VITESSE VSC8163

VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Features
• 2.488Gb/s 16:1 Multiplexer
• On-Chip PLL-Based Clock Generator
• Targeted for SONET OC-48 / SDH STM-16
Applications
• 128 Pin, 14x20mm PQFP Package
• Differential LVPECL Low-Speed Interface
• Single +3.3V Supply
General Description
The VSC8163 is a 16:1 multiplexer with integrated clock generator for use in SONET/SDH systems operating at a 2.48832Gb/s data rate. The internal clock generator uses a Phase-Locked Loop (PLL) to multiply
either a 77.76MHz or 155.52MHz reference clock in order to provide the 2.48832GHz clock for internal logic
and output retiming. The 16-bit parallel interface incorporates an on-board FIFO, eliminating loop timing
design issues by providing a flexible parallel timing architecture. The device operates using a +3.3V power supply, and is packaged in a thermally-enhanced plastic package. The thermal performance of the 128PQFP allows
the use of the VSC8163 without a heat sink under most thermal conditions.
VSC8163 Block Diagram
CLK16I+
CLK16I-
REFCLKO+
REFCLKO-
16x5 FIFO
D15+
D15-
Input Register
D0+
D0-
Write
Pointer
Output
Retime
FIFO
Control
Read
Pointer
DO+
DO-
CLKO+
CLKOFIFO_WARN
Reset
CLK16O+
CLK16OREFCLK+
REFCLK
Divide by 16
Divide
by 2
2.488GHz
PLL
REF_FREQSEL
G52216-0, Rev 3.3
01/05/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 1
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Functional Description
Low-Speed Interface
The Upstream Device should use the CLK16O as the timing source for its final output latch (see Figure 1).
The Upstream Device should then generate a CLK16I phase aligned with the data. The VSC8163 will latch
D[15:0]± on the rising edge of CLK16I+. The data must meet setup and hold times with respect to CLK16I (see
Table 2). In addition to the CLK16O clock output, there also exists a utility REFCLKO output signal, which is a
clock with the same rate as that presented at the REFCLK input.
A FIFO exists within the VSC8163 to eliminate difficult system loop timing issues. Once the PLL has
locked to the reference clock, RESET must be held low for a minimum of five CLK16 cycles ( > 32ns) to initialize the FIFO, then RESET should be set high and held constant for continuous FIFO operation. For the
transparent mode of operation (no FIFO), simply hold RESET at a constant low state (see Figure 2).
The use of a FIFO permits the system designer to tolerate an arbitrary amount of delay between CLK16O
and CLK16I. Once RESET is asserted and the FIFO initialized, the delay between CLK16O and CLK16I can
decrease or increase up to one period of the low-speed clock (6.4ns). Should this delay drift exceed one period,
the write pointer and the read pointer could point to the same word in the FIFO, resulting in a loss of transmitted
data (a FIFO overflow). In the event of a FIFO overflow, an active low FIFO_WARN signal is asserted (for a
minimum of 5 CLK16I cycles) which can be used to initiate a reset signal from an external controller.
The CLK16O± output driver is a LVPECL output driver designed to drive a 50Ω transmission line. The
transmission line can be DC terminated with a split-end termination scheme (see Figure 3), or DC terminated by
50Ω to VCC-2V on each line (see Figure 4). At any time, the equivalent split-end termination technique can be
substituted for the traditional 50Ω to VCC-2V on each line. AC-coupling can be achieved by a number of methods. Figure 5 illustrates an example AC-coupling method for the occasion when the downstream device provides the bias point for AC-coupling. If the downstream device were to have internal termination, the line-toline 100Ω resistor may not be necessary.
Figure 1: Low-Speed Systems Interface
CLK16I
Write
16 x 5 FIFO
x16
Upstream
Device
Read
VSC8163
CLK16O
REFCLK
Divide by 16
2.488GHz
PLL
Page 2
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52216-0, Rev 3.3
01/05/00
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Figure 2: Enabling FIFO Operation
PLL locked to reference clock.
Minimum 5 CLK16 cycles (32ns)
FIFO Mode Operation
Transparent Mode Operation
RESET
Holding RESET “low” for a minimum of five CLK16 cycles, then setting “high” enables FIFO operation.
