SII S818

Rev.1.2
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
The S-818 Series is a positive voltage regulator developed
utilizing CMOS technology featured by low dropout voltage,
high output voltage accuracy and low current consumption.
Built-in low on-resistance transistor provides low dropout
voltage and large output current. A ceramic capacitor of 2 µF
or more can be used as an output capacitor. A power-OFF
circuit ensures long battery life.
The SOT-23-5 miniaturized package and the SOT-89-5
package are recommended for configuring portable devices
and large output current applications, respectively.
„ Applications
„ Features
y Power source for
y Low current consumption
During operation: Typ. 30 µA, Max. 40 µA
During power off: Typ. 100 nA, Max. 500 nA
y Output voltage: 0.1 V steps between 2.0 and 6.0 V
y High accuracy output voltage: ±2.0%
y Peak output current;
Note
200 mA capable (3.0 V output product, VIN=4 V)
Note
300 mA capable (5.0 V output product, VIN=6 V)
y Low dropout voltage
Typ. 170 mV (5.0 V output product, IOUT = 60 mA)
A ceramic capacitor (2 µF or more) can be used as an
output capacitor.
y Built-in power-off circuit
y Compact package: SOT-23-5, SOT-89-5
battery-powered devices
y Power source for
personal communication devices
y Power source for home electric/electronic
appliances
Note : Please consider power dissipation of the package when the output current is large.
„ Package
y 5-pin SOT-23-5 (Package drawing code: MP005-A)
y 5-pin SOT-89-5 (Package drawing code: UP005-A)
Seiko Instruments Inc.
1
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.1.2
„ Block Diagram
*1
VOUT
VIN
ON/OFF
ON/OFF
circuit
Reference
voltage
VSS
*1: Parasitic diode
Figure 1 Block Diagram
„ Selection Guide
1. Product Name
S-818x xx A xx - xxx - T2
IC orientation in taping specifications
Product abbreviation
Package type MC : SOT-23-5
UC : SOT-89-5
Output voltage x 10
Product type
A: ON/OFF pin has positive logic (high active)
B: ON/OFF pin has negative logic (low active)
Table 1
Selection Guide
Output Voltage
SOT-23-5
SOT-89-5
S-818A20AMC-BGA-T2
S-818A20AUC-BGA-T2
2.0 V ± 2.0%
S-818A25AMC-BGF-T2
S-818A25AUC-BGF-T2
2.5 V ± 2.0%
S-818A28AMC-BGI-T2
S-818A28AUC-BGI-T2
2.8 V ± 2.0%
S-818A30AMC-BGK-T2
S-818A30AUC-BGK-T2
3.0 V ± 2.0%
S-818A33AMC-BGN-T2
S-818A33AUC-BGN-T2
3.3 V ± 2.0%
S-818A38AMC-BGS-T2
S-818A38AUC-BGS-T2
3.8 V ± 2.0%
S-818A40AMC-BGU-T2
S-818A40AUC-BGU-T2
4.0 V ± 2.0%
S-818A50AMC-BHE-T2
S-818A50AUC-BHE-T2
5.0 V ± 2.0%
Note:
Contact SII sales division for product with an output voltage other than those
specified above or product type B, low active product.
2
Seiko Instruments Inc.
Rev.1.2
