ZARLINK MVTX2803AG

MVTX2803
Unmanaged 8-Port 1000 Mbps
Ethernet Switch
Data Sheet
Features
•
October 2003
Eight Gigabit Ports with GMII and PCS interface
-
•
High Performance Layer 2 Packet Forwarding
(23.808M packets per second) and Filtering at
Full-Wire Speed
•
Maximum throughput is 8 Gbps non-blocking
•
Centralized shared-memory architecture
•
Consists of two Memory Domains at 133 MHz
•
Ordering Information
Gigabit Port can also support 100/10 Mbps MII
interface
MVTX2803AG
-40°C to +85°C
Traffic Classification
-
Frame Buffer Domain: Two banks of ZBT-SRAM
with 2M/4MB total
-
Switch Database Domain with 256K/512K
SRAM
•
Classify traffic into 8 transmission priorities per
port
•
Supports Delay bounded, Strict Priority and WFQ
•
Provides 2 level dropping precedence with WRED
mechanism
-
Up to 64K MAC addresses to provide large node
aggregation in wiring closet switches
•
•
MVTX2803
User controlled thresholds for WRED
Classification based on layer 2, 3 markings
-
VLAN Priority field in VLAN tagged frame
-
DS/TOS field in IP packet
The precedence of above two classifications can
be programmable
SRAM 256/512K
SW Database
MAC Table
Frame Data Buffer B
ZBT-SRAM (1M/2Mb)
Frame Data Buffer A
ZBT-SRAM (1M/2Mb)
64-Bit
596 Pin HSBGA
64-Bit
32-Bit
SDB Interface
FDB Interface
LED
Frame
Engine
Search
Engine
NM
Database
Schedule
Management
Module
GMII
/PCS
Port 0
GMII
/PCS
Port 1
GMII
/PCS
Port 2
GMII
/PCS
Port 3
GMII
/PCS
Port 4
GMII
/PCS
Port 5
GMII
/PCS
Port 6
GMII
/PCS
Port 7
Figure 1 - MVTX2803AG Block Diagram
1
Zarlink Semiconductor Inc.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright 2003, Zarlink Semiconductor Inc. All Rights Reserved.
Serial /
I2C
MVTX2803
Data Sheet
QoS Support
•
Supports IEEE 802.1p/Q Quality of Service with 8 Priority
•
Buffer Management: reserve buffers on per class and per port basis
•
Port-based Priority: VLAN Priority with Tagged frame can be overwritten by the priority of PVID
•
QoS features can be configured on a per port basis
•
Full Duplex Ethernet IEEE 802.3x Flow Control
•
Provides Ethernet Multicast and Broadcast Control
•
4 Port Trunking groups, max of 3 ports per group (Trunking can be based on source MAC and/or destination
MAC and source port)
•
LED signals provided by a serial or parallel interface
•
Synchronous Serial Interface and I2C interface in unmanaged mode.
•
Hardware auto-negotiation through serial management interface (MDIO) for Gigabit Ethernet ports, supports
10/100/1000 Mbps
•
BIST for internal and external SRAM-ZBT
•
I2C EEPROM or synchronous serial port for configuration
•
Packaged in 596-pin BGA
2
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Description
The MVTX2800 family is a group of 1000 Mbps non-blocking Ethernet switch chips with on-chip address memory.
A single chip provides a maximum of eight 1000 Mbps ports and a dedicated CPU interface with a 16/8 bit bus for
managed and unmanaged switch applications. The MVTX2800 family consists of the following four products:
•
MVTX2804 8 Gigabit ports Managed
•
MVTX2803 8 Gigabit ports Unmanaged
•
MVTX2802 4 Gigabit ports Managed
•
MVTX2801 4 Gigabit ports Unmanaged
The MVTX2803 supports up to 64K MAC addresses to aggregate traffic from multiple wiring closet stacks. The
centralized shared-memory architecture allows a very high performance packet-forwarding rate of 11.904M packets
per second at full wire speed. The chip is optimized to provide a low-cost, high performance workgroup, and wiring
closet, layer 2 switching solution with 8 Gigabit Ethernet ports.
Two Frame Buffer Memory domains utilize cost effective, high–performance ZBT-SRAM with aggregated bandwidth
of 16Gbps to support full wire speed on all external ports simultaneously.
With Strict priority, Delay Bounded, and WRR transmission scheduling, plus WRED memory congestion scheme,
the chip provides powerful QoS functions for convergent network multimedia and mission-critical applications. The
chip provides 8 transmission priorities and 2 level drop precedence. Traffic is assigned its transmission priority and
dropping precedence based on the frame VLAN Tag priority.
The MVTX2803AG supports port trunking/load sharing on the 1000 Mbps ports with fail-over capability. The port
trunking/load sharing can be used to group ports between interlinked switches to increase the effective network
bandwidth.
In full-duplex mode, IEEE 802.3x flow control is provided. The Physical Coding Sublayer (PCS) is integrated onchip to provide a direct 10-bit GMII interface, or the PCS can be bypassed to provide an interface to existing fiberbased Gigabit Ethernet transceivers.
The MVTX2803AG is fabricated using 0.25µm technology. Inputs, however, are 3.3V tolerant and the outputs are
capable of directly interfacing to LVTTL levels. The MVTX2803AG is packaged in a 596-pin Ball Grid Array
package.
3
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Table of Contents
1.0 Block Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1 Frame Data Buffer (FDB) Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Switch Database (SDB) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 GMII/PCS MAC Module (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 LED Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7 Internal Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.0 System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Data Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.6 Stop Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Write Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Read Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.0 Data Forwarding Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Unicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Multicast Data Frame Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.0 Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Detailed Memory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.0 Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1 Search Engine Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Basic Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Search, Learning, and Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.1 MAC Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3.3 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3.4 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.0 Frame Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1 Data Forwarding Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2 Frame Engine Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2.1 FCB Manager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2.2 Rx Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.2.3 RxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2.4 TxQ Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 TxDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.0 Quality of Service and Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Four QoS Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.3 Delay Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.4 Strict Priority and Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.5 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.6 Shaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.7 WRED Drop Threshold Management Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.8 Buffer Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
7.8.1 Dropping When Buffers Are Scarce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.9 MVTX2803AG Flow Control Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.9.1 Unicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.9.2 Multicast Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.10 Mapping to IETF Diffserv Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.0 Port Trunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.1 Features and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.2 Unicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3 Multicast Packet Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.4 Preventing Multicast Packets from Looping Back to the Source Trunk. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.0 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.2 Serial Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.3 Parallel Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.4 LED Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.0 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.1 MVTX2803AG Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10.2 Group 0 Address - MAC Ports Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.2.1 ECR1Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.2.2 ECR2Pn: Port N Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.2.3 GGControl 0– Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.2.4 GGControl 1– Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.2.5 GGControl 2– Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.2.6 GGControl 3– Extra GIGA Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10.3 Group 1 Address - VLAN Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.3.1 AVTCL – VLAN Type Code Register Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.3.2 AVTCH – VLAN Type Code Register High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.3.3 PVMAP00_0 – Port 00 Configuration Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.3.4 PVMAP00_3 – Port 00 Configuration Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.3.5 PVMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.4 Group 2 Address - Port Trunking Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.4.1 TRUNK0_MODE – Trunk group 0 and 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
10.4.2 TRUNK1_MODE – Trunk group 1 mode (Unmanaged Mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.4.3 TX_AGE – Tx Queue Aging timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.5 Group 4 Address - Search Engine Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.5.1 AGETIME_LOW – MAC address aging time Low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.5.2 AGETIME_HIGH –MAC address aging time High . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.5.3 SE_OPMODE – Search Engine Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.6 Group 5 Address - Buffer Control/QOS Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.6.1 FCBAT – FCB Aging Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.6.2 QOSC – QOS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.6.3 FCR – Flooding Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.6.4 AVPML – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
10.6.5 AVPMM – VLAN Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.6.6 AVPMH – VLAN Priority Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.6.7 OSPML – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
10.6.8 TOSPMM – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.6.9 TOSPMH – TOS Priority Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.6.10 AVDM – VLAN Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
10.6.11 TOSDML – TOS Discard Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
10.6.12 BMRC - Broadcast/Multicast Rate Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.6.13 UCC – Unicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.6.14 MCC – Multicast Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
10.6.15 PRG – Port Reservation for Giga ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
10.6.16 SFCB – Share FCB Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
10.6.17 C2RS – Class 2 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.6.18 C3RS – Class 3 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.6.19 C4RS – Class 4 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.6.20 C5RS – Class 5 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10.6.21 C6RS – Class 6 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.6.22 C7RS – Class 7 Reserved Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.6.23 QOSC00 – BYTE_C2_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.6.24 QOSC01 – BYTE_C3_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.6.25 QOSC02 – BYTE_C4_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.6.26 QOSC03 – BYTE_C5_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.6.27 QOSC04 – BYTE_C6_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.6.28 QOSC05 – BYTE_C7_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.6.29 QOSC06 – BYTE_C2_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.6.30 QOSC07 – BYTE_C3_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.6.31 QOSC08 – BYTE_C4_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.6.32 QOSC09 – BYTE_C5_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.6.33 QOSC0A – BYTE_C6_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.6.34 QOSC0B – BYTE_C7_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.6.35 QOSC0C – BYTE_C2_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.6.36 QOSC0D – BYTE_C3_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.6.37 QOSC0E – BYTE_C4_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.6.38 OSC0F – BYTE_C5_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.6.39 QOSC10 – BYTE_C6_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.6.40 QOSC11 – BYTE_C7_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.6.41 QOSC12 – BYTE_C2_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.6.42 QOSC13 – BYTE_C3_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.6.43 QOSC14 – BYTE_C4_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.6.44 QOSC15 – BYTE_C5_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.6.45 QOSC16 – BYTE_C6_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
10.6.46 QOSC17 – BYTE_C7_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.6.47 QOSC18 – BYTE_C2_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.6.48 QOSC019 – BYTE_C3_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.6.49 QOSC1A – BYTE_C4_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.6.50 QOSC1B – BYTE_C5_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
10.6.51 QOSC1C – BYTE_C6_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.6.52 QOSC1D– BYTE_C7_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.6.53 QOSC1E– BYTE_C2_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.6.54 QOSC1F – BYTE_C3_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.6.55 QOSC20 – BYTE_C4_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.6.56 QOSC21 – BYTE_C5_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.6.57 QOSC22 – BYTE_C6_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.6.58 QOSC23 – BYTE_C7_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.6.59 QOSC24 – BYTE_C2_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.6.60 QOSC25 – BYTE_C3_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.6.61 QOSC26 – BYTE_C4_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.6.62 QOSC27 – BYTE_C5_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.6.63 QOSC28 – BYTE_C6_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.6.64 QOSC29 – BYTE_C7_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.6.65 QOSC2A – BYTE_C2_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.6.66 QOSC2B – BYTE_C3_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.6.67 QOSC2C – BYTE_C4_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.6.68 QOSC2D – BYTE_C5_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.6.69 QOSC2E – BYTE_C6_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
10.6.70 QOSC2F – BYTE_C7_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.6.71 QOSC33 – CREDIT_C0_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.6.72 QOSC34 – CREDIT_C1_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.6.73 QOSC35 – CREDIT_C2_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.6.74 QOSC36 – CREDIT_C3_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.6.75 QOSC37 – CREDIT_C4_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.6.76 QOSC38 – CREDIT_C5_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.6.77 QOSC39– CREDIT_C6_G0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.6.78 QOSC3A– CREDIT_C7_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.6.79 QOSC3B – CREDIT_C0_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.6.80 QOSC3C – CREDIT_C1_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.6.81 QOSC3D – CREDIT_C2_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.6.82 QOSC3E – CREDIT_C3_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.6.83 QOSC3F – CREDIT_C4_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.6.84 QOSC40 – CREDIT_C5_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.6.85 QOSC41– CREDIT_C6_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.6.86 QOSC42– CREDIT_C7_G1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.6.87 QOSC43 – CREDIT_C0_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.6.88 QOSC44 – CREDIT_C1_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.6.89 QOSC45 – CREDIT_C2_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.6.90 QOSC46 – CREDIT_C3_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.6.91 QOSC47 – CREDIT_C4_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.6.92 QOSC48 – CREDIT_C5_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.6.93 QOSC49– CREDIT_C6_G2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.6.94 QOSC4A– CREDIT_C7_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.6.95 QOSC4B – CREDIT_C0_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.6.96 QOSC4 – CREDIT_C1_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.6.97 QOSC4D – CREDIT_C2_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.6.98 QOSC4E – CREDIT_C3_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.6.99 QOSC4F – CREDIT_C4_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.6.100 QOSC50 – CREDIT_C5_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.6.101 QOSC51– CREDIT_C6_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.6.102 QOSC52– CREDIT_C7_G3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.6.103 QOSC53 – CREDIT_C0_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.6.104 QOSC54 – CREDIT_C1_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.6.105 QOSC55 – CREDIT_C2_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.6.106 QOSC56 – CREDIT_C3_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.6.107 QOSC57 – CREDIT_C4_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.6.108 QOSC58 – CREDIT_C5_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.6.109 QOSC59– CREDIT_C6_G4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.6.110 QOSC5A– CREDIT_C7_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.6.111 QOSC5B – CREDIT_C0_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.6.112 QOSC5C – CREDIT_C1_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.6.113 QOSC5D – CREDIT_C2_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.6.114 QOSC5E – CREDIT_C3_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.6.115 QOSC5F – CREDIT_C4_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.6.116 QOSC60 – CREDIT_C5_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.6.117 QOSC61– CREDIT_C6_G5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.6.118 QOSC62– CREDIT_C7_G5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.6.119 QOSC63 – CREDIT_C0_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.6.120 QOSC64 – CREDIT_C1_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.6.121 QOSC65 – CREDIT_C2_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.6.122 QOSC66 – CREDIT_C3_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.6.123 QOSC67 – CREDIT_C4_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
10.6.124 QOSC68 – CREDIT_C5_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.6.125 QOSC69– CREDIT_C6_G6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.6.126 QOSC6A– CREDIT_C7_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.6.127 QOSC6B – CREDIT_C0_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
10.6.128 QOSC6C – CREDIT_C1_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.6.129 QOSC6D – CREDIT_C2_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.6.130 QOSC6E – CREDIT_C3_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.6.131 QOSC6F – CREDIT_C4_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.6.132 QOSC70 – CREDIT_C5_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.6.133 QOSC71– CREDIT_C6_G7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.6.134 QOSC72– CREDIT_C7_G7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.6.135 QOSC73 – TOKEN_RATE_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.6.136 QOSC74 – TOKEN_LIMIT_G0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.6.137 QOSC75 – TOKEN_RATE_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.6.138 QOSC76 – TOKEN_LIMIT_G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.6.139 QOSC77 – TOKEN_RATE_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
10.6.140 QOSC78 – TOKEN_LIMIT_G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.6.141 QOSC79 – TOKEN_RATE_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.6.142 QOSC7A – TOKEN_LIMIT_G3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.6.143 QOSC7B – TOKEN_RATE_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.6.144 QOSC7C – TOKEN_LIMIT_G4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10.6.145 QOSC7D – TOKEN_RATE_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.6.146 QOSC7E – TOKEN_LIMIT_G5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.6.147 QOSC7F – TOKEN_RATE_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.6.148 QOSC80 – TOKEN_LIMIT_G6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.6.149 QOSC81 – TOKEN_RATE_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.6.150 QOSC82 – TOKEN_LIMIT_G7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.6.151 RDRC0 – WRED Rate Control 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.6.152 RDRC1 – WRED Rate Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.7 Group 6 Address - MISC Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.7.1 MII_OP0 – MII Register Option 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.7.2 MII_OP1 – MII Register Option 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.7.3 FEN – Feature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.7.4 MIIC0 – MII Command Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.7.5 MIIC1 – MII Command Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.7.6 MIIC2 – MII Command Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.7.7 MIIC3 – MII Command Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.7.8 MIID0 – MII Data Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.7.9 MIID1 – MII Data Register 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.7.10 LED Mode – LED Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.7.11 CHECKSUM - EEPROM Checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.7.12 LED User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.7.13 LEDUSER0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.7.14 LEDUSER1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.7.15 LEDUSER2/LEDSIG2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.7.16 EDUSER3/LEDSIG3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.7.17 LEDUSER4/LEDSIG4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.7.18 LEDUSER5/LEDSIG5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
10.7.19 LEDUSER6/LEDSIG6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
10.7.20 LEDUSER7/LEDSIG1_0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.7.21 MIINP0 – MII Next Page Data Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
10.7.22 MIINP1 – MII Next Page Data Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.8 Group F Address - CPU Access Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.8.1 GCR-Global Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
10.8.2 DCR-Device Status and Signature Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
10.8.3 DCR01-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.8.4 DCR23-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
10.8.5 DCR45-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.8.6 DCR67-Giga port status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
10.8.7 DPST – Device Port Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.8.8 DTST – Data Read Back Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
11.0 BGA and Ball Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.1 BGA Views (Top-View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.2 Ball- Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.3 Ball Signal Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.4 Characteristics and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.4.2 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
11.4.3 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
11.5 AC Characteristics and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11.5.1 Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11.5.2 Local Frame Buffer ZBT SRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.5.2.1 Local ZBT SRAM Memory Interface A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.5.3 Local ZBT SRAM Memory Interface B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
11.5.4 Local Switch Database SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
11.5.4.1 Local SBRAM Memory Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
11.5.5 Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
11.5.6 Gigabit Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
11.5.7 PCS Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
11.5.8 LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
11.5.9 MDIO Input Setup and Hold Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
11.5.10 I2C Input Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
11.5.11 Serial Interface Setup Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
9
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
List of Figures
Figure 1 - MVTX2803AG Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 2 - Data Transfer Format for I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3 - MVTX2803AG SRAM Interface Block Diagram (DMAs for Gigabit Ports). . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4 - Buffer Partition Scheme Used in the MVTX2803AG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5 - Timing diagram for serial mode in LED interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 6 - Typical Reset & Bootstrap Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 7 - Local Memory Interface – Input setup and hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 8 - Local Memory Interface - Output valid delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 9 - Local Memory Interface – Input setup and hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 10 - Local Memory Interface - Output valid delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 11 - Local Memory Interface – Input setup and hold timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 12 - Local Memory Interface - Output valid delay timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 13 - AC Characteristics – Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 14 - AC Characteristics – Media Independent Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 15 - AC Characteristics- GMII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 16 - AC Characteristics – Gigabit Media Independent Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 17 - AC Characteristics – PCS Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 18 - AC Characteristics – PCS Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Figure 19 - AC Characteristics – LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 20 - MDIO Input Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 21 - MDIO Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 22 - I2C Input Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 23 - I2C Output Delay Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 24 - Serial Interface Setup Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Figure 25 - Serial Interface Output Delay Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
List of Tables
Table 1 - Two-dimensional World Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 2 - Four QoS configurations per port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 3 - WRED Dropping Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 4 - Mapping between MVTX2803AG and IETF Diffserv Classes for Gigabit Ports . . . . . . . . . . . . . . . . . . . 25
Table 5 - MVTX2803AG Features Enabling IETF Diffserv Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 6 - Reset & Bootstrap Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11
Zarlink Semiconductor Inc.
MVTX2803
1.0
Block Functionality
1.1
Frame Data Buffer (FDB) Interfaces
Data Sheet
The FDB interface supports pipelined ZBT-SRAM memory at 133 MHz. To ensure a non-blocking switch, two
memory domains are required. Each domain has a 64-bit wide memory bus. At 133 MHz, the aggregate
memory bandwidth is 17 Gbps, which is enough to support 8 Gigabit ports at full wire speed switching. A patent
pending scheme is used to access the FDB memory. Each slot has one tick to read or write 8 bytes.
1.2
Switch Database (SDB) Interface
A pipelined synchronous burst SRAM (SBRAM) memory is used to store the switch database information
including MAC Table. Search Engine accesses the switch database via SDB interface. The SDB bus has 32-bit
wide bus at 133MHz.
1.3
GMII/PCS MAC Module (GMAC)
The GMII/PCS Media Access Control (MAC) module provides the necessary buffers and control interface
between the Frame Engine (FE) and the external physical device (PHY). The MVTX2803AG has two interfaces,
GMII or PCS. The MAC of the MVTX2803AG meets the IEEE 802.3z specification and supports the MII
interface. It is able to operate 10M/100M/1G in Full Duplex mode with a back pressure/flow control mechanism.
It has the options to insert Source Address/CRC/VLAN ID to each frame. The GMII/PCS Module also supports
hot plug detection.
1.4
Frame Engine
The main function of the frame engine is to forward a frame to its proper destination port or ports. When a frame
arrives, the frame engine parses the frame header (64 bytes) and formulates a switching request which is sent
to the search engine, to resolve the destination port. The arriving frame is moved to the FDB. After receiving a
switch response from the search engine, the frame engine performs transmission scheduling based on the
frame’s priority. The frame engine forwards the frame to the MAC module when the frame is ready to be sent.
1.5
Search Engine
The Search Engine resolves the frame’s destination port or ports according to the destination MAC address (L2)
by searching the database. It also performs MAC learning, priority assignment, and trunking functions.
1.6
LED Interface
The LED interface can be operated in a serial mode or a parallel mode. In the serial mode, the LED interface
uses 3 pins for carrying 8 port status signals. In the parallel mode, the interface can drive LEDs by 8 status
pins. The LED port is shared with bootstrap pins. In order to avoid error when reading the bootstraps, a buffer
must be used to isolate the LED circuitry from the bootstrap pins during bootstrap cycle (the bootstrap pins are
sampled at the rising edge of the Reset).
1.7
Internal Memory
Several internal tables are required and are described as follows:
•
•
Frame Control Block (FCB) - Each FCB entry contains the control information of the associated frame
stored in the FDB, e.g. frame size, read/write pointer, transmission priority, etc.
MCT Link Table - The MCT Link Table stores the linked list of MCT entries that have collisions in the
external MAC Table.
12
Zarlink Semiconductor Inc.
MVTX2803
2.0
Data Sheet
System Configuration
The MVTX2803AG can be configured by EEPROM (24C02 or compatible) via an I2C interface at boot time, or
via a synchronous serial interface during operation.
2.1
I2C Interface
The I2C interface uses two bus lines, a serial data line (SDA) and a serial clock line (SCL). The SCL carries the
control signals that facilitate the transfer of information from the EEPROM to the switch. Data transfer is a
bidirectional 8-bit serial at a rate of 50 Kbps. Data transfer is performed between master and slave IC using a
request / acknowledgment style of protocol. The master IC generates the timing signals and terminates data
transfer. The figure below shows the data transfer format.
START
SLAVE
ADDRESS
R/W
ACK
DATA 1
(8 bits)
ACK
DATA 2
(8 bits)
ACK
DATA M
(8 bits)
ACK
STOP
Figure 2 - Data Transfer Format for I2C Interface
2.1.1
Start Condition
Generated by the master, the MVTX2803AG. The bus is considered to be busy after the Start condition is
generated. The Start condition occurs if, while the SCL line is High, there is a High-to-Low transition of the SDA.
Other than in the Start condition (and Stop condition), the data on the SDA line must be stable during the High
period of SCL. The High or Low state of SDA can only change when SCL is Low. In addition, when the I2C bus
is free, both lines are High.
2.1.2
Address
The first byte after the Start condition determines which slave the master will select. The slave in our case is the
EEPROM. The first seven bits of the first data byte make up the slave address.
2.1.3
Data Direction
The eighth bit in the first byte after the Start condition determines the direction (R/W) of the message. A master
transmitter sets this bit to W; a master receiver sets this bit to R.
2.1.4
Acknowledgment
Like all clock pulses, the master generates the acknowledgment-related clock pulse. However, the transmitter
releases the SDA (High) during the acknowledgment clock pulse. Furthermore, the receiver must pull down the
SDA during the acknowledge pulse so that it remains stable Low during the High period of this clock pulse. An
acknowledgment pulse follows every byte transfer.
If a slave receiver does not acknowledge after any byte, then the master generates a Stop condition and aborts
the transfer.
If a master receiver does not acknowledge after any byte, then the slave transmitter must release the SDA line
to let the master generate the Stop condition.
2.1.5
Data
After the first byte containing the address, all bytes that follow are data bytes. Each byte must be followed by an
acknowledge bit. Data is transferred MSB-first.
13
Zarlink Semiconductor Inc.
MVTX2803
2.1.6
Data Sheet
Stop Condition
Generated by the master, the MVTX2803AG. The bus is considered to be free after the Stop condition is
generated. The Stop condition occurs if while the SCL line is High, there is a Low-to-High transition of the SDA.
The I2C interface serves the function of configuring the MVTX2803AG at boot time. The master is the
MVTX2803AG, and the slave is the EEPROM memory.
2.2
Synchronous Serial Interface
The synchronous serial interface serves the function of configuring the MVTX2803AG not at boot time but via a
PC. The PC serves as master and the MVTX2803AG serves as slave. The protocol for the synchronous serial
interface is nearly identical to the I2C protocol. The main difference is that there is no acknowledgment bit after
each byte of data transferred.
The unmanaged MVTX2803AG uses a synchronous serial interface to program the internal registers. To
reduce the number of signals required, the register address, command and data are shifted in serially through
the PS_DI pin. PS_STROBE pin is used as the shift clock. PS_DO pin is used as data return path.
Each command consists of four parts.
• START pulse
• Register Address
• Read or Write command
• Data to be written or read back
Any command can be aborted in the middle by sending an ABORT pulse to the MVTX2803AG.
A START command is detected when PS_DI is sampled high at PS_STROBE - leading edge, and PS_DI is sampled
low when STROBE- falls.
An ABORT command is detected when PS_DI is sampled low at PS_STROBE - leading edge, and PS_DI is sampled
high when PS_STROBE - falls.
2.2.1
Write Command
PS-STROBE2 extra clocks after
last transfer
PS_DI
A0
A1
A2
START
2.2.2
...
A9 A10 A11 W
D0
D1
D2 D3
COMMAND
ADDRESS
D4 D5 D6
D7
DATA
Read Command
PS-STROBE-
PS_DI
A0
START
A1
A2
...
A9 A10 A11 R
ADDRESS
DATA
COMMAND
D0
PS_DO
D1
D2
D3
D4
D5
D6
D7
All registers in the MVTX2803AG can be modified through this synchronous serial interface.
14
Zarlink Semiconductor Inc.
MVTX2803
3.0
Data Forwarding Protocol
3.1
Unicast Data Frame Forwarding
Data Sheet
When a frame arrives, it is assigned a handle in memory by the Frame Control Buffer Manager (FCB Manager).
A FCB handle will always be available, because of advance buffer reservations.
The memory (ZBT-SRAM) interface is two 64-bit buses, connected to two ZBT-SRAM domains, A and B. The
Receive (RxDMA) is responsible for multiplexing the data and the address. On a port’s “turn,” the RxDMA will
move 8 bytes (or up to the end-of-frame) from the port’s associated Receive FIFO (RxFIFO) into memory
(Frame Data Buffer, or FDB).
Once an entire frame has been moved to the FDB, and a good end-of-frame (EOF) has been received, the Rx
interface makes a switch request. The RxDMA arbitrates among multiple switch requests.
The switch request consists of the first 64 bytes of a frame, containing the source and destination MAC
addresses of the frame. The search engine places a switch response in the switch response queue of the frame
engine when done. Among other information, the search engine will have resolved the destination port of the
frame and will have determined that the frame is unicast.
After processing the switch response, the Transmission Queue Manager (TxQ manager) of the frame engine is
responsible for notifying the destination port that it has a frame to forward. But first, the TxQ manager has to
decide whether or not to drop the frame, based on global FDB reservations and usage, as well as TxQ
occupancy at the destination. If the frame is not dropped, then the TxQ manager links the frame’s FCB to the
correct per-port-per-class TxQ. Unicast TxQ’s are linked lists of transmission jobs, represented by their
associated frames’ FCB’s. There is one linked list for each transmission class for each port. There are 8 classes
for each of the 8 Gigabit ports – a total of 32 unicast queues.
The TxQ manager is responsible for scheduling transmission among the queues representing different classes
for a port. When the port control module determines that there is room in the MAC Transmission FIFO (TxFIFO)
for another frame, it requests the handle of a new frame from the TxQ manager. The TxQ manager chooses
among the head-of-line (HOL) frames from the per-class queues for that port, using a Zarlink Semiconductor
scheduling algorithm.