Holding RESET constantly “low” bypasses the FIFO for transparent mode operation.
Figure 3: Split-End DC Termination of CLK16O+/-, REFCLKO+/VCC
VSC8163
Split-end equivalent termination is Z0 to VTERM
R1 = 125Ω R2 = 83Ω, Zo=50Ω, VTERM= VCC-2V
R1
R1
R2
R2
Zo
Zo
R1||R2 = Z0
VCCR2 + VEER1
R1+R2
= VTERM
VEE
Figure 4: Traditional DC Termination of CLK16O+/-, REFCLKO+/-
VSC8163
Z0
Z0
50Ω
50Ω
VCC-2V
G52216-0, Rev 3.3
01/05/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 3
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Figure 5: AC Termination of CLK16O+/-, REFCLKO+/-
VSC8163
Z0
100nF
downstream
bias point
generated
internally
Z0
50Ω
50Ω
100nF
VCC-2V
High-Speed Data and Clock Output
The high-speed data and clock output drivers consist of a differential pair designed to drive a 50Ω transmission line. The transmission line should be terminated with a 100Ω resistor at the load between true and complement outputs (see Figure 6). Connection to a termination voltage is not required. The output driver is back
terminated to 50Ω on-chip, providing a snubbing of any reflections. If used single-ended, the high-speed output
driver must still be terminated differentially at the load with a 100Ω resistor between true and complement outputs. The high-speed clock output can be powered down for additional power savings. To power down the highspeed clock, tie the associated pins to VCC (see Table 3, Package Pin Descriptions, pins 5,6,7).
Figure 6: High-Speed Output Termination
VCC
50Ω
50Ω
100Ω
Z0 = 50Ω
Pre-Driver
VEE
Page 4
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52216-0, Rev 3.3
01/05/00
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Clock Generator
An on-chip PLL generates the 2.48832GHz transmit clock from the externally provided REFCLK input.
The on-chip PLL uses a low phase noise reactance-based Voltage Controlled Oscillator (VCO) with an on-chip
loop filter. The loop bandwidth of the PLL is within the SONET specified limit of 2MHz.
The customer can select to provide either a 77.76MHz reference (recommended), or the 2x of that reference, 155.52MHz. REF_FREQSEL is used to select the desired reference frequency. REF_FREQSEL = “0”
designates REFCLK input as 77.76MHz, REF_FREQSEL = “1” designates REFCLK input as 155.52MHz.
The REFCLK should be of high quality since noise on the REFCLK below the loop band width of the PLL
will pass through the PLL and appear as jitter on the output. Preconditioning of the REFCLK signal with a
VCXO may be required to avoid passing REFCLK noise with greater than 2ps of RMS jitter to the output. The
VSC8163 will output the REFCLK noise in addition to the intrinsic jitter from the VSC8163 itself during such
conditions.
Figure 7: AC Termination of Low-Speed LVPECL REFCLK, D[15:0] Inputs
Split-end equivalent termination is Z0 to VTERM
R1 = 83Ω R2 = 125Ω, Z0=50Ω, VTERM = VCC-2V
Chip Boundary
VCC = 3.3V
VCC
R1+R2
R1
ZO
R1||R2 = Zo
VCCR2 + VEER1
= VBIAS
CIN
R2
VEE
VCC
R1
ZO
CIN
R2
VEE
VEE = 0V
CIN typ = 100nF
for AC operation
Low-Speed Inputs
The incoming low-speed data and reference clock input are received by LVPECL inputs D[15:0] and REFCLK. Off-chip termination of these inputs is required. For AC-coupling, a bias voltage suitable for AC-coupling needs to be provided (see Figure 7 for external biasing resistor scheme).
In most situations these inputs will have high transition density and little DC offset. However, in cases
where this does not hold, direct DC connection is possible. All serial data inputs have the same circuit topology,
as shown in Figure 7. If the input signal is driven differentially and DC-coupled to the part, the mid-point of the
G52216-0, Rev 3.3
01/05/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 5
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
input signal swing should be centered about this common-mode reference voltage (VCMI) and not exceed the
maximum allowable amplitude. For single-ended, DC-coupling operations, it is recommended that the user provides an external reference voltage. The external reference should have a nominal value equivalent to the common mode switch point of the DC-coupled signal, and can be connected to either side of the differential gate.
