SHARP PC915

PC915
PC915
Wide Band Linear Output
Type OPIC Photocoupler
■ Features
■ Outline Dimensions
1. Wide band linear output type
( Frequency band width : TYP. 10Hz
to 8MHz )
2. Fluctuation free stable output
( Output fluctuation : TYP. ± 5% at
within operating temperature 50 000hr )
3. High isolation voltage
( Viso : 5 000V rms )
4. Standard dual-in-line package
5. Recognized by UL, file No, E64380
Internal
connection diagram
8
7
6
5
6 0.85 ± 0.2
1.2 ± 0.3
8
7
5
6.5 ± 0.5
AMP
PC915
AGC
1
2
3
4
1
2
3
4
AGC : Automatic
Gain Control
Anode mark
■ Applications
7.62 ± 0.3
3.0 ± 0.5
3.3 ± 0.5
0.5TYP.
1. Video signal insulation in TV
2. Insulation amplifier in measuring instrument and FA equipment
3.5 ± 0.5
9.66 ± 0.5
0.5 ± 0.1
0.26 ± 0.1
2.54 ± 0.25
θ
θ
θ = 0 to 13 ˚
1
2
3
4
NC
Anode
Cathode
NC
5
6
7
8
VO
V CC
GND
C
* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.
An OPIC consists of a light-detecting element and signalprocessing circuit integrated onto a single chip.
■ Absolute Maximum Ratings
Input
Output
Parameter
Forward current
Reverse voltage
Power dissipation
Supply voltage
Output power dissipation
Output current
*1
Isolation voltage
Operating temperature
Storage temperature
*2
Soldering temperature
( Ta = 25˚C )
Symbol
IF
VR
P
V CC
PO
IO
V iso
T opr
T stg
T sol
Rating
25
6
45
- 0.5 to + 13
250
- 1.0 to + 0.5
5 000
- 25 to + 85
- 55 to + 125
260
Unit
mA
V
mW
V
mW
mA
V rms
˚C
˚C
˚C
*1 40 to 60% RH, AC for 1 minute
*2 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
PC915
■ Electro-optical Characteristics
Input
( Unless otherwise spcified, Ta = 25˚C )
Parameter
Forward voltage
Reverse voltage
Terminal capacitance
Supply current
DC output voltage
Symbol
VF
IR
Ct
I CC
V ODC
Output noise voltage
V ONO
Output
AC output voltage
V OAC
AC output
*1
Temperature characteristics
voltage
fluctuation *2 Forward current characteristics
High frequency
Transfer *3
Cut-off
charac- frequency
Low frequency
teristics
Differential gain
Differential phase
∆V OAC-1
∆V OAC-2
f CH
f CL
DG
DP
Isolation resistance
R ISO
Floating capacitance
Cf
Conditions
I F = 10mA
V R = 5V
V = 0, f = 1MHz
I F = 10mA
I F = 10mA
I F = 10mA,
Band width =
100Hz to 4.2MHz
R E = 230 Ω
R E = 230 Ω ,
Ta = 10 to 70˚C
R E = 230 to 460 Ω
R E = 230 Ω
R E = 230 Ω
DC500V,
40 to 60% RH
V = 0, f = 1MHz
MIN.
4
TYP.
1.6
60
9
6
MAX.
1.8
10
250
16
8
Unit
V
µA
pF
mA
V
Fig.
1
1
1
-
4
-
mV rms
1
0.8
1.0
1.2
V P-P
2
-
±3
-
%
2
6
-
±3
8
10
+3
- 3
20
-
%
MHz
Hz
%
˚
2
2
2
3
3
-
Ω
-
5
pF
-
5 x 1010 1 x 1011
-
*1 Fluctuation ratio of VOAC at Ta = - 10 to 70˚C on the basis of VOAC at Ta = 25˚C
*2 Fluctuation ratio of VOAC at RE = 230 to 460Ω on the basis of VOAC at R E = 230 Ω
*3 Frequency of VIN when V OAC falls by 3dB on the basis of VOAC when frequency of VIN in Fig. 2 is 100kHz.
■ Recommended Operating Conditions
Input
Output
Parameter
Forward bias current
Supply voltage
AC output voltage
Symbol
I FB
V CC
V OAC
MIN.
8
8
-
MAX.