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
„ Pin Configuration
Please refer to the package drawings at the end of this document for details.
Table 2 Pin Assignment
5
Pin No.
4
SOT-23-5
Top view
1
2
3
Symbol
Description
1
2
VIN
VSS
Voltage input pin
3
ON/OFF
Power off pin
Note
4
NC
5
VOUT
GND pin
No connection
Voltage output pin
Figure 2 SOT-23-5
Table 3 Pin Assignment
Pin No.
5
1
2
4
SOT-89-5
Top view
1
2
Symbol
VOUT
VSS
Note
Description
Voltage output pin
GND pin
3
NC
4
ON/OFF
Power off pin
5
VIN
Voltage input pin
No connection
Note: NC means electrical open. Connecting
NC pin to VIN or VSS is allowed.
3
Figure 3 SOT-89-5
„ Absolute Maximum Ratings
Parameter
Table 4 Absolute Maximum Ratings
(Ta=25°C unless otherwise specified)
Symbol
Absolute Maximum Rating
Unit
Input voltage
Output voltage
Power dissipation
Operating temperature range
Storage temperature range
VIN
VON / OFF
VOUT
PD
Tope
Tstg
12
VSS-0.3 to 12
VSS-0.3 to VIN+0.3
250 (SOT-23-5)
500 (SOT-89-5)
-40 to +85
-40 to +125
V
V
V
mW
°C
°C
The IC has a protection circuit against static electricity. DO NOT apply high static electricity or high voltage
that exceeds the performance of the protection circuit to the IC.
Seiko Instruments Inc.
3
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.1.2
„ Electrical Characteristics
S-818AXXAMC/UC, S-818BXXAMC/UC
Table 5 Electrical Characteristics
Parameter
Output voltage
Symbol
*1)
VOUT(E)
(Ta=25°C unless otherwise specified)
Conditions
VIN=VOUT(S)+1V,IOUT=30mA
2.0V ≤VOUT(S) ≤2.4V
2.5V ≤VOUT(S) ≤2.9V
3.0V ≤VOUT(S) ≤3.9V
4.0V ≤VOUT(S) ≤4.9V
5.0V ≤VOUT(S) ≤6.0V
*3)
Dropout voltage
Vdrop
IOUT =
2.0V ≤VOUT(S) ≤2.4V
60mA
2.5V ≤VOUT(S) ≤2.9V
3.0V ≤VOUT(S) ≤3.4V
3.5V ≤VOUT(S) ≤3.9V
4.0V ≤VOUT(S) ≤4.4V
4.5V ≤VOUT(S) ≤4.9V
5.0V ≤VOUT(S) ≤5.4V
5.5V ≤VOUT(S) ≤6.0V
∆VOUT1 1 VOUT(S) + 0.5 V ≤ VIN ≤ 10 V,
Line regulation 1
∆VIN • VOUT IOUT = 30mA
∆VOUT2 1 VOUT(S) + 0.5 V ≤ VIN ≤ 10 V,
Line regulation 2
∆VIN • VOUT IOUT = 10µA
∆VOUT3
Load regulation
VIN = VOUT(S) + 1 V,
10µA ≤ IOUT ≤ 80mA
∆VOUT 1 VIN = VOUT(S) + 1 V, IOUT = 30mA
Output voltage temperature
*4) ∆Ta • VOUT -40°C ≤ Ta ≤ 85°C
coefficient
Current consumption during
ISS1
VIN = VOUT(S) + 1 V,
operation
ON/OFF pin = ON, no load
Current consumption when
ISS2
VIN = VOUT(S) + 1 V,
power off
ON/OFF pin = OFF, no load
Input voltage
VIN
Power-off pin input voltage "H"
VSH
VIN = VOUT(S) + 1 V, RL = 1kΩ,
Output current
*2)
IOUT
VOUT(S)+1V
≤ VIN≤10V
Min.
Typ.
Max.
Test
Units circuit
VOUT(S) VOUT(S) VOUT(S) V
×0.98
×1.02
−
−
100 *5)
mA
−
−
150 *5)
mA
−
−
200 *5)
mA
−
−
250 *5)
mA
−
−
300 *5)
mA
−
0.51
0.87
V
−
0.38
0.61
V
−
0.30
0.44
V
−
0.24
0.33
V
−
0.20
0.26
V
−
0.18
0.22
V
−
0.17
0.21
V
−
0.17
0.20
V