Power Supplies
This device is specified as a LVPECL device with a single positive 3.3V supply. Should the user desire to
use the device in an ECL environment with a negative 3.3V supply, then VCC will be ground and VEE will be
-3.3V. If used with VEE tied to -3.3V, the TTL control signals are still referenced to VEE.
Decoupling of the power supplies is a critical element in maintaining the proper operation of the part. It is
recommended that the VCC power supply be decoupled using a 0.1µF and 0.01µF capacitor placed in parallel
on each VCC power supply pin as close to the package as possible. If room permits, a 0.001µF capacitor should
also be placed in parallel with the 0.1µF and 0.01µF capacitors mentioned above. Recommended capacitors are
low inductance ceramic SMT X7R devices. For the 0.1 µF capacitor, a 0603 package should be used. The
0.01µF and 0.001µF capacitors can be either 0603 or 0402 packages.
Extra care needs to be taken when decoupling the analog power supply pins (VCCANA). In order to maintain
the optimal jitter and loop bandwidth characteristics of the PLL contained in the VSC8163, the analog power
supply pins should be filtered from the main power supply with a 10µH C-L-C pi filter. If preferred, a ferrite
bead may be used to provide the isolation. The 0.1µF and 0.01µF decoupling capacitors are still required and
must be connected to the supply pins between the device and the C-L-C pi filter (or ferrite bead).
For low frequency decoupling, 47µF tantalum low inductance SMT caps are sprinkled over the board’s
main +3.3V power supply and placed close to the C-L-C pi filter.
If the device is being used in an ECL environment with a -3.3V supply, then all references to decoupling
VCC must be changed to VEE, and all references to decoupling 3.3V must be changed to -3.3V.
Figure 8: PLL Power Supply Decoupling Scheme
10µH
VCC
VCC_ANA
10µF
0.1µF
VEE
Page 6
0.1µF
0.01µF
VEE_ANA
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52216-0, Rev 3.3
01/05/00
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
AC Characteristics
Figure 9: Parallel Input Data and Clock Timing Waveforms
CLK16I+
Parallel Data Clock Input
tTXDSU
D[0...15]+
Parallel Data Inputs
tTXDH
Valid Data 1
Valid Data 2
CLK16O+
Parallel Data Clock Output
= don't care
Figure 10: Serial Data and Clock Output Phase Timing Waveforms
CLKOPER
DO+
Differential Serial Data Output
D15
D14
D13
D1
D0
LSB
MSB
Time
tSET
CLKO+
Differential Clock Output
tHOLD
NOTE: Bit 15 (MSB) is received first, Bit 0 (LSB) is received last.
G52216-0, Rev 3.3
01/05/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 7
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Table 1: AC Characteristics
Parameters
Description
Min
Typ
Max
Units
Conditions
TDSU
Data setup time to the rising
edge of CLK16I+
0.75
—
—
ns
TDH
Data hold time after the
rising edge of CLK16+
1.0
—
—
ns
TDOR,TDOF
DO± rise and fall time
—
—
120
ps
20% to 80% into 100Ω load
See Figure 6
tCLKR, tCLKF
CLK16O± rise and fall times
—
—
250
ps
See Figures 3 and 4
CLK16OD
CLK16O± duty cycle
40
—
60
%
CLKID
CLK16I± duty cycle
30
—
70
%
RCKD
Reference clock duty cycle
40
—
60
%
CLKOD
CLKO duty cycle
40
—
60
%
CLKOPER
CLKO period
—
401.9
—
ps
SONET based 77.76MHz or
155.52MHz reference clock
CLK16OPER
CLK16O period
—
6.4
—
ns
SONET based 77.76MHz or
155.52MHz reference clock
tSET
DO setup time with respect
to rising CLKO edge
—
90
—
ps
Inverting CLKO will switch (approx)
tSET and tHOLD values.
tHOLD
DO hold time with respect to
rising CLKO edge
—
310
—
ps
Inverting CLKO will switch (approx)
tSET and tHOLD values.
