150
I F = 20mA
I C = 1mA
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0
- 30
100
Ambient temperature T a ( ˚C )
500
V CE = 24V
200
-6
100
5
10
-7
10
-8
Response time ( µ s )
Collector dark current I CEO ( A )
10
5
5
10
80
100
50
20
tr
tf
10
5
td
ts
0.5
- 10
- 11
- 30
60
V CE = 2V
I C = 2mA
T a = 25˚C
1
5
10
40
2
-9
5
10
20
Fig.12 Response Time vs. Load Resistance
-5
5
0
Ambient temperature T a (˚C)
Fig.11 Collector Dark Current vs.
Ambient Temperature
10
5
20
0
40
60
Ambient temperature T a ( ˚C )
80
100
0.2
0.1
0.01
0.1
1
Load resistance RL ( k Ω )
10
50
PC866 Series
Fig.13 Frequency Response
V CE = 5V
I C = 2mA
T a = 25˚C
0
Voltage gain Av ( dB )
Test Circuit for Response Time
Input
VCC
Output
Input
RD
RL
Output
10%
1k Ω 100 Ω
R L = 10k Ω
90%
td
- 10
Test Circuit for Frepuency Response
VCC
- 20
RD
RL
Output
0.5
1
2
5
10
20
50 100 200
500
Frequency f ( kHz )
CE(sat)
(V)
Fig.14 Collector-emitter Saturation Voltage
vs. Forward Current
Collector-emitter saturation voltage V
ts
tr
6
T a = 25˚C
5
7mA
5mA
4
3mA
3
1mA
2
I C = 0.5mA
1
0
0
2
4
6
8
10
12
Forward current I
F
14
16
18
20
( mA )
● Please refer to the chapter “ Precautions for Use ”
tf