At the transmit end, each of the 8 ports has time slots devoted solely to reading data from memory at the
address calculated by port control. The Transmission DMA (TxDMA) is responsible for multiplexing the data
and the address. On a port’s turn, the TxDMA will move 8 bytes (or up to the EOF) from memory into the port’s
associated TxFIFO. After reading the EOF, the port control requests a FCB release for that frame. The TxDMA
arbitrates among multiple buffer release requests.
The frame is transmitted from the TxFIFO to the line.
3.2
Multicast Data Frame Forwarding
After receiving the switch response, the TxQ manager has to make the dropping decision. A global decision to
drop can be made, based on global FDB utilization and reservations. If so, then the FCB is released and the
frame is dropped. In addition, a selective decision to drop can be made, based on the TxQ occupancy at some
subset of the multicast packet’s destinations. If so, then the frame is dropped at some destinations but not
others, and the FCB is not released.
If the frame is not dropped at a particular destination port, then the TxQ manager formats an entry in the
multicast queue for that port and class. Multicast queues are physical queues (unlike the linked lists for unicast
frames). There are 4 multicast queues for each of the 8 Gigabit ports. There is one multicast queue for every
two unicast classes.
During scheduling, the TxQ manager treats the unicast queue and the multicast queue of the same class as one
logical queue.
The port control requests a FCB release only after the EOF for the multicast frame has been read by all ports to
which the frame is destined.
15
Zarlink Semiconductor Inc.
MVTX2803
4.0
Memory Interface
4.1
Overview
Data Sheet
Figure 3 illustrates the first part of the ZBT-SRAM interface for the MVTX2803AG. As shown, two ZBT-SRAM
banks, A and B, are used, with a 64-bit bus connected to each. Each DMA can read and write from both bank
A and bank B. During each tick, two memory operations will take place in parallel – one for bank A, and one for
bank B. Because the clock frequency is 133 MHz, the total memory bandwidth is 128 bits × 133 MHz = 17
Gbps, for frame data buffer (FDB) access.
In addition, the figure shows that the 8 Gigabit ports are actually grouped into sets of 4. If TxDMA 0 is using
bank B during a given memory slot, then TxDMA’s 1-3 will never be using bank A during this same slot. As a
result, TxDMA’s 0-3 can share the same bank selector.
ZBT-SRAM Bank A
TxDMA
0-1
TxDMA
2-3
TxDMA
4-5
ZBT-SRAM Bank B
RxDMA
0-1
TxDMA
6-7
RxDMA
2-3
RxDMA
4-5
RxDMA
6-7
Figure 3 - MVTX2803AG SRAM Interface Block Diagram (DMAs for Gigabit Ports)
4.2
Detailed Memory Information
Because the bus for each bank is 64 bits wide, frames are broken into 8-byte granules, written to and read from
memory. The first 8-byte granule gets written to Bank A, the second 8-byte granule gets written to Bank B, and
so on in alternating fashion. When reading frames from memory, the same procedure is followed, first from A,
then from B, and so on.
The reading and writing from alternating memory banks can be performed with minimal waste of memory
bandwidth. For any speed port, in the worst case, a 1-byte-long EOF granule gets written to Bank A. This
means that a 7-byte segment of Bank A bandwidth is idle, and furthermore, the next 8-byte segment of Bank B
bandwidth is idle, because the first 8 bytes of the next frame will be written to Bank A, not B. This scenario
results in a maximum 15 bytes of waste per frame, which is always acceptable because the interframe gap is 20
bytes.
Search engine data is written to both banks in parallel. In this way, a search engine read operation could be
performed by either bank at any time without a problem.
16
Zarlink Semiconductor Inc.
MVTX2803
5.0
Search Engine
5.1
Search Engine Overview
Data Sheet
The MVTX2803AG search engine is optimized for high throughput searching, with enhanced features to
support:
•
•
•
Up to 64K MAC addresses
4 groups of port trunking
Traffic classification into 8 transmission priorities, and 2 drop precedence levels
5.2
Basic Flow
Shortly after a frame enters the MVTX2803AG and is written to the Frame Data Buffer (FDB), the frame engine
generates a Switch Request, which is sent to the search engine. The switch request consists of the first 64
bytes of the frame, which contain all the necessary information for the search engine to perform its task. When
the search engine is done, it writes to the Switch Response Queue, and the frame engine uses the information
provided in that queue for scheduling and forwarding.
In performing its task, the search engine extracts and compresses the useful information from the 64-byte
switch request. Among the information extracted are the source and destination MAC addresses, the
transmission and discard priorities and whether the frame is unicast or multicast. Requests are sent to the
external SRAM Switch Database to locate the associated entries in the external MCT table.
When all the information has been collected from external SRAM, the search engine has to compare the MAC
address on the current entry with the MAC address for which it is searching. If it is not a match, the process is
repeated on the internal MCT Table. All MCT entries, other than the first of each linked list, are maintained
internal to the chip. If the desired MAC address is still not found, then the result is either learning (source MAC
address unknown) or flooding (destination MAC address unknown).
If the destination MAC address belongs to a port trunk, then the trunk number is retrieved instead of the port
number. But on which port of the trunk will the frame be transmitted? This is easily computed using a hash of
the source and destination MAC addresses.
When all the information is compiled, the switch response is generated, as stated earlier.
5.3
5.3.1
Search, Learning, and Aging
MAC Search
The search block performs source MAC address and destination MAC address searching. As indicated earlier,
if a match is not found, then the next entry in the linked list must be examined, and so on until a match is found
or the end of the list is reached.
In port based VLAN mode, a bitmap is used to determine whether the frame should be forwarded to the
outgoing port. The bitmap is not dynamic. Ports cannot enter and exit groups dynamically.
The MAC search block is also responsible for updating the source MAC address timestamp, used for aging.
5.3.2
Learning
The learning module learns new MAC addresses and performs port change operations on the MCT database.
The goal of learning is to update this database as the networking environment changes over time. Learning and
port change will be performed based on memory slot availability only.
17
Zarlink Semiconductor Inc.
MVTX2803
5.3.3
Data Sheet
Aging
Aging time is controlled by register 400h and 401h.
The aging module scans and ages MCT entries based on a programmable "age out" time interval. As indicated
earlier, the search module updates the source MAC address and VLAN port association timestamps for each
frame it processes. When an entry is ready to be aged, the entry is removed from the table.
5.3.4
Data Structure
The MCT data structure is used when searching for MAC addresses. The structure is maintained by hardware
in the search engine. The database is essentially a hash table, with collisions resolved by chaining. The
database is partial external, and partial internal, as described earlier: the first MCT entry of each linked list is
always located in the external SRAM, and the subsequent MCT’s are located internally.
6.0
Frame Engine
6.1
Data Forwarding Summary
Data enters the device at the RxMAC, the RxDMA will move the data from the MAC RxFIFO to the FDB. Data is
moved in 8-byte granules in conjunction with the scheme for the SRAM interface.
•
•
•
•
•
A switch request is sent to the Search Engine. The Search Engine processes the switch request.
A switch response is sent back to the Frame Engine and indicates whether the frame is unicast or multicast,
and its destination port or ports.
A Transmission Scheduling Request is sent in the form of a signal notifying the TxQ manager. Upon
receiving a Transmission Scheduling Request, the device will format an entry in the appropriate
Transmission Scheduling Queue (TxSch Q) or Queues. There are 8 TxSch Queues for each Gigabit port,
one for each priority. Creation of a queue entry either involves linking a new job to the appropriate linked
list if unicast, or adding an entry to a physical queue if multicast.
When the port is ready to accept the next frame, the TxQ manager will get the head-of-line (HOL) entry of
one of the TxSch Qs, according to the transmission scheduling algorithm (so as to ensure per-class quality
of service). The unicast linked list and the multicast queue for the same port-class pair are treated as one
logical queue.
The TxDMA will pull frame data from the memory and forward it granule-by-granule to the MAC TxFIFO of
the destination port.
6.2
Frame Engine Details
This section briefly describes the functions of each of the modules of the MVTX2803AG frame engine.
6.2.1
FCB Manager
The FCB manager allocates FCB handles to incoming frames, and releases FCB handles upon frame
departure. The FCB manager is also responsible for enforcing buffer reservations and limits. The default values
can be determined by referring to Chapter 8. In addition, the FCB manager is responsible for buffer aging, and
for linking unicast forwarding jobs to their correct TxSch Q. The buffer aging can be enabled or disabled by the
bootstrap pin and the aging time is defined in register FCBAT.
6.2.2
Rx Interface
The Rx interface is mainly responsible for communicating with the RxMAC. It keeps track of the start and end of
frame and frame status (good or bad). Upon receiving an end of frame that is good, the Rx interface makes a
switch request.
18
Zarlink Semiconductor Inc.
MVTX2803
6.2.3
Data Sheet
RxDMA
The RxDMA arbitrates among switch requests from each Rx interface. It also buffers the first 64 bytes of each
frame for use by the search engine when the switch request has been made.
6.2.4
TxQ Manager
First, the TxQ manager checks the per-class queue status and global Reserved resource situation, and using
this information, makes the frame dropping decision after receiving a switch response. If the decision is not to
drop, the TxQ manager requests that the FCB manager link the unicast frame’s FCB to the correct
per-port-per-class TxQ. If multicast, the TxQ manager writes to the multicast queue for that port and class. The
TxQ manager can also trigger source port flow control for the incoming frame’s source if that port is flow control
enabled. Second, the TxQ manager handles transmission scheduling; it schedules transmission among the
queues representing different classes for a port. Once a frame has been scheduled, the TxQ manager reads
the FCB information and writes to the correct port control module.
6.3
Port Control
The port control module calculates the SRAM read address for the frame currently being transmitted. It also
writes start of frame information and an end of frame flag to the MAC TxFIFO. When transmission is done, the
port control module requests that the buffer be released.
6.4
TxDMA
The TxDMA multiplexes data and address from port control, and arbitrates among buffer release requests from
the port control modules.
7.0
Quality of Service and Flow Control
7.1
Model
Quality of service (QoS) is an all-encompassing term for which different people have different interpretations. In
this chapter, quality of service assurances means the allocation of chip resources so as to meet the latency and
bandwidth requirements associated with each traffic class. There is nothing presupposed about the offered
traffic pattern. If the traffic load is light, then ensuring quality of service is straightforward. But if the traffic load
is heavy, the MVTX2803AG must intelligently allocate resources so as to assure quality of service for high
priority data.
The network manager must assign importance for the application types, such as voice, file transfer, or web
browsing. The manager can then subdivide the applications into classes and set up a service contract with
each. The contract may consist of bandwidth or latency assurances per class. Sometimes it may even reflect
an estimate of the traffic mix offered to the switch, though this is not required.
The table below shows examples of QoS applications with eight transmission priorities, including best effort
traffic for which no bandwidth or latency assurances are provided.
Class
Highest transmission
priorities, P7
Latency < 200 µs
Example
Assured Bandwidth
(user defined)
300 Mbps
Low Drop Subclass
(If class is oversubscribed,
these packets are the last to
be dropped)
Sample application: control
information
Table 1 - Two-dimensional World Traffic
19
Zarlink Semiconductor Inc.
High Drop Subclass
(If class is oversubscribed,
these packets are the first
to be dropped)
MVTX2803
Data Sheet
Example
Assured Bandwidth
(user defined)
Low Drop Subclass
(If class is oversubscribed,
these packets are the last to
be dropped)
High Drop Subclass
(If class is oversubscribed,
these packets are the first
to be dropped)
Highest transmission
priorities, P6
Latency < 200 µs
200 Mbps
Sample applications: phone
calls; circuit emulation
Sample application: training
video; other multimedia
Middle transmission
priorities, P5
Latency < 400 µs
125 Mbps
Sample application:
interactive activities
Sample application:
non-critical interactive
activities
Middle transmission
priorities, P4
Latency < 800 µs
250 Mbps
Sample application: web
business
Low transmission
priorities, P3
Latency < 1600 µs
80 Mbps
Sample application: file
backups
Low transmission
priorities, P2
Latency < 3200 µs
45 Mbps
Sample application: email
Class
Best effort, P1-P0
TOTAL
–
Sample application: web
research
Sample application: casual web browsing
1 Gbps
Table 1 - Two-dimensional World Traffic (continued)
It is possible that a class of traffic may attempt to monopolize system resources by sending data at a rate in
excess of the contractually assured bandwidth for that class. A well-behaved class offers traffic at a rate no
greater than the agreed-upon rate. By contrast, a misbehaving class offers traffic that exceeds the agreed rate.
A misbehaving class is formed from an aggregation of misbehaving microflows. To achieve high link utilization,
a misbehaving class is allowed to use any idle bandwidth. However, the quality of service (QoS) received by
well-behaved classes must never suffer.
As Table 1 illustrates, each traffic class may have its own distinct properties and applications. As shown,
classes may receive bandwidth assurances or latency bounds. In the example, P7, the highest transmission
class, requires that all frames be transmitted within 0.2 ms, and receives 30% of the 1 Gbps of bandwidth at that
port.
Best-effort (P1-P0) traffic forms a lower tier of service that only receives bandwidth when none of the other
classes have any traffic to offer.
In addition, each transmission class has two subclasses, high-drop and low-drop. Well-behaved users should
not lose packets. But poorly behaved users – users who send data at too high a rate – will encounter frame
loss, and the first to be discarded will be high-drop. Of course, if this is insufficient to resolve the congestion,
eventually some low-drop frames are dropped as well.
Table 1 shows that different types of applications may be placed in different boxes in the traffic table. For
example, web search may fit into the category of high-loss, high-latency-tolerant traffic, whereas VoIP fits into
the category of low-loss, low-latency traffic.
20
Zarlink Semiconductor Inc.
MVTX2803
7.2
Data Sheet
Four QoS Configurations
There are four basic pieces to QoS scheduling in the MVTX2803AG: strict priority (SP), delay bound, weighted
fair queuing (WFQ), and best effort (BE). Using these four pieces, there are four different modes of operation,
as shown in Table 2.
P7
P6
P5
P4
Op1 (default)
Delay Bound
Op2
SP
Delay Bound
Op3
SP
WFQ
Op4
WFQ
P3
P2
P1
P0
BE
BE
Table 2 - Four QoS configurations per port
The default configuration is six delay-bounded queues and two best-effort queues. The delay bounds per class
are 0.16 ms for P7 and P6, 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and 2.56 ms for P2. Best effort traffic
is only served when there is no delay-bounded traffic to be served. P1 has strict priority over P0.
There is a second configuration in which there are two strict priority queues, four delay bounded queues, and
two best effort queues. The delay bounds per class are 0.32 ms for P5, 0.64 ms for P4, 1.28 ms for P3, and
2.56 ms for P2. If the user is to choose this configuration, it is important that P7-P6 (SP) traffic be either
policed or implicitly bounded (e.g. if the incoming SP traffic is very light and predictably patterned). Strict
priority traffic, if not admission-controlled at a prior stage to the MVTX2803AG, can have an adverse effect on all
other classes’ performance. P7 and P6 are both SP classes, and P7 has strict priority over P6.
The third configuration contains two strict priority queues and six queues receiving a bandwidth partition via
WFQ. As in the second configuration, strict priority traffic needs to be carefully controlled.
In the fourth configuration, all queues are served using a WFQ service discipline
7.3
Delay Bound
In the absence of a sophisticated QoS server and signaling protocol, the MVTX2803AG may not be assured of
the mix of incoming traffic ahead of time. To cope with this uncertainty, the delay assurance algorithm
dynamically adjusts its scheduling and dropping criteria, guided by the queue occupancies and the due dates of
their head-of-line (HOL) frames. As a result, latency bounds are assured for all admitted frames with high
confidence, even in the presence of system-wide congestion. The algorithm identifies misbehaving classes and
intelligently discards frames at no detriment to well-behaved classes. The algorithm also differentiates between
high-drop and low-drop traffic with a weighted random early drop (WRED) approach. Random early dropping
prevents congestion by randomly dropping a percentage of high-drop frames even before the chip’s buffers are
completely full, while still largely sparing low-drop frames. This allows high-drop frames to be discarded early,
as a sacrifice for future low-drop frames. Finally, the delay bound algorithm also achieves bandwidth partitioning
among classes.
7.4
Strict Priority and Best Effort
When strict priority is part of the scheduling algorithm, if a queue has even one frame to transmit, it goes first.
Two of the four QoS configurations include strict priority queues. The goal is for strict priority classes to be used
for IETF expedited forwarding (EF), where performance guarantees are required. As indicated, it is important
that strict priority traffic be either policed or implicitly bounded, so as to keep from harming other traffic classes.
When best effort is part of the scheduling algorithm, a queue only receives bandwidth when none of the other
classes have any traffic to offer. Two of the four QoS configurations include best effort queues. The goal is for
best effort classes to be used for non-essential traffic, because there are no assurances about best effort
21
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
performance. However, in a typical network setting, much best effort traffic will be transmitted, and with an
adequate degree of expediency.
Because there is not any delay assurances for best effort traffic, enforcement of latency by dropping best effort
traffic is not provided. Furthermore, because it is assumed that strict priority traffic is carefully controlled before
entering the MVTX2803AG, a fair bandwidth partition by dropping strict priority traffic is not enforced. To
summarize, dropping to enforce quality of service (i.e. bandwidth or delay) does not apply to strict priority or
best effort queues. It only drops frames from best effort and strict priority queues when global buffer resources
become scarce.
7.5
Weighted Fair Queuing
In some environments – for example, in an environment in which delay assurances are not required, but precise
bandwidth partitioning on small time scales is essential - WFQ may be preferable to a delay-bounded
scheduling discipline. The MVTX2803AG provides the user with a WFQ option with the understanding that
delay assurances cannot be provided if the incoming traffic pattern is uncontrolled. The user sets eight WFQ
"weights" such that all weights are whole numbers and sum to 64. This provides per-class bandwidth
partitioning with error within 2%.
In WFQ mode, though frame latency is not assured, the MVTX2803AG still retains a set of dropping rules that
helps to prevent congestion and trigger higher level protocol end-to-end flow control.
As before, when strict priority is combined with WFQ, there are no special dropping rules for the strict priority
queues, because the input traffic pattern is assumed to be carefully controlled at a prior stage. However, there
is indeed drop frames from SP queues for global buffer management purposes. In addition, queues P1 and P0
are treated as best effort from a dropping perspective, though they still are assured a percentage of bandwidth
from a WFQ scheduling perspective. What this means is that these particular queues are only affected by
dropping when the global buffer count becomes low.
7.6
Shaper
Although traffic shaping is not a primary function of the MVTX2803AG, the chip does implement a shaper for
expedited forwarding (EF). The goal in shaping is to control the peak and average rate of traffic exiting the
MVTX2803AG. Shaping is limited to class P6 (the second highest priority). This means that class P6 will be the
class used for EF traffic. (By contrast, assume class P7 will be used for control packets only.) If shaping is
enabled for P6, then P6 traffic must be scheduled using strict priority. With reference to Table 4, only the middle
two QoS configurations may be used.
Peak rate is set using a programmable whole number, no greater than 64 (register QOS-CREDIT_C6_Gn). For
example, if the setting is 32, then the peak rate for shaped traffic is 32/64 × 1000 Mbps = 500 Mbps. Average
rate is also a programmable whole number, no greater than 64, and no greater than the peak rate. For example,
if the setting is 16, then the average rate for shaped traffic is 16/64 × 1000 Mbps = 250 Mbps. As a
consequence of the above settings in the example, shaped traffic will exit the MVTX2803AG at a rate always
less than 500 Mbps, and averaging no greater than 250 Mbps.
Also, when shaping is enabled, it is possible for a P6 queue to explode in length if fed by a greedy source. The
reason is that a shaper is by definition not work-conserving; that is, it may hold back from sending a packet
even if the line is idle. Though there is global resource management, nothing is done to prevent this situation
locally. This assumes SP traffic is policed at a prior stage to the MVTX2803AG.
22
Zarlink Semiconductor Inc.
MVTX2803
7.7
Data Sheet
WRED Drop Threshold Management Support
To avoid congestion, the Weighted Random Early Detection (WRED) logic drops packets according to specified
parameters. The following table summarizes the behavior of the WRED logic.
P7
P6
P5
P4
P3
P2
High Drop
Low Drop
|P7| ≥ A
KB
|P6| ≥ B
KB
|P5| ≥ C
KB
|P4| ≥ D
KB
|P3| ≥ E
KB
|P2| ≥ F
KB
X%
0%
Level 2
N ≥ 280
Y%
Z%
Level 3
N ≥ 320
100%
100%
Level 1
N ≥ 240
Table 3 - WRED Dropping Scheme
In the table, |Px| is the byte count in queue Px. The WRED logic has three drop levels, depending on the value of N,
which is based on the number of bytes in the priority queues. If delay bound scheduling is used, N equals 16|P7| +
16|P6| + 8|P5| + 4|P4| + 2|P3| + |P2|. If WFQ scheduling is used, N equals |P7| + |P6| + |P5| + |P4| + |P3| + |P2|.
Each drop level has defined high-drop and low-drop percentages, which indicate the percentage of high-drop and
low-drop packets that will be dropped at that level. The X, Y, and Z percent parameters can be programmed using
the registers RDRC0 and RDRC1. Parameters A-F are the byte count thresholds for each priority queue, and are
also programmable. When using delay bound scheduling, the values selected for A-F also control the approximate
bandwidth partition among the traffic classes; see application note.
7.8
Buffer Management
Because the number of frame data buffer (FDB) slots is a scarce resource, and because it is desirable to ensure
that one misbehaving source port or class cannot harm the performance of a well-behaved source port or class,
the concept of buffer management was produced into the MVTX2803AG. The buffer management scheme is
designed to divide the total buffer space into numerous reserved regions and one shared pool, (see Figure 4).
As shown in the figure, the FDB pool is divided into several parts. A reserved region for temporary frames
stores frames prior to receiving a switch response. Such a temporary region is necessary, because when the
frame first enters the MVTX2803AG, its destination port and class are as yet unknown, and so the decision to
drop or not needs to be temporarily postponed. This ensures that every frame can be received first before
subjecting it to the frame drop discipline after classifying.
Six reserved sections, one for each of the highest six priority classes, ensure a programmable number of FDB
slots per class. The lowest two classes do not receive any buffer reservation.
Another segment of the FDB reserves space for each of the 8 ports. These source port buffer reservations are
programmable. These 8 reserved regions make sure that no well-behaved source port can be blocked by
another misbehaving source port.
In addition, there is a shared pool, which can store any type of frame. The registers related to the Buffer
Management logic are:
•
•
•
•
•
•
•
•
PRG- Port Reservation for Gigabit Ports
SFCB- Share FCB Size
C2RS- Class 2 Reserved Size
C3RS- Class 3 Reserved Size
C4RS- Class 4 Reserved Size
C5RS- Class 5 Reserved Size
C6RS- Class 6 Reserved Size
C7RS- Class 7 Reserved Size
23
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Temporary
Reservation RTMP
Shared Pool S
Per-Class
Reservations
RP7, RP6,...RP2
Per-Source Reservations 8-R1G
Figure 4 - Buffer Partition Scheme Used in the MVTX2803AG
7.8.1
Dropping When Buffers Are Scarce
Summarizing the two examples of local dropping discussed earlier in this chapter:
•
If a queue is a delay-bounded queue, we have a multilevel WRED drop scheme, designed to control delay
and partition bandwidth in case of congestion.
• If a queue is a WFQ-scheduled queue, we have a multilevel WRED drop scheme, designed to prevent
congestion.
In addition to these reasons for dropping, the MVTX2803AG also drops frames when global buffer space
becomes scarce. The function of buffer management is to ensure that such droppings cause as little blocking as
possible.
7.9
MVTX2803AG Flow Control Basics
Because frame loss is unacceptable for some applications, the MVTX2803AG provides a flow control option.
When flow control is enabled, scarcity of buffer space in the switch may trigger a flow control signal; this signal
tells a source port, sending a packet to this switch, to temporarily hold off.
While flow control offers the clear benefit of no packet loss, it also introduces a problem for quality of service.
When a source port receives an Ethernet flow control signal, all microflows originating at that port, well-behaved
or not, are halted. A single packet destined for a congested output can block other packets destined for
uncongested outputs. The resulting head-of-line blocking phenomenon means that quality of service cannot be
assured with high confidence when flow control is enabled.
In the MVTX2803AG, each source port can independently have flow control enabled or disabled. For flow
control enabled ports, by default all frames are treated as lowest priority during transmission scheduling. This is
done so that those frames are not exposed to the WRED Dropping scheme. Frames from flow control enabled
ports feed to only one queue at the destination, the queue of lowest priority. What this means is that if flow
control is enabled for a given source port, then it can guarantee that no packets originating from that port will be
lost, but at the possible expense of minimum bandwidth or maximum delay assurances. In addition, these
"downgraded" frames may only use the shared pool or the per-source reserved pool in the FDB; frames from
flow control enabled sources may not use reserved FDB slots for the highest six classes (P2-P7).
24
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
The MVTX2803AG does provide a system-wide option of permitting normal QoS scheduling (and buffer use) for
frames originating from flow control enabled ports. When this programmable option is active, it is possible that
some packets may be dropped, even though flow control is on. The reason is that intelligent packet dropping is
a major component of the MVTX2803AG’s approach to ensuring bounded delay and minimum bandwidth for
high priority flows.
7.9.1
Unicast Flow Control
For unicast frames, flow control is triggered by source port resource availability. Recall that the MVTX2803AG’s
buffer management scheme allocates a reserved number of FDB slots for each source port. If a programmed
number of a source port’s reserved FDB slots have been used, then flow control Xoff is triggered. Xon is
triggered when a port is currently being flow controlled, and all of that port’s reserved FDB slots have been
released.
Note that the MVTX2803AG’s per-source-port FDB reservations assure that a source port that sends a single
frame to a congested destination will not be flow controlled.
7.9.2
Multicast Flow Control
When port based Vlan is not used, a global buffer counter (64 packets) triggers flow control for multicast
frames. When the system exceeds a programmable threshold of multicast packets, Xoff is triggered. Xon is
triggered when the system returns below this threshold. MCC register programs the threshold. When port based
Vlan is used, each Vlan has a global buffer counter.
In addition, each source port has an 8-bit port map recording which port or ports of the multicast frame’s fanout
were congested at the time Xoff was triggered. All ports are continuously monitored for congestion, and a port is
identified as uncongested when its queue occupancy falls below a fixed threshold. When all those ports that
were originally marked as congested in the port map have become uncongested, then Xon is triggered, and the
8-bit vector is reset to zero.
The MVTX2803AG also provides the option of disabling VLAN multicast flow control.
Note: If port flow control is on, QoS performance will be affected. To determine the most efficient way to
program, please refer to the QoS Application Note.
7.10
Mapping to IETF Diffserv Classes
The mapping between priority classes discussed in this chapter and elsewhere is shown below.
MVTX2803AG
P7
P6
P5
P4
P3
P2
P1
P0
IETF
NM
EF
AF0
AF1
AF2
AF3
BE0
BE1
Table 4 - Mapping between MVTX2803AG and IETF Diffserv Classes for Gigabit Ports
As the table illustrates, P7 is used solely for network management (NM) frames. P6 is used for expedited
forwarding service (EF). Classes P2 through P5 correspond to an assured forwarding (AF) group of size 4. Finally,
P0 and P1 are two best effort (BE) classes.
Features of the MVTX2803AG that correspond to the requirements of their associated IETF classes are
summarized in the following below.
25
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Network Management (NM) and
Expedited Forwarding (EF)
•
•
•
•
Global buffer reservation for NM and EF
Shaper for EF traffic
Option of strict priority scheduling
No dropping if admission controlled
Assured Forwarding (AF)
•
•
•
Four AF classes
Programmable bandwidth partition, with option of WFQ service
Option of delay-bounded service keeps delay under fixed levels even if
not admission-controlled
Random early discard, with programmable levels
Global buffer reservation for each AF class
•
•
Best Effort (BE)
•
•
•
•
Two BE classes
Service only when other queues are idle means that QoS not adversely
affected
Random early discard, with programmable levels
Traffic from flow control enabled ports automatically classified as BE
Table 5 - MVTX2803AG Features Enabling IETF Diffserv Standards
8.0
Port Trunking
8.1
Features and Restrictions
A port group (i.e. trunk) can include up to 8 physical ports, but all of the ports in a group must be in the same
MVTX2803AG.