0.05
0.2
%/V
s
1
3
3
3
3
3
1
1
1
1
1
1
1
1
1

0.05
0.2
%/V
1

30
50
mV
1
±100

1

30
40
ppm
/°C
µA

0.1
0.5
µA
2

1.5


10

V
V
1
4


0.3
V
4


0.1
µA
4


-0.1
µA
4

45

dB
5
2
Judged by VOUT output level.
Power-off pin input voltage "L"
VSL
VIN = VOUT(S) + 1 V, RL = 1kΩ,
Judged by VOUT output level.
Power-off pin input current "H"
ISH
Power-off pin input current "L"
ISL
Ripple rejection
RR
VIN = VOUT(S) + 1 V,
ON/OFF = 7 V
VIN = VOUT(S) + 1 V,
ON/OFF = 0 V
VIN = VOUT(S) + 1 V, f = 100Hz,
∆Vrip = 0.5 V p-p, IOUT=30mA
*1) VOUT(S)=Specified output voltage
VOUT(E)=Effective output voltage, i.e., the output voltage at fixet IOUT(=30 mA) and input VOUT(S)+1.0 V.
*2) Output current when the output voltage goes below 95% of VOUT(E) after gradually increasing output current.
*3) Vdrop = VIN1-(VOUT(E) × 0.98)
VIN1 = Input voltage when output voltage falls 98% of VOUT(E) after gradually decreasing input voltage.
*4) Output voltage shift by temperature [mV/°C] is calculated using the following equation.
∆VOUT
∆VOUT
[ppm/°C] ÷1000
[mV/°C] = VOUT(S)[V] × ∆Ta • V
OUT
∆Ta
Specified output voltage
Output voltage shift by temperature
Output voltage temperature coefficient
*5) Peak output current can exceed the minimum value.
4
Seiko Instruments Inc.
Rev.1.2
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
„ Test Circuits
1.
2.
VIN
A
VOUT
ON/OFF
A
VIN
V
VSS
ON/OFF
Set to
power ON
VOUT
VSS
Set to
VIN or GND
3.
4.
VIN
A
VOUT
ON/OFF
VIN
A
V
VSS
VOUT
ON/OFF
VSS
V
RL
Set to
power ON
5.
VIN
VOUT
ON/ OFF
VSS
V
RL
Set to
power ON
Figure 4 Test Circuits
„ Standard Circuit
OUTPUT
INPUT
VIN
CIN
VOUT
VSS
Single GND
CL
In addition to a tantalum capacitor, a ceramic
capacitor of 2 µF or more can be used in CL.
CIN is a capacitor used to stabilize input. Use a
capacitor of 0.47 µF or more.
GND
Figure 5 Standard Circuit
„ Operating Conditions
Input capacitor (CIN)
Output capacitor (CL)
Equivalent Series Resistor (ESR)
Input Series Resistor (RIN)
: 0.47 µF or more
: 2 µF or more
: 10 Ω or less
: 10 Ω or less
Seiko Instruments Inc.
5
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.1.2
„ Technical Terms
1. Low dropout voltage regulator
The low dropout voltage regulator is a voltage regulator having a low dropout voltage characteristic due to the
internal low on-resistance transistor.
2. Output voltage (VOUT)
The accuracy of the output voltage is ensured at ± 2.0% under the specified conditions of input voltage,
output current, and temperature, which differ product by product.
Note:
When the above conditions are changed, the output voltage may vary and go out of the accuracy range of
the output voltage. See the electrical characteristics and characteristic data for details.
3. Line regulations 1 and 2 (∆VOUT1, ∆VOUT2)
Line regulation indicates the input voltage dependence of the output voltage. The value shows how much the
output voltage changes due to the change of the input voltage when the output current is kept constant.
4. Load regulation (∆VOUT3)
Load regulation indicates the output current dependence of output voltage. The value shows how much the
