SHARP PQ7VZ5

Low Power-Loss Voltage Regulators
PQ7VZ5
PQ7VZ5
Variable Output, Compact Surface Mount Type Low Power-Loss Voltage Regulators
■ Outline Dimensions
(Unit : mm)
2.3±0.5
6.6MAX
5.2±0.5
(0.5)
3
7VZ5
(1.7)
9.7MAX
¡Low power-loss (Dropout voltage:MAX. 0.5V)
¡Variable output type (1.5V to 7V)
¡Surface mount type package (equivalent to EIAJ SC-63)
¡Output current:MAX.0.5A
¡Low dissipation current at OFF-state (Iqs:MAX.5µA)
¡Built-in ON/OFF control function
¡Reference voltage precision:±2.0%
¡Tape packaged type is also available. (Reel:3 000pcs.)
5.5±0.5
■ Features
(0to0.25)
■ Applications
4-(1.27)
(0.9)
2.5MIN
0.5 +0.2
-0.1
(0.5)
¡Personal computers
¡Word processors
¡Printers
¡Camcoders
¡Personal Information Tools(PDA)
12345
Internal connection diagram
1
2
3
Specific IC
5
■ Absolute Maximum Ratings
Parameter
*1
*1
*1
*2
*3
*1
*2
*3
Input voltage
ON/OFF control terminal voltage
Output adjustment terminal voltage
Output current
Power dissipation
Junction temperature
Operating temperature
Storage temperature
Soldering temperature
4
1 VIN
2 ON/OFF control
3 VOUT
4 OADJ
5 GND
Heat sink is common to 3 (VOUT)
(Ta=25˚C)
Symbol
VIN
VC
VADJ
IO
PD
Tj
Topr
Tstg
Tsol
Rating
10
10
7
0.5
8
150
-20 to +80
-40 to +150
260 (For 10s)
Unit
V
V
V
A
W
˚C
˚C
˚C
˚C
All are open except GND and applicable terminals.
PD:With infinite heat sink.
Overheat protection may operate at 125=<Tj=<150˚C
· Please refer to the chapter“ Handling Precautions ”.
“ In the absence of confirmation by device specification sheets,SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices
shown in catalogs,data books,etc.Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
Low Power-Loss Voltage Regulators
■ Electrical Characteristics
(Unless otherwise specified, conditions shall be VIN=5V, VO=3V(R1=1kΩ), Io=0.3A, VC=2.7V, Ta=25˚C)
Parameter
Input voltage
Output voltage variable range
Load regulation
Line regulation
Ripple rejection
Dropout voltage
Reference voltage
Temperature coefficient of reference voltage
ON-state voltage for control
ON-state current for control
OFF-state voltage for control
OFF-state current for control
Quiescent current
Output OFF-state consumption current
Symbol
VIN
VO
RegL
RegI
RR
Vi-o
Vref
TCVref
VC (ON)
IC (ON)
VC (OFF)
IC (OFF)
Iq
Iqs
Condition
IO=5mA to 0.5A
VIN=4 to 10V, IO=5mA
Refer to Fig. 2
VIN=3.4, IO=0.3A
IO=5mA, Tj=0 to 125˚C
NIN.
3.4
1.5
45
1.225
2.0
-
*4
IC=0A
VC=0.4V, IC=0A
IC=0A
VC=0.4V
TYP.
0.2
0.2
60
1.25
±1.0
4
-
MAX.
10.0
7.0
2.0
2.5
0.5
1.275
200
0.8
2
7
5
Unit
V
V
%
%
dB
V
V
%
V
µA
V
µA
mA
µA
In case of opening control terminal 2 , output voltage turns off.
Fig.1
Test Circuit
VIN
0.33µF
1
●
Fig.2
47µF
3
●
R2
●
VC 2
A
5
●
A
4
●
Iq 1kΩ
0.33µF
VO
IO
A
+
R1 V
Test Circuit for Ripple Rejection
~ ei
2
●
V
VIN
RL
10
Power Dissipation vs. Ambient
Temperature
Fig.4
0
50
80 100
150
Ambient temperature Ta (˚C)
Note) Oblique line portion:Overheat protection may
operate in this area.