The MVTX2803AG provides several pre-assigned trunk group options, containing as many as 4 ports per
group, or alternatively, as many as 4 total groups.
Load distribution among the ports in a trunk for unicast is performed using hashing based on source MAC
address and destination MAC address. The other options include source MAC address only, destination MAC
address only. Load distribution for multicast is performed similarly.
If a VLAN includes any of the ports in a trunk group, all the ports in that trunk group should be in the same VLAN
member map.
The MVTX2803AG also provides a safe fail-over mode for port trunking automatically. If one of the ports in the
trunking group goes down, the MVTX2803AG will automatically redistribute the traffic over to the remaining
ports in the trunk in unmanaged mode. In managed mode, the software can perform similar tasks.
8.2
Unicast Packet Forwarding
The search engine finds the destination MCT entry, and if the status field says that the destination address
found belongs to a trunk, then the group number is retrieved instead of the port number. In addition, if the
source address belongs to a trunk, then the source port’s trunk membership register is checked to determine if
the address has moved.
A hash key is used to determine the appropriate forwarding port, based on some combination of the source and
destination MAC addresses for the current packet.
The search engine retrieves the VLAN member ports from the VLAN index table, which consists of 4K entries.
The search engine retrieves the VLAN member ports from the ingress port’s VLAN map. Based on the
destination MAC address, the search engine determines the egress port from the MCT database. If the egress
port is a member of a trunk group, the packet can be distributed to the other members of that trunk group. The
26
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
VLAN map is used to check whether the egress port is a member of the VLAN, based on the ingress port. If it
is a member, the packet is forwarded otherwise it is discarded.
8.3
Multicast Packet Forwarding
For multicast packet forwarding, the device must determine the proper set of ports from which to transmit the
packet based on the VLAN index and hash key.
Two functions are required in order to distribute multicast packets to the appropriate destination ports in a port
trunking environment.
•
•
Determining one forwarding port per group.
For multicast packets, all but one port per group, the forwarding port, must be excluded.
8.4
Preventing Multicast Packets from Looping Back to the Source Trunk
The search engine needs to prevent a multicast packet from sending to a port that is in the same trunk group
with the source port. This is because, when selecting the primary forwarding port for each group, it does not
take the source port into account. To prevent this, simply apply one additional filter, so as to block that
forwarding port for this multicast packet.
9.0
9.1
LED Interface
Introduction
The MVTX2803AG LED block provides two interfaces: a serial output channel, and a parallel time-division
interface. The serial output channel provides port status information from the MVTX2803AG chip in a
continuous serial stream. This means that a low cost external device must be used to decode the serial data
and to drive an LED array for display.
By contrast, the parallel time-division interface supports a glueless LED module. Indeed, the parallel interface
can directly drive low-current LEDs without any extra logic. The pin LED_PM is used to select serial or parallel
mode.
For some LED signals, the interface also provides a blinking option. Blinking may be enabled for LED signals
TxD, RxD, COL, and FC (to be described later). The pin LED_BLINK is used to enable blinking, and the
blinking frequency is around 160 ms.
9.2
Serial Mode
In serial mode, the following pins are utilized:
•
•
•
LED_SYNCO – a sync pulse that defines the boundary between status frames
LED_CLKO – the clock signal
LED_DO – a continuous serial stream of data for all status LEDs that repeats once every frame time
In each cycle (one frame of status information, or one sync pulse), 16×8 bits of data are transmitted on the LED_DO
signal. The sequence of transmission of data bits is as shown in the figure below:
27
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
LE_SYNCO
LE_DO
P0
info
P1
info
P2
info
P3
info
P4
info
P5
info
P6
info
P7
info
U0
U1
U2
U3
0
1
2
3
4
5
6
7
FC
TxD
RxD
LNK
SP0
SP1
FDX
COL
U4
U5
U6
U7
LE_CLKO
Figure 5 - Timing diagram for serial mode in LED interface
The status bits shown in here are flow control (FC), transmitting data (TxD), receiving data (RxD), link up (LNK),
speed (SP0 and SP1), full duplex (FDX), and collision (COL). Note that SP[1:0] is defined as 10 for 1 Gbps, 01
for 100 Mbps, and 00 for 10 Mbps.
Also note that U0-U7 represent user-defined sub-frames in which additional status information may be
embedded. We will see later that the MVTX2803AG provides registers that can be written by the CPU to
indicate this additional status information as it becomes available.
9.3
Parallel Mode
In parallel mode, the following pins are utilized:
•
LED_PORT_SEL[9:0] – indicates which of the 8 Gigabit port status bytes or 2 user-defined status bytes is
being read out
• LED_BYTEOUT_[7:0] – provides 8 bits for 8 different port status indicators. Note that these bits are active
low.
By default, the system is in parallel mode. In parallel mode, the 10 status bytes are scanned in a continuous
loop, with one byte read out per clock cycle, and the appropriate port select bit asserted.
9.4
LED Control Registers
An LED Control Register can be used for programming the LED clock rate, sample hold time, and pattern in
parallel mode.
In addition, the MVTX2803AG provides 8 registers called LEDUSER[7:0] for user-defined status bytes. During
operation, the CPU can write values to these registers, which will be read out to the LED interface output (serial
or parallel). Only LEDUSER[1:0] are used in parallel mode. The content of the LEDUSER registers will be sent
out by the LED serial shift logic, or in parallel mode, a byte at a time.
Because in parallel mode there are only two user-defined registers, LEDUSER[7:2] is shared with LEDSIG[7:2].
For LEDSIG[j], where j = 2, 3, ..., 6, the corresponding register is used for programming the LED pin
LED_BYTEOUT_[j]. The format is as follows:
7
COL
Bits [3:0]
FDX
SP1
4
3
SP0
COL
0
FDX
Signal polarity: 0: do not invert polarity (high true)
1: invert polarity
28
Zarlink Semiconductor Inc.
SP1
SP0
MVTX2803
Bits [7:4]
Signal select:
Data Sheet
0: do not select
1: select the corresponding bit
For j = 2, 3, 4, 5, the value of LED_BYTEOUT_[j] equals the logical AND of all selected bits. For j = 6, the value
is equal to the logical OR. Therefore, the programmable LEDSIG[5:2] registers allow any conjunctive formula
including any of the 4 status bits (COL, FDX, SP1, SP0) or their negations to be sent to the
LED_BYTEOUT_[5:2] pins. Similarly, the programmable LEDSIG[6] register allows any disjunctive formula
including any of the 4 status bits or their negations to be sent to pin LED_BYTEOUT_[6].
LEDSIG[7] is used for programming both LED_BYTEOUT_[1] and LED_BYTEOUT_[0]. As we will see, it has
other functions as well. The format is as follows:
7
GP
RxD
TxD
4
3
FC
P6
0
RxD
TxD
FC
Bits [7]
Global output polarity: this bit controls the output polarity of all LED_BYTEOUT_ and
LED_PORT_SEL pins. (Default 0)
0: do not invert polarity (LED_BYTEOUT_[7:0] are high activated; LED_PORT_SEL[9:0] are low
activated)
1: invert polarity (LED_BYTEOUT_[7:0] are low activated; LED_PORT_SEL[9:0] are high activated)
Bits [6:4]
Signal select:
0: do not select
1: select the corresponding bit
The value of LED_BYTEOUT_[1] equals the logical OR of all selected bits. (Default 110)
Bit [3]
Polarity control of LED_BYTEOUT_[6] (Default 0)
0: do not invert
1: invert
Bits [2:0]
Signal select:
0: do not select
1: select the corresponding bit
The value of LED_BYTEOUT_[0] equals the logical OR of all selected bits. (Default 001)
10.0
Register Definition
10.1
MVTX2803AG Register Description
Register
CPU
Addr
(Hex)
Description
R/W
I2C
Addr
(Hex)
Default
ETHERNET Port Control Registers – Substitute [N] with Port number (0..7)
ECR1P”N”
Port Control Register 1 for Port
N (N=0-7)
000 + 2N
R/W
000+2N
c0
ECR2P”N”
Port Control Register 2 for Port
N (N=0-7)
001 + 2N
R/W
001+2N
00
GGCONTROL0
Extra Gigabit Port Control
–port 0,1
012
R/W
N/A
00
29
Zarlink Semiconductor Inc.
Notes
MVTX2803
Register
Description
Data Sheet
CPU
Addr
(Hex)
R/W
I2C
Addr
(Hex)
Default
GGCONTROL1
Extra Gigabit Port Control
–port 2,3
013
R/W
N/A
00
GGCONTROL2
Extra Gigabit Port Control
–port 4,5
014
R/W
N/A
00
GGCONTROL3
Extra Gigabit Port Control
–port 6,7
015
R/W
N/A
00
ACTIVELINK
Active Link status port 7:0
016
R/W
N/A
00
VLAN Control Registers – Substitute [N] with Port number (0..8)
AVTCL
VLAN Type Code Register
Low
100
R/W
012
00
AVTCH
VLAN Type Code Register
High
101
R/W
013
81
PVMAP”N”_0
Port “N” Configuration Register
0 (N=0-8)
102 + 4N
R/W
014+4N
ff
PVMAP”N”_3
Port “N” Configuration Register
3 (N=0-8)
105 + 4N
R/W
017+4N
00
PVMODE
VLAN Operating Mode
126
R/W
038
00
TRUNK0_MODE
Trunk Group 0 Mode
207
R/W
039
00
TRUNK1_MODE
Trunk Group 1 Mode
20E
R/W
03A
00
Transmission Queue Aging
Time
312
R/W
03B
08
TRUNK Control Registers
CPU Port Configuration
TX_AGE
Search Engine Configurations
AGETIME_LOW
MAC Address Aging Time Low
400
R/W
03C
2c
AGETIME_HIGH
MAC Address Aging Time
High
401
R/W
03D
00
SE_OPMODE
Search Engine operation
mode
403
R/W
NA
00
Buffer Control and QOS Control
FCBAT
FCB Aging Timer
500
R/W
03E
ff
QOSC
QOS Control
501
R/W
03F
00
FCR
Flooding Control Register
502
R/W
040
08
AVPML
VLAN Priority Map Low
503
R/W
041
88
AVPMM
VLAN Priority Map Middle
504
R/W
042
c6
AVPMH
VLAN Priority Map High
505
R/W
043
fa
30
Zarlink Semiconductor Inc.
Notes
MVTX2803
Register
Description
Data Sheet
CPU
Addr
(Hex)
R/W
I2C
Addr
(Hex)
Default
TOSPML
TOS Priority Map Low
506
R/W
044
88
TOSPMM
TOS Priority Map Middle
507
R/W
045
c6
TOSPMH
TOS Priority Map High
508
R/W
046
fa
AVDM
VLAN Discard Map
509
R/W
047
00
TOSDML
TOS Discard Map
50A
R/W
048
00
BMRC
Broadcast/Multicast Rate
Control
50B
R/W
049
00
UCC
Unicast Congestion Control
50C
R/W
04A
07
MCC
Multicast Congestion Control
50D
R/W
04B
48
PR100
Port Reservation for 10/100
Ports
50E
R/W
04C
00
PRG
Port Reservation for Giga
Ports
50F
R/W
04D
26
SFCB
Share FCB Size
510
R/W
04E
37
C2RS
Class 2 Reserved Size
511
R/W
04F
00
C3RS
Class 3 Reserved Size
512
R/W
050
00
C4RS
Class 4 Reserved Size
513
R/W
051
00
C5RS
Class 5 Reserved Size
514
R/W
052
00
C6RS
Class 6 Reserved Size
515
R/W
053
00
C7RS
Class 7 Reserved Size
516
R/W
054
00
QOSC”N”
QOS Control (N=0 – 2F)
517–546
R/W
055-084
QOSC”N”
QOS Control (N=30 – 82)
547-599
R/W
NA
RDRC0
WRED Rate Control 0
59A
R/W
085
8e
RDRC1
WRED Rate Control 1
59B
R/W
086
68
MISC Configuration Registers
MII_OP0
MII Register Option 0
600
R/W
0B1
00
MII_OP1
MII Register Option 1
601
R/W
0B2
00
FEN
Feature Registers
602
R/W
0B3
10
MIIC0
MII Command Register 0
603
R/W
N/A
00
MIIC1
MII Command Register 1
604
R/W
N/A
00
MIIC2
MII Command Register 2
605
R/W
N/A
00
MIIC3
MII Command Register 3
606
R/W
N/A
00
MIID0
MII Data Register 0
607
RO
N/A
00
31
Zarlink Semiconductor Inc.
Notes
MVTX2803
Register
Description
Data Sheet
CPU
Addr
(Hex)
R/W
I2C
Addr
(Hex)
Default
MIID1
MII Data Register 1
608
RO
N/A
00
LED
LED Control Register
609
R/W
0B4
38
CHECKSUM
EEPROM Checksum Register
60B
R/W
0C5
00
LEDUSER0
LED User Define Register 0
60C
R/W
0BB
00
LEDUSER1
LED User Define Register 1
60D
R/W
0BC
00
LEDUSER2
LED User Define Reg.
2/LED_byte pin 2
60E
R/W
0BD
80
LEDUSER3
LED User Define Reg.
3/LED_byte pin 3
60F
R/W
0BE
33
LEDUSER4
LED User Define Reg.
4/LED_byte pin 4
610
R/W
0BF
32
LEDUSER5
LED User Define Reg.
5/LED_byte pin 5
611
R/W
0C0
20
LEDUSER6
LED User Define Reg.
6/LED_byte pin 6
612
R/W
0C1
40
LEDUSER7
LED User Define Reg.
7/LED_byte pin 1 & 0
613
R/W
0C2
61
MIINP0
MII NEXT PAGE DATA
REGISTER0
614
R/W
0C3
00
MIINP1
MII NEXT PAGE DATA
REGISTER1
615
R/W
0C4
00
DTSRL
Test Register Low
E00
R/W
N/A
00
DTSRM
Test Register Medium
E01
R/W
N/A
01
DTSRH
Test Register High
E02
R/W
N/A
00
TDRB0
TEST MUX read back register
[7:0]
E03
RO
N/A
TDRB1
TEST MUX read back register
[15:8]
E04
RO
N/A
DTCR
Test Counter Register
E05
R/W
N/A
00
MASK0
MASK Timeout 0
E06
R/W
0B6
00
MASK1
MASK Timeout 1
E07
R/W
0B7
00
MASK2
MASK Timeout 2
E08
R/W
0B8
00
MASK3
MASK Timeout 3
E09
R/W
0B9
00
MASK4
MASK Timeout 4
E0A
R/W
0BA
00
Test Group Control
32
Zarlink Semiconductor Inc.
Notes
MVTX2803
Register
Description
Data Sheet
CPU
Addr
(Hex)
R/W
I2C
Addr
(Hex)
Default
00
Device Configuration Register
GCR
Global Control Register
F00
R/W
N/A
DCR
Device Status and Signature
Register
F01
RO
N/A
DCR01
Gigabit Port0 Port1 Status
Register
F02
RO
NA
DCR23
Gigabit Port2 Port3 Status
Register
F03
RO
NA
DCR45
Gigabit Port4 Port5 Status
Register
F04
RO
NA
DCR67
Gigabit Port6 Port7 Status
Register
F05
RO
NA
DPST
Device Port Status Register
F06
R/W
N/A
DTST
Data read back register
F07
RO
N/A
PLLCR
PLL Control Register
F08
R/W
N/A
00
LCLKCR
LCLK Control Register
F09
R/W
N/A
00
BCLKCR
BCLK Control Register
F0A
R/W
N/A
00
BSTRRB0
BOOT STRAP read back
register 0
F0B
RO
N/A
BSTRRB1
BOOT STRAP read back
register 1
F0C
RO
N/A
BSTRRB2
BOOT STRAP read back
register 2
F0D
RO
N/A
BSTRRB3
BOOT STRAP read back
register 3
F0E
RO
N/A
BSTRRB4
BOOT STRAP read back
register 4
F0F
RO
N/A
BSTRRB5
BOOT STRAP read back
register 5
F10
RO
N/A
DA
DA Register
FFF
RO
N/A
Note:
Note:
Note:
Note:
Note:
1.
2.
3.
4.
5.
se = Search Engine
fe = Frame Engine
pgs = Port Group01, 23, 45, and 67
mc = MAC Control
tm = time
33
Zarlink Semiconductor Inc.
00
da
Notes
MVTX2803
10.2
Data Sheet
Group 0 Address - MAC Ports Group
10.2.1
ECR1Pn: Port N Control Register
2
I C Address h00+2n; Serial Interface Address:h000+2n (n=0 to 7)
Accessed by serial interface and I2C (R/W)
7
6
Sp State
5
4
3
A-FC
2
1
0
Port Mode
Bit [4:0]
Port Mode (Default 2’b00)
Bit [4:3]
00 - Automatic Enable Auto-Negotiation – This enables hardware state machine for auto-negotiation.
01 - Limited Disable auto-Negotiation – This disables hardware for speed auto-negotiation.
Hardware Polls MII for link status.
10 - Link Down - Force link down (disable the port). Does not talk to PHY.
11 - Link Up – Does not talk to PHY. User ERC1 [2:0] for config.
Bit [2]
1 – 10Mbps (Default 1’b0)
0 – 100Mbps
Bit 2 is used only when the port is in MII (10/100) mode.
Bit [1]
1 – Half Duplex (Do not use) (Default 1’b0)
0 – Full Duplex
Bit [0]
1 – Flow Control Off (Default 1’b0)
0 – Flow Control On
When flow control is on:
In full duplex mode, the MAC transmitter sends Flow Control Frames when necessary. The MAC
receiver interprets and processes incomming flow control frames. The Flow Control Frame Received
counter is incremented whenever a flow control frame is received.
When flow control is off:
In full duplex mode, the MAC transmitter does not send flow control frames. The MAC receiver does
not interpret or process the flow control frames. The Flow Control Frame Receiver counter is not
incremented.
Bit [5]
Asymmetric Flow Control Enable.
0 – Disable asymmetric flow control
1 – Enable asymmetric flow control
When this bit is set, and flow control is on (bit[0] = 0), don’t send out a flow control frame. But MAC
Receiver interprets and process flow control frames. (Default is 0)
Bit [7:6]
SS - Spanning tree state (802.1D spanning tree protocol). (Default 2’b11)
00 – Blocking:
Frame is dropped
01 - Listening:
Frame is dropped
10 - Learning:
Frame is dropped. Source MAC address is learned.
11 - Forwarding: Frame is forwarded. Source MAC address is learned.
34
Zarlink Semiconductor Inc.
MVTX2803
10.2.2
Data Sheet
ECR2Pn: Port N Control Register
I2C Address: 01+2n; Serial Interface Address:h001+2n (n=0to7)
Accessed by serial interface (R/W)
7
5
3
Security En
2
1
0
DisL
Ftf
Futf
Bit[0]:
Filter untagged frame (Default 0)
0: Disable
1: Enable – All untagged frames from this port are discarded or follow security option when security
is enable
Bit[1]:
Filter Tag frame (Default 0)
0: Disable
1: Enable - All tagged frames from this port are discarded or follow security option when security is
enable
Bit[2]:
Learning Disable (Default 0)
0: Learning is enabled on this port
1: Learning is disabled on this port
Bit [5:3:]
Reserved
Bit[7:6]
Security Enable (Default 00). The MVTX2804AG checks the incoming data for one of the following
conditions:
If the source MAC address of the incoming packet is in the MAC table and is defined as secure
address but the ingress port is not the same as the port associated with the MAC address in the
MAC table.
A MAC address is defined as secure when its entry at MAC table has static status and bit 0 is set to
1. MAC address bit 0 (the first bit transmitted) indicates whether the address is unicast or multicast.
As source addresses are always unicast bit 0 is not used (always 0). MVTX2804 uses this bit to
define secure MAC addresses.
If the port is set as learning disable and the source MAC address of the incoming packet is not
defined in the MAC address table.
If the port is configured to filter untagged frames and an untagged frame arrives or if the port is
configured to filter tagged frames and a tagged frame arrives.
If one of these three conditions occurs, the packet will be handled according to one of the following
specified options:
00 – Disable port security
01 – Enable port security. Port will be disabled when security violation is detected
10 – N/A
11 – N/A
35
Zarlink Semiconductor Inc.
MVTX2803
10.2.3
Data Sheet
GGControl 0– Extra GIGA Port Control
Serial Interface Address:h012
Accessed by and serial interface (R/W)
7
6
5
4
MII1
Rst1
4
Bit[0]:
Reset GIGA port 0 (Default is 0)
0: Normal operation
1: Reset Gigabit port 0.
Bit[1]:
GIGA port 0 use MII interface (10/100M) (Default is 0)
0: Gigabit port operation at 1000M mode
1: Gigabit port operation at 10/100M mode (MII)
Bit[3:2]:
Reserved -Must be '0' (Default 0)
Bit[4]:
Reset GIGA port 1 (Default 0)
0: Normal operation
1: Reset Gigabit port 1.
Bit[5]:
GIGA port 1 use MII interface (10/100M) (Default 0)
0: Gigabit port operation at 1000M mode
1: Gigabit port operation at 10/100M mode (MII)
Bit[7:6]:
Reserved - Must be '0' (Default 0)
10.2.4
2
1
0
MII0
Rst0
1
0
MII2
Rst2
GGControl 1– Extra GIGA Port Control
Serial Interface Address:h013
Accessed by CPU and serial interface (R/W)
7
6
5
4
MII3
Rst3
3
Bit[0]:
Reset GIGA port 2 Default is 0
0: Normal operation
1: Reset Gigabit port 2
Bit[1]:
GIGA port 2 use MII interface (10/100M) Default is 0
0: Gigabit port operation at 1000M mode
1: Gigabit port operation at 10/100M mode (MII)
Bit[3:2]:
Reserved - Must be '0' (Default '0')
Bit[4]:
Reset GIGA port 3 Default is 0
0: Normal operation
1: Reset Gigabit port 3.
36
Zarlink Semiconductor Inc.
2
MVTX2803
Bit[5]:
GIGA port 3 use MII interface (10/100M) Default is 0
0: Gigabit port operation at 1000M mode
1: Gigabit port operation at 10/100M mode (MII)
Bit[7:6]:
Reserved - Must be '0' (Default '0')
10.2.5
Data Sheet
GGControl 2– Extra GIGA Port Control
Serial Interface Address:h014
Accessed by CPU and serial interface (R/W)
7
6
5
4
MII5
Rst5
3
Bit[0]:
Reset GIGA port 4 Default is 0
0: Normal operation
1: Reset Gigabit port 4.
Bit[1]:
GIGA port 4 use MII interface (10/100M) Default is 0
0: Gigabit port operation at 1000M mode
1: Gigabit port operation at 10/100M mode (MII)
Bit[3:2]:
Reserved - Must be '0' (Default 0)
Bit[4]:
Reset GIGA port 5 Default is 0
0: Normal operation
1: Reset Gigabit port 5.
Bit[5]:
GIGA port 5 use MII interface (10/100M) Default is 0
0: Gigabit port operation at 1000M mode
1: Gigabit port operation at 10/100M mode (MII)
Bit[7:6]:
Reserved - Must be '0' (Default 0)
10.2.6
2
1
0
MII4
Rst4
1
0
MII6
Rst6
GGControl 3– Extra GIGA Port Control
Serial Interface Address:h015
Accessed by CPU and serial interface (R/W)
7
6
5
4
MII7
Rst7
3
Bit[0]:
Reset GIGA port 6 Default is 0
0: Normal operation
1: Reset Gigabit port 6.
Bit[1]:
GIGA port 6 use MII interface (10/100M) Default is 0
0: Gigabit port operation at 1000M mode
1: Gigabit port operation at 10/100M mode (MII)
Bit[3:2]:
Reserved - Must be '0' (Default 0)
37
Zarlink Semiconductor Inc.
2
MVTX2803
Bit[4]:
Reset GIGA port 7 Default is 0
0: Normal operation
1: Reset Gigabit port 7.
Bit[5]:
GIGA port 7 use MII interface (10/100M) Default is 0
0: Gigabit port operation at 1000M mode
1: Gigabit port operation at 10/100M mode (MII)
Bit[7:6]:
Reserved - Must be '0' (Default 0)
10.3
Data Sheet
Group 1 Address - VLAN Group
10.3.1
AVTCL – VLAN Type Code Register Low
I2C Address h12; Serial Interface Address:h100
Accessed by serial interface and I2C (R/W)
Bit[7:0]:
10.3.2
VLANType_LOW: Lower 8 bits of the VLAN type code (Default 00)
AVTCH – VLAN Type Code Register High
I2C Address h13; Serial Interface Address:h101
Accessed by serial interface and I2C (R/W)
Bit [7:0] VLANType_HIGH: Upper 8 bits of the VLAN type code (Default is 81)
10.3.3
PVMAP00_0 – Port 00 Configuration Register 0
I2C Address h14, Serial Interface Address:h102
Accessed by serial interface and I2C (R/W)
Port Based VLAN Mode
This register indicates the legal egress ports. Example: A “1” on bit 7 means that packets arriving on port 0 can
be sent to port 7. A “0” on bit 7 means that any packet destined to port 7 will be discarded.
Bit[7:0]:
10.3.4
I 2C
VLAN Mask for ports 7 to 0 (Default FF)
0 – Disable
1 - Enable
PVMAP00_3 – Port 00 Configuration Register 3
Address h17, Serial Interface Address:h105)
Accessed by serial interface and I2C (R/W)
Port Based Mode
7
6
FP en
Drop
5
3
Default TX priority
2
1
0
FNT
IF
Reserved
38
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Bit [1:0]:
Reserved (Default 0)
Bit [2]:
Force untagout (Default 0)
0 Disable
1 Force untag output
All packets transmitted from this port are untagged. This register is used when this port is
connected to legacy equipment that does not support VLAN tagging.
Bit [5:3]:
Fixed Transmit priority. Used when bit[7] = 1 (Default 0)
000 Transmit Priority Level 0 (Lowest)
001 Transmit Priority Level 1
010 Transmit Priority Level 2
011 Transmit Priority Level 3
100 Transmit Priority Level 4
101 Transmit Priority Level 5
110 Transmit Priority Level 6
111 Transmit Priority Level 7 (Highest)
Bit [6]:
Fixed Discard priority (Default 0)
0 – Discard Priority Level 0 (Lowest)
1 – Discard Priority Level 7(Highest)
Bit [7]:
Enable Fix Priority (Default 0)
0 Disable fix priority. All frames are analyzed. Transmit Priority and Drop Priority are based on
VLAN Tag, TOS or Logical Port.
1 Transmit Priority and Discard Priority are based on values programmed in bit [6:3]
Port VLAN Map
PVMAP00_0,3 I2C Address h14,17; Serial Interface Address:h102,105)
PVMAP01_0,3 I2C Address h18,1B; Serial Interface Address:h106,109)
PVMAP02_0,3 I2C Address h1C,1F; Serial Interface Address:h10A, 0D)
PVMAP03_0,3 I2C Address h20,23; Serial Interface Address:h10E, 111)
PVMAP04_0,3 I2C Address h24,27; Serial Interface Address:h112, 115)
PVMAP05_0,3 I2C Address h28,2B; Serial Interface Address:h116, 119)
PVMAP06_0,3 I2C Address h2C,2F; Serial Interface Address:h11A,11D)
PVMAP07_0,3 I2C Address h30,33; Serial Interface Address:h11E, 121)
39
Zarlink Semiconductor Inc.
MVTX2803
10.3.5
Data Sheet
PVMODE
I2C Address: h038, Serial Interface Address:h126
Accessed by serial interface (R/W)
7
6
5
4
RO
MP
BPDU
DM
3
0
Reserved
Bit [0]:
Reserved
Must be '0'
Bit [4]:
Disable MAC address 0
0: MAC address 0 is not leaned.
1: MAC address 0 is leaned.
Bit [5]:
Force BPDU as multicast frame (Default 0)
1: Enable. BPDU frames (frames with destination MAC address in the range of 01-80-C2 00-00-00
through 01-80-C2-00-00-0F) are forwarded as multicast frames.
0: Disable. Drop frames in this range.