output voltage changes due to the change of the output current when the input voltage is kept constant.
5. Dropout voltage (Vdrop)
Let VIN1 be an input voltage where the output voltage falls to the 98% of the actual output voltage VOUT(E)
when gradually decreasing input voltage. The dropout voltage is the difference between the VIN1 and the
resultant output voltage defined as following equation.
Vdrop = VIN1-[VOUT(E) × 0.98]
6. Temperature coefficient of output voltage [∆VOUT/(∆Ta • VOUT)]
The shadowed area in Figure 6 is the range where VOUT varies in the operating temperature range when the
temperature coefficient of the output voltage is ±100 ppm/°C.
Typical Example of the S-818A28A
VOUT
[V]
+0.28mV/°C
VOUT (E) is a mesured value of
output voltage at 25°C.
OUT(E)
-0.28mV/°C
-40
25
85
Ta [°C]
Figure 6 Temperature coefficient range of output voltage
A change of output voltage in temperature [mV/°C] is calculated using the following equation.
∆VOUT
[ppm/°C] ÷1000
∆Ta • VOUT
∆VOUT
[mV/°C] = VOUT(S)[V] ×
∆Ta
Specified output voltage
Output voltage temperature coefficient
Change of output voltage in temperatures
6
Seiko Instruments Inc.
Rev.1.2
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
„ Operation
VIN
1. Basic operation
Figure 7 shows the block diagram of the S-818
Series.
The error amplifier compares a reference voltage
VREF with the part of the output voltage divided by the
feedback resistors Rs and Rf. It supplies the output
transistor with the gate voltage, necessary to ensure
certain output voltage free of any fluctuations of input
voltage and temperature.
*1
Current
source
Error amplifier
Vref
Reference
voltage
circuit
VSS
VOUT
Rf
Rs
*1 Parasitic diode
Figure 7 Typical Circuit Block Diagram
2. Output transistor
The S-818 Series uses a low on-resistance Pch MOS FET as the output transistor.
Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being broken due to
inverse current flowing from VOUT pin to VIN pin through the parasitic diode.
3. Power Off Pin (ON/OFF Pin)
This pin activates and inactivates the regulator.
When the ON/OFF pin is switched to the power off level, the operation of all internal circuit stops, the built-in
Pch MOSFET output transistor between VIN and VOUT pin is switched off, suppressing current consumption.
The VOUT pin goes to the Vss level due to internal divided resistance of several MΩ between VOUT pin and
VSS pin.
The structure of the ON/OFF pin is shown in Figure 8. Since the ON/OFF pin is neither pulled down nor pulled
up internally, do not keep it in the floating state. Current consumption increases if a voltage of 0.3 V to VIN-0.3
V is applied to the ON/OFF pin. When the power off pin is not used, connect it to the VIN pin for product type
"A" and to the VSS pin for product type "B".
Table 6 Power off pin function by product type
Product
type
A
A
B
B
ON/OFF pin
“H” : Power on
“L” : Power off
“H” : Power off
“L” : Power on
Internal
circuit
Operating
Stop
Stop
Operating
VOUT pin
voltage
Set value
VSS level
VSS level
Set value
Seiko Instruments Inc.
VIN
Current
consumption
Iss1
Iss2
Iss2
Iss1
ON/OFF
Figure 8 ON/OFF
VSS Pin
7
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.1.2