Assuming 10% distortion of CLKO
Clock Multiplier Performance
TDJ
Output data jitter
—
—
4
ps
rms, tested to SONET specification
(12kHz to 20MHz) with 2ps rms jitter
on REFCLK.
TCJ
Output clock jitter
—
—
4
ps
rms, tested to SONET specification
(12kHz to 20MHz) with 2ps rms jitter
on REFCLK.
Jittertol
Jitter tolerance
—
—
—
—
Exceeds SONET/SDH mask
Tuning Range
-100
+100
ppm
Page 8
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52216-0, Rev 3.3
01/05/00
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Figure 11: Differential and Single-Ended Input / Output Voltage Measurement
b
a
b
a
Single
Ended
Swing
=α
Differential
Swing
=α
* Differential swing (α) is specified as | b - a | ( or | a - b | ), as is the single ended swing.
Differential swing is specified as equal in magnitude to single ended swing.
Table 2: DC Characteristics (Over recommended operating conditions)
Parameters
Description
Min
Typ
Max
Units
Conditions
VOH(DO)
Output HIGH voltage (DO)
VCC - 0.825
—
VCC
V
See Figure 12
VOL(DO)
Output LOW voltage (DO)
VCC - 1.30
—
VCC - 0.50
V
See Figure 12
∆VOD(DO)
Data output differential voltage
(DO)
550
—
900
mV
100Ω termination
between DO± at load
∆VOCLK(CLKO)
CLK output differential voltage
(CLKO)
500
—
900
mV
100Ω termination
between DO± at load
VCMO
Output common-mode voltage
2.10
—
3.00
V
RDO
Back termination impedance
40
—
60
Ω
Guaranteed, not tested
VOH
Output HIGH voltage
(CLK16O, REFCLKO)
VCC - 1.020
—
VCC - 0.700
V
See Figure 12
VOL
Output LOW voltage
(CLK16O, REFCLKO)
VCC - 2.000
—
VCC - 1.620
V
See Figure 12
VIH
Input HIGH voltage (LVPECL)
VCC - 1.100
—
VCC - 0.700
V
VIL
Input LOW voltage (LVPECL)
VCC - 2.0
—
VCC - 1.540
V
IIH
Input HIGH current (LVPECL)
—
—
200
µA
VIN=VIH(max)
IIL
Input LOW current (LVPECL)
-50
—
—
µA
VIN=VIL(min)
RI
Input resistance (LVPECL)
10k
—
—
Ω
∆VI
Input differential voltage
(LVPECL)
200
—
—
mV
VCMI
Input common-mode voltage
(LVPECL)
VCC - 1.5
—
VCC - 0.5
V
VOH
Output HIGH voltage (TTL)
2.4
—
—
V
IOH = -1.0mA
VOL
Output LOW voltage (TTL)
—
—
0.5
V
IOL = +1.0mA
VIH
Input HIGH voltage (TTL)
2.0
—
5.5
V
G52216-0, Rev 3.3
01/05/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 9
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
Parameters
VSC8163
Description
Min
Typ
Max
Units
Conditions
VIL
Input LOW voltage (TTL)
0.0
—
0.8
V
IIH
Input HIGH current (TTL)
—
—
500
µA
VIN = 2.4V
IIL
Input LOW current (TTL)
—
—
-500
µA
VIN = 0.4V
VCC
Supply voltage
3.14
—
3.47
V
3.3V± 5%
PD
Power dissipation
—
1.2
1.7
W
Outputs open,
VCC = VCC max
ICC
Supply current
—
350
490
mA
Outputs open,
VCC = VCC max
Figure 12: Parametric Measurement Information
Parametric Test Load Circuit
PECL Rise and Fall Time
Serial Output Load
80%
20%
Z0 = 50Ω
Tr
Tf
50Ω
VCC-2V
Parametric Test Load Circuit
High-Speed Data Output
Z0 = 50Ω
50Ω
VCC
Page 10
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52216-0, Rev 3.3
01/05/00
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
VSC8163
OC-48 16:1 SONET/SDH
MUX with Clock Generator
Absolute Maximum Ratings (1)
Power Supply Voltage (VCC).......................................................................................................... -0.5V to +3.8V
DC Input Voltage (differential inputs).................................................................................... -0.5V to VCC +0.5V
DC Input Voltage (TTL inputs) ...................................................................................................... -0.5V to +5.5V
DC Output Voltage (TTL outputs) ........................................................................................ -0.5V to VCC + 0.5V
Output Current (TTL outputs) ................................................................................................................. +/-50mA
Output Current (differential outputs)........................................................................................................ +/-50mA
Case Temperature Under Bias ......................................................................................................-55oC to +125oC
Recommended Operating Conditions
Power Supply Voltage, (VCC)................................................................................................................ +3.3V+5%
Operating Temperature Range ........................................................... 0oC Ambient to +85oC Case Temperature
NOTE: (1) CAUTION: Stresses listed under “Absolute Maximum Ratings” may be applied to devices one at a time without causing permanent damage. Functionality at or above the values listed is not implied. Exposure to these values for extended
periods may affect device reliability.