Bit [6]:
MAC/PORT
0: Single MAC address per system
1: Single MAC address per port
Bit [7]:
Reserved
10.4
Group 2 Address - Port Trunking Group
10.4.1
TRUNK0_MODE – Trunk group 0 and 1 mode
I2C Address: h039, Serial Interface Address:h207
Accessed by serial interface and I2C (R/W)
Port Selection in unmanaged mode. Trunk group 0 and trunk group 1 are enable accordingly to bit [1:0] when
input pin P_D[9] = 0 (external pull down).
7
2
1
0
Port sel
Bit [1:0]:
Port member selection for Trunk 0 and 1 in unmanaged mode (Default 2’b00)
00 – Only trunk group 0 is enable. Port 0 and 1 are used for trunk group0
01 – Only trunk group 0 is enable. Port 0,1 and 2 are used for trunk group0
10 – Only trunk group 0 is enable. Port 0,1,2 and 3 are used for trunk group0
11 – Trunk group 0 and 1 are enable. Port 0, 1 used for trunk group0, and port 2 and 3
are used for trunk group1
40
Zarlink Semiconductor Inc.
MVTX2803
10.4.2
Data Sheet
TRUNK1_MODE – Trunk group 1 mode (Unmanaged Mode)
I2C Address h03A; Serial Interface Address:h20E
Accessed by serial interface and I2C (R/W)
Port Selection in unmanaged mode. Trunk group 2 and Trunk group 3 are enable accordingly to bits [1:0] when
input pin P_D[10] = 0 (External pull down).
7
2
1
0
Port Select
Bit [1:0]:
10.4.3
Port member selection for Trunk 2 and 3 in unmanaged mode
00 – Only trunk group 2 is enable. Port 4 and 5 are used for trunk group2
01 – Only trunk group 2 is enable. Port 4, 5 and 6 are used for trunk group2
10 – Only trunk group 2 is enable. Port 4, 5, 6 and 7 are used for trunk group2
11 – Trunk group 2 and trunk group 3 are enable. Port 4 and used for trunk group2, and port 6 5 are
and 7 are used for trunk group3
TX_AGE – Tx Queue Aging timer
I2C Address: h03B;Serial Interface Address:h312
Accessed by serial interface and I2C (R/W)
7
5
4
0
Tx Queue Agent
Bit[4:0]: Unit of 100ms (Default 8). Disable transmission queue aging if value is zero.
Bit[7:5]: Reserved. (Must be '0')
10.5
10.5.1
Group 4 Address - Search Engine Group
AGETIME_LOW – MAC address aging time Low
2
I C Address: h03C; Serial Interface Address:h400
Accessed by serial interface and I2C (R/W)
Bit [7:0] Low byte of the MAC address aging timer. (Default 2c)
Mac address aging is enable/disable by boot strap T_D[9].
10.5.2
AGETIME_HIGH –MAC address aging time High
2
I C Address h03D; Serial Interface Address h401
Accessed by serial interface and I2C (R/W)
Bit [7:0]: High byte of the MAC address aging timer. (Default 00)
Aging time is based on the following equation:
{AGETIME_HIGH,AGETIME_LOW} X (# of MAC entries X100µsec)
41
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Note: the numer of entries= 66K when T_D[5] is pull down (SRAM memory size = 512K) and 34K when T_D[5]
is pull up (SRAM memory size = 256K).
10.5.3
SE_OPMODE – Search Engine Operation Mode
Serial Interface Address:h403
Accessed by CPU (R/W)
7
6
5
SL
DMS
0
Bit [5:0]:
Reserved
Bit [6]:
Disable MCT speedup aging (Default 0)
1 – Disable speedup aging when MCT resource is low.
0 – Enable speedup aging when MCT resource is low.
Bit [7]:
Slow Learning (Default 0)
1– Enable slow learning. Learning is temporary disabled when search demand is high
0 – Learning is performed independent of search demand
10.6
Group 5 Address - Buffer Control/QOS Group
10.6.1
I 2C
FCBAT – FCB Aging Timer
Address: h03E; Serial Interface Address:h500
7
0
FCBAT
Bit [7:0]:
10.6.2
FCB Aging time. Unit of 1ms. (Default FF)
FCBAT define the aging time out interval of FCB handle
QOSC – QOS Control
I2C Address: h03F; Serial Interface Address:h501
Accessed by serial interface and I2C (R/W)
7
6
Tos-d
Tos-p
5
4
3
VF1c
1
0
fb
Bit [0]:
QoS frame lost is OK. Priority will be available for flow control enabled source only when this bit is set
(Default 0)
Bit [4]:
Per VLAN (Port based) Multicast Flow Control (Default 0)
0 – Disable
1 - Enable
42
Zarlink Semiconductor Inc.
MVTX2803
Bit [5]:
Reserved
Bit [6]:
Select TOS bits for Priority (Default 0)
0 – Use TOS [4:2] bits to map the transmit priority
1 – Use TOS [5:3] bits to map the transmit priority
Bit [7]:
select TOS bits for Drop (Default 0)
0 – Use TOS [4:2] bits to map the drop priority
1 – Use TOS [5:3] bits to map the drop priority
10.6.3
I 2C
Data Sheet
FCR – Flooding Control Register
Address: h040; Serial Interface Address:h502
Accessed by serial interface and I2C (R/W)
7
6
Tos
4
3
TimeBase
0
U2MR
Bit [3:0]:
U2MR: Unicast to Multicast Rate. Units in terms of time base defined in bits [6:4]. This is used to limit
the amount of flooding traffic. The value in U2MR specifies how many packets are allowed to flood
within the time specified by bit [6:4]. To disable this function, program U2MR to 0. (Default = 4’h8)
Bit [6:4]:
TimeBase: (Default = 000)
000 = 10us
001 = 20us
010 = 40us
011 = 80us
100 = 160us
101 = 320us
110 = 640us
111 = 10us, same as 000.
Bit [7]:
Select VLAN tag or TOS field (IP packets) to be preferentially picked to map transmit priority and drop
priority (Default = 0).
0 – Select VLAN tag priority field over TOS field
1 – Select TOS field over VLAN tag priority field
10.6.4
AVPML – VLAN Priority Map
I2C Address: h041; Serial Interface Address:h503
Accessed by serial interface and I2C (R/W)
7
6
VP2
5
3
VP1
2
0
VP0
Registers AVPML, AVPMM, and AVPMH allow the eight VLAN priorities to map into eight internal level transmit
priorities. Under the internal transmit priority, ìsevenî is the highest priority where as ìzeroî is the lowest. This
feature allows the user the flexibility of redefining the VLAN priority field. For example, programming a value of
7 into bit 2:0 of the AVPML register would map packet VLAN priority ) into internal transmit priority 7. The new
priority is used only inside the 2804. When the packet goes out it carries the original priority.
43
Zarlink Semiconductor Inc.
MVTX2803
Bit [2:0]:
Mapped priority of 0 (Default 000)
Bit [5:3]:
Mapped priority of 1 (Default 001)
Bit [7:6]:
Mapped priority of 2 (Default 10)
10.6.5
Data Sheet
AVPMM – VLAN Priority Map
I2C Address: h042, Serial Interface Address:h504
Accessed by serial interface and I2C (R/W)
7
6
4
VP5
3
VP4
1
0
VP3
VP2
1
0
Map VLAN priority into eight level transmit priorities:
Bit [0]:
Mapped priority of 2 (Default 0)
Bit [3:1]:
Mapped priority of 3 (Default 011)
Bit [6:4]:
Mapped priority of 4 (Default 100)
Bit [7]:
Mapped priority of 5 (Default 1)
10.6.6
AVPMH – VLAN Priority Map
I2C Address: h043, Serial Interface Address:h505
Accessed by serial interface and I2C (R/W)
7
5
4
2
VP7
VP6
VP5
Map VLAN priority into eight level transmit priorities:
Bit [1:0]:
Mapped priority of 5 (Default 10)
Bit [4:2]:
Mapped priority of 6 (Default 110)
Bit [7:5]:
Mapped priority of 7 (Default 111)
10.6.7
OSPML – TOS Priority Map
I2C Address: h044, Serial Interface Address:h506
Accessed by serial interface and I2C (R/W)
7
6
TP2
5
3
TP1
44
Zarlink Semiconductor Inc.
2
0
TP0
MVTX2803
Data Sheet
Map TOS field in IP packet into four level transmit priorities
Bit [2:0]:
Mapped priority when TOS is 0 (Default 000)
Bit [5:3]:
Mapped priority when TOS is 1 (Default 001)
Bit [7:6]:
Mapped priority when TOS is 2 (Default 10)
10.6.8
TOSPMM – TOS Priority Map
2
I C Address: h045, Serial Interface Address:h507
Accessed by serial interface and I2C (R/W)
7
6
TP5
4
3
TP4
1
0
TP3
TP2
1
0
Map TOS field in IP packet into four level transmit priorities
Bit [0]:
Mapped priority when TOS is 2 (Default 0)
Bit [3:1]:
Mapped priority when TOS is 3 (Default 011)
Bit [6:4]:
Mapped priority when TOS is 4 (Default 100)
Bit [7]:
Mapped priority when TOS is 5 (Default 1)
10.6.9
TOSPMH – TOS Priority Map
I2C Address: h046, Serial Interface Address:h508
Accessed by serial interface and I2C (R/W)
7
5
4
2
TP7
TP6
TP5
Map TOS field in IP packet into four level transmit priorities:
Bit [1:0]:
Mapped priority when TOS is 5 (Default 01)
Bit [4:2]:
Mapped priority when TOS is 6 (Default 110)
Bit [7:5]:
Mapped priority when TOS is 7 (Default 111)
10.6.10
I 2C
AVDM – VLAN Discard Map
Address: h047, Serial Interface Address:h509
Accessed by serial interface and I2C (R/W)
7
6
5
4
3
2
1
0
FDV7
FDV6
FDV5
FDV4
FDV3
FDV2
FDV1
FDV0
45
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Map VLAN priority into frame discard when low priority buffer usage is above threshold. Frames with high
discard (drop) priority will be discarded (dropped) before frames with low drop priority.
•
•
0 – Low discard priority
1 – High discard priority
Bit [0]:
Frame discard priority for frames with VLAN transmit priority 0 (Default 0)
Bit [1]:
Frame discard priority for frames with VLAN transmit priority 1 (Default 0)
Bit [2]:
Frame discard priority for frames with VLAN transmit priority 2 (Default 0)
Bit [3]:
Frame discard priority for frames with VLAN transmit priority 3 (Default 0)
Bit [4]:
Frame discard priority for frames with VLAN transmit priority 4 (Default 0)
Bit [5]:
Frame discard priority for frames with VLAN transmit priority 5 (Default 0)
Bit [6]:
Frame discard priority for frames with VLAN transmit priority 6 (Default 0)
Bit [7]:
Frame discard priority for frames with VLAN transmit priority 7 (Default 0)
10.6.11
TOSDML – TOS Discard Map
I2C Address: h048, Serial Interface Address:h50A
Accessed by serial interface and I2C (R/W)
7
6
5
4
3
2
1
0
FDT7
FDT6
FDT5
FDT4
FDT3
FDT2
FDT1
FDT0
Map TOS into frame discard when low priority buffer usage is above threshold
Bit [0]:
Frame discard priority for frames with TOS transmit priority 0 (Default 0)
Bit [1]:
Frame discard priority for frames with TOS transmit priority 1 (Default 0)
Bit [2]:
Frame discard priority for frames with TOS transmit priority 2 (Default 0)
Bit [3]:
Frame discard priority for frames with TOS transmit priority 3 (Default 0)
Bit [4]:
Frame discard priority for frames with TOS transmit priority 4 (Default 0)
Bit [5]:
Frame discard priority for frames with TOS transmit priority 5 (Default 0)
Bit [6]:
Frame discard priority for frames with TOS transmit priority 6 (Default 0)
Bit [7]:
Frame discard priority for frames with TOS transmit priority 7 (Default 0)
46
Zarlink Semiconductor Inc.
MVTX2803
10.6.12
Data Sheet
BMRC - Broadcast/Multicast Rate Control
I2C Address: h049, Serial Interface Address:h50B
Accessed by serial interface and I2C (R/W)
7
4
3
Broadcast Rate
0
Multicast Rate
This broadcast and multicast rate defines for each port the number of incoming packet allowed to be forwarded
within a specified time. Once the packet rate is reached, packets will be dropped. To turn off the rate limit,
program the field to 0.
Bit [3:0] :
Multicast Rate Control Number of multicast packets allowed within the time defined in bits 6 to 4
of the Flooding Control Register (FCR). (Default 0).
Bit [7:4] :
Broadcast Rate Control Number of broadcast packets allowed within the time defined in bits 6 to
4 of the Flooding Control Register (FCR). (Default 0)
10.6.13
UCC – Unicast Congestion Control
I2C Address: h04A, Serial Interface Address: h50C
Accessed by serial interface and I2C (R/W)
7
0
Unicast congest threshold
Bit [7:0] :
10.6.14
I 2C
Number of frame count. Used for best effort dropping at B% when destination port’s best effort
queue reaches UCC threshold and shared pool is all in use. Granularity 16 frame. (Default: h07)
MCC – Multicast Congestion Control
Address: h0B7, Serial Interface Address: h50D
Accessed by serial interface and I2C (R/W)
7
5
4
3
FC reaction prd
0
Multicast congest threshold
Bit [3:0]:
In multiples of two. Used for triggering MC flow control when destination port’s best effort queue
reaches MCC threshold. (Default 5’h08)
Bit [4]:
Must be 0
Bit [7:5]:
Flow control reaction period. ([7:5] *4)+3 usec (Default 3’h2).
47
Zarlink Semiconductor Inc.
MVTX2803
10.6.15
Data Sheet
PRG – Port Reservation for Giga ports
I2C Address: h0B9, Serial Interface Address h50F
Accessed by serial interface and I2C (R/W)
7
4
Buffer low thd
3
0
Per source buffer Reservation
Bit [3:0]:
Per source buffer reservation. Define the space in the FDB reserved for each port. Expressed in
multiples of 16 packets. For each packet 1536 bytes are reserved in the memory.
Default: 4’hA for 4MB memory
4’h6 for 2MB memory
4’h3 for 1MB memory
Bits [7:4]:
Expressed in multiples of 16 packets. Threshold for dropping all best effort frames when destination
port best effort queues reach UCC threshold and shared pool is all used and source port reservation
is at or below the PRG[7:4] level. Also the threshold for initiating UC flow control.
Default: 4’h6 for 4MB memory
4’h2 for 2MB memory
4’h1 for 1MB memory
FCB Reservation
10.6.16
SFCB – Share FCB Size
I2C Address: h04E, Serial Interface Address h510
Accessed by serial interface and I2C (R/W)
7
0
Shared buffer size
Bits [7:0]:
Expressed in multiples of 8. Buffer reservation for shared pool.
(Default 4G & 4M = 8’d62)
(Default 4G & 2M = 8’d20)
(Default 4G & 1M = 8'd08)
(Default 8G & 4M = 8’d150)
(Default 8G & 2M = 8’d55)
(Default 8G & 1M = 8'd25)
48
Zarlink Semiconductor Inc.
MVTX2803
10.6.17
Data Sheet
C2RS – Class 2 Reserved Size
I2C Address: h04F, Serial Interface Address h511
Accessed by serial interface and I2C (R/W)
7
0
Class 2 FCB Reservation
Bits [7:0]:
10.6.18
Buffer reservation for class 2 (third lowest priority). Granularity 2. (Default 8’h00)
C3RS – Class 3 Reserved Size
I2C Address: h050, Serial Interface Address h512
Accessed by serial interface and I2C (R/W)
7
0
Class 3 FCB Reservation
Bits [7:0]:
10.6.19
I 2C
Buffer reservation for class 3. Granularity 2. (Default 8’h00)
C4RS – Class 4 Reserved Size
Address: h051, Serial Interface Address h513
Accessed by serial interface and I2C (R/W)
7
0
Class 4 FCB Reservation
Bits [7:0]:
10.6.20
Buffer reservation for class 4. Granularity 2.
(Default 8’h00)
C5RS – Class 5 Reserved Size
I2C Address: h052; Serial Interface Address: h514
Accessed by serial interface and I2C (R/W)
7
0
Class 5 FCB Reservation
Bits [7:0]:
Buffer reservation for class 5. Granularity 2. (Default 8’h00)
49
Zarlink Semiconductor Inc.
MVTX2803
10.6.21
Data Sheet
C6RS – Class 6 Reserved Size
I2C Address: h053; Serial Interface Address: h515
Accessed by serial interface and I2C (R/W)
7
0
Class 6 FCB Reservation
Bits [7:0]:
10.6.22
Buffer reservation for class 6 (second highest priority). Granularity 2. (Default 8’h00)
C7RS – Class 7 Reserved Size
I2C Address: h054; Serial Interface Address: h516
Accessed by serial interface and I2C (R/W)
7
0
Class 7 FCB Reservation
Bits [7:0]:
Buffer reservation for class 7 (highest priority). Granularity 2. (Default 8’h00)
Classes Byte Gigabit Port 0
10.6.23
QOSC00 – BYTE_C2_G0
I2C Address: h055, Serial Interface Address: h517
Bits [7:0]:
10.6.24
I 2C
Byte count threshold for C2 queue WRED (Default 8’h28)
(1024byte/unit when Delay Bound is used)
(1024byte/unit when WFQ is used)
QOSC01 – BYTE_C3_G0
Address: h056, Serial Interface Address: h518
Bits [7:0]:
10.6.25
Byte count threshold for C3 queue WRED (Default 8’h28)
512byte/unit when Delay Bound is used)
(1024byte/unit when WFQ is used)
QOSC02 – BYTE_C4_G0
I2C Address: h057, Serial Interface Address: h519
Bits [7:0]:
Byte count threshold for C4 queue WRED (Default 8’h28)
(256byte/unit when Delay Bound is used)
(1024byte/unit when WFQ is used)
50
Zarlink Semiconductor Inc.
MVTX2803
10.6.26
Data Sheet
QOSC03 – BYTE_C5_G0
I2C Address: h058, Serial Interface Address: h51A
Bits [7:0]:
10.6.27
I 2C
Byte count threshold for C5 queue WRED (Default 8’h28)
(128byte/unit when Delay Bound is used)
(1024byte/unit when WFQ is used)
QOSC04 – BYTE_C6_G0
Address: h059, Serial Interface Address: h51B
Bits [7:0]:
10.6.28
Byte count threshold for C6 queue WRED (Default 8’h50)
(64byte/unit when Delay Bound is used)
(1024byte/unit when WFQ is used)
QOSC05 – BYTE_C7_G0
I2C Address: h05A, Serial Interface Address: h51C
Bits [7:0]:
Byte count threshold for C6 queue WRED (Default 8’h50)
(64byte/unit when Delay Bound is used)
(1024byte/unit when WFQ is used)
QOSC00 through QOSC05 represent the values F-A in Table 3 for Gigabit port 0. They are per-queue byte
thresholds for weighted random early drop (WRED). QOSC05 represents A, and QOSC00 represents F.
Classes Byte Gigabit Port 1
10.6.29
QOSC06 – BYTE_C2_G1
I2C Address: h05B, Serial Interface Address: h51D
Bits [7:0]:
10.6.30
I 2C
Byte count threshold for C2 queue WRED (Default 8’h28)
(1024byte/unit when Delay Bound is used)
(1024byte/unit when WFQ is used)
QOSC07 – BYTE_C3_G1
Address: h05C, Serial Interface Address: h51E
Bits [7:0]
Byte count threshold for C3 queue WRED (Default 8’h28)
(512 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
51
Zarlink Semiconductor Inc.
MVTX2803
10.6.31
Data Sheet
QOSC08 – BYTE_C4_G1
I2C Address: h05D, Serial Interface Address: h51F
Bits [7:0]:
10.6.32
I 2C
Byte count threshold for C4 queue WRED (Default 8’h28)
(256 byte/unit when Delay Bound is used)
(1024byte/unit when WFQ is used)
QOSC09 – BYTE_C5_G1
Address: h05E, Serial Interface Address: h520
Bits [7:0]:
10.6.33
Byte count threshold for C5 queue WRED (Default 8’h28)
(128 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC0A – BYTE_C6_G1
I2C Address: h05F, Serial Interface Address: h521
Bits [7:0]:
10.6.34
I 2C
Byte count threshold for C6 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC0B – BYTE_C7_G1
Address: h060, Serial Interface Address: h522
Bits [7:0]:
Byte count threshold for C7 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC06 through QOSC0B represent the values F-A in Table 3. They are per-queue byte thresholds for random
early drop. QOSC0B represents A, and QOSC06 represents F.
Classes Byte Gigabit Port 2
10.6.35
QOSC0C – BYTE_C2_G2
I2C Address: h061, Serial Interface Address: h523
Bits [7:0]:
Byte count threshold for C2 queue WRED (Default 8’h28)
(1024 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
52
Zarlink Semiconductor Inc.
MVTX2803
10.6.36
Data Sheet
QOSC0D – BYTE_C3_G2
I2C Address: h062, Serial Interface Address: h524
Bits [7:0]:
10.6.37
I 2C
Byte count threshold for C3 queue WRED (Default 8’h28)
(512 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC0E – BYTE_C4_G2
Address: h063, Serial Interface Address: h525
Bits [7:0]:
10.6.38
Byte count threshold for C4 queue WRED (Default 8’h28)
(256 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
OSC0F – BYTE_C5_G2
I2C Address: h064, Serial Interface Address: h526
Bits [7:0]:
10.6.39
Byte count threshold for C5 queue WRED (Default 8’h28)
(128 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC10 – BYTE_C6_G2
I2C Address: h065, Serial Interface Address: h27
Bits [7:0]:
10.6.40
Byte count threshold for C6 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC11 – BYTE_C7_G2
I2C Address: h066, Serial Interface Address: h528
Bits [7:0]:
Byte count threshold for C7 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC0C through QOSC11 represent the values F-A in Table 3 for Gigabit port 2. They are per-queue byte
thresholds for random early drop. QOSC11 represents A, and QOSC0C represents F.
53
Zarlink Semiconductor Inc.
MVTX2803
Classes Byte Gigabit Port 3
10.6.41
QOSC12 – BYTE_C2_G3
I2C Address: h067, Serial Interface Address: h529
Bits [7:0]:
10.6.42
Byte count threshold for C2 queue WRED (Default 8’h28)
(1024 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC13 – BYTE_C3_G3
I2C Address: h068, Serial Interface Address: h52A
Bits [7:0]:
10.6.43
I 2C
Byte count threshold for C3 queue WRED (Default 8’h28)
(512 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC14 – BYTE_C4_G3
Address: h069, Serial Interface Address: h52B
Bits [7:0]:
10.6.44
Byte count threshold for C4 queue WRED (Default 8’h28)
(256 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC15 – BYTE_C5_G3
I2C Address: h06A, Serial Interface Address: h52C
Bits [7:0]:
10.6.45
Byte count threshold for C5 queue WRED (Default 8’h28)
(128 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC16 – BYTE_C6_G3
I2C Address: h06B, Serial Interface Address: h52D
Bits [7:0]:
Byte count threshold for C6 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
54
Zarlink Semiconductor Inc.
Data Sheet
MVTX2803
10.6.46
Data Sheet
QOSC17 – BYTE_C7_G3
I2C Address: h06C, Serial Interface Address: h52E
Bits [7:0]:
Byte count threshold for C7 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC12 through QOSC17 represent the values F-A in Table 3 for Gigabit port 3. They are per-queue byte
thresholds for random early drop. QOSC17 represents A, and QOSC12 represents F.
Classes Byte Gigabit Port 4
10.6.47
QOSC18 – BYTE_C2_G4
I2C Address: h06D, Serial Interface Address:h 52F
Bits [7:0]:
10.6.48
I 2C
Byte count threshold for C2 queue WRED (Default 8’h28)
(1024 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC019 – BYTE_C3_G4
Address: h06E, Serial Interface Address: h530
Bits [7:0]:
10.6.49
Byte count threshold for C3 queue WRED (Default 8’h28)
(512 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC1A – BYTE_C4_G4
I2C Address: h06F, Serial Interface Address: h531
Bits [7:0]:
10.6.50
Byte count threshold for C4 queue WRED (Default 8’h28)
(256 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC1B – BYTE_C5_G4
I2C Address: h070, Serial Interface Address: h532
Bits [7:0]:
Byte count threshold for C5 queue WRED (Default 8’h28)
(128 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
55
Zarlink Semiconductor Inc.
MVTX2803
10.6.51
Data Sheet
QOSC1C – BYTE_C6_G4
I2C Address: h071, Serial Interface Address: h533
Bits [7:0]:
10.6.52
Byte count threshold for C6 queue WRED (Default 8’h28)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC1D– BYTE_C7_G4
I2C Address: h072, Serial Interface Address: h534
Bits [7:0]:
Byte count threshold for C7 queue WRED (Default 8’h28)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC18 through QOSC1D represent the values F-A in Table 3 for Gigabit port 4. They are per-queue byte
thresholds for random early drop. QOSC1D represents A, and QOSC18 represents F.
Classes Byte Gigabit Port 5
10.6.53
I 2C
QOSC1E– BYTE_C2_G5
Address: h073, Serial Interface Address: h535
Bits [7:0]:
10.6.54
Byte count threshold for C2 queue WRED (Default 8’h28)
(1024 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC1F – BYTE_C3_G5
I2C Address: h074, Serial Interface Address: h536
Bits [7:0]:
10.6.55
Byte count threshold for C3 queue WRED (Default 8’h28)
(512 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC20 – BYTE_C4_G5
I2C Address: h075, Serial Interface Address: h537
Bits [7:0]:
Byte count threshold for C4 queue WRED (Default 8’h28)
(256 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
56
Zarlink Semiconductor Inc.
MVTX2803
10.6.56
Data Sheet
QOSC21 – BYTE_C5_G5
I2C Address: h076, Serial Interface Address: h538
Bits [7:0]:
10.6.57
Byte count threshold for C5 queue WRED (Default 8’h28)
(128 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC22 – BYTE_C6_G5
I2C Address: h077, Serial Interface Address: h539
Bits [7:0]:
10.6.58
Byte count threshold for C6 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC23 – BYTE_C7_G5
I2C Address: h078, Serial Interface Address: h53A
Bits [7:0]:
Byte count threshold for C4 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC1E through QOSC23 represent the values F-A in Table 3 for Gigabit port 5. They are per-queue byte
thresholds for random early drop. QOSC23 represents A, and QOSC1E represents F.
Classes Byte Gigabit Port 6
10.6.59
QOSC24 – BYTE_C2_G6
I2C Address: h079, Serial Interface Address: h53B
Bits [7:0]:
10.6.60
Byte count threshold for C2 queue WRED (Default 8’h28)
(1024 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC25 – BYTE_C3_G6
I2C Address: h07A, Serial Interface Address: h53C
Bits [7:0]:
Byte count threshold for C3 queue WRED (Default 8’h28)
(512 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
57
Zarlink Semiconductor Inc.
MVTX2803
10.6.61
Data Sheet
QOSC26 – BYTE_C4_G6
I2C Address: h07B, Serial Interface Address: h53D
Bits [7:0]:
10.6.62
I 2C
Byte count threshold for C4 queue WRED (Default 8’h28)
(256 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC27 – BYTE_C5_G6
Address: h07C, Serial Interface Address: h53E
Bits [7:0]:
10.6.63
Byte count threshold for C5 queue WRED (Default 8’h28)
(128 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC28 – BYTE_C6_G6
I2C Address: h07D, Serial Interface Address: h53F
Bits [7:0]:
10.6.64
Byte count threshold for C6 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC29 – BYTE_C7_G6
I2C Address: h07E, Serial Interface Address:h 540
Bits [7:0]:
Byte count threshold for C7 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC24 through QOSC29 represent the values F-A in Table 3 for Gigabit port 6. They are per-queue byte
thresholds for random early drop. QOSC29 represents A, and QOSC24 represents F.
Classes Byte Gigabit Port 7
10.6.65
QOSC2A – BYTE_C2_G7
I2C Address: h07F, Serial Interface Address: h541
Bits [7:0]:
Byte count threshold for C2 queue WRED (Default 8’h28)
(1024 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
58
Zarlink Semiconductor Inc.