„ Selection of Output Capacitor (CL)
The S-818 series needs an output capacitor between VOUT pin and VSS pin for phase compensation. A small
ceramic or an OS electrolytic capacitor of 2 µF or more can be used. If a tantalum or an aluminum electrolytic
capacitor is used, its capacitance must be 2 µF or more and the ESR must be 10 Ω or less.
Attention should be paid not to cause an oscillation due to increase of ESR at low temperatures when using an
aluminum electrolytic capacitor.
Evaluate the performance including temperature characteristics before prototyping the circuit.
Overshoot and undershoot characteristics differ depending upon the type of the output capacitor. Refer to output
capacitor dependence data in transient response characteristics .
„ Design Considerations
•
•
•
•
•
•
•
8
Design wiring patterns for VIN, VOUT and GND pins to decrease impedance.
When mounting an output capacitor, connection from the capacitor to the VOUT pin and to the VSS pin
should be as close as possible.
Note that output voltage may increase when the voltage regulator is used at low load current (less than 10
µA).
To prevent oscillation, it is recommended to use the external components under the following conditions:
* Input capacitor (CIN): 0.47 µF or more
* Output capacitor (CL): 2 µF or more
* Equivalent Series Resistance (ESR): 10 Ω or less
* Input series resistance (RIN): 10 Ω or less
The voltage regulator may oscillate when the impedance of the power supply is high and the input
capacitor is small or not connected.
Be sure that input voltage and load current do not exceed the power dissipation level of the package.
SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of
the products including this IC upon patents owned by a third party.
In determining necessary output current, consider the value of output current of Table 4 “Electrical
Characteristics” and Note *5) (page 4).
Seiko Instruments Inc.
Rev.1.2
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
„ Typical Characteristics (Typical Data)
(1) OUTPUT VOLTAGE vs. OUTPUT CURRENT (When load current increases)
S-818A30A(Ta=25°C)
S-818A20A(Ta=25°C)
1.0
VOUT(V)
3V
VOUT(V)
10V
3.0
2.0
10V
2.5V
4V
5V
6V
4V
2.0
5V
3.5V
1.0
VIN=2.3V
VIN=3.3V
0.0
0.0
0
0.2
0.4
0.6
0
0.8
0.2
0.4
IOUT(A)
0.6
0.8
IOUT(A)
S-818A50A(Ta=25°C)
6.0
10V
8V
VOUT(V)
5.0
* In determining necessary output current,
consider the following parameters:
• Minimum value of output current in
Table 4 “Electrical Characteristics”
and Note *5) (page 4);
• Power dissipation of the package
4.0
7V
6V
3.0
2.0
5.5V
1.0
VIN=5.3V
0.0
0
0.2
0.4
0.6
0.8
IOUT(A)
(2) OUTPUT VOLTAGE vs. INPUT VOLTAGE
S-818A20A (Ta=25°C)
2.5
S-818A30A (Ta=25°C)
3.5
Iout=10uA
100uA
1mA
3.0
2.0
V (V)
V (V)
Iout=10uA
100uA
60mA
1.5
30mA
2.5
60mA
2.0
30mA
1mA
1.5
1.0
1
2
3
4
2
V). (V)
3
4
5
V). (V)
S-818A50A (Ta=25°C)
5.5
V (V)
Iout=10uA
100uA
1mA
5.0
60mA
4.5
30mA
4.0
4
5
6
7
V). (V)
Seiko Instruments Inc.
9
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.1.2
(3) MAXIMUM OUTPUT CURRENT vs. INPUT VOLTAGE
S-818A20A
S-818A30A
0.8
0.8
Ta=-40°C
25°C
0.6
IOUTmax(A)
IOUTmax(A)
Ta=-40°C
0.4
85°C