15
13
4
Unit
mA
V
V P-P
Output current
IO
- 0.6
+ 0.2
mA
C terminal capacitance
CC
10
-
µF
0.6
PC915
■ Test Circuit
Fig.1
PC915
1
NC
VCC
6
9V
VO
Anode
2
IF
A
5
AMP
+
V
3
AGC
Cathode
C
10 µ F
8
+
V
10
µF
7
4
NC
GND
Fig. 2
9V
100
µF
470 Ω
RE
PC915
1
+
Tr1
50 Ω
VCC
6
9V
Tr2
VO
Anode
2
100 µ F
VIN
NC
5
AMP
+
1.2k Ω
3
Cathode
AGC
C
8
+
10µ F
CRT
10
µF
7
4
NC
GND
Tr1 , T r2 : 2SA1029 or other same rank products
V IN Waveform
Sine wave
1VP - P
( Frequency ) 15kHz at measuring V OAC, ∆ VOAC - 1 and ∆ VOAC - 2
and shall be swept at measuring f CH and f CL.
PC915
Fig. 3
9V
100
pF
470 Ω
230 Ω
PC915
1
+
Tr1
6
9V
VO
Anode
2
5
AMP
+
3
1.2k Ω
75 Ω
VCC
Tr2
100 µ F
ViN
NC
Cathode
AGC
C
8
+
10
µF
10µ F
DG, DP
Tester
7
4
NC
GND
Tr1 , T r2 : 2SA1029 or other same rank products
1VP-D
40IRE
100IRE
V IN Waveform
Superposition
40IRE
wave 3.58MHz
0.067ms(1/15ms)
❈ APL (Average Picture Level )
❈ IRE (International Radio Engineers )
1IRE = 7.14mV (NTSC System )
Fig. 4 Forward Current vs. Ambient
Temperature
30
20
Forward current I
F
( mA )
25
15
10
5
0
- 25
0
25
50
Ambient temperature T a ( ˚C)
75 85
100
APL50%
PC915
Fig. 5 Power Dissipation vs. Ambient
Temperature
Fig. 6 Forward Current vs. Forward Voltage
300
100
Forward current I F ( mA )
Power dissipation P ( mW )
250
200
150
100
10
T a = 0˚C
1
25˚C
50˚C
70˚C
0.1
50
0
-25
0
25
50
75 85
Ambient temperature T
a
0.01
1.0
100
1.2
( ˚C )
1.4
1.6
1.8
2.2
Fig. 8-a Relative AC Output Voltage 1
vs. Ambient Temperature
Fig. 7 Supply Current vs. Ambient
Temperature
1.1
14
12
Relative AC output voltage
R E = 460 Ω
10
R E = 460 Ω
8
230 Ω
150 Ω
6
4
230 Ω
150 Ω
1.0
230 Ω
150 Ω
AC output voltage = 1
at T a = 25˚C, R E = 230 Ω
460 Ω
2
0
- 25
0
25
50
75
0.9
- 25
100
0
Ambient temperature T a ( ˚C )
25
50
75
100
Ambient temperature T a ( ˚C )
Test Circuit of Relative AC Output Voltage1
vs. Ambient Temperatue
Test Circuit of Supply Current
470 Ω
RE
2SA 2
1029 3
Anode
AMP
2SA1029
+
A
5 VO
+
Cathode
AGC
7
470 Ω
9V
VCC
6
2SA1029
1.2kΩ
PC915
8
C
+
10 µ F
10 µ F
100 µ F
Vin
50 Ω
47pF
9V
9V
100pF
Supply current I CC ( mA )
2.0
Forward voltage V F ( V )
RE
9V
PC915
6
Anode
2SA 2
1029 3
Cathode
1.2
kΩ
AMP
5
AGC
8
VCC
VO
+
10
µ F CRT
C
+
7
10 µ F
Vin Input Waveform
1VP - P, f = 15kHz
Sine wave
PC915
Relative AC output voltage ( dB )
T a = 25˚C
Test Circuit of Relative AC Output Voltage 2
vs. Freguency ( 1 )
9V
CE
470 Ω
0
R E = 460 Ω, C E = 47P F
2SA1029
+
R E = 230 Ω, C E = 100 P F
R E = 150 Ω, C E = 150 P F
-5
Vin
RE
9V
PC915
6
Anode
2SA
100 µ F 1029
1.2
75 Ω
kΩ
VCC
2
3
Cathode
VO
5
AMP
+
C
8
AGC
10 µ F
Fig. 8-b Relative AC Output Voltage 2
vs. Freguency ( 1 )
+
CRT
7
10 µ F
Relative value of AC output
voltage that is based on the
voltage at f = 100kHz of Vin