MVTX2803
10.6.66
Data Sheet
QOSC2B – BYTE_C3_G7
I2C Address: h080, Serial Interface Address: h542
Bits [7:0]:
10.6.67
I 2C
Byte count threshold for C3 queue WRED (Default 8’h28)
(512 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC2C – BYTE_C4_G7
Address: h081, Serial Interface Address: h543
Bits [7:0]:
10.6.68
Byte count threshold for C4 queue WRED (Default 8’h28)
(256 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC2D – BYTE_C5_G7
I2C Address: h082, Serial Interface Address: h544
Bits [7:0]:
10.6.69
I 2C
Byte count threshold for C5 queue WRED (Default 8’h28)
(128 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC2E – BYTE_C6_G7
Address: h083, Serial Interface Address: h545
Bits [7:0]:
10.6.70
Byte count threshold for C6 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC2F – BYTE_C7_G7
I2C Address: h084, Serial Interface Address: h546
Bits [7:0]:
Byte count threshold for C5 queue WRED (Default 8’h50)
(64 byte/unit when Delay Bound is used)
(1024 byte/unit when WFQ is used)
QOSC00 through QOSC05 represent the values F-A in Table 3 for Gigabit port 7. They are per-queue byte
thresholds for random early drop. QOSC05 represents A, and QOSC00 represents F.
59
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Classes Byte Limit CPU
Classes WFQ Credit Set 0
10.6.71
QOSC33 – CREDIT_C0_G0
Serial Interface Address: h54A
Bits [5:0]:
W0 - Credit register for WFQ. (Default 6’h04)
Bits [7:6]:
Priority type. Define one of the four QoS mode of operation for port 0 (Default
2’00)
00 : Option 1
01: Option 2
10: Option 3
11: Option 4
See table below
Queue
10.6.72
P7
P6
P5
P4
P3
P2
P1
Option 1 Bit [7:6] = 2’B00
DELAY BOUND
BE
Option 2 Bit [7:6] = 2’B01
SP
DELAY BOUND
BE
Option 3 Bit [7:6] = 2’B10
SP
WFQ
Opition 4 Bit [7:6] = 2’B11
WFQ
Credit for WFQ – Bit [5:0]
W
7
W
6
W
5
W
4
W
3
W
2
QOSC34 – CREDIT_C1_G0
Serial Interface Address: h54B
Bits [7]:
Flow control allow during WFQ scheme. (Default 1’b1)
0 = Not support QoS when the Source port Flow control status is on.
1= Always support QoS)
Bits [6]:
Flow control BE Queue only. (Default 1’b1)
0= DO NOT send any frames if the XOFF is on.
1= the P7-P2 frames can be sent even the XOFF is ON
Bits [5:0]
W1 - Credit register. (Default 4’h04)
60
Zarlink Semiconductor Inc.
W
1
P0
W
0
MVTX2803
Fc_allow
Fc_be_only
Data Sheet
Lost_ok
Egress- for dest fc_status
Ingress- for src
fc status
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise Normal
0
0
1
Go to BE Queue if (Dest FC on) otherwise Normal
1
0
0
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD
1
0
1
(WFQ only)
Always Normal
X
1
0
Go to BE Queue if (Src FC on)
X
1
1
Always Normal
10.6.73
QOSC35 – CREDIT_C2_G0
Serial Interface Address: h54C
Bits [5:0]
W2 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.74
QOSC36 – CREDIT_C3_G0
Serial Interface Address: h54D
Bits [5:0]
W3 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.75
QOSC37 – CREDIT_C4_G0
Serial Interface Address: h54E
Bits [5:0]
W4 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.76
QOSC38 – CREDIT_C5_G0
Serial Interface Address: h54F
Bits [5:0]
W5 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
61
Zarlink Semiconductor Inc.
MVTX2803
10.6.77
Data Sheet
QOSC39– CREDIT_C6_G0
Serial Interface Address: h550
Bits [5:0]
W6 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.78
QOSC3A– CREDIT_C7_G0
Serial Interface Address: h551
Bits [5:0]
W7 - Credit register. (Default 5’h10)
Bits [7:6]:
Reserved
QOSC33 through QOSC3Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 0. The
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC33 corresponds to W0, and
QOSC3A corresponds to W7.
Classes WFQ Credit Port G1
10.6.79
QOSC3B – CREDIT_C0_G1
Serial Interface Address: h552
Bits [5:0]:
W0 - Credit register for WFQ. (Default 6’h04)
Bits [7:6]:
Priority type. Define one of the four QoS mode of operation for port 1 (Default 2’00)
00 : Option 1
01: Option 2
10: Option 3
11: Option 4
See table below:
Queue
P7
P6
P5
P4
P3
P2
P1
Option 1 Bit [7:6] = 2’B00
DELAY BOUND
BE
Option 2 Bit [7:6] = 2’B01
SP
DELAY BOUND
BE
Option 3 Bit [7:6] = 2’B10
SP
WFQ
Opition 4 Bit [7:6] = 2’B11
WFQ
Credit for WFQ – Bit [5:0]
W
7
W
6
W
5
62
Zarlink Semiconductor Inc.
W
4
W
3
W
2
W
1
P0
W
0
MVTX2803
10.6.80
Data Sheet
QOSC3C – CREDIT_C1_G1
Serial Interface Address: h54B
Bits [7]:
Flow control allow during WFQ scheme. (Default 1’b1)
0 = Not support QoS when the Source port Flow control status is on.
1= Always support QoS)
Bits [6]:
Flow control BE Queue only. (Default 1’b1)
0= DO NOT send any frames if the XOFF is on.
1= the P7-P2 frames can be sent even the XOFF is ON
Bits [5:0]
W1 - Credit register. (Default 4’h04)
Fc_allow
Fc_be_only
Lost_ok
Egress- for dest fc_status
Ingress- for src
fc status
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise Normal
0
0
1
Go to BE Queue if (Dest FC on) otherwise Normal
1
0
0
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD
1
0
1
(WFQ only)
Always Normal
X
1
0
Go to BE Queue if (Src FC on)
X
1
1
Always Normal
10.6.81
QOSC3D – CREDIT_C2_G1
Serial Interface Address: h553
Bits [5:0]
W2 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.82
QOSC3E – CREDIT_C3_G1
Serial Interface Address: h554
Bits [5:0]
W3 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
63
Zarlink Semiconductor Inc.
MVTX2803
10.6.83
Data Sheet
QOSC3F – CREDIT_C4_G1
Serial Interface Address: h555
Bits [5:0]
W4 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.84
QOSC40 – CREDIT_C5_G1
Serial Interface Address: h556
Bits [5:0]
W5 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.85
QOSC41– CREDIT_C6_G1
Serial Interface Address: h557
Bits [5:0]
W6 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.86
QOSC42– CREDIT_C7_G1
Serial Interface Address: h558
Bits [5:0]
W7 - Credit register. (Default 5’h10)
Bits [7:6]:
Reserved
QOSC3B through QOSC42 represents the set of WFQ parameters (see section 7.5) for Gigabit port 1. The
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC3B corresponds to W0, and
QOSC42 corresponds to W7.
Classes WFQ Credit Port G2
10.6.87
QOSC43 – CREDIT_C0_G2
Serial Interface Address: h55A
Bits [5:0]:
W0 - Credit register for WFQ. (Default 6’h04)
Bits [7:6]:
Priority type. Define one of the four QoS mode of operation for port 2 (Default 2’00)
00 : Option 1
01: Option 2
10: Option 3
11: Option 4
64
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
See table below:
Queue
10.6.88
P7
P6
P5
P4
P3
P2
P1
Option 1 Bit [7:6] = 2’B00
DELAY BOUND
BE
Option 2 Bit [7:6] = 2’B01
SP
DELAY BOUND
BE
Option 3 Bit [7:6] = 2’B10
SP
WFQ
Opition 4 Bit [7:6] = 2’B11
WFQ
Credit for WFQ – Bit [5:0]
W
7
W
6
W
5
W
4
W
3
W
2
W
1
P0
W
0
QOSC44 – CREDIT_C1_G2
Serial Interface Address: h55B
Bits [7]:
Flow control allow during WFQ scheme. (Default 1’b1)
0 = Not support QoS when the Source port Flow control status is on.
1= Always support QoS)
Bits [6]:
Flow control BE Queue only. (Default 1’b1)
0= DO NOT send any frames if the XOFF is on.
1= the P7-P2 frames can be sent even the XOFF is ON
Bits [5:0]
W1 - Credit register. (Default 4’h04)
Fc_allow
Fc_be_only
Lost_ok
Egress- for dest fc_status
Ingress- for src
fc status
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise Normal
0
0
1
Go to BE Queue if (Dest FC on) otherwise Normal
1
0
0
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD
1
0
1
(WFQ only)
Always Normal
X
1
0
Go to BE Queue if (Src FC on)
X
1
1
Always Normal
10.6.89
QOSC45 – CREDIT_C2_G2
Serial Interface Address: h55C
Bits [5:0]
W2 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
65
Zarlink Semiconductor Inc.
MVTX2803
10.6.90
Data Sheet
QOSC46 – CREDIT_C3_G2
Serial Interface Address: h55D
Bits [5:0]
W3 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.91
QOSC47 – CREDIT_C4_G2
Serial Interface Address: h55E
Bits [5:0]
W4 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.92
QOSC48 – CREDIT_C5_G2
Serial Interface Address: h55F
Bits [5:0]
W5 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.93
QOSC49– CREDIT_C6_G2
Serial Interface Address: h560
Bits [5:0]
W6 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.94
QOSC4A– CREDIT_C7_G2
Serial Interface Address: h561
Bits [5:0]
W7 - Credit register. (Default 5’h10)
Bits [7:6]:
Reserved
QOSC43 through QOSC4Arepresents the set of WFQ parameters (see section 7.5) for Gigabit port 2. The
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC43 corresponds to W0, and
QOSC4A corresponds to W7.
66
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Classes WFQ Credit Port G3
10.6.95
QOSC4B – CREDIT_C0_G3
Serial Interface Address: h562
Bits [5:0]:
Bits [7:6]:
W0 - Credit register for WFQ. (Default 6’h04)
Priority type. Define one of the four QoS mode of operation for port 3 (Default 2’00)
00 : Option 1
01: Option 2
10: Option 3
11: Option 4
See table below:
Queue
10.6.96
P7
P6
P5
P4
P3
P2
P1
Option 1 Bit [7:6] = 2’B00
DELAY BOUND
BE
Option 2 Bit [7:6] = 2’B01
SP
DELAY BOUND
BE
Option 3 Bit [7:6] = 2’B10
SP
WFQ
Opition 4 Bit [7:6] = 2’B11
WFQ
Credit for WFQ – Bit [5:0]
W
7
W
6
W
5
W
4
W
3
W
2
QOSC4 – CREDIT_C1_G3
Serial Interface Address: h563
Bits [7]:
Flow control allow during WFQ scheme. (Default 1’b1)
0 = Not support QoS when the Source port Flow control status is on.
1= Always support QoS)
Bits [6]:
Flow control BE Queue only. (Default 1’b1)
(0= DO NOT send any frames if the XOFF is on.
(1= the P7-P2 frames can be sent even the XOFF is ON)
Bits [5:0]
W1 - Credit register. (Default 4’h04)
67
Zarlink Semiconductor Inc.
W
1
P0
W
0
MVTX2803
Fc_allow
Fc_be_only
Egress- for dest fc_status
Data Sheet
Lost_ok
Ingress- for src
fc status
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise Normal
0
0
1
Go to BE Queue if (Dest FC on) otherwise Normal
1
0
0
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD
1
0
1
(WFQ only)
Always Normal
X
1
0
Go to BE Queue if (Src FC on)
X
1
1
Always Normal
10.6.97
QOSC4D – CREDIT_C2_G3
Serial Interface Address: h564
Bits [5:0]
W2 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.98
QOSC4E – CREDIT_C3_G3
Serial Interface Address: h565
Bits [5:0]
W3 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.99
QOSC4F – CREDIT_C4_G3
Serial Interface Address: h566
Bits [5:0]
W4 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.100
QOSC50 – CREDIT_C5_G3
Serial Interface Address: h567
Bits [5:0]
W5 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
68
Zarlink Semiconductor Inc.
MVTX2803
10.6.101
Data Sheet
QOSC51– CREDIT_C6_G3
Serial Interface Address: h568
Bits [5:0]
W6 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.102
QOSC52– CREDIT_C7_G3
Serial Interface Address: h569
Bits [5:0]
W7 - Credit register. (Default 5’h10)
Bits [7:6]:
Reserved
QOSC4B through QOSC52 represents the set of WFQ parameters (see section 7.5) for Gigabit port 3. The
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC4B corresponds to W0, and
QOSC52 corresponds to W7.
Classes WFQ Credit Port G4
10.6.103
QOSC53 – CREDIT_C0_G4
Serial Interface Address: h56A
Bits [5:0]:
W0 - Credit register for WFQ. (Default 6’h04)
Bits [7:6]:
Priority type. Define one of the four QoS mode of operation for port 4 (Default 2’00)
00 : Option 1
01: Option 2
10: Option 3
11: Option 4
See table below:
Queue
P7
P6
P5
P4
P3
P2
P1
Option 1 Bit [7:6] = 2’B00
DELAY BOUND
BE
Option 2 Bit [7:6] = 2’B01
SP
DELAY BOUND
BE
Option 3 Bit [7:6] = 2’B10
SP
WFQ
Opition 4 Bit [7:6] = 2’B11
WFQ
Credit for WFQ – Bit [5:0]
W
7
W
6
W
5
69
Zarlink Semiconductor Inc.
W
4
W
3
W
2
W
1
P0
W
0
MVTX2803
10.6.104
Data Sheet
QOSC54 – CREDIT_C1_G4
Serial Interface Address: h56B
Bits [7]:
Flow control allow during WFQ scheme. (Default 1’b1)
0 = Not support QoS when the Source port Flow control status is on.
1= Always support QoS)
Bits [6]:
Flow control BE Queue only. (Default 1’b1)
(0= DO NOT send any frames if the XOFF is on.
(1= the P7-P2 frames can be sent even the XOFF is ON)
Bits [5:0]
W1 -Credit register. (Default 4’h04)
Fc_allow
Fc_be_only
Lost_ok
Egress- for dest fc_status
Ingress- for src
fc status
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise Normal
0
0
1
Go to BE Queue if (Dest FC on) otherwise Normal
1
0
0
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD
1
0
1
(WFQ only)
Always Normal
X
1
0
Go to BE Queue if (Src FC on)
X
1
1
Always Normal
10.6.105
QOSC55 – CREDIT_C2_G4
Serial Interface Address: h56C
Bits [5:0]
W2 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.106
QOSC56 – CREDIT_C3_G4
Serial Interface Address: h56D
Bits [5:0]
W3 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.107
QOSC57 – CREDIT_C4_G4
Serial Interface Address: h56E
Bits [5:0]
W4 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
70
Zarlink Semiconductor Inc.
MVTX2803
10.6.108
Data Sheet
QOSC58 – CREDIT_C5_G4
Serial Interface Address: h56F
Bits [5:0]
W5 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.109
QOSC59– CREDIT_C6_G4
Serial Interface Address: h570
Bits [5:0]
W6 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.110
QOSC5A– CREDIT_C7_G4
Serial Interface Address: h571
Bits [5:0]
W7 - Credit register. (Default 5’h10)
Bits [7:6]:
Reserved
QOSC53 through QOSC5A represents the set of WFQ parameters (see section 7.5) for Gigabit port 4. The
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC53 corresponds to W0, and
QOSC5A corresponds to W7.
71
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Classes WFQ Credit Port G5
10.6.111
QOSC5B – CREDIT_C0_G5
Serial Interface Address: h572
Bits [5:0]:
W0 - Credit register for WFQ. (Default 6’h04)
Bits [7:6]:
Priority type. Define one of the four QoS mode of operation for port 5 (Default 2’00)
00 : Option 1
01: Option 2
10: Option 3
11: Option 4
See table below:
Queue
10.6.112
P7
P6
P5
P4
P3
P2
P1
Option 1 Bit [7:6] = 2’B00
DELAY BOUND
BE
Option 2 Bit [7:6] = 2’B01
SP
DELAY BOUND
BE
Option 3 Bit [7:6] = 2’B10
SP
WFQ
Opition 4 Bit [7:6] = 2’B11
WFQ
Credit for WFQ – Bit [5:0]
W
7
W
6
W
5
W
4
W
3
W
2
QOSC5C – CREDIT_C1_G5
Serial Interface Address: h573
Bits [7]:
Flow control allow during WFQ scheme. (Default 1’b1)
0 = Not support QoS when the Source port Flow control status is on.
1= Always support QoS)
Bits [6]:
Flow control BE Queue only. (Default 1’b1)
(0= DO NOT send any frames if the XOFF is on.
(1= the P7-P2 frames can be sent even the XOFF is ON)
Bits [5:0]
W1 - Credit register. (Default 4’h04)
72
Zarlink Semiconductor Inc.
W
1
P0
W
0
MVTX2803
Fc_allow
Fc_be_only
Data Sheet
Lost_ok
Egress- for dest fc_status
Ingress- for src
fc status
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise Normal
0
0
1
Go to BE Queue if (Dest FC on) otherwise Normal
1
0
0
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD
1
0
1
(WFQ only)
Always Normal
X
1
0
Go to BE Queue if (Src FC on)
X
1
1
Always Normal
10.6.113
QOSC5D – CREDIT_C2_G5
Serial Interface Address: h574
Bits [5:0]
W2 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.114
QOSC5E – CREDIT_C3_G5
Serial Interface Address: h575
Bits [5:0]
W3 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.115
QOSC5F – CREDIT_C4_G5
Serial Interface Address: h576
Bits [5:0]
W4 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.116
QOSC60 – CREDIT_C5_G5
Serial Interface Address: h577
Bits [5:0]
W5 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
73
Zarlink Semiconductor Inc.
MVTX2803
10.6.117
Data Sheet
QOSC61– CREDIT_C6_G5
Serial Interface Address: h578
Bits [5:0]
W6 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.118
QOSC62– CREDIT_C7_G5
Serial Interface Address: h579
Bits [5:0]
W7 - Credit register. (Default 5’h10)
Bits [7:6]:
Reserved
QOSC5B through QOSC62 represents the set of WFQ parameters (see section 7.5) for Gigabit port 5. The
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC5B corresponds to W0, and
QOSC62 corresponds to W7.
Classes WFQ Credit Port G6
10.6.119
QOSC63 – CREDIT_C0_G6
Serial Interface Address: h57A
Bits [5:0]:
W0 - Credit register for WFQ. (Default 6’h04)
Bits [7:6]:
Priority type. Define one of the four QoS mode of operation for port 6 (Default 2’00)
00 : Option 1
01: Option 2
10: Option 3
11: Option 4
See table below:
Queue
P7
P6
P5
P4
P3
P2
P1
Option 1 Bit [7:6] = 2’B00
DELAY BOUND
BE
Option 2 Bit [7:6] = 2’B01
SP
DELAY BOUND
BE
Option 3 Bit [7:6] = 2’B10
SP
WFQ
Opition 4 Bit [7:6] = 2’B11
WFQ
Credit for WFQ – Bit [5:0]
W
7
W
6
W
5
74
Zarlink Semiconductor Inc.
W
4
W
3
W
2
W
1
P0
W
0
MVTX2803
10.6.120
Data Sheet
QOSC64 – CREDIT_C1_G6
Serial Interface Address: h57B
Bits [7]:
Flow control allow during WFQ scheme. (Default 1’b1)
0 = Not support QoS when the Source port Flow control status is on.
1= Always support QoS)
Bits [6]:
Flow control BE Queue only. (Default 1’b1)
(0= DO NOT send any frames if the XOFF is on.
(1= the P7-P2 frames can be sent even the XOFF is ON)
Bits [5:0]
W1 - Credit register. (Default 4’h04)
Fc_allow
Fc_be_only
Lost_ok
Egress- for dest fc_status
Ingress- for src
fc status
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise Normal
0
0
1
Go to BE Queue if (Dest FC on) otherwise Normal
1
0
0
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD
1
0
1
(WFQ only)
Always Normal
X
1
0
Go to BE Queue if (Src FC on)
X
1
1
Always Normal
10.6.121
QOSC65 – CREDIT_C2_G6
Serial Interface Address: h57C
Bits [5:0]
W2 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.122
QOSC66 – CREDIT_C3_G6
Serial Interface Address: h57D
Bits [5:0]
W3 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
75
Zarlink Semiconductor Inc.
MVTX2803
10.6.123
Data Sheet
QOSC67 – CREDIT_C4_G6
Serial Interface Address: h57E
Bits [5:0]
W4 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.124
QOSC68 – CREDIT_C5_G6
Serial Interface Address: h57F
Bits [5:0]
W5 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.125
QOSC69– CREDIT_C6_G6
Serial Interface Address: h580
Bits [5:0]
W6 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.126
QOSC6A– CREDIT_C7_G6
Serial Interface Address: h581
Bits [5:0]
W7 - Credit register. (Default 5’h10)
Bits [7:6]:
Reserved
QOSC63 through QOSC6A represents the set of WFQ parameters (see section 7.5) for Gigabit port 6. The
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC63 corresponds to W0, and
QOSC6A corresponds to W7.
Classes WFQ Credit Port G7
10.6.127
QOSC6B – CREDIT_C0_G7
Serial Interface Address: h582
Bits [5:0]:
W0 - Credit register for WFQ. (Default 6’h04)
Bits [7:6]:
Priority type. Define one of the four QoS mode of operation for port 7 (Default 2’00)
00 : Option 1
01: Option 2
10: Option 3
11: Option 4
76
Zarlink Semiconductor Inc.
MVTX2803
Queue
10.6.128
P7
P6
Data Sheet
P5
P4
P3
P2
P1
Option 1 Bit [7:6] = 2’B00
DELAY BOUND
BE
Option 2 Bit [7:6] = 2’B01
SP
DELAY BOUND
BE
Option 3 Bit [7:6] = 2’B10
SP
WFQ
Opition 4 Bit [7:6] = 2’B11
WFQ
Credit for WFQ – Bit [5:0]
W
7
W
6
W
5
W
4
W
3
W
2
W
1
P0
W
0
QOSC6C – CREDIT_C1_G7
Serial Interface Address: h583
Bits [7]:
Flow control allow during WFQ scheme. (Default 1’b1)
0 = Not support QoS when the Source port Flow control status is on.
1= Always support QoS)
Bits [6]:
Flow control BE Queue only. (Default 1’b1)
(0= DO NOT send any frames if the XOFF is on.
(1= the P7-P2 frames can be sent even the XOFF is ON)
Bits [5:0]
W1 - Credit register. (Default 4’h04)
Fc_allow
Fc_be_only
Lost_ok
Egress- for dest fc_status
Ingress- for src
fc status
0
0
0
Go to BE Queue if (Src FC or Des FC on) otherwise Normal
0
0
1
Go to BE Queue if (Dest FC on) otherwise Normal
1
0
0
(WFQ only) Go to BE Queue if (Src FC on) otherwise BAD
1
0
1
(WFQ only)
Always Normal
X
1
0
Go to BE Queue if (Src FC on)
X
1
1
Always Normal
10.6.129
QOSC6D – CREDIT_C2_G7
Serial Interface Address: h584
Bits [5:0]
W2 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
77
Zarlink Semiconductor Inc.
MVTX2803
10.6.130
Data Sheet
QOSC6E – CREDIT_C3_G7
Serial Interface Address: h585
Bits [5:0]
W3 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.131
QOSC6F – CREDIT_C4_G7
Serial Interface Address: h586
Bits [5:0]
W4 - Credit register. (Default 4’h04)
Bits [7:6]:
Reserved
10.6.132
QOSC70 – CREDIT_C5_G7
Serial Interface Address: h587
Bits [5:0]
W5 - Credit register. (Default 5’h8)
Bits [7:6]:
Reserved
10.6.133
QOSC71– CREDIT_C6_G7
Serial Interface Address: h588
Bits [5:0]
10.6.134
W6 - Credit register. (Default 5’h8)
QOSC72– CREDIT_C7_G7
Serial Interface Address: h589
Bits [5:0]
W7 - Credit register. (Default 5’h10)
Bits [7:6]:
Reserved
QOSC6B through QOSC72 represents the set of WFQ parameters (see section 7.5) for Gigabit port 7. The
granularity of the numbers (bits [5:0]) is 1, and their sum must be 64. QOSC6B corresponds to W0, and
QOSC72 corresponds to W7.
Class 6 Shaper Control Port G0
10.6.135
QOSC73 – TOKEN_RATE_G0
Serial Interface Address: h58A
Bits [7:0]
Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic.
(Default: 8’h08)
78
Zarlink Semiconductor Inc.
MVTX2803
10.6.136
Data Sheet
QOSC74 – TOKEN_LIMIT_G0
Serial Interface Address: h58B
Bits [7:0]
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit)
(Default: 8’hC0)
QOSC73 and QOSC74 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC73 is an
integer less than 64, with granularity 1. QOSC74 is the programmed maximum value of the counter (maximum
burst size). This value is expressed in multiples of 16. QOSC73 and QOSC74 apply to Gigabit port 0. Register
QOSC39-CREDIT_C6_G0 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G1
10.6.137
QOSC75 – TOKEN_RATE_G1
Serial Interface Address: h58C
Bits [7:0]
10.6.138
Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic.
(Default: 8’h08)
QOSC76 – TOKEN_LIMIT_G1
Serial Interface Address: h58D
Bits [7:0]
Bytes allow to continue transmit out when regulated by Shaper logic.
(16byte/unit) (Default: 8’hC0)
QOSC75 and QOSC76 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC75 is an
integer less than 64, with granularity 1. QOSC76 is the programmed maximum value of the counter (maximum
burst size). This value is expressed in multiples of 16. QOSC75 and QOSC76 apply to Gigabit port 1. Register
QOSC41-CREDIT_C6_G1 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G2
10.6.139
QOSC77 – TOKEN_RATE_G2
Serial Interface Address: h58E
Bits [7:0]
Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic.
(Default: 8’h08)
79
Zarlink Semiconductor Inc.
MVTX2803
10.6.140
Data Sheet
QOSC78 – TOKEN_LIMIT_G2
Serial Interface Address: h58F
Bits [7:0]
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit)
(Default: 8’hC0)
QOSC77 and QOSC78 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC77 is an
integer less than 64, with granularity 1. QOSC78 is the programmed maximum value of the counter (maximum
burst size). This value is expressed in multiples of 16. QOSC77 and QOSC78 apply to Gigabit port 2. Register
QOSC49-CREDIT_C6_G2 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G3
10.6.141
QOSC79 – TOKEN_RATE_G3
Serial Interface Address: h590
Bits [7:0]
10.6.142
Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic.
(Default: 8’h08)
QOSC7A – TOKEN_LIMIT_G3
Serial Interface Address: h591
Bits [7:0]
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit)
(Default: 8’hC0)
QOSC79 and QOSC7A correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC79 is an
integer less than 64, with granularity 1. QOSC7A is the programmed maximum value of the counter (maximum
burst size). This value is expressed in multiples of 16. QOSC79 and QOSC7A apply to Gigabit port 3. Register
QOSC51-CREDIT_C6_G3 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G4
10.6.143
QOSC7B – TOKEN_RATE_G4
Serial Interface Address: h592
Bits [7:0]
10.6.144
Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic.
(Default: 8’h08)
QOSC7C – TOKEN_LIMIT_G4
Serial Interface Address: h593
Bits [7:0]
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit)
(Default: 8’hC0)
80
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
QOSC7B and QOSC7C correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC7B is an
integer less than 64, with granularity 1. QOSC7C is the programmed maximum value of the counter (maximum
burst size). This value is expressed in multiples of 16. QOSC7B and QOSC7C apply to Gigabit port 4. Register
QOSC59-CREDIT_C6_G4 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G5
10.6.145
QOSC7D – TOKEN_RATE_G5
Serial Interface Address: h594
Bits [7:0]
10.6.146
Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic.
(Default: 8’h08)
QOSC7E – TOKEN_LIMIT_G5
Serial Interface Address: h595
Bits [7:0]
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit)
(Default: 8’hC0)
QOSC7D and QOSC7E correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC7D is an
integer less than 64, with granularity 1. QOSC7E is the programmed maximum value of the counter (maximum
burst size). This value is expressed in multiples of 16. QOSC7D and QOSC7E apply to Gigabit port 5. Register
QOSC60-CREDIT_C6_G5 programs the peak rate. See QoS application note for more information.