0.2
0.0
0.6
85°C
0.4
25°C
0.2
0.0
0
2
4
6
8
10
0
2
4
VIN(V)
6
8
10
VIN(V)
S-818A50A
0.8
IOUTmax(A)
25°C
* In determining necessary output current,
consider the following parameters:
• Minimum value of output current in
Table 4 “Electrical Characteristics”
and Note *5) (page 4);
• Power dissipation of the package
0.6
Ta=-40°C
85°C
0.4
0.2
0.0
0
2
4
6
8
10
VIN(V)
(4) DROPOUT VOLTAGE vs. OUTPUT CURRENT
S-818A20A
S-818A30A
2000
1500
85°C
Vdrop(mV)
Vdrop(mV)
2000
Ta=-40°C
1000
25°C
500
1500
85°C
1000
Ta=-40°C
500
25°C
0
0
0
50
100
150
200
250
300
0
I/ 5 4 (mA)
Vdrop(mV)
2000
1500
85°C
1000
Ta=-40°C
500
25°C
0
100
200
300
400
500
600
I/ 5 4 (mA)
10
200
I/ 5 4 (mA)
S-818A50A
0
100
Seiko Instruments Inc.
300
400
Rev.1.2
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
(5) OUTPUT VOLTAGE TEMPERATURE DEPENDENCE
S-818A20A
S-818A30A
VIN=3V, IOUT=30mA
2.04
3.03
VOUT(V)
2.02
VOUT(V)
VIN=4V, IOUT=30mA
3.06
2.00
1.98
1.96
3.00
2.97
2.94
-50
0
50
100
-50
Ta(°C)
S-818A50A
0
50
100
Ta(°C)
VIN=6V, IOUT=30mA
5.10
VOUT(V)
5.05
5.00
4.95
4.90
-50
0
50
100
Ta(°C)
(6) LINE REGULATION TEMPERATURE DEPENDENCE
S-818A20/30/50A V) . =V/54 (S)+0.5↔ 10V,I/54 =30mA
35
V
1(mV)
30
25
3V
5V
20
15
10
V/54 =2V
5
0
-50
0
50
100
Ta(°C)
(7) LOAD REGULATION TEMPERATURE DEPENDENCE
S-818A20/30/50A V) . =V/54 (S)+1V,I/54 =10uA↔ 80mA
50
3V
3(mV)
30
V
40
20
5V
10
V/54 =2V
0
-50
0
50
100
Ta(°C)
Seiko Instruments Inc.
11
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.1.2
(8) CURRENTCONSUMPTION vs. INPUT VOLTAGE
S-818A20A
S-818A30A
40
40
25°C
25°C
30
I 1(uA)
I 1(uA)
30
85°C
20
10
85°C
20
Ta=-40°C
10
Ta=-40°C
0
0
0
2
4
V) . (V)
6
8
10
6
8
10
0
2
4
V) . (V)
6
8
10
S-818A50A
40
I 1(uA)
30
85°C
20
25°C
10
Ta=-40°C
0
0
2
4
V) . (V)
(9) THRESHOLD VOLTAGE OF POWER OFF PIN vs. INPUT VOLTAGE
S-818A20A
S-818A30A
2.5
2.0
VSH/VSL(V)
VSH/VSL(V)
2.5
VSH
1.5
1.0
2.0
VSH
1.5
1.0
0.5
0.5
VSL
0.0
2
4
6
VSL
0.0
8
10
3
VIN(V)
2.5
2.0
VSH/VSL(V)
VSH
1.5
1.0
0.5
VSL
5
6
8
9
10
VIN(V)
12
7
VIN(V)
S-818A50A
0.0
5
Seiko Instruments Inc.
8
10
Rev.1.2
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
(10) RIPPLE REDUCTION RATE
S-818A20A
0
VIN =3V IOUT=30mA CIN =None COUT=2µF 0.5Vp-p Ta=25°C
-20
Gain
(dB)
-40
-60
-80
-100
0.1
1
10
100
f (kHz)
S-818A30A
0
VIN =4V IOUT=30mA C IN =None COUT=2µF 0.5Vp-p Ta=25°C
-20
Gain
(dB)
-40
-60
-80
-100
0.1
1
10
100
f (kHz)
S-818A50A
0
VIN =6V IOUT=30mA CIN =NoneCOUT=2µF 0.5Vp-p Ta=25°C
-20
Gain
(dB)
-40
-60
-80
-100
0.1
1
10
100
f (kHz)
Seiko Instruments Inc.
13
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.1.2
REFERENCE DATA
„ TRANSIENT RESPONSE CHARACTERISTICS (S-818A30A, Typical data: Ta=25°C)
INPUT VOLTAGE
or
LOAD CURRENT
Overshoot
OUTPUT VOLTAGE
Undershoot
(1) Power on
V IN =0→10V IOUT=30mA
10V
CL=4.7µF
VOUT(0.5V/div)
0V
VIN
CL=2µF
VOUT
0V
TIME(50usec/div)
Load dependence of overshoot
1.0
Output capacitor (CL) dependence of overshoot
V IN =0→VOUT(S)+1V, CL=2µF
5V
Over Shoot(V)
Over Shoot(V)
0.8
0.6
3V
0.4
VOUT=2V
0.2
0.0
0.8
5V
0.4
0.2
1.E-04
1.E-03 1.E-02
IOUT(A)
1.E-01 1.E+00
1
VIN =0→VDD, IOUT=30mA,CL=2µF
1.0
5V
0.8
3V
0.6
VOUT=2V
0.4
10
CL(µF)
100
Temperature dependence of overshoot