5
●
IO
47µF
4
●
+
R1
1kΩ
V
~ eo
RL
4
Overcurrent Protection
Characteristics(Typical Value)
Ta =25˚C
VO=3V(R1=1kΩ,R2=1.4kΩ)
Output voltage VO (V)
PD
0
-20
+
f=120Hz (sine wave)
ei=0.5Vrms
IO=0.3A
RR=20 log (ei/eo)
VIN=5V
VO=3V (R1=1kΩ)
PD:With infinite heat sink
5
47µF
3
●
VC
[R1=390Ω,Vref = 1.25V]
Fig.3
1
●
R2
R2
R2
VO=Vref X 1+- = 1.25 X 1+R1
R1
Power dissipation PD (W)
*4
PQ7VZ5
3
Vi-O =0.5V
2
Vi-O =1V
Vi-O =5V
Vi-O =2V
1
0
0
0.5
1.0
1.5
Output current IO (A)
2.0
Low Power-Loss Voltage Regulators
8
Output Voltage Adjustment
Characteristics
Fig.6
R1=1kΩ
Reference voltage deviation ∆Vref (mV)
Fig.5
Output voltage VO (V)
7
6
5
4
3
2
1
0
0.1
Fig.7
100
1000
RL=1.2Ω
RL=∞
RL=0.6Ω
2
1
0
1
2
3
4
5
Input voltage VIN (V)
6
2
0
-2
-4
-6
-8
-10
-25
VIN =0.95VO
VO=3V(R1=1kΩ,R2=1.4kΩ)
0.4
0.3
0.2
0.1
0
-25
IO=0.5A
IO=0.4A
IO=0.3A
IO=0.2A
IO=0.1A
0
25
50
75
100
Junction temperature Tj (˚C)
125
0
25
50
75
100
Junction temperature Tj (˚C)
125
Circuit Operating Current vs. Input
Voltage
Ta =25˚C
VO=3V
(R1=1kΩ,
R2=1.4kΩ)
RL=6Ω
20
RL=10Ω
10
RL=∞
0
7
Dropout Voltage vs. Junction
Temperature(Typical Value)
0.5
4
Circuit operating current IBIAS (mA)
Ta =25˚C
VO=3V(R1=1kΩ,R2=1.4kΩ)
3
Fig.9
VIN=5V
8 VO=3V(R1=1kΩ,R2=1.4kΩ)
6 IO=0.3A
Fig.8
0
1
2
3
4
5
Input voltage VIN (V)
6
7
Fig.10 ON-state Voltage for Control vs.
Junction Temperature(Typical Value)
ON-state voltage for control VC(ON) (V)
Output voltage VO (V)
10
R2 (kΩ)
Reference Voltage Deviation vs.
Junction Temperature(Typical Value)
10
30
4
Dropout voltage Vi-O (V)
1
Output Voltage vs. Input Voltage
0
PQ7VZ5
3.0
VIN =5V
VO=3V(R1=1kΩ,R2=1.4kΩ)
2.5 IO=0.3A
2.0
1.5
1.0
0.5
0
-25
0
25
50
75
100
Junction temperature Tj (˚C)
125
Low Power-Loss Voltage Regulators
Fig.11 Quiescent Current vs. Junction
Temperature(Typical Value)
PQ7VZ5
Fig.12 Ripple Rejection vs. Input Ripple
Frequency
5
70
Ripple rejection RR (dB)
Quiescent current Iq (mA)
VIN =5V
VO=3V(R1=1kΩ,R2=1.4kΩ)
4 IO =0.3A
3
2
1
0
-25
0
25
50
75
100
Junction temperature Tj (˚C)
125
60
50
40
30
20 VIN=5V
VO=3V(R1=1kΩ,R2=1.4kΩ)
10 Io=0.3A
ei=0.5Vrms
0
0.1
1
10
Input ripple frequency f (kHz)
Fig.13 Output Peak Current vs. Junction
Temperature(Typical Value)
Output peak current IOP (A)
2.0
VIN=5V
VO=3V(R1=1kΩ,R2=1.4kΩ)
VIN-VO =5V
1.5
2V
1V
1.0
0.5V
0.5
IOP:Output current when
output voltage is 95%
in comparison with
the initial value
0
-25
0
25
50
75
100
Junction temperature Tj (˚C)
125
Fig.14 Power Dissipation vs. Ambient
Temperature(Typical Value)
Power dissipation PD (W)
3
Cu area 740mm2
2
PWB
Cu area 180mm2
Cu area 100mm2
PWB
Cu
1
Material
: Glass-cloth epoxy resin
Size
: 50X50X1.6mm 3
Cu thickness : 35µm
2
Cu area 70mm
Cu area 36mm2
0
-20
60
80
0
20
40
Ambient temperature Ta (˚C)
100
100
Low Power-Loss Voltage Regulators
PQ7VZ5
■ Model Line-ups for Tape-packaged Products
Output current
0.5A output
Sleeve-packaged products
High-precision output type
Standard type
PQ7VZ5
-
Tape-packaged products
Standard type
High-precision output type
PQ7VZ5U
■ Adjustment of Output Voltage
Output voltage is able to be set from 1.5V to 7V when resistors R 1, R2 are attached to £, ¢, ∞ terminals. As for the external
resistors to set output voltage, refer to the following figure or Fig.5.
VO
3
R2
-
4
R1
+
5
Vref
VO=Vref X (1+R2/R1)
=1.25X (1+R2/1000)
(R1=1kΩ,Vref =1.25V)