ESD Ratings
Proper ESD procedures should be used when handling this product. The VSC8163 is rated to the following ESD
voltages based on the human body model:
1. All pins are rated at or above 1500V.
G52216-0, Rev 3.3
01/05/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 11
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Package Pin Descriptions
Page 12
VCC
VEE
VEE
NC
NC
VCC_ANA
VEE_ANA
REFCLKO–
REFCLKO+
VEE
VCC
REFCLK–
REFCLK+
NC
NC
NC
NC
NC
VEE
D15+
D15–
VCC
D14+
D14–
NC
VCC
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
Figure 13: Pin Diagram—128-Pin PQFP
NC
1
102
VCC
NC
2
101
D13+
NC
3
100
D13–
VCC
4
99
VCC
VEEP_CLK
5
98
D12+
VEEP_CLK
6
97
D12–
VEEP_CLK
7
96
VEE
VCC
8
95
D11+
CLKO+
9
94
D11–
CLKO-
10
93
VCC
VCC
11
92
D10+
VCC
12
91
D10–
NC
13
90
VCC
NC
14
89
D9+
VEE
15
88
D9–
VEE
16
87
VEE
VEE
17
86
D8+
VCC
18
85
D8–
DO+
19
84
VCC
DO–
20
83
D7+
VCC
21
82
D7–
NC
22
81
VCC
VCC
23
80
D6+
VCC
24
79
D6–
VCC
25
78
VEE
VEE
26
77
D5+
VEE
27
76
D5–
VEE
28
75
VCC
VEE
29
74
D4+
VEE
30
73
D4–
NC
31
72
VCC
NC
32
71
D3+
NC
33
70
D3–
NC
34
69
VEE
NC
35
68
D2+
NC
36
67
D2–
NC
37
66
VCC
REF_FREQSEL
38
65
NC
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
VCC
VEE
FIFO_WARN
VEE
VCC
RESET
NC
NC
NC
NC
NC
VCC
VEE
CLK16O+
CLK16O–
VCC
CLKI+
CLKI–
VEE
D0–
D0+
VCC
D1–
D1+
NC
VCC
VSC8163
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52216-0, Rev 3.3
01/05/00
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Package Pin Descriptions
Table 3: Package Pin Identification
Pin #
Name
I/O
Level
1
NC
—
—
No connect, leave unconnected(1)
2
NC
—
—
No connect, leave unconnected(1)
3
NC
—
—
No connect, leave unconnected(1)
4
VCC
—
+3.3V typ.
Positive power supply
5
VEEP_CLK
—
GND typ.
High-speed clock VEE power supply (tie to VCC for power down)
6
VEEP_CLK
—
GND typ.
High-speed clock VEE power supply (tie to VCC for power down)
7
VEEP_CLK
—
GND typ.
High-speed clock VEE power supply (tie to V CC for power down)
8
VCC
—
+3.3V typ.
Positive power supply
9
CLKO+
O
HS
High-speed clock output, true
10
CLKO-
O
HS
High-speed clock output, complement
11
VCC
—
+3.3V typ.
Positive power supply
12
VCC
—
+3.3V typ.