Class 6 Shaper Control Port G6
10.6.147
QOSC7F – TOKEN_RATE_G6
Serial Interface Address: h596
Bits [7:0]
10.6.148
Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic.
(Default: 8’h08)
QOSC80 – TOKEN_LIMIT_G6
Serial Interface Address: h597
Bits [7:0]
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit)
(Default: 8’hC0)
QOSC7F and QOSC80 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC7F is an
integer less than 64, with granularity 1. QOSC80 is the programmed maximum value of the counter (maximum
burst size). This value is expressed in multiples of 16. QOSC7F and QOSC80 apply to Gigabit port 6. Register
QOSC69-CREDIT_C6_G6 programs the peak rate. See QoS application note for more information.
81
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Class 6 Shaper Control Port G7
10.6.149
QOSC81 – TOKEN_RATE_G7
Serial Interface Address: h598
Bits [7:0]
10.6.150
Bytes allow to transmit every frame time (0.512usec) when regulated by Shaper logic.
(Default: 8’h08)
QOSC82 – TOKEN_LIMIT_G7
Serial Interface Address: h599
Bits [7:0]
Bytes allow to continue transmit out when regulated by Shaper logic. (16byte/unit)
(Default: 8’hC0)
QOSC81 and QOSC82 correspond to parameters from section 7.6 on the shaper for EF traffic. QOSC81 is an
integer less than 64, with granularity 1. QOSC82 is the programmed maximum value of the counter (maximum
burst size). This value is expressed in multiples of 16. QOSC81 and QOSC82 apply to Gigabit port 7. Register
QOSC6F-CREDIT_C6_G7 programs the peak rate. See QoS application note for more information
10.6.151
RDRC0 – WRED Rate Control 0
I2C Address: h085, Serial Interface Address: h59A
Accessed by Serial Interface and I2C (R/W)
7
4
3
X Rate
0
Y Rate
Bits [7:4]:
Corresponds to the percentage X% in Chapter 7. Used for random early drop.
Granularity 6.25%. (Default: 4’h8)
Bits[3:0]:
Corresponds to the percentage Y% in Chapter 7. Used for random early drop.
Granularity 6.25%.(Default: 4’hE)
10.6.152
I 2C
RDRC1 – WRED Rate Control 1
Address: h086, Serial Interface Address: h59B
Accessed by Serial Interface and I2C (R/W)
7
4
Z Rate
3
0
B Rate
Bits [7:4]:
Corresponds to the percentage Z% in Chapter 7. Used for random early drop. Granularity 6.25%.%.
(Default: 4’h6)
Bits[3:0]:
Corresponds to the best effort frame drop percentage B%, when shared pool is all in use and
destination port best effort queue reaches UCC. Used for random early drop. Granularity 6.25%.%.
(Default: 4’h8)
82
Zarlink Semiconductor Inc.
MVTX2803
10.7
Data Sheet
Group 6 Address - MISC Group
10.7.1
MII_OP0 – MII Register Option 0
2
I C Address: h0B1, Serial Interface Address: h600
Accessed by serial interface and I2C (R/W)
7
6
5
Hfc
1prst
NP
4
0
Vendor Spc. Reg Addr
Bit [7]:
Half duplex flow control no default enable (Do not use half duplex mode)
0 = Half duplex flow control always enable
1 = Half duplex flow control by negotiation
Bit[6]:
Link partner reset auto-negotiate disable
Bit [5]
Next page enable
1: enable
0: disable
Bit[4:0]:
Vendor specified link status register address (null value means don’t use it) (Default 00)
10.7.2
MII_OP1 – MII Register Option 1
I2C Address: h0B2, Serial Interface Address: h601
Accessed by serial interface and I2C (R/W)
7
4
3
Speed bit location
0
Duplex bit location
Bits[3:0]:
Duplex bit location in vendor specified register
Bits [7:4]:
Speed bit location in vendor specified register (Default 00)
10.7.3
I 2C
FEN – Feature Register
Address: h0B3, Serial Interface Address: h602
Accessed by serial interface and I2C (R/W)
7
6
DML
MII
5
3
2
DS
83
Zarlink Semiconductor Inc.
1
0
MVTX2803
Data Sheet
Bits [1:0]:
Reserved
Bit [2]:
Support DS EF Code. (Default 0)
0 – Disable
1 – Enable (all ports)
When 101110 is detected in DS field (TOS[7:2]), the frame priority is set for 110 and drop is set
for 0.
Bit [5:3]:
Reserved
Bit [6]:
0: Enable MII Management State Machine (Default 0)
1: Disable MII Management State Machine
Bit [7]:
0: Enable using MCT Link List structure
1: Disable using MCT Link List structure
10.7.4
MIIC0 – MII Command Register 0
Serial Interface Address:h603
Accessed by serial interface (R/W)
Bit [7:0] MII Data [7:0]
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY, and no VALID; then
program MII command.
10.7.5
MIIC1 – MII Command Register 1
Serial Interface Address:h604
Accessed by serial interface (R/W)
Bit [7:0] MII Data [15:8]
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then
program MII command.
10.7.6
MIIC2 – MII Command Register 2
Serial Interface Address:h605
Accessed by serial interface (R/W)
7
6
5
4
0
Mii OP
Register address
Bits [4:0]:
REG_AD – Register PHY Address
Bit [6:5]
OP – Operation code “10” for read command and “01” for write command
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then
program MII command.
84
Zarlink Semiconductor Inc.
MVTX2803
10.7.7
Data Sheet
MIIC3 – MII Command Register 3
Serial Interface Address:h606
Accessed by serial interface (R/W)
7
6
5
Rdy
Valid
4
0
PHY address
Bits [4:0]:
PHY_AD – 5 Bit PHY Address
Bit [6]
VALID – Data Valid from PHY (Read Only)
Bit [7]
RDY – Data is returned from PHY (Ready Only)
Note: Before programming MII command: set FEN[6], check MIIC3, making sure no RDY and no VALID; then
program MII command.
10.7.8
MIID0 – MII Data Register 0
Serial Interface Address:h607
Accessed by serial interface (RO)
Bit [7:0] MII Data [7:0]
10.7.9
MIID1 – MII Data Register 0
Serial Interface Address:h608
Accessed by serial interface (RO)
Bit [7:0] MII Data [15:8]
10.7.10
LED Mode – LED Control
I2C Address:h0B4; Serial Interface Address:h609
Accessed by serial interface and I2C (R/W)
7
lpbk
Bit[1:0]
6
5
4
Out Pattern
3
2
Clock rate
Sample hold time (Default 2’b00)
2’b00- 8 msec
2’b01- 16 msec
2’b10- 32 msec
2’b11- 64 msec
85
Zarlink Semiconductor Inc.
1
0
Hold Time
MVTX2803
Bit[3:2]
LED clock speed (serial mode) (Default 2’b10)
2’b00- sclk/128 2’b01- sclk/256
2’b10- sclk/1024 2’b11- sclk/2048
LED clock speed (parallel mode) (Default 2’b10)
2’b00- sclk/1024 2’b01- sclk/4096
2’b10- sclk/2048 2’b11- sclk/8192
Bit[5:4]
LED indicator out pattern (Default 2’b11)
2’b00- Normal output, LED signals go straight out, no logical combination
2’b01- 4 bi-color LED mode
2’b10- 3 bi-color LED mode
2’b11- programmable mode
1. Normal mode:
LED_BYTEOUT_[7]:Collision (COL)
LED_BYTEOUT_[6]:Full duplex (FDX)
LED_BYTEOUT_[5]:Speed[1] (SP1)
LED_BYTEOUT_[4]:Speed[0] (SP0)
LED_BYTEOUT_[3]:Link (LNK)
LED_BYTEOUT_[2]:Rx (RXD)
LED_BYTEOUT_[1]:Tx (TXD)
LED_BYTEOUT_[0]:Flow Control (FC)
Data Sheet
2. 4 bi-color LED mode
LED_BYTEOUT_[7]:COL
LED_BYTEOUT_[6]:1000FDX
LED_BYTEOUT_[5]:1000HDX
LED_BYTEOUT_[4]:100FDX
LED_BYTEOUT_[3]:100HDX
LED_BYTEOUT_[2]:10FDX
LED_BYTEOUT_[1]:10HDX
LED_BYTEOUT_[0]:ACT
Note: All output qualified by Link signal
3. 3 bi-color LED mode:
LED_BYTEOUT_[7]:COL
LED_BYTEOUT_[6]:LNK
LED_BYTEOUT_[5]:FC
LED_BYTEOUT_[4]:SPD1000
LED_BYTEOUT_[3]:SPD100
LED_BYTEOUT_[2]:FDX
LED_BYTEOUT_[1]:HDX
LED_BYTEOUT_[0]:ACT
Note: All output qualified by Link signal
4. Programmable mode:
LED_BYTEOUT_[7]:Link
LED_BYTEOUT_[6:0]:Defined by the LEDSIG6 ~ LEDSIG0 programmable registers.
Note: All output qualified by Link signal
Bit[6]:
Reserved. Must be '0'
Bit[7]:
Enable internal loop back. When this bit is set to '1' all ports work in internal loop back mode. For
normal operation must be '0'.
86
Zarlink Semiconductor Inc.
MVTX2803
10.7.11
Data Sheet
CHECKSUM - EEPROM Checksum
I2C Address h0C5, Serial Interface Address:h60B
Accessed by serial interface and I2C (R/W)
Bit [7:0]:
(Default 00)
Before requesting that the MVTX2603AG updates the EEPROM device, the correct checksum
needs to be calculated and written into this checksum register. The checksum formula is:
FF
Σ i2C register = 0
i=0
After booting cicle the MVTX2603AG calculates the checksum. If the checksum is not zeroed the
MVTX2803AG does not start.
10.7.12
LED User
10.7.13
LEDUSER0
I2C Address h0BB, Serial Interface Address:h60C
Accessed by serial interface and I2C (R/W)
7
0
LED USER0
Bit [7:0]:
10.7.14
(Default 00)
Content will send out by LED serial logic
LEDUSER1
I2C Address h0BC, Serial Interface Address:h60D
Accessed by serial interface and I2C (R/W)
7
0
LED USER1
Bit [7:0]:
(Default 00)
Content will send out by LED serial logic
87
Zarlink Semiconductor Inc.
MVTX2803
10.7.15
Data Sheet
LEDUSER2/LEDSIG2
I2C Address h0BD, Serial Interface Address:h60E
Accessed by serial interface and I2C (R/W)
In serial mode:
7
0
LED USER2
Bit [7:0]:
(Default 00)
Content will be sent out by LED serial shift logic
In parallel mode: this register is used for programming the LED pin – led_byteout_[2]
7
COL
FDX
SP1
4
3
SP0
COL
0
FDX
SP1
SP0
Bit [3:0]:
(Default 4’H0)
Signal polarity:
0: not invert polarity (high true)
1: invert polarity
Bit [7:4]
(Default 4’H8)
Signal Select:
0: not select
1: select the corresponding bit
When bits get selected, the led_byteout_[2] = AND (all selected bits)
10.7.16
EDUSER3/LEDSIG3
I2C Address:h0BE, Serial Interface Address:h60F
Access by CPU, serial interface (R/W)
In serial mode:
7
0
LED USER3
Bit [7:0]:
(Default 8’H33)
Content will be sent out by LED serial shift logic.
In parallel mode: this register is used for programming the LED pin - led_byteout_[3]
7
COL
FDX
SP1
4
3
SP0
COL
88
Zarlink Semiconductor Inc.
0
FDX
SP1
SP0
MVTX2803
Data Sheet
Bit [3:0]:
(Default 4’H3)
Signal polarity:
0: not invert polarity (high true)
1: invert polarity
Bit [7:4]
(Default 4’H3)
Signal Select:
0: not select
1: select the corresponding bit
When bits get selected, the led_byteout_[3] = AND (all selected bits)
10.7.17
LEDUSER4/LEDSIG4
I2C Address:h0BF, Serial Interface Address:h610
Access by CPU, serial interface (R/W)
7
0
LED USER4
Bit [7:0]
(Default 8’H32)
Content will be sent out by LED serial shift logic.
In parallel mode: this register is used for programming the LED pin - led_byteout_[4]
7
COL
FDX
SP1
4
3
SP0
COL
0
FDX
SP1
SP0
Bit [3:0]
(Default 4’H2)
Signal polarity:
0: not invert polarity (high true)
1: invert polarity
Bit [7:4]
(Default 4’H3)
Signal Select:
0: not select
1: select the corresponding bit
When bits get selected, the led_byteout_[4] = AND (all selected bits)
10.7.18
LEDUSER5/LEDSIG5
2
I C Address:h0C0, Serial Interface Address:h611
Access by CPU, serial interface (R/W)
7
0
LED USER5
Bit [7:0]
(Default 8’H20)
Content will be sent out by LED serial shift logic.
89
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
In parallel mode: this register is used for programming the LED pin - led_byteout_[5]
7
COL
FDX
SP1
4
3
SP0
COL
0
FDX
SP1
SP0
Bit [3:0]
(Default 4’H0)
Signal polarity:
0: not invert polarity (high true
1: invert polarity
Bit [7:4]
(Default 4’H2)
Signal Select:
0: not select
1: select the corresponding bit
When bits get selected, the led_byteout_[5] = AND (all selected bits)
10.7.19
LEDUSER6/LEDSIG6
I2C Address:h0C1, Serial Interface Address:h612
Access by CPU, serial interface (R/W)
7
0
LED USER6
Bit [7:0]
(Default 8’H40)
Content will be sent out by LED serial shift logic.
In parallel mode: this register is used for programming the LED pin - led_byteout_[6]
7
COL
FDX
SP1
4
3
SP0
COL
0
FDX
SP1
SP0
Bit [3:0]
(Default 4’B0000)
Signal polarity:
0: not invert polarity (high true)
1: invert polarity
Bit [7:4]
(Default 4’b0100)
Signal Select:
0: not select
1: select the corresponding bit
When bits get selected, the led_byteout_[6] = AND (all selected bits), or the polarity of led_byteout_[6]
is controlled by LEDSIG1_0[3]
90
Zarlink Semiconductor Inc.
MVTX2803
10.7.20
Data Sheet
LEDUSER7/LEDSIG1_0
I2C Address:h0C2, Serial Interface Address:h613
Access by CPU, serial interface (R/W)
7
0
LED USER7
Bit [7:0]
(Default 8’H61)
Content will be sent out by LED serial shift logic.
In parallel mode: this register is used for programming the LED pin - led_byteout_[2]
7
GP
RX
TX
4
3
FC
P6
0
RX
TX
FC
Bit [7]
(Default 1’B0)
Global output polarity: this bit controls the output polarity of all led_byteout_ and led_port_sel pins.
0: no invert polarity - (led_byteout_[7:0] are high activated, led_port_sel[9:0] are low activated)
1: invert polarity - (led_byteout_[7:0] are low activated, led_port_sel[9:0] are high activated)
Bit [6:4]
(Default 3’B110)
Signal Select:
0: not select
1: select the corresponding bit
When bits get selected, the led_byteout_[6] = OR (all selected bits)
Bit[3]
(Default 1’B0)
Polarity control of led_byteout_[6]
0: not invert
1: invert
Bit [2:0]
(Default 3’b001)
Signal Select:
0: not select
1: select the corresponding bit
When bits get selected, the led_byteout_[0] = OR (all selected bits)
10.7.21
I 2C
MIINP0 – MII Next Page Data Register 0
Address:h0C3, Serial Interface Address:h614
Access by CPU and serial interface only (R/W)
Bit [7:0]
MII next page Data [7:0]
91
Zarlink Semiconductor Inc.
MVTX2803
10.7.22
Data Sheet
MIINP1 – MII Next Page Data Register 1
I2C Address:h0C4, Serial Interface Address:h615
Access by CPU and serial interface only (R/W)
Bit [7:0]
10.8
MII next page Data [15:8]
Group F Address - CPU Access Group
10.8.1
GCR-Global Control Register
Serial Interface Address: hF00
Accessed by serial interface. (R/W)
7
4
3
2
1
0
Reset
Bist
SR
SC
Bit [0]:
Store configuration (Default = 0)
Write ‘1’ followed by ‘0’ to store configuration into external EEPROM
Bit[1]:
Store configuration and reset (Default = 0)
Write ‘1’ to store configuration into external EEPROM and reset chip
Bit[2]:
Start BIST (Default = 0)
Write ‘1’ followed by ‘0’ to start the device’s built-in self-test. The result is found in the DCR register.
Bit[3]:
Soft Reset (Default = 0)
Write ‘1’ to reset the chip
Bit[7:4]:
Reserved
10.8.2
DCR-Device Status and Signature Register
Serial Interface Address: hF01
Accessed by serial interface. (RO)
7
6
Revision
5
4
Signature
3
2
1
0
RE
BinP
BR
BW
Bit [0]:
1 - Busy writing configuration to I2C
0 – Not Busy writing configuration to I2C
Bit[1]:
1 - Busy reading configuration from I2C
0 – Not Busy reading configuration from I2C
Bit[2]:
1 - BIST in progress
0 - BIST not running
Bit[3]:
1 - RAM Error
0 – RAM OK
92
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Bit[5:4]:
Device Signature
00 – 4 Ports Device, non-management mode
01 – 8 Ports Device, non-management mode
10 – 4 Ports Device, management mode possible (need to install CPU)
11 - 8 Ports Device, management mode possible (need to install CPU)
Bit [7:6]:
Revision
10.8.3
DCR01-Giga port status
Serial Interface Address: hF02
Accessed by serial interface. (RO)
7
6
4
CIC
3
2
1
GIGA1
0
GIGA0
Bit [1:0]:
Giga port 0 strap option
00 – 100Mb MII mode
01 – Reserved
10 – GMII
11 – PCS
Bit[3:2]
Giga port 1 strap option
00 – 100Mb MII mode
01 – Reserved
10 – GMII
11 – PCS
Bit [7]
Chip initialization completed
Note: DCR01[7], DCR23[7], DCR45[7] and DCR67[7] have the same function.
10.8.4
DCR23-Giga port status
Serial Interface Address: hF03
Accessed by CPU and serial interface. (RO)
7
6
4
3
CIC
Bit [1:0]:
Giga port 2 strap option
00 – 100Mb MII mode
01 – Reserved
10 – GMII
11 – PCS
Bit[3:2]
Giga port 3 strap option
00 – 100Mb MII mode
01 – Reserved
10 – GMII
11 – PCS
2
GIGA3
93
Zarlink Semiconductor Inc.
1
0
GIGA2
MVTX2803
Bit [7]
10.8.5
Data Sheet
Chip initialization completed
DCR45-Giga port status
Serial Interface Address: hF04
Accessed by CPU and serial interface. (RO)
7
6
4
3
CIC
GIGA5
Bit [1:0]:
Giga port 4 strap option
00 – 100Mb MII mode
01 – Reserved
10 – GMII
11 – PCS
Bit[3:2]
Giga port 5 strap option
00 – 100Mb MII mode
01 – Reserved
10 – GMII
11 – PCS
Bit [7]
Chip initialization completed
10.8.6
2
1
0
GIGA4
DCR67-Giga port status
Serial Interface Address: hF05
Accessed by CPU and serial interface. (RO)
7
6
4
3
CIC
Bit [1:0]:
Giga port 6 strap option
00 – 100Mb MII mode
01 – Reserved
10 – GMII
11 – PCS
Bit[3:2]
Giga port 7 strap option
00 – 100Mb MII mode
01 – Reserved
10 – GMII
11 – PCS
Bit [7]
Chip initialization completed
2
GIGA7
94
Zarlink Semiconductor Inc.
1
0
GIGA6
MVTX2803
10.8.7
Data Sheet
DPST – Device Port Status Register
Serial Interface Address:hF06
Accessed by CPU and serial interface (R/W)
Bit[2:0]:
10.8.8
Read back index register. This is used for selecting what to read back from DTST. (Default 00)
3’B000 - Port 0 Operating mode and Negotiation status
3’B001 - Port 1 Operating mode and Negotiation status
3’B010 - Port 2 Operating mode and Negotiation status
3’B011 - Port 3 Operating mode and Negotiation status
3’B100 - Port 4 Operating mode and Negotiation status
3’B101 - Port 5 Operating mode and Negotiation status
3’B110 - Port 6 Operating mode and Negotiation status
3’B111 - Port 7 Operating mode and Negotiation status
DTST – Data Read Back Register
Serial Interface Address: hF07
Accessed by CPU and serial interface (RO)
7
6
5
4
3
2
1
0
MD
InfoDet
SigDet
Giga
lnkdn
FE
Fdpx
Fc_en
This register provides various internal information as selected in DPST bit[2:0]
Bit[0]:
Flow control enabled
Bit[1]:
Full duplex port
Bit[2]:
Fast ethernet port (if not giga)
Bit[3]:
Link is down
Bit[4]:
GIGA port
Bit[5]:
Signal detect (when PCS interface mode)
Bit[6]:
Pipe signal detected (pipe mode only)
Bit[7]:
Module detected (for hot swap purpose)
95
Zarlink Semiconductor Inc.
MVTX2803
11.0
BGA and Ball Signal Description
11.1
BGA Views (Top-View)
1
2
3
AVDD
NC9
SCAN_E LB_D[0] LB_D[4] LB_D[5] LB_D[10 LB_D[16 LB_D[19 LB_D[26 LB_D[31 LB_D[32 LB_D[36 LB_D[40 LB_D[45 S_CLK
N
]
]
]
]
]
]
]
]
]
DEV_CF LA_D[0] NC7
[0]
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Data Sheet
18
19
20
21
22
23
24
25
26
LB_D[60 LB_A[3] LB_A[7] LB_A[11 LB_A[15 B_A[16] B_A[12] B_A[7]
]
]
]
B_A[2]
B_OE# B_D[27] B_D[26] NC4
NC3
LB_D[1] LB_D[3] LB_D[6] LB_D[12 LB_D[17 LB_D[20 LB_D[28 LB_CS0 LB_D[33 LB_D[37 LB_D[41 LB_D[47 LB_D[54 LB_D[58 LB_D[62 LB_A[6] LB_A[10 LB_A[13 B_A[17] B_A[13] B_A[8]
]
]
]
]
#
]
]
]
]
]
]
]
]
]
B_A[3]
B_WE# B_D[30] DEV_CF NC5
G[1]
B_D[25]
LA_D[1] LA_CLK LA_D[3] NC6
LB_D[2] LB_D[8] LB_D[15 LB_D[18 LB_D[21 LB_D[29 LB_RW# LB_D[34 LB_D[39 LB_D[43 LB_D[48 LB_D[52 LB_D[57 LB_D[61 LB_A[4] LB_A[8] LB_A[12 B_A[18] B_A[14] B_A[11] B_A[5]
]
]
]
]
]
]
]
]
]
]
]
]
LA_D[2] LA_D[5] LA_D[9] NC8
LB_CLK LB_D[9] LB_D[13 LB_D[23 LB_D[22 LB_D[24 LB_D[25 LB_D[35 LB_D[42 LB_D[44 LB_D[50 LB_D[51 LB_D[55 LB_D[63 LB_A[14 LB_A[18 LB_A[16 LB_A[19 B_A[9]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
LA_D[8] LA_D[7] LA_D[6] LA_D[4] AGND
LB_D[7] LB_D[14 LB_D[11 LB_D[27 LB_D[30 LB_CS1 LB_D[38 LB_D[46 LB_D[49 LB_D[53 LB_D[56 LB_D[59 LB_A[5] LB_A[9] LB_A[17 LB_A[20 B_A[15] B_A[6]
]
]
]
]
#
]
]
]
]
]
]
]
]
LA_D[10 LA_D[11 LA_D[12 LA_D[13 LA_D[1 VSS
]
]
]
]
4]
VSS
VDD
VDD
VCC
VCC
VCC
VSS
VSS
VCC
VCC
VCC
VDD
VDD
B_A[4]
B_A[10] B_ADSC NC2
#
27
28
B_D[28] AVDD
29
30
B_CLK B_D[22]
B_D[29] B_D[24] B_D[18] B_D[21]
B_D[31] AGND
B_D[17] B_D[23] B_D[19] B_D[16] B_D[14]
VSS
NC1
LA_D[15 LA_D[16 LA_D[19 LA_D[18 LA_D[1 VDD
]
]
]
]
7]
VSS
VDD
LA_D[20 LA_D[21 LA_D[22 LA_D[29 LA_D[24
]
]
]
]
]
LA_D[23 LA_D[25 LA_D[26 LA_D[27 LA_D[3 VDD
]
]
]
]
1]
VDD
LA_D[28 LA_D[30 LA_CS0 LA_D[37 LA_D[3 VDD
]
]
#
]
3]
VDD
B_D[9]
B_D[10] B_D[11] B_D[12]
B_D[20] B_D[4]
B_D[3]
B_D[6]
B_D[7]
B_D[15] B_D[8]
P_INT# B_D[1]
B_D[2]
B_D[13] P_A[1]
P_A[2]
P_WE# P_RD#
B_D[5]
P_D[15] P_D[11] P_D[12] P_D[13]
P_CS#
P_D[14] P_D[7]
P_D[8]
P_D[10]
K
L
LA_CS1 LA_RW# LA_D[32 LA_D[46 LA_D[41
#
]
]
]
LA_D[34 LA_D[35 LA_D[36 LA_D[53 LA_D[4 VCC
]
]
]
]
8]
VCC
P_A[0]
B_D[0]
P_D[3]
P_D[4]
P_D[5]
LA_D[38 LA_D[40 LA_D[42 LA_D[61 LA_D[5 VCC
]
]
]
]
6]
VSS
VSS
VSS
VSS
VSS
VSS
VCC
P_D[6]
P_D[9]
P_D[0]
P_D[1]
P_D[2]
LA_D[43 LA_D[44 LA_D[45 LA_A[4] LA_D[3 VCC
9]
]
]
]
VSS
VSS
VSS
VSS
VSS
VSS
VCC
T_D[15] T_D[11] T_D[12] T_D[13] T_D[14]
LA_D[49 LA_D[50 LA_D[51 LA_D[52 LA_D[4 VSS
]
]
]
]
7]
VSS
VSS
VSS
VSS
VSS
VSS
VSS
T_D[10] T_D[5]
T_D[7]
T_D[8]
T_D[9]
LA_D[58 LA_D[57 LA_D[55 LA_D[54 LA_A[7] VSS
]
]
]
]
VSS
VSS
VSS
VSS
VSS
VSS
VSS
T_D[6]
T_D[2]
T_D[1]
T_D[0]
LA_D[63 LA_D[62 LA_D[60 LA_D[59 LA_A[11 VCC
]
]
]
]
]
VSS
VSS
VSS
VSS
VSS
VSS
VCC
S_RST# T_D[3]
LA_A[6] LA_A[5] LA_A[3] LA_A[14 LA_A[18 VCC
]
]
VSS
VSS
VSS
VSS
VSS
VSS
VCC
G7_RX G7_RX_ LESYN LE_CLK LE_DO
D[7]
ER
O#
0
VCC
VCC
G7_RX G7_RXD G7_RX_ G7_RXD G7_RXD[5
D[3]
[1]
DV
[6]
]
VDD
VDD
G7_TXD G7_TXD G7_COL G7_RXC MIITXCK[7
[0]
[3]
LK
]
MIITXC G0_TXD G0_TXD G0_TXC G0_TX_ VDD
K[0]
[2]
[0]
LK
ER
VDD
G6_RX G7_TX_ G7_TXD G7_TXD G7_TXD[4
D[7]
ER
[7]
[5]
]
P
R
T_D[4]
T
TMODE[ TMODE[ RESOUT#
1]
0]
U
V
LA_A[10 LA_A[9] LA_A[8] LA_A[20 G0_TX
]
]
D[1]
LA_A[15 LA_A[13 LA_A[12 G0_CRS G0_TXD
]
]
]
/L
[4]
LA_A[19 LA_A[17 LA_A[16 GREFC[ G0_TX
]
]
]
0]
D[7]
G7_TXD G7_TX_ G7_RXD G7_RXD G7_RXD[0
[6]
EN
[4]
[2]
]
AB
G0_RXC G0_TXD G0_TXD G0_RXD G0_RXD
LK
[5]
[3]
[2]
[6]
G6_RXD G6_RXD G7_TXD G7_TXD G7_CRS/L
[2]
[4]
[2]
[1]
G0_RXD G0_TX_ G0_COL G0_TXD G0_RX_ VSS
[0]
EN
[6]
DV
G0_RXD G0_RXD G0_RXD G0_RXD G1_TX
[5]
[4]
[3]
[1]
D[0]
VSS
VDD
VDD
VDD
VCC
VCC
VCC
VSS
VSS
VCC
VCC
VCC
VDD
VDD
VSS
VDD
G6_RX G6_RX_ G7_TXC GREFC[ G6_RX_D
D[0]
ER
LK
7]
V
VSS
G6_TXD G6_RXD G6_RXD G6_RXD G6_RXD[1
[7]
[6]
[5]
[3]
]
G0_RXD G0_RX_ GREFC[ G1_RXD G1_RXD G1_RXD G2_TXD G2_TXD G2_RXD G2_RXD G2_RXD G3_TXD G3_TXD G3_COL G3_RXD G3_RXD IND_CM G3_RXD G3_RX_ G4_TXD G4_RXD G4_RXD G5_TXD G5_TXD G5_TX_ G5_RXD G6_RXC G6_TXD G6_COL G6_TX_E
[7]
ER
1]
[2]
[5]
[7]
[0]
[7]
[2]
[4]
[5]
[1]
[6]
[3]
[6]
[4]
ER
[3]
[1]
[4]
[2]
[4]
ER
[5]
LK
[6]
R
G1_TXD G1_TXC G1CRS/ G1_TXD G2_TXC G1_RXD G2_TXD G2_TXD G2_RXD G2_RXC G2_RXD G2_RX_ G3_TX_ G3_RXD G3_RXD G3_RXD GREFC[ M_MDIO G4_TXD G4_RXD G4_RXD G4_RXD G5_CRS G5_TXD MIITXC G5_RXD G6_TXD G6_TXD G6_TX_ G6_TXD[5
[1]
LK
L
[7]
LK
[4]
[4]
[3]
[3]
LK
[7]
ER
EN
[0]
[5]
[7]
4]
[1]
[5]
[6]
[7]
/L
[5]
K[5]
[1]
[3]
[4]
EN
]
AG
G1_TXD G1_TXD MIITXC G1_RXD G1_RXC G2CRS/ MIITXC G2_TX_ G2_RXD G2_RX_ G3_TXC G3_TXD G3_TXD G3_RXC G3_RXD G3_RX_ G4_TXC G4_TXD G4_TXD G4_TX_ G4_RXC G4_RX_ G4_RX_ G5_TXD G5_TX_ G5_RXD G5_RXD G6_TXD G6_TXD G6_TXCL
[2]
[3]
K[1]
[0]
LK
L
K[2]
EN
[1]
DV
LK
[3]
[5]
LK
[2]
DV
LK
[4]
[6]
ER
LK
DV
ER
[3]
EN
[3]
[6]
[1]
[2]
K
AH
G1_TXD G1_TXD G1_TX_ G1_COL G1_RXD GREFC[ G2_TXD G2_TXD G2_RXD G2_RXD GREFC[ G3_TXD MIITXC G3_TX_ G3_RXD M_MDC G4_TXD G4_TXD G4_TXD G4_RXD G4_COL GREFC[ G5_TXD G5_TXD G5_RXD G5_COL G5_RXD G5_RX_ G6_CRS G6_TXD[0
[4]
ER
/L
]
5]
[0]
[6]
[0]
[0]
[5]
[7]
[0]
[6]
2]
[2]
[6]
[0]
[6]
3]
[2]
K[3]
ER
[1]
[5]
[4]
ER
AJ
AK
G1_TXD G1_TX_ G1_RXD G1_RXD G1_RX_ G1_RX_ G2_TXD G2_TXD G2_TX_ G2_COL G3_CRS G3_TXD G3_TXD G3_TXD CM_CL G4CRS/ G4_TXD MIITXC G4_TX_ G4_RXD G4_RXD G5_TXC G5_TXD G5_TXD G5_RXD G5_RXC G5_RXD G5_RX_ MIITXC GREFC[6]
[6]
EN
[1]
[3]
DV
ER
[1]
[5]
ER
/L
[0]
[4]
[7]
K
L
[2]
K[4]
EN
[2]
[3]
LK
[1]
[7]
[2]
LK
[7]
DV
K[6]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
96
Zarlink Semiconductor Inc.