Over Shoot(V)
Over Shoot(V)
3V
0.6
VDD dependence of overshoot
0.2
0.0
VIN =0→V/54 (S)+1V, IOUT=30mA,CL=2µF
3V
0.8
5V
VOUT=2V
0.6
0.4
0.2
0.0
0
14
VOUT=2V
0.0
1.E-05
1.0
VIN =0→VOUT(S)+1V, IOUT=30mA
1.0
2
4
6
VDD(V)
8
10
-50
Seiko Instruments Inc.
0
Ta(°C 50
100
Rev.1.2
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
(2) Power on/off control
V IN =10V ON/OFF=0→10V IOUT=30mA
10V
CL=4.7µF
VOUT(0.5V/div)
0V
VIN
CL=2µF
VOUT
0V
TIME(50usec/div)
Load dependence of overshoot
V IN=V OUT(S)+1V , CL=2µF, ON/OFF=0→V OUT(S)+1V
1.0
5V
0.8
0.6
3V
0.4
VOUT=2V
0.2
V IN=V OUT(S)+1V IOUT=30mA, ON/OFF=0→V OUT(S)+1V
0.8
Over Shoot(V)
Over Shoot(V)
1.0
Output capacitor (CL) dependence of overshoot
0.0
VOUT=2V
3V
0.6
5V
0.4
0.2
0.0
1.E-05
1.E-04
1.E-03 1.E-02
IOUT(A)
1.E-01 1.E+00
1
VDD dependence of overshoot
V IN=V OUT(S)+1V ,IOUT=30mA, CL=2µF, ON/OFF=0→V OUT(S)+1V
1.0
0.8
0.8
Over Shoot(V)
Over Shoot(V)
V IN=VDD ,IOUT=30mA, CL=2µF, ON/OFF=0→VDD
5V
3V
0.4
0.2
100
Temperature dependence of overshoot
1.0
0.6
10
CL(uF)
VOUT=2V
0.0
VOUT=2V
5V
3V
0.6
0.4
0.2
0.0
0
2
4
VDD(V)
6
8
10
-50
Seiko Instruments Inc.
0
Ta °C 50
100
15
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.1.2
(3) Power fluctuation
V IN =10→4V IOUT=30mA
V IN =4→10V IOUT=30mA
10V
VIN
V IN
4V
CL=2µF
V OUT
4V
V OUT(0.2V/div)
VOUT(0.2V/div)
10V
CL=4.7µF
3V
CL=4.7µF
VOUT
3V
CL=2µF
TIME(50usec/div)
TIME(50usec/div)
Load dependence of overshoot
VIN =VOUT(S)+1V→VOUT(S)+2V,CL=2µF
0.05
Over Shoot(V)
0.6
Over Shoot(V)
Output capacitor (CL) dependence of overshoot
0.4
VOUT=2V
0.2
3V
5V
0.04
VOUT=2V
0.03
3V
0.02
0.01
5V
0
0
1.E-05
1.E-04
1.E-03 1.E-02
IOUT(A)
1.E-01
1
1.E+00
VDD dependence of overshoot
10
CL(uF)
100
Temperature dependence of overshoot
VIN=VOUT(S)+1V→VOUT(S)+2V, IOUT=30mA,CL=2µF
0.06
V IN=V OUT(S)+1V →VDD, IOUT=30mA,CL=2µF
0.6
0.05
Over Shoot(V)
3V
Over Shoot(V)
VIN =VOUT(S)+1V→V OUT(S)+2V, IOUT=30mA
0.4
VOUT=2V
5V
0.2
VOUT=2V
3V
0.04
0.03
0.02
0.01
0
0
0
16
5V
2
4
VDD(V)
6
8
10
-50
Seiko Instruments Inc.
0
Ta°C
50
100
Rev.1.2
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Load dependence of undershoot
Output capacitor (CL) dependence of undershoot
VIN =VOUT(S)+2V→VOUT(S)+1V,CL=2µF
0.3
VIN =V OUT(S)+2V →VOUT(S)+1V ,IOUT=30mA
0.05
Under Shoot(V)
Under Shoot(V)
5V
0.2
VOUT=2V
3V
0.1
0
0.04
3V
0.03
VOUT=2V
0.02
0.01
5V
0
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00
1
10
CL(uF)
IOUT(A)
VDD dependence of undershoot
Temperature dependence of undershoot
VIN=VOUT(S)+2V→VOUT(S)+1V, IOUT=30mA,CL=2µF
VIN =VDD→VOUT(S)+1V, IOUT=30mA,CL=2µF
0.2
0.06
5V
0.15
0.05
Under Shoot(V)
Under Shoot(V)
100
3V
0.1
VOUT=2V
0.05
0
3V
VOUT=2V
0.04
0.03
0.02
5V
0.01
0
0
2
4
6
VDD(V)
8
10
-50
Seiko Instruments Inc.
0
Ta(°C)
50
100
17
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Rev.1.2
(4) Load fluctuation
IOUT=10µA →30mA VIN =4V
IOUT=30mA→10µA VIN =4V
30mA
10µA
10µA
IOUT
VOUT(0.1V/div)
VOUT(0.2V/div)
30mA
CL=2µF
VOUT
3V
IOUT
CL=2µF
CL=4.7µF
3V
CL=4.7µF
V OUT
TIME(50µsec/div)
TIME(20msec/div)
Load current dependence of load fluctuation overshoot
∆IOUT shows larger load current at load current
fluctuation while smaller current is fixed to 10 µA.