Positive power supply
13
NC
—
—
No connect, leave unconnected(1)
14
NC
—
—
No connect, leave unconnected(1)
15
VEE
—
GND typ.
Negative power supply
16
VEE
—
GND typ.
Negative power supply
17
VEE
—
GND typ.
Negative power supply
18
VCC
—
+3.3V typ.
Positive power supply
19
DO+
O
HS
High-speed data output, true
20
DO-
O
HS
High-speed data output, complement
21
VCC
—
+3.3V typ.
22
NC
—
—
23
VCC
—
+3.3V typ.
Positive power supply
24
VCC
—
+3.3V typ.
Positive power supply
25
VCC
—
+3.3V typ.
Positive power supply
26
VEE
—
GND typ.
Negative power supply
27
VEE
—
GND typ.
Negative power supply
28
VEE
—
GND typ.
Negative power supply
29
VEE
—
GND typ.
Negative power supply
30
VEE
—
GND typ.
Negative power supply
31
NC
—
—
G52216-0, Rev 3.3
01/05/01
Description
Positive power supply
No connect, leave unconnected(1)
No connect, leave unconnected(1)
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 13
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Pin #
Name
I/O
Level
32
NC
—
—
No connect, leave unconnected(1)
33
NC
—
—
No connect, leave unconnected(1)
34
NC
—
—
No connect, leave unconnected(1)
35
NC
—
—
No connect, leave unconnected(1)
36
NC
—
—
No connect, leave unconnected(1)
37
NC
—
—
No connect, leave unconnected(1)
38
REF_FREQSEL
I
TTL
39
VCC
—
+3.3V typ.
Positive power supply
40
VEE
—
GND typ.
Negative power supply
41
FIFO_WARN
O
TTL
FIFO overflow warning
42
VEE
—
GND typ.
Negative power supply
43
VCC
—
+3.3V typ.
Positive power supply
44
RESET
I
TTL
45
NC
—
—
No connect, leave unconnected(1)
46
NC
—
—
No connect, leave unconnected(1)
47
NC
—
—
No connect, leave unconnected(1)
48
NC
—
—
No connect, leave unconnected(1)
49
NC
—
—
No connect, leave unconnected(1)
50
VCC
—
+3.3V typ.
Positive power supply
51
VEE
—
GND typ.
Negative power supply
52
CLK16O+
O
LVPECL
Low-speed clock output, true. A divide-by-16 version of the
2.48832GHz PLL.
53
CLK16O-
O
LVPECL
Low-speed clock output, complement. A divide-by-16 version of the
2.48832GHz PLL.
54
VCC
—
+3.3V typ.
55
CLKI+
I
LVPECL
Low-speed clock input for latching low-speed data, true
56
CLKI-
I
LVPECL
Low-speed clock input for latching low-speed data, complement
57
VEE
—
GND typ.
Negative power supply
58
D0-
I
LVPECL
Low-speed differential parallel data (MSB)
59
D0+
I
LVPECL
Low-speed differential parallel data (MSB)
60
VCC
—
+3.3V typ.
61
D1-
I
LVPECL
Low-speed differential parallel data
62
D1+
I
LVPECL
Low-speed differential parallel data
63
NC
—
—
Page 14
Description
Reference clock input select
Reset to align FIFO Write and Read pointers
Positive power supply
Positive power supply
No connect, leave unconnected(1)
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52216-0, Rev 3.3
01/05/00
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Pin #
Name
I/O
Level
64
VCC
—
+3.3V typ.
65
NC
—
—
66
VCC
—
+3.3V typ.
67
D2-
I
LVPECL
Low-speed differential parallel data
68
D2+
I
LVPECL
Low-speed differential parallel data
69
VEE
—
GND typ.
Negative power supply
70
D3-
I
LVPECL
Low-speed differential parallel data
71
D3+
I
LVPECL
Low-speed differential parallel data
72
VCC
—
+3.3V typ.
73
D4-
I
LVPECL
Low-speed differential parallel data
74
D4+
I
LVPECL
Low-speed differential parallel data
75
VCC
—
+3.3V typ.
76
D5-
I
LVPECL
Low-speed differential parallel data
77
D5+
I
LVPECL
Low-speed differential parallel data
78
VEE
—
GND typ.