19
20
21
22
23
24
25
26
27
28
29
30
MVTX2803
11.2
Data Sheet
Ball- Signal Descriptions
All pins are CMOS type; all Input pins are 5 Volt tolerance, and all Output pins are 3.3 CMOS drive.
Ball No(s)
Symbol
I/O
Description
L30
TRUNK0_EN
I/O - TS with pull up
Trunk enable
External pull up or unconnecteddisable trunk group 0 and 1
External pull down - enable trunk
group 0 and 1
See register TRUNK0_MODE for
port selection and trunk enable.
N27
TRUNK1_EN
I/O - TS with pull up
Trunk enable
External pull up or unconnected disable trunk group 2 and 3
External pull down - enable trunk
group 2 and 3
See register TRUNK1_MODE for
port selection and trunk enable.
L29, L28, N26, M30, M29,
M28, N30, N29, N28
P_D[8:0]
I/O - TS with pull up
Bootstrap function - See bootstrap
section
K27, L27, K30, K29, K28,
J28, H28
RESERVED
Not used - leave unconnected
I2C Interface (0) Note: In unmanaged mode, Use I2C and Serial control interface to configure the system
J27
SCL
Output
I2C Data Clock
M26
SDA
I/O-TS with pull up
I2C Data I/O
J29
PS_STROBE
Input with weak
internal pull up
Serial Strobe Pin
J30
PS_DI
Input with weak
internal pull up
Serial Data Input
L26
PS_DO
(AUTOFD)
Output with pull up
Serial Data Output (AutoFD)
Serial Control Interface
Frame Buffer Interface
U1, U2, N4, U3, U4, T1, T2,
N5, T3, T4, M4, R4, R3, R2,
R1, M5, R5, L4, P3, P2, P1,
N3, L5, N2, P5, N1, K4, M3,
M2, M1, K5, L3, J5, K2, H4,
K1, J4, J3, J2, H5, J1, H3,
H2, H1, G3, G4, G5, G2,
G1, F5, F4, F3, F2, F1, D3,
E1, E2, E3, D2., E4, C3,
D1, C1, B2
LA_D[63:0]
I/O-TS with pull up
97
Zarlink Semiconductor Inc.
Frame Bank A– Data Bit [63:0]
MVTX2803
Ball No(s)
Symbol
I/O
Data Sheet
Description
AA1, V5, AA2, AA3, Y1, V4,
Y2, Y3, U5, W1, W2, W3,
T5, V1, V2, P4, V3
LA_A[19:3]
Output
Frame Bank A – Address Bit [19:3]
W4
LA_A[20]
Output with pull up
Frame Bank A – Address Bit [20]
C2
LA_CLK
Output
Frame Bank A Clock Input
K3
LA_CS0#
Output with pull up
Frame Bank A Low Portion Chip
Selection
L1
LA_CS1#
Output with pull up
Frame Bank A High Portion Chip
Selection
L2
LA_RW#
Output with pull up
Frame Bank A Read/Write
D18, B18, C18, A17, E17,
B17, C17, E16, D17, B16,
E15, C16, D16, D15, E14,
C15, B15, E13, A15, D14,
C14, D13, B14, A14, C13,
E12, B13, A13, D12, C12,
B12, A12, A11, E10, C10,
B10, E9, A10, D11, D10,
D8, D9, C9, B9, A9, C8, B8,
A8, C7, E7, D7, B7, E8, A7,
D6, C6, E6, B6, A6, A5, B5,
C5, B4,A4
LB_D[63:0]
I/O-TS with pull up.
Frame Bank B– Data Bit [63:0]
D22, D20, E20, D21, A21,
D19, B21, C21, A20, B20,
E19, C20, A19, B19, E18,
C19, A18
LB_A[19:3]
Output
Frame Bank B – Address Bit [19:3]
E21
LB_A[20]
Output with pull up
Frame Bank B – Address Bit [20]
D5
LB_CLK
Output
Frame Bank B Clock Input
B11
LB_CS0#
Output with pull up
Frame Bank B Low Portion Chip
Selection
E11
LB_CS1#
Output with pull up
Frame Bank B High Portion Chip
Selection
C11
LB_RW#
Output with pull up
Frame Bank B Read/Write
B_D[31:0]
I/O-TS with pull up
Switch Database Domain
– Data Bit [31:0]
Switch Database Interface
E24,B27, D27, C27, A27,
A28, B30, D28, E27, C30,
D30, G26, E28, D29, E26,
E29, H26, E30, J26, F30,
F29, F28, F27, H27, G30,
G29, K26, G27, G28, H30,
H29, M27
98
Zarlink Semiconductor Inc.
MVTX2803
Ball No(s)
Symbol
I/O
Data Sheet
Description
C22, B22, A22, E22, C23,
B23, A23, C24, D24, D23,
B24, A24, E23, C25, C26,
B25, A25
B_A[18:2]
Output
Switch Database Address (512K)
– Address Bit [18:2]
C29
B_CLK
Output
Switch Database Clock Input
D25
B_ADSC#
Output with pull up
Switch Database Address Status
Control
B26
B_WE#
Output with pull up
Switch Database Write Chip Select
A26
B_OE#
Output with pull up
Switch Database Read Chip Select
AJ16
M_MDC
Output
MII Management Data Clock –
(common for all MII Ports [7:0])
AG18
M_MDIO
I/O-TS with pull up
MII Management Data I/O –
(common for all MII Ports –[7:0]))
2.5Mhz
MII Management Interface
GMII / MII Interface (193) Gigabit Ethernet Access Port
AD29, AK30, AJ22, AG17,
AJ11, AJ6, AF3,AA4
GREF_CLK [7:0]
Input w/ pull up
Gigabit Reference Clock
AK15
CM_CLK
Input w/ pull up
Common Clock shared by port
G[7:0]
AF17
IND/CM
Input w/ pull up
1: select GREF_CLK[7:0] as clock
0: select CM_CLK as clock for all
ports
AA30, AK29, AG25, AK18,
AJ13, AH7, AH3, AB1
MII TX CLK[7:0]
Input w/ pull up
V26, W29, W30, Y28, W26,
Y29, W27, Y30
AB26, AE27, AE28, AC27,
AE29, AC26, AE30, AD26
AK27, AH27, AF26, AJ27,
AH26, AK25, AG26, AJ25
AG22, AG21, AG20, AF22,
AK21, AK20, AF21, AJ20
AG16, AF16, AG15, AF18,
AF15, AH15, AJ15, AG14
AG11, AJ10, AF11, AF10,
AG9, AF9, AH9, AJ9
AF6, AJ5, AF5, AG6, AK4,
AF4, AK3, AH4
AF1, AC5, AE1, AE2, AE3,
AC4, AE4, AD1
G7_RXD[7:0]
G6_RXD[7:0]
G5_RXD[7:0]
G4_RXD[7:0]
G3_RXD[7:0]
G2_RXD[7:0]
G1_RXD[7:0]
G0_RXD[7:0]
Input w/ pull up
G[7:0] port – Receive Data Bit [7:0]
W28, AD30, AK28, AH22,
AH16, AH10, AK5, AD5
G[7:0]_RX_DV
Input w/ pull down
G[7:0]port – Receive Data Valid
99
Zarlink Semiconductor Inc.
MVTX2803
Ball No(s)
Symbol
I/O
Data Sheet
Description
V27, AD27, AJ28, AH23,
AF19, AG12, AK6, AF2
G[7:0]_RX_ER
Input w/ pull up
G[7:0]port – Receive Error
AC30, AJ29, AG23, AK16,
AK11, AH6, AG3, Y4
G[7:0]_CRS/LIN
K
Input w/ pull down
G[7:0]port – Carrier Sense
AA28, AF29, AJ26, AJ21,
AF14, AK10, AJ4, AD3
G[7:0]_COL
Input w/ pull up
G[7:0]port – Collision Detected
AA29, AF27, AK26, AH21,
AH14, AG10, AH5, AC1
G[7:0]_RXCLK
Input w/ pull up
G[7:0]port – Receive Clock
AB28, Y26, AB29, AB30,
AA27, AC28, AC29, AA26
AE26, AF28, AG30, AG28,
AG27, AH29, AH28, AJ30
AK24, AJ24, AG24, AF24,
AH24, AF23, AK23, AJ23
AJ19, AH19, AJ18, AH18,
AF20, AK17, AG19, AJ17
AK14, AF13, AH13, AK13,
AH12, AJ12, AF12, AK12
AF8, AJ8, AK8, AG7, AG8,
AJ7, AK7, AF7
AG4, AK1, AJ1, AJ2, AH2,
AH1, AG1, AE5
AA5, AD4, AC2, Y5, AC3,
AB2, W5, AB3
G7_TXD[7:0]
G6_TXD[7:0]
G5_TXD[7:0]
G4_TXD[7:0]
G3_TXD[7:0]
G2_TXD[7:0]
G1_TXD[7:0]
G0_TXD[7:0]
Output
G[7:0]port – Transmit Data Bit [7:0]
Y27, AG29, AH25, AK19,
AG13, AH8, AK2, AD2
G[7:0]_TX_EN
Output w/ pull up
G[7:0]port – Transmit Data Enable
AB27, AF30, AF25, AH20,
AJ14, AK9, AJ3, AB5
G[7:0]_TX_ER
Output w/ pull up
G[7:0]port – Transmit Error
AD28, AH30, AK22, AH17,
AH11, AG5, AG2, AB4
G[7:0]_ TXCLK
Output
G[7:0]port – Gigabit Transmit Clock
PMA Interface (193) Gigabit Ethernet Access Port (PCS)
AD29, AK30, AJ22, AG17,
AJ11, AJ6, AF3,AA4
GREF_CLK [7:0]
Input w/ pull up
Gigabit Reference Clock
AK15
CM_CLK
Input w/ pull up
Common Clock shared by port
G[7:0]
AF17
IND/CM
Input w/ pull up
1: select GREF_CLK[7:0] as clock
0: select CM_CLK as clock for all
port
100
Zarlink Semiconductor Inc.
MVTX2803
Ball No(s)
Symbol
I/O
Data Sheet
Description
V26, W29, W30, Y28, W26,
Y29, W27, Y30
AB26, AE27, AE28, AC27,
AE29, AC26, AE30, AD26
AK27, AH27, AF26, AJ27,
AH26, AK25, AG26, AJ25
AG22, AG21, AG20, AF22,
AK21, AK20, AF21, AJ20
AG16, AF16, AG15, AF18,
AF15, AH15, AJ15, AG14
AG11, AJ10, AF11, AF10,
AG9, AF9, AH9, AJ9
AF6, AJ5, AF5, AG6, AK4,
AF4, AK3, AH4
AF1, AC5, AE1, AE2, AE3,
AC4, AE4, AD1
G7_RXD[7:0]
G6_RXD[7:0]
G5_RXD[7:0]
G4_RXD[7:0]
G3_RXD[7:0]
G2_RXD[7:0]
G1_RXD[7:0]
G0_RXD[7:0]
Input w/ pull up
G[7:0]port – PMA Receive Data Bit
[7:0]
W28, AD30, AK28, AH22,
AH16, AH10, AK5, AD5
G[7:0]_RX_D[8]
Input w/ pull down
G[7:0]port – PMA Receive Data Bit
[8]
V27, AD27, AJ28, AH23,
AF19, AG12, AK6, AF2
G[7:0]_RX_D[9]
Input w/ pull up
G[7:0]port – PMA Receive Data Bit
[9]
AA28, AF29, AJ26, AJ21,
AF14, AK10, AJ4, AD3
G[7:0]_RXCLK1
Input w/ pull up
G[7:0]port – PMA Receive Clock 1
AA29, AF27, AK26, AH21,
AH14, AG10, AH5, AC1
G[7:0]_RXCLK0
Input w/ pull up
G[7:0]port – PMA Receive Clock 0
AB28, Y26, AB29, AB30,
AA27, AC28, AC29, AA26
AE26, AF28, AG30, AG28,
AG27, AH29, AH28, AJ30
AK24, AJ24, AG24, AF24,
AH24, AF23, AK23, AJ23
AJ19, AH19, AJ18, AH18,
AF20, AK17, AG19, AJ17
AK14, AF13, AH13, AK13,
AH12, AJ12, AF12, AK12
AF8, AJ8, AK8, AG7, AG8,
AJ7, AK7, AF7
AG4, AK1, AJ1, AJ2, AH2,
AH1, AG1, AE5
AA5, AD4, AC2, Y5, AC3,
AB2, W5, AB3
G7_TXD[7:0]
G6_TXD[7:0]
G5_TXD[7:0]
G4_TXD[7:0]
G3_TXD[7:0]
G2_TXD[7:0]
G1_TXD[7:0]
G0_TXD[7:0]
Output
G[7:0]port – PMA Transmit Data Bit
[7:0]
1Y27, AG29, AH25, AK19,
AG13, AH8, AK2, AD2
2G[7:0]_TXD[8]
3Output w/ pull up
4G[7:0]port – PMA Transmit Data
Bit [8]
AB27, AF30, AF25, AH20,
AJ14, AK9, AJ3, AB5
G[7:0]_TX_D[9]
Output w/ pull up
G[7:0]port – PMA Transmit Data Bit
[9]
AD28, AH30, AK22, AH17,
AH11, AG5, AG2, AB4
G[7:0]_ TXCLK
Output
G[7:0]port – PMA Gigabit Transmit
Clock
101
Zarlink Semiconductor Inc.
MVTX2803
Ball No(s)
Symbol
I/O
Data Sheet
Description
Test Facility (3)
U29
T_MODE0
I/O-TS with pull up
Test – Set upon Reset, and
provides NAND Tree test output
during test mode
Use external Pull up for normal
operation
U28
T_MODE1
I/O-TS with pull up
Test – Set upon Reset, and
provides NAND Tree test output
during test mode
Use external Pull up for normal
operation
A3
SCAN_EN
Input with pull down
Enable test mode
For normal operation leave it
unconnected
LED Interface (serial and parallel)
R28, T26, R27, T27, U27,
T28, T29, T30
T_D[7:0]/
LED_PD[7:0]
Output
While resetting, T_D[7,0] are in
input mode and are used as
strapping pins. Internal pull up
LED_PD - Parallel Led data [7:0]
P26, P30, P29, P28, P27,
R26, R30, R29
T_D[15:8]/
LED_PT[7:0]
Output
While resetting, T_D[15:8] are in
input mode and are used as
strapping pins. Internal pull up
LED_PR[7:0] – Parallel Led port
selection [7:0]
V29
LED_CLK0/
LED_PT[8]
Output
LED_CLK0 – LED Serial Interface
Output Clock
LED_PT[8] – Parallel Led port sel
[8]
V30
LED_BLINK/
LED_DO/
LED_PT[9]
Output
While resetting, LED-BLINK is in
input mode and is used as
strapping pin. 1: No Blink, 0: Blink.
Internal pull up.
LED_DO - LED Serial Data Output
Stream
LED_PT[9] – Parallel Led port sel
[9]
V28
LED_PM/
LED_SYNCO#
Output with pull up
While resetting, LED_PM is in input
mode and is used as strapping pin.
Internal pull up. 1: Enable parallel
interface, 0: enable serial interface.
LED_SYNCO# - LED Output Data
Stream Envelop
102
Zarlink Semiconductor Inc.
MVTX2803
Ball No(s)
Symbol
Data Sheet
I/O
Description
System Clock, Power, and Ground Pins
A16
S_CLK
Input
System Clock at 133 MHz
U26
S_RST#
Input – ST
Reset Input
U30
RESOUT#
Output
Reset PHY
B1
DEV_CFG[0]
Input w/ pull down
Not used
B28
DEV_CFG[1]
Input w/ pull down
Not used
AE7, AE9, F10, F21, F22,
F9, G25, G6, J25, J6, K25,
K6, AA25, AA6, AB25, AB6,
AD25, AE10, AE21, AE22
VDD
Power core
+2.5 Volt DC Supply
V14, V15, V16, V17, V18,
F16, F24, F25, F6, F7, N13,
N14, N15, N16, N17, N18,
P13, P14, P15, P16, P17,
P18, R13, R14, R15, R16,
R17, R18, R25, R6, T13,
T14, T15, T16, T17, T18,
T25, T6, U13, U14, U15,
U16, U17, U18, V13, AD6,
AE15, AE16, AE24, AE25,
AE6, F15
VSS
Ground
Ground
A1, C28
AVDD
Power
Analog +2.5 Volt DC Supply
E5, E25
AVSS
Ground
Analog Ground
AE12, AE13, AE14, AE17,
AE18, AE19, F12, F13,
F14, F17, F18, F19, M25,
M6, N25, N6, P25, P6, U25,
U6, V25, V6, W25, W6
VCC
Power I/O
+3.3 Volt DC Supply
Bootstrap Pins (Default= pull up, 1= pull up 0= pull down)
AD2, AB5
G0_TX_EN,
G0_TX_ER
Default: PCS
Giga0
Mode: G0_TXEN G0_TXER
0
0
MII
0
1
RSVD
1
0
GMII
1
1
PCS
AK2, AJ3
G1_TX_EN,
G1_TX_ER
Default: PCS
Giga1
Mode: G1_TXEN G1_TXER
0
0
MII
0
1
RSVD
1
0
GMII
1
1
PCS
103
Zarlink Semiconductor Inc.
MVTX2803
Ball No(s)
Symbol
I/O
Data Sheet
Description
AH8, AK9
G2_TX_EN,
G2_TX_ER
Default: PCS
Giga2
Mode: G0_TXEN G0_TXER
0
0
MII
0
1
RSVD
1
0
GMII
1
1
PCS
AG13, AJ14
G3_TX_EN,
G3_TX_ER
Default: PCS
Giga3
Mode: G0_TXEN G0_TXER
0
0
MII
0
1
RSVD
1
0
GMII
1
1
PCS
AK19, AH20
G4_TX_EN,
G4_TX_ER
Default: PCS
Giga4
Mode: G0_TXEN G0_TXER
0
0
MII
0
1
RSVD
1
0
GMII
1
1
PCS
AH25, AF25
G5_TX_EN,
G5_TX_ER
Default: PCS
Giga5
Mode: G0_TXEN G0_TXER
0
0
MII
0
1
RSVD
1
0
GMII
1
1
PCS
AG29, AF30
G6_TX_EN,
G6_TX_ER
Default: PCS
Giga6
Mode: G0_TXEN G0_TXER
0
0
MII
0
1
RSVD
1
0
GMII
1
1
PCS
Y27, AB27
G7_TX_EN,
G7_TX_ER
Default: PCS
Giga7
Mode: G0_TXEN G0_TXER
0
0
MII
0
1
RSVD
1
0
GMII
1
1
PCS
After reset T_D[15:0] are used by the LED interface
T30
T_D[0]
1
Giga link active status
0 – active low
1 – active high
T29
T_D[1]
1
Power saving
0 – No power saving
1 – Power saving
Stop MAC clock if no MAC activity.
T28
T_D[2]
Must be pulled-down
Reserved - Must be pulled-down
104
Zarlink Semiconductor Inc.
MVTX2803
Ball No(s)
Symbol
Data Sheet
I/O
Description
U27
T_D[3]
1
Hot plug port module detection
enable
0 – module detection enable
1 – module detection disable
T27
T_D[4]
Must be pulled-down
Reserved - Must be pulled-down
R27
T_D[5]
1
SRAM memory size
0 – 512K SRAM
1 – 256K SRAM
T26
T_D[6]
R28
T_D[7]
1
FDB memory depth
1– one memory layer
0 – two memory layers
LA_A[20],
LB_A[20]
11
FDB memory size
11 - 2M per bank = 4M total
10 - 1M per bank = 2M total
0x - 512K per bank = 1M total
R29
T_D[8]
1
EEPROM installed
0 – EEPROM is installed
1 – EEPROM is not installed
R30
T_D[9]
1
MCT Aging enable
0 – MCT aging disable
1 – MCT aging enable
R26
T_D[10]
1
FCB handle aging enable
0 – FCB handle aging disable
1 – FCB handle aging enable
P27
T_D[11]
1
Timeout reset enable
0 – timeout reset disable
1 – timeout reset enable
Issue reset if any state machine did
not go back to idle for 5sec.
P28, 29, 30
T_D[14:12]
P26
T_D[15]
Reserved
Reserved
1
External RAM test
0 – Perform the infinite loop of
ZBT RAM BIST. Debug test only
1 – Regular operation.
105
Zarlink Semiconductor Inc.
MVTX2803
Ball No(s)
Symbol
I/O
Data Sheet
Description
N30, N29, N28
P_D[2:0]
111
ZBT RAM la_clk turning
3’b000 - control by reg.
LCLKCR[2:0]
3’b001 - delay by method # 0
3’b010 - delay by method # 1
3’b011 - delay by method # 2
3’b100 - delay by method # 3
3’b101 - delay by method # 4
3’b110 - delay by method # 5
3’b111 - delay by method # 6 –
USE THIS METHOD
M30, M29, M28
P_D[5:3]
111
ZBT RAM lb_clk turning
3’b000 - control by reg.
LCLKCR[6:4]
3’b001 - delay by method # 0
3’b010 - delay by method # 1
3’b011 - delay by method # 2
3’b100 - delay by method # 3
3’b101 - delay by method # 4
3’b110 - delay by method # 5
3’b111 - delay by method # 6–
USE THIS METHOD
L29, L28, N26
P_D[8:6]
111
SBRAM b_clk turning
3’b000 - control by BCLKCR[2:0]
3’b001 - delay by method # 0
3’b010 - delay by method # 1
3’b011 - delay by method # 2
3’b100 - delay by method # 3
3’b101 - delay by method # 4
3’b110 - delay by method # 5
3’b111 - delay by method # 6–
USE THIS METHOD
Notes:
# =
Input =
In-ST =
Output =
Out-OD=
I/O-TS =
I/O-OD =
Active low signal
Input signal
Input signal with Schmitt-Trigger
Output signal (Tri-State driver)
Output signal with Open-Drain driver
Input & Output signal with Tri-State driver
Input & Output signal with Open-Drain driver
106
Zarlink Semiconductor Inc.