For example ∆IOUT=1.E-02 (A) means load current
fluctuation from 10 mA to 10 µA.
VIN =VOUT(S)+1V,CL=2µF
1.0
VIN =V OUT(S)+1V ,IOUT=30mA →10µA
0.2
5V
0.8
0.6
Over Shoot(V)
Over Shoot(V)
Output capacitor (CL) dependence of overshoot
3V
0.4
0.2
VOUT=2V
0.15
3V
0.1
5V
0.05
VOUT=2V
0.0
0
1.E-03
1.E-02
∆IOUT(A)
1.E-01
1
1.E+00
VDD dependence of overshoot
100
Temperature dependence of overshoot
VIN =VOUT(S)+1V ,IOUT=30mA→10µA,CL=2µF
VIN =VDD, IOUT=30mA →10µA ,CL=2µF
0.3
10
CL(uF)
0.3
0.2
Over Shoot(V)
Over Shoot(V)
0.25
3V
0.1
VOUT=2V
0.15
0.1
VOUT=2V
0.05
5V
0
5V
0
0
18
3V
0.2
2
4
VDD(V)
6
8
10
-50
Seiko Instruments Inc.
0
Ta(°C)
50
100
Rev.1.2
LOW DROPOUT CMOS VOLTAGE REGULATOR
S-818 Series
Load current dependence of load fluctuation undershoot
∆IOUT shows larger load current at load current
fluctuation while smaller current is fixed to 10 µA.
For example ∆IOUT=1.E-02 (A) means load current
fluctuation from 10 µA to 10 mA.
VIN =VOUT(S)+1V, CL=2µF
0.4
0.8
3V
0.6
Under Shoot(V)
Under Shoot(V)
1.0
Output capacitor (CL) dependence of undershoot
5V
0.4
0.2
VIN =VOUT(S)+1V ,IOUT=10µA→30mA
0.3
3V
0.2
0.1
5V
VOUT=2V
VOUT=2V
0.0
0
1.E-03
1.E-02
1.E-01
1
1.E+00
10
CL(uF)
∆IOUT(A)
VDD dependence of undershoot
0.4
Temperature dependence of undershoot
VIN =V OUT(S)+1V ,IOUT=10µA→30mA ,CL=2µF
V IN =VDD, IOUT=10µA→30mA,CL=2µF
0.5
Under Shoot(V)
Under Shoot(V)
3V
0.3
0.2
VOUT=2V
0.1
100
5V
0
VOUT=2V
0.4
3V
0.3
0.2
5V
0.1
0
0
2
4
6
VDD(V)
8
10
-50
Seiko Instruments Inc.
0
Ta(°C)
50
100
19
MP005-A 991105
SOT-23-5
Unit
Dimensions
mm
2.9±0.2
1.9±0.2
5
0.45
4
1.6
1
2
+0.2
2.8 -0.3
0.16
3
+0.1
-0.06
1.1±0.1
1.3max
0.95
0.1
0.4±0.1
Taping Specifications
Reel Specifications
4.0±0.1 (10 pitches 40.0±0.2)
ø1.5 +0.1
-0
2.0±0.05
0.27±0.05
3000 pcs./reel
12.5max.
3 max.
3 max.
ø1.0
+0.1
-0
4.0±0.1
1.4±0.2
3.25±0.15
9.0±0.3
21±0.5
φ13±0.2
2±0.2
(60°)
Feed direction
(60°)
UP005-A 990531
SOT-89-5
Unit
mm
Dimensions
4.5±0.1
1.5±0.1
1.6±0.2
1
2
3
1.5±0.1 1.5±0.1
0.4±0.05
0.3
0.4±0.1
0.4±0.1
45
0.45±0.1
Taping Specifications
ø1.5 +0.1
-0
Reel Specifications
1 reel holds 1000 ICs.
4.0±0.1(10 pitches 40±0.2)
2.0±0.05
3 max.
5 max.
ø1.5 +0.1
-0
8.0±0.1
0.3±0.05
2.0±0.1
4.75±0.1
ø21±0.5
ø13±0.2
2±0.2
Feed direction
814
Markings
SOT-23-5
5
4
1
3
SOT-89-5
5
1
4
2
3
990603
•
•
•
•
The information herein is subject to change without notice.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or other diagrams
described herein whose industrial properties, patents or other rights belong to third parties. The
application circuit examples explain typical applications of the products, and do not guarantee any
mass-production design.
When the products described herein include Strategic Products (or Service) subject to regulations,
they should not be exported without authorization from the appropriate governmental authorities.
The products described herein cannot be used as part of any device or equipment which influences
the human body, such as physical exercise equipment, medical equipment, security system, gas
equipment, vehicle or airplane, without prior written permission of Seiko Instruments Inc.