Negative power supply
79
D6-
I
LVPECL
Low-speed differential parallel data
80
D6+
I
LVPECL
Low-speed differential parallel data
81
VCC
—
+3.3V typ.
82
D7-
I
LVPECL
Low-speed differential parallel data
83
D7+
I
LVPECL
Low-speed differential parallel data
84
VCC
—
+3.3V typ.
85
D8-
I
LVPECL
Low-speed differential parallel data
86
D8+
I
LVPECL
Low-speed differential parallel data
87
VEE
—
GND typ.
Negative power supply
88
D9-
I
LVPECL
Low-speed differential parallel data
89
D9+
I
LVPECL
Low-speed differential parallel data
90
VCC
—
+3.3V typ.
91
D10-
I
LVPECL
Low-speed differential parallel data
92
D10+
I
LVPECL
Low-speed differential parallel data
93
VCC
—
+3.3V typ.
94
D11-
I
LVPECL
Low-speed differential parallel data
95
D11+
I
LVPECL
Low-speed differential parallel data
96
VEE
—
GND typ.
Negative power supply
97
D12-
I
LVPECL
Low-speed differential parallel data
G52216-0, Rev 3.3
01/05/01
Description
Positive power supply
No connect, leave unconnected(1)
Positive power supply
Positive power supply
Positive power supply
Positive power supply
Positive power supply
Positive power supply
Positive power supply
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 15
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Pin #
Name
I/O
Level
Description
98
D12+
I
LVPECL
99
VCC
—
+3.3V typ.
100
D13-
I
LVPECL
Low-speed differential parallel data
101
D13+
I
LVPECL
Low-speed differential parallel data
102
VCC
—
+3.3V typ.
Positive power supply
103
VCC
—
+3.3V typ.
Positive power supply
104
NC
—
—
105
D14-
I
LVPECL
Low-speed differential parallel data
106
D14+
I
LVPECL
Low-speed differential parallel data
107
VCC
—
+3.3V typ.
108
D15-
I
LVPECL
Low-speed differential parallel data (LSB)
109
D15+
I
LVPECL
Low-speed differential parallel data (LSB)
110
VEE
—
GND typ.
Negative power supply
111
NC
—
—
No connect, leave unconnected(1)
112
NC
—
—
No connect, leave unconnected(1)
113
NC
—
—
No connect, leave unconnected(1)
114
NC
—
—
No connect, leave unconnected(1)
115
NC
—
—
No connect, leave unconnected(1)
116
REFCLK+
I
LVPECL
Reference clock input, true
117
REFCLK-
I
LVPECL
Reference clock input, complement
118
VCC
—
+3.3V typ.
Positive power supply
119
VEE
—
GND typ.
Negative power supply
120
REFCLKO+
O
LVPECL
Reference clock output, true
121
REFCLKO-
O
LVPECL
Reference clock output, complement
122
VEE_ANA
—
GND typ.
Negative power supply pins for analog parts of CMU
123
VCC_ANA
—
+3.3V typ.
Positive power supply pins for analog parts of CMU
124
NC
—
—
No connect, leave unconnected(1)
125
NC
—
—
No connect, leave unconnected(1)
126
VEE
—
GND typ.
Negative power supply
127
VEE
—
GND typ.
Negative power supply
128
VCC
—
+3.3V typ.
Positive power supply
Low-speed differential parallel data
Positive power supply
No connect, leave unconnected(1)
Positive power supply
NOTE: (1) No connect (NC) pins must be left unconnected, or floating. Connecting any of these pins to either the positive or negative power supply
rails may cause improper operation or failure of the device or in extreme cases, cause permanent damage to the device.
Page 16
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52216-0, Rev 3.3
01/05/00
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Package Information
128-Pin PQFP Package Drawing
PIN 128
PIN 102
PIN 1
RAD. 2.92 ± .50
(2)
E1
EXPOSED
INTRUSION
0.127 MAX.
E
2.54 ± .50
EXPOSED
HEATSINK
PIN 38
PIN 64
D1
D
TOP VIEW
Key
mm
Tolerance
A
2.35
MAX
A1
0.25
MAX
A2
2.00
+.10
D
17.20
±.20
D1
14.00
±.10
E
23.20
±.20
E1
20.00
±.10
L
.88
+.15/-.10
e
.50
BASIC
±.05
b
.22
θ
0°-7°
R
.30
TYP
R1
.20
TYP
10° TYP.