MVTX2803
11.3
Data Sheet
Ball Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
A1
AVDD
M1
LA_D[34]
Y2
LA_A[13]
B1
DEV_CFG[0]
M2
LA_D[35]
V4
LA_A[14]
B2
LA_D[0]
M3
LA_D[36]
Y1
LA_A[15]
C2
LA_CLK
K4
LA_D[37]
AA3
LA_A[16]
C1
LA_D[1]
N1
LA_D[38]
AA2
LA_A[17]
D1
LA_D[2]
P5
LA_D[39]
V5
LA_A[18]
C3
LA_D[3]
N2
LA_D[40]
AA1
LA_A[19]
E4
LA_D[4]
L5
LA_D[41]
W4
LA_A[20]
D2
LA_D[5]
N3
LA_D[42]
Y4
G0_CRS/LINK
E3
LA_D[6]
P1
LA_D[43]
AA4
GREF_CLK[0]
E2
LA_D[7]
P2
LA_D[44]
AB4
G0_TXCLK
E1
LA_D[8]
P3
LA_D[45]
AB3
G0_TXD[0]
D3
LA_D[9]
L4
LA_D[46]
W5
G0_TXD[1]
F1
LA_D[10]
R5
LA_D[47]
AB2
G0_TXD[2]
F2
LA_D[11]
M5
LA_D[48]
AB1
MII_TX_CLK[0]
F3
LA_D[12]
R1
LA_D[49]
AC3
G0_TXD[3]
F4
LA_D[13]
R2
LA_D[50]
Y5
G0_TXD[4]
F5
LA_D[14]
R3
LA_D[51]
AC2
G0_TXD[5]
G1
LA_D[15]
R4
LA_D[52]
AC1
G0_RXCLK
G2
LA_D[16]
M4
LA_D[53]
AD3
G0_COL
G5
LA_D[17]
T4
LA_D[54]
AD4
G0_TXD[6]
G4
LA_D[18]
T3
LA_D[55]
AA5
G0_TXD[7]
G3
LA_D[19]
N5
LA_D[56]
AD2
G0_TX_EN
H1
LA_D[20]
T2
LA_D[57]
AB5
G0_TX_ER
H2
LA_D[21]
T1
LA_D[58]
AD1
G0_RXD[0]
H3
LA_D[22]
U4
LA_D[59]
AE4
G0_RXD[1]
J1
LA_D[23]
U3
LA_D[60]
AC4
G0_RXD[2]
H5
LA_D[24]
N4
LA_D[61]
AE3
G0_RXD[3]
J2
LA_D[25]
U2
LA_D[62]
AE2
G0_RXD[4]
J3
LA_D[26]
U1
LA_D[63]
AE1
G0_RXD[5]
107
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
J4
LA_D[27]
V3
LA_A[3]
AC5
G0_RXD[6]
K1
LA_D[28]
P4
LA_A[4]
AF1
G0_RXD[7]
H4
LA_D[29]
V2
LA_A[5]
AD5
G0_RX_DV
K2
LA_D[30]
V1
LA_A[6]
AF2
G0_RX_ER
J5
LA_D[31]
T5
LA_A[7]
AF3
GREF_CLK[1]
K3
LA_CS0#
W3
LA_A[8]
AG2
G1_TXCLK
L1
LA_CS1#
W2
LA_A[9]
AG3
G1_CRS/LINK
L2
LA_RW#
W1
LA_A[10]
AE5
G1_TXD[0]
L3
LA_D[32]
U5
LA_A[11]
AG1
G1_TXD[1]
K5
LA_D[33]
Y3
LA_A[12]
AH1
G1_TXD[2]
AH2
G1_TXD[3]
AG10
G2_RXCLK
AG19
G4_TXD[1]
AJ2
G1_TXD[4]
AK10
G2_COL
AK17
G4_TXD[2]
AJ1
G1_TXD[5]
AJ10
G2_RXD[6]
AF20
G4_TXD[3]
AK1
G1_TXD[6]
AG11
G2_RXD[7]
AH18
G4_TXD[4]
AG4
G1_TXD[7]
AH10
G2_RX_DV
AJ18
G4_TXD[5]
AK2
G1_TX_EN
AG12
G2_RX_ER
AK18
MII_TX_CLK[4]
AH3
MII_TX_CLK[1]
AK11
G3_CRS/LINK
AH19
G4_TXD[6]
AJ3
G1_TX_ER
AJ11
GREF_CLK[3]
AJ19
G4_TXD[7]
AH4
G1_RXD[0]
AH11
G3_TXCLK
AK19
G4_TX_EN
AK3
G1_RXD[1]
AK12
G3_TXD[0]
AH20
G4_TX_ER
AF4
G1_RXD[2]
AF12
G3_TXD[1]
AJ20
G4_RXD[0]
AK4
G1_RXD[3]
AJ12
G3_TXD[2]
AF21
G4_RXD[1]
AH5
G1_RXCLK
AH12
G3_TXD[3]
AK20
G4_RXD[2]
AJ4
G1_COL
AK13
G3_TXD[4]
AH21
G4_RXCLK
AG6
G1_RXD[4]
AJ13
MII_TX_CLK[3]
AJ21
G4_COL
AF5
G1_RXD[5]
AH13
G3_TXD[5]
AK21
G4_RXD[3]
AJ5
G1_RXD[6]
AF13
G3_TXD[6]
AF22
G4_RXD[4]
AF6
G1_RXD[7]
AK14
G3_TXD[7]
AG20
G4_RXD[5]
AK5
G1_RX_DV
AG13
G3_TX_EN
AG21
G4_RXD[6]
AK6
G1_RX_ER
AJ14
G3_TX_ER
AG22
G4_RXD[7]
AJ6
GREF_CLK[2]
AH14
G3_RXCLK
AH22
G4_RX_DV
108
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
AG5
G2_TXCLK
AF14
G3_COL
AJ22
GREF_CLK[5]
AH6
G2_CRS/LINK
AG14
G3_RXD[0]
AK22
G5_TXCLK
AF7
G2_TXD[0]
AK15
CM_CLK
AH23
G4_RX_ER
AK7
G2_TXD[1]
AF17
IND_CM
AG23
G5_CRS/LINK
AJ7
G2_TXD[2]
AJ15
G3_RXD[1]
AJ23
G5_TXD[0]
AG8
G2_TXD[3]
AH15
G3_RXD[2]
AK23
G5_TXD[1]
AG7
G2_TXD[4]
AF15
G3_RXD[3]
AF23
G5_TXD[2]
AH7
MII_TX_CLK[2]
AF18
G3_RXD[4]
AH24
G5_TXD[3]
AK8
G2_TXD[5]
AG15
G3_RXD[5]
AF24
G5_TXD[4]
AJ8
G2_TXD[6]
AF16
G3_RXD[6]
AG24
G5_TXD[5]
AF8
G2_TXD[7]
AG16
G3_RXD[7]
AJ24
G5_TXD[6]
AH8
G2_TX_EN
AH16
G3_RX_DV
AK24
G5_TXD[7]
AK9
G2_TX_ER
AF19
G3_RX_ER
AG25
MII_TX_CLK[5]
AJ9
G2_RXD[0]
AJ16
M_MDC
AH25
G5_TX_EN
AH9
G2_RXD[1]
AG18
M_MDIO
AF25
G5_TX_ER
AF9
G2_RXD[2]
AK16
G4_CRS/LINK
AJ25
G5_RXD[0]
AG9
G2_RXD[3]
AG17
GREF_CLK[4]
AG26
G5_RXD[1]
AF10
G2_RXD[4]
AH17
G4_TXCLK
AK25
G5_RXD[2]
AF11
G2_RXD[5]
AJ17
G4_TXD[0]
AK26
G5_RXCLK
AJ26
G5_COL
AA27
G7_TXD[3]
P29
T_D[13]
AH26
G5_RXD[3]
AB30
G7_TXD[4]
P30
T_D[14]
AJ27
G5_RXD[4]
AB29
G7_TXD[5]
P26
T_D[15]
AF26
G5_RXD[5]
Y26
G7_TXD[6]
N28
P_D[0]
AH27
G5_RXD[6]
AB28
G7_TXD[7]
N29
P_D[1]
AK27
G5_RXD[7]
Y27
G7_TX_EN
N30
P_D[2]
AK28
G5_RX_DV
AB27
G7_TX_ER
M28
P_D[3]
AJ28
G5_RX_ER
AA30
MII_TX_CLK[7]
M29
P_D[4]
AJ29
G6_CRS/LINK
AA29
G7_RXCLK
M30
P_D[5]
AK29
MII_TX_CLK[6]
AA28
G7_COL
N26
P_D[6]
AK30
GREF_CLK[6]
Y30
G7_RXD[0]
L28
P_D[7]
AJ30
G6_TXD[0]
W27
G7_RXD[1]
L29
P_D[8]
109
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
AH28
G6_TXD[1]
Y29
G7_RXD[2]
N27
TRUNK1_EN
AH29
G6_TXD[2]
W26
G7_RXD[3]
L30
TRUNK0_EN
AG27
G6_TXD[3]
Y28
G7_RXD[4]
K28
NC
AG28
G6_TXD[4]
W30
G7_RXD[5]
K29
NC
AH30
G6_TXCLK
W29
G7_RXD[6]
K30
NC
AG30
G6_TXD[5]
V26
G7_RXD[7]
L27
NC
AF28
G6_TXD[6]
W28
G7_RX_DV
K27
NC
AE26
G6_TXD[7]
V27
G7_RX_ER
M26
SDA
AG29
G6_TX_EN
V30
LED_DO
J27
SCL
AF27
G6_RXCLK
V29
LED_CLK0
J28
NC
AF29
G6_COL
V28
LED_SYNCO#
J29
PS_STROBE
AF30
G6_TX_ER
U26
S_RST#
J30
PS_DI
AD26
G6_RXD[0]
U30
RESOUT#
L26
PS_DO
AE30
G6_RXD[1]
U29
T_MODE[0]
H28
P_INT#
AC26
G6_RXD[2]
U28
T_MODE[1]
M27
B_D[0]
AE29
G6_RXD[3]
T30
T_D[0]
H29
B_D[1]
AC27
G6_RXD[4]
T29
T_D[1]
H30
B_D[2]
AE28
G6_RXD[5]
T28
T_D[2]
G28
B_D[3]
AE27
G6_RXD[6]
U27
T_D[3]
G27
B_D[4]
AB26
G6_RXD[7]
T27
T_D[4]
K26
B_D[5]
AD30
G6_RX_DV
R27
T_D[5]
G29
B_D[6]
AD29
GREF_CLK[7]
T26
T_D[6]
G30
B_D[7]
AD27
G6_RX_ER
R28
T_D[7]
H27
B_D[8]
AD28
G7_TXCLK
R29
T_D[8]
F27
B_D[9]
AC30
G7_CRS/LINK
R30
T_D[9]
F28
B_D[10]
AA26
G7_TXD[0]
R26
T_D[10]
F29
B_D[11]
AC29
G7_TXD[1]
P27
T_D[11]
F30
B_D[12]
AC28
G7_TXD[2]
P28
T_D[12]
J26
B_D[13]
E30
B_D[14]
A23
B_A[12]
E14
LB_D[49]
H26
B_D[15]
B23
B_A[13]
C15
LB_D[48]
E29
B_D[16]
C23
B_A[14]
B15
LB_D[47]
110
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
E26
B_D[17]
E22
B_A[15]
E13
LB_D[46]
D29
B_D[18]
A22
B_A[16]
A15
LB_D[45]
E28
B_D[19]
B22
B_A[17]
D14
LB_D[44]
G26
B_D[20]
C22
B_A[18]
C14
LB_D[43]
D30
B_D[21]
E21
LB_A[20]
D13
LB_D[42]
C30
B_D[22]
D22
LB_A[19]
B14
LB_D[41]
E27
B_D[23]
D20
LB_A[18]
A14
LB_D[40]
C29
B_CLK
E20
LB_A[17]
C13
LB_D[39]
D28
B_D[24]
D21
LB_A[16]
E12
LB_D[38]
B30
B_D[25]
A21
LB_A[15]
B13
LB_D[37]
F26
NC1
D19
LB_A[14]
A13
LB_D[36]
D26
NC2
B21
LB_A[13]
D12
LB_D[35]
A30
NC3
C21
LB_A[12]
C12
LB_D[34]
A29
NC4
A20
LB_A[11]
B12
LB_D[33]
B29
NC5
B20
LB_A[10]
A12
LB_D[32]
E25
AGND
E19
LB_A[9]
C11
LB_RW#
B28
DEV_CFG[1]
C20
LB_A[8]
E11
LB_CS1#
C28
AVDD
A19
LB_A[7]
B11
LB_CS0#
A28
B_D[26]
B19
LB_A[6]
A11
LB_D[31]
A27
B_D[27]
E18
LB_A[5]
E10
LB_D[30]
C27
B_D[28]
C19
LB_A[4]
C10
LB_D[29]
D27
B_D[29]
A18
LB_A[3]
B10
LB_D[28]
B27
B_D[30]
D18
LB_D[63]
E9
LB_D[27]
E24
B_D[31]
B18
LB_D[62]
A10
LB_D[26]
D25
B_ADSC#
C18
LB_D[61]
D11
LB_D[25]
B26
B_WE#
A17
LB_D[60]
D10
LB_D[24]
A26
B_OE#
E17
LB_D[59]
D8
LB_D[23]
A25
B_A[2]
B17
LB_D[58]
D9
LB_D[22]
B25
B_A[3]
C17
LB_D[57]
C9
LB_D[21]
C26
B_A[4]
E16
LB_D[56]
B9
LB_D[20]
C25
B_A[5]
D17
LB_D[55]
A9
LB_D[19]
111
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
E23
B_A[6]
A16
S_CLK
C8
LB_D[18]
A24
B_A[7]
B16
LB_D[54]
B8
LB_D[17]
B24
B_A[8]
E15
LB_D[53]
A8
LB_D[16]
D23
B_A[9]
C16
LB_D[52]
C7
LB_D[15]
D24
B_A[10]
D16
LB_D[51]
E7
LB_D[14]
C24
B_A[11]
D15
LB_D[50]
D7
LB_D[13]
B7
LB_D[12]
P15
VSS
AE7
VDD
E8
LB_D[11]
P16
VSS
AE9
VDD
A7
LB_D[10]
P17
VSS
F10
VDD
D6
LB_D[9]
P18
VSS
F21
VDD
C6
LB_D[8]
R13
VSS
F22
VDD
E6
LB_D[7]
R14
VSS
F9
VDD
B6
LB_D[6]
R15
VSS
G25
VDD
A6
LB_D[5]
R16
VSS
G6
VDD
A5
LB_D[4]
R17
VSS
J25
VDD
B5
LB_D[3]
R18
VSS
J6
VDD
C5
LB_D[2]
R25
VSS
K25
VDD
B4
LB_D[1]
R6
VSS
K6
VDD
D5
LB_CLK
T13
VSS
AE12
VCC
A4
LB_D[0]
T14
VSS
AE13
VCC
A3
SCAN_EN
T15
VSS
AE14
VCC
E5
AGND
T16
VSS
AE17
VCC
C4
NC6
T17
VSS
AE18
VCC
B3
NC7
T18
VSS
AE19
VCC
D4
NC8
T25
VSS
F12
VCC
A2
NC9
T6
VSS
F13
VCC
AD6
VSS
U13
VSS
F14
VCC
AE15
VSS
U14
VSS
F17
VCC
AE16
VSS
U15
VSS
F18
VCC
AE24
VSS
U16
VSS
F19
VCC
AE25
VSS
U17
VSS
M25
VCC
112
Zarlink Semiconductor Inc.
MVTX2803
Data Sheet
Ball No.
Signal Name
Ball No.
Signal Name
Ball No.
Signal Name
AE6
VSS
U18
VSS
M6
VCC
F15
VSS
V13
VSS
N25
VCC
F16
VSS
V14
VSS
N6
VCC
F24
VSS
V15
VSS
P25
VCC
F25
VSS
V16
VSS
P6
VCC
F6
VSS
V17
VSS
U25
VCC
F7
VSS
V18
VSS
U6
VCC
N13
VSS
AA25
VDD
V25
VCC
N14
VSS
AA6
VDD
V6
VCC
N15
VSS
AB25
VDD
W25
VCC
N16
VSS
AB6
VDD
W6
VCC
N17
VSS
AD25
VDD
N18
VSS
AE10
VDD
P13
VSS
AE21
VDD
P14
VSS
AE22
VDD
11.4
11.4.1
Characteristics and Timing
Absolute Maximum Ratings
Storage Temperature
-65C to +150C
Operating Temperature
-40°C to +85C
Maximum Junction Temperature-
+125C
Supply Voltage VCC with Respect to VSS
+3.0 V to +3.6 V
Supply Voltage VDD with Respect to VSS
+2.38 V to +2.75 V
Voltage on Input Pins
-0.5 V to (VCC + 3.3 V)
Caution: Stress above those listed may damage the device. Exposure to the Absolute Maximum Ratings
for extended periods may affect device reliability. Functionality at or above these limits is not implied.
11.4.2
DC Electrical Characteristics
VCC = 3.0 V to 3.6 V (3.3v +/- 10%)
TAMBIENT = -40°C to +85°C
VDD = 2.5V +10% - 5%
113
Zarlink Semiconductor Inc.
MVTX2803
11.4.3
Data Sheet
Recommended Operating Conditions
Symbol
Parameter Description
Min
Type
Max
133
Unit
fosc
Frequency of Operation
MHz
ICC
Supply Current – @ 133 MHz (3.3V Supply)
720
930
mA
IDD
Supply Current – @ 133 MHz (2.5V Supply))
1400
1700
mA
VOH
Output High Voltage (CMOS)
VOL
Output Low Voltage (CMOS)
2.4
0.4
V
VCC + 2.0
V
VIH-TTL
Input High Voltage (TTL 5V tolerant)
VIL-TTL
Input Low Voltage (TTL 5V tolerant)
0.8
V
IIL
Input Leakage Current (0.1 V < VIN < VCC)
10
µA
IOL
Output Leakage Current (0.1 V < VOUT < VCC)
10
µA
CIN
Input Capacitance
5
pF
Output Capacitance
5
pF
I/O Capacitance
7
pF
COUT
CI/O
2.0
V
θja
Thermal resistance with 0 air flow
11.2
C/W
θja
Thermal resistance with 1 m/s air flow
9.9
C/W
θja
Thermal resistance with 2 m/s air flow
8.7
C/W
θjc
Thermal resistance between junction and case
3.3
C/W
114
Zarlink Semiconductor Inc.
MVTX2803
11.5
11.5.1
Data Sheet
AC Characteristics and Timing
Typical Reset & Bootstrap Timing Diagram
S_RST#
RESOUT#
Tri-Stated
R1
R3
Bootstrap Pins
Outputs
Inputs
Outputs
R2
Figure 6 - Typical Reset & Bootstrap Timing Diagram
Symbol
Parameter
Min
R1
Delay until RESOUT# is tri-stated
R2
Bootstrap stabilization
R3
RESOUT# assertion
1µs
Typ
Note:
10ns
RESOUT# state is then determined by the
external pull-up/down resistor
10µs
Bootstrap pins sampled on rising edge of
S_RST#1
2ms
Table 6 - Reset & Bootstrap Timing
1. The T_D[15:0] pins will switch over to the LED interface functionality in 3 SCLK cycles after S_RST# goes high
115
Zarlink Semiconductor Inc.
MVTX2803
11.5.2
Data Sheet
Local Frame Buffer ZBT SRAM Memory Interface
11.5.2.1
Local ZBT SRAM Memory Interface A
LA_CLK
L1
L2
LA_D[63:0]
Figure 7 - Local Memory Interface – Input setup and hold timing
LB_CLK
L3-max
L3-min
LB_D[63:0]
L4-max
L4-min
LB_A[20:3]
L6-max
L6-min
LB_CS[1,0]#]
L3-max
L3-min
LB_RW#
Figure 8 - Local Memory Interface - Output valid delay timing
AC Characteristics – Local frame buffer ZBT-SRAM Memory Interface A
(SCLK= 133MHz)
Symbol
Parameter
Min (ns)
Max (ns)
Note:
L1
LA_D[63:0] input set-up time
2.5
L2
LA_D[63:0] input hold time
1
L3
LA_D[63:0] output valid delay
3
5
CL = 25pf
L4
LA_A[20:3] output valid delay
3
5
CL = 30pf
L6
LA_CS[1:0]# output valid delay
3
5
CL = 30pf
L9
LA_WE# output valid delay
3
5
CL = 25pf
116
Zarlink Semiconductor Inc.
MVTX2803
11.5.3
Data Sheet
Local ZBT SRAM Memory Interface B
LB_CLK
L1
L2
LB_D[63:0]
Figure 9 - Local Memory Interface – Input setup and hold timing
LB_CLK
L3-max
L3-min
LB_D[63:0]
L4-max
L4-min
LB_A[20:3]
L6-max
L6-min
LB_CS[1,0]#]
L9-max
L9-min
LB_RW#
Figure 10 - Local Memory Interface - Output valid delay timing
Local frame buffer ZBT-SRAM Memory Interface B
(SCLK= 133MHz)
Symbol
Parameter
Min (ns)
Max (ns)
Note:
L1
LB_D[63:0] input set-up time
2.5
L2
LB_D[63:0] input hold time
1
L3
LB_D[63:0] output valid delay
3
5
CL = 25pf
L4
LB_A[20:3] output valid delay
3
5
CL = 30pf
L6
LB_CS[1:0]# output valid delay
3
5
CL = 30pf
L9
LB_WE# output valid delay
3
5
CL = 25pf
117
Zarlink Semiconductor Inc.
MVTX2803
11.5.4
Data Sheet
Local Switch Database SBRAM Memory Interface
11.5.4.1
Local SBRAM Memory Interface
B_CLK
L1
L2
B_D[31:0]
Figure 11 - Local Memory Interface – Input setup and hold timing
B_CLK
L3-max
L3-min
B_D[31:0]
L4-max
L4-min
B_A[18:2]
L6-max
L6-min
B_ADSC#
L10-max
L10-min
B_WE#
L11-max
L11-min
B_OE#
Figure 12 - Local Memory Interface - Output valid delay timing
AC Characteristics – Local Switch Database SBRAM Memory Interface
(SCLK= 133MHz)
Symbol
Parameter
Min (ns)
Max (ns)
Note:
L1
B_D[63:0] input set-up time
2.5
L2
B_D[63:0] input hold time
1
L3
B_D[63:0] output valid delay
3
5
CL = 25pf
L4
B_A[20:3] output valid delay
3
5
CL = 30pf
L6
B_ADSC# output valid delay
3
5
CL = 30pf
L10
B_WE# output valid delay
3
5
CL = 25pf
L11
B_OE# output valid delay
3
4
CL = 25pf
118
Zarlink Semiconductor Inc.
MVTX2803
11.5.5
Data Sheet
Media Independent Interface
MII_TXCLK[7:0]
M6-max
M6-min
G[7:0]_TXEN
M7-max
M7-min
G[7:0]_TXD[3:0]
Figure 13 - AC Characteristics – Media Independent Interface
G[7:0]_RXCLK
M2
G[7:0]_RXD[3:0]
M4
M3
G[7:0]_CRS_DV
M5
Figure 14 - AC Characteristics – Media Independent Interface
AC Characteristics – Media Independent Interface
(MII_TXCLK &
G_RXCLK = 25MHz)
Symbol
Parameter
Min (ns)
Max (ns)
Note:
M2
G[7:0]_RXD[3:0] Input Setup Time
4
M3
G[7:0]_RXD[3:0] Input Hold Time
1
M4
G[7:0]_CRS_DV Input Setup Time
4
M5
G[7:0]_CRS_DV Input Hold Time
1
M6
G[7:0]_TXEN Output Delay Time
3
11
CL = 20 pF
M7
G[7:0]_TXD[3:0] Output Delay Time
3
11
CL = 20 pF
119
Zarlink Semiconductor Inc.
MVTX2803
11.5.6
Data Sheet
Gigabit Media Independent Interface
G[7:0]_TXCLK
G12-max
G12-min
G[7:0]_TXD[7:0]
G13 max
G13-min
G[7:0]_TX_EN
G14-max
G14-min
G[7:0]_TX_ER
Figure 15 - AC Characteristics- GMII
G[7:0]_RXCLK
G1
G2
G[7:0]_RXD[7:0]
G3
G4
G5
G6
G7
G8
G[7:0]_RX_DV
G[7:0]_RX_ER
G[7:0]_RX_CRS
Figure 16 - AC Characteristics – Gigabit Media Independent Interface
AC Characteristics – Gigabit Media Independent Interface
(G_RCLK &
G_REFCLK = 125MHz)
Symbol
Parameter
Min (ns)
Max (ns)
Note:
G1
G[7:0]_RXD[7:0] Input Setup Times
2
G2
G[7:0]_RXD[7:0] Input Hold Times
1
G3
G[7:0]_RX_DV Input Setup Times
2
G4
G[7:0]_RX_DV Input Hold Times
1
G5
G[7:0]_RX_ER Input Setup Times
2
G6
G[7:0]_RX_ER Input Hold Times
1
G7
G[7:0]_CRS Input Setup Times
2
G8
G[7:0]_CRS Input Hold Times
1
G12
G[7:0]_TXD[7:0] Output Delay Times
1
5
CL = 20pf
G13
G[7:0]_TX_EN Output Delay Times
1
5
CL = 20pf
G14
G[7:0]_TX_ER Output Delay Times
1
5
CL = 20pf
120
Zarlink Semiconductor Inc.
MVTX2803
11.5.7
Data Sheet
PCS Interface
G[7:0]_TXCLK
G30-max
G30-min
G[7:0]_TXD[9:0]
Figure 17 - AC Characteristics – PCS Interface
G[7:0]_RXCLK1
G[7:0]_RXCLK
G21
G22
G23 G24
G[7:0]_RXD[9:0]
G25 G26
G[7:0]_RX+CRS
Figure 18 - AC Characteristics – PCS Interface
AC Characteristics – PCS Interface
(G_RCLK &
G_REFCLK = 125MHz)
Symbol
G21
Parameter
Min (ns)
G[7:0]_RXD[9:0] Input Setup Times ref to
Max (ns)
Note:
5
CL = 20pf
2
G_RXCLK
G22
G[7:0]_RXD[9:0] Input Hold Times ref to
1
G_RXCLK
G23
G[7:0]_RXD[9:0] Input Setup Times ref to
2
G_RXCLK1
G24
G[7:0]_RXD[9:0] Input Hold Times ref to
1
G_RXCLK1
G25
G[7:0]_CRS Input Setup Times
2
G26
G[7:0]_CRS Input Hold Times
1
G30
G[7:0]_TXD[9:0] Output Delay Times
1
121
Zarlink Semiconductor Inc.
MVTX2803
11.5.8
Data Sheet
LED Interface
LED_CLK]
LE5-max
LE5-min
LED_SYN
LE6-max
LE6-min
LED_BIT
Figure 19 - AC Characteristics – LED Interface
AC Characteristics – LED Interface
Variable FREQ.
Symbol
Parameter
Min(ns)
Max (ns)
Note:
LE5
LED_SYN Output Valid Delay
1
7
CL = 30pf
LE6
LED_BIT Output Valid Delay
1
7
CL = 30pf
122
Zarlink Semiconductor Inc.
MVTX2803
11.5.9
Data Sheet
MDIO Input Setup and Hold Timing
MDC
D1
D2
MDIO
Figure 20 - MDIO Input Setup and Hold Timing
MDC
D3-max
D3-min
MDIO
Figure 21 - MDIO Output Delay Timing
MDIO Timing
1MHz
Symbol
Parameter
Min (ns)
D1
MDIO input setup time
10
D2
MDIO input hold time
2
D3
MDIO output delay time
1
123
Zarlink Semiconductor Inc.
Max (ns)
Note:
20
CL = 50pf
MVTX2803
11.5.10
Data Sheet
I2C Input Setup Timing
SDL
S1
S2
SDA
Figure 22 - I2C Input Setup Timing
SCL
S3-max
S3-min
SDA
Figure 23 - I2C Output Delay Timing
I2C Timing
500KHz
Symbol
Parameter
Min (ns)
S1
SDA input setup time
20
S2
SDA input hold time
1
S3*
SDA output delay time
1
* Open Drain Output. Low to High transistor is controlled by external pullup resistor.
124
Zarlink Semiconductor Inc.
Max (ns)
Note:
20
CL = 30pf
MVTX2803
11.5.11
Data Sheet
Serial Interface Setup Timing
D4
STROBE
D1
D5
D2
D1
D2
PS_DI
Figure 24 - Serial Interface Setup Timing
STROBE
D3-max
D3-min
PS_D0
Figure 25 - Serial Interface Output Delay Timing
Serial Interface Timing
(SCLK =133 MHz)
Symbol
Parameter
Min (ns)
D1
PS_DI setup time
20
D2
PS_DI hold time
10
D3
PS_DO output delay time
1
D4
Strobe low time
5µs
D5
Strobe high time
5µs
125
Zarlink Semiconductor Inc.
Max (ns)
Note:
50
CL = 100pf
E1
MIN
MAX
A
2.20
2.46
A1
0.50
0.70
A2
1.17 REF
40.20
D
39.80
D1
34.50 REF
E
40.20
39.80
E1
34.50 REF
b
0.60
0.90
e
1.27
596
Conforms to JEDEC MS - 034
E
e
D
D1
A2
NOTE:
b
A1 A
1. CONTROLLING DIMENSIONS ARE IN MM
2. DIMENSION "b" IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER
3. SEATING PLANE IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
4. N IS THE NUMBER OF SOLDER BALLS
5. NOT TO SCALE.
6. SUBSTRATE THICKNESS IS 0.56 MM
Package Code
ISSUE
ACN
DATE
APPRD.
Previous package codes:
For more information about all Zarlink products
visit our Web Site at
www.zarlink.com
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system
conforms to the I2C Standard Specification as defined by Philips.
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.
Copyright Zarlink Semiconductor Inc. All Rights Reserved.
TECHNICAL DOCUMENTATION - NOT FOR RESALE