Vin Iuput Waveform
1VP - P , f = 15MHz
Sine wave
- 10
10 4
10 5
10 6
10 7
Freguency f ( Hz)
T a = 25˚C
Test Circuit of Relative AC Output Voltage 2
vs. Freguency ( 2 )
Relative AC output voltage ( dB )
0
9V
470 Ω
2SA1029
+
9V
PC915
Anode
2SA 2
100 µ F 1029
3
1.2
50 Ω
Cathode
kΩ
Vin
-5
RE
230 Ω
6
5
AMP
AGC
8
VCC
VO
+
+
10 µ F
Relative value of AC output voltage that
is based on the voltage at f = 100kHz of Vin
100pF
Fig. 8-c Relative AC Output Voltage 2
vs. Freguency ( 2 )
CC
0.1 µ F
CC = 10 µ F 1 µ F
- 10
10 0
Vin Input Waveform
1VP - P, f= 15MHz
Sine wave
10 1
10 2
10 3
10 4
Freguency f ( Hz)
Fig. 9 Differential Gain vs. R E
Fig.10 Differential Phase vs. R E
6
2
T a = 25˚C
T a = 25˚C
Differential phase DP ( deg. )
4
Differential gain DG ( % )
CRT
7
APL10%
2
APL50%
0
APL90%
-2
-4
0
0
APL90%
APL50%
APL10%
-2
-4
-6
-8
100
200
300
RE ( Ω )
400
500
0
100
200
300
RE ( Ω )
400
500
PC915
Test Circuit of Differential Gain vs. R E and Differential Phase vs. R E
V in Waveform
AMP
AGC
5
VO
10 µ F +
C
DG, DP
8
Tester
+
100IRE
Anode
2SA 2
100 µ F
1029 3
Cathode
50 Ω 1.2
kΩ
VCC
Superposition
wave 3.58MHz
7
0.067ms(1/15ms)
10 µ F
APL: Average Picture Level
■ Application Example
R1
470 Ω
C1 +
Vin
RE
230 Ω
100pF
VCC
9V
VCC
9V
PC915
6
Tr1
Tr2
100 µ F
1.2kΩ
Ri
R2
75 Ω
Anode
2
3
Cathode
VCC
VO
AMP
5
AGC
C
8
CC +
7
10 µ F
Tr1 , T r2 : 2SA1029 or other same rank products
VOUT = 2.3
is
Vin
= 2.3
IB
VCC- VE
VOUT
+
CO
10 µ F
IB : DC flowed to infrared LED
is : AC flowed to infrared LED
VE : Emitter voltage of T r2 ( Between emitter and GND )
< Example of Circuit Setting >
( 1 ) Set for Gain
Gain is represented by the following formula ;
G = 2.3/ ( VCC -VE )
When using on condition that Gain = 1, set VCC -VE on 2.3V. So that R 1 and R 2 is determined.
( 2 ) Set for Input Resistance
Set Ri on output impedance ( usually 75 Ω ) of a mounting equipment.
( 3 ) Set for R E
When there is no signal ( input signal : 0 ) , set I LED flowed into infrared LED on 10 mA.
( 4 ) Set for Low Cut-off Frequency
Low cut-off frequency with C terminal capacitance, C C , is represented by the following
formula ;
f C = 100/C C ( Hz ) ( C C : µ F value )
Then set Ci with input impedance of by-pass diode on as much value as possible on
condition that f C >1/ ( 2 π CiR ) [R = R 1 R2 / ( R1 + R 2 ) ]
■ Precautions for Use
( 1 ) It is recommended that a by-pass capacitor of more than 0.01 µ F is added between V CC
and GND near the device in order to stabilize power supply line.
( 2 ) Handle this product the same as with other integrated circuits against static electricity.
( 3 ) As for other general cautions, refer to the chapter “ Precautions for Use ”
40IRE
6
2SA1029
+
Vin
9V
PC915
40IRE
RE
1.0VP-P
470 Ω
47pF
9V