A2
A
e
A1
10° TYP.
R
R1
θ1
A
Notes: 1)
2)
3)
Drawing is not to scale
All dimensions in mm
Package represented is
also used for the 64,
80, & 100 PQFP packages.
Pin count drawn does
not reflect the 128 Package.
G52216-0, Rev 3.3
01/05/01
STANDOFF
A1
.25
θ
0.17
MAX.
b
LEAD COPLANARITY
L
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
NOTES:
Package #: 101-322-5
Issue #: 2
Page 17
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
Thermal Considerations
This package has been enhanced with a copper heat slug to provide a low thermal resistance path from the
die to the exposed surface of the heat spreader. The thermal resistance is shown in the following table
Table 4: Thermal Resistance
Symbol
°C/W
Description
θJC
Thermal resistance from junction-to-case.
1.34
θCA
Thermal resistance from case-to-ambient with no
airflow, including conduction through the leads.
25.0
Thermal Resistance with Airflow
Shown in the Table 5 is the thermal resistance with airflow. This thermal resistance value reflects all the
thermal paths including through the leads in an environment where the leads are exposed. The temperature difference between the ambient airflow temperature and the case temperature should be the worst-case power of
the device multiplied by the thermal resistance.
Table 5: Thermal Resistance with Airflow
Airflow
θca (oC/W)
100 lfpm
21
200 lfpm
18
400 lfpm
16
600 lfpm
14.5
Maximum Ambient Temperature without Heatsink
The worst case ambient temperature without use of a heatsink is given by the equation:
T
where:
θCA
ΤA(MAX)
ΤC(MAX)
P(MAX)
Page 18
A ( MAX )
= T
C ( MAX )
–P
θ
( MAX ) CA
Theta case-to-ambient at appropriate airflow
Ambient Air temperature
Case temperature (85oC for VSC8163)
Power (1.7W for VSC8163)
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
G52216-0, Rev 3.3
01/05/00
VITESSE
SEMICONDUCTOR CORPORATION
Preliminary Data Sheet
OC-48 16:1 SONET/SDH
MUX with Clock Generator
VSC8163
The results of this calculation are listed in Table 6:
Table 6: Maximum Ambient Air Temperature without Heatsink
Airflow
Max Ambient Temp( oC)
None
43
100 lfpm
49
200 lfpm
54
400 lfpm
58
600 lfpm
60
Note that ambient air temperature varies throughout the system based on the positioning and magnitude of
heat sources and the direction of air flow.
Ordering Information
The order number for this product is formed by a combination of the device number, and package type.
VSC8163 XX
Device Type
VSC8163: OC-48 16:1 SONET/SDH
MUX with Clock Generator
Package Style
QR: 128-pin PQFP
Notice
Vitesse Semiconductor Corporation (“Vitesse”) provides this document for informational purposes only. This document contains pre-production
information about Vitesse products in their concept, development and/or testing phase. All information in this document, including descriptions of
features, functions, performance, technical specifications and availability, is subject to change without notice at any time. Nothing contained in this
document shall be construed as extending any warranty or promise, express or implied, that any Vitesse product will be available as described or
will be suitable for or will accomplish any particular task.
Vitesse products are not intended for use in life support appliances, devices or systems. Use of a Vitesse product in such applications without written consent is prohibited.
G52216-0, Rev 3.3
01/05/01
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
Page 19
VITESSE
SEMICONDUCTOR CORPORATION
OC-48 16:1 SONET/SDH
MUX with Clock Generator
Page 20
Preliminary Data Sheet
© VITESSE SEMICONDUCTOR CORPORATION • 741 Calle Plano • Camarillo, CA 93012
Tel: (800) VITESSE • FAX: (805) 987-5896 • Email: [email protected]
Internet: www.vitesse.com
VSC8163
G52216-0, Rev 3.3
01/05/00