TI TM4SN64EPU-12

TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
D
D
D
D
D
D
D
D
D
Organization:
– TM2SN64EPU . . . 2 097 152 x 64 Bits
– TM4SN64EPU . . . 4 194 304 x 64 Bits
Single 3.3-V Power Supply
(±10% Tolerance)
Designed for 66-MHz 4-Clock Systems
JEDEC 168-Pin Dual-In-Line Memory
Module (DIMM) Without Buffer for Use With
Socket
TM2SN64EPU — Uses Eight 16M-Bit
Synchronous Dynamic RAMs (SDRAMs)
(2M × 8-Bit) in Plastic Thin Small-Outline
Packages (TSOPs)
TM4SN64EPU — Uses Sixteen 16M-Bit
SDRAMs (2M × 8-Bit) in Plastic TSOPs
Byte-Read/Write Capability
Performance Ranges:
SYNCHRONOUS
CLOCK CYCLE
TIME
tCK3
tCK2
(CL = 3)† (CL = 2)
ACCESS TIME
CLOCK TO
OUTPUT
tCK3
tCK2
(CL = 3) (CL = 2)
D
D
D
D
D
D
D
D
High-Speed, Low-Noise Low-Voltage TTL
(LVTTL) Interface
Read Latencies 2 and 3 Supported
Support Burst-Interleave and
Burst-Interrupt Operations
Burst Length Programmable to 1, 2, 4,
and 8
Two Banks for On-Chip Interleaving
(Gapless Access)
Ambient Temperature Range
0°C to 70°C
Gold-Plated Contacts
Pipeline Architecture
Serial Presence-Detect (SPD) Using
EEPROM
REFRESH
INTERVAL
’xSN64EPU-12A‡
12 ns
15 ns
9 ns
9 ns
64 ms
’xSN64EPU-12
12 ns
18 ns
9 ns
10 ns
64 ms
† CL = CAS latency
‡ –12A speed device is supported only at –5 to +10% VDD
description
The TM2SN64EPU is a 16M-byte, 168-pin dual-in-line memory module (DIMM). The DIMM is composed of
eight TMS626812DGE, 2 097 152 x 8-bit SDRAMs, each in a 400-mil, 44-pin plastic thin small-outline package
(TSOP) mounted on a substrate with decoupling capacitors. See the TMS626812 data sheet (literature number
SMOS687).
The TM4SN64EPU is a 32M-byte, 168-pin DIMM. The DIMM is composed of sixteen TMS626812DGE,
2 097 152 x 8-bit SDRAMs, each in a 400-mil, 44-pin plastic TSOP mounted on a substrate with decoupling
capacitors. See the TMS626812 data sheet (literature number SMOS687).
operation
The TM2SN64EPU operates as eight TMS626812DGE devices that are connected as shown in the
TM2SN64EPU functional block diagram. The TM4SN64EPU operates as 16 TMS626812DGE devices
connected as shown in the TM4SN64EPU functional block diagram.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
1
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
DUAL-IN-LINE MEMORY MODULE
( TOP VIEW )
TM2SN64EPU
( SIDE VIEW )
TM4SN64EPU
( SIDE VIEW )
PIN NOMENCLATURE
A[0:10]
A[0:8]
A11/BA0
CAS
CKE[0:1]
CK[0:3]
DQ[0:63]
DQMB[0:7]
1
10
NC
RAS
S[0:3]
SA[0:2]
11
SCL
SDA
VDD
VSS
WE
40
41
84
2
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
Row Address Inputs
Column Address Inputs
Bank-Select Zero
Column-Address Strobe
Clock Enable
System Clock
Data-In / Data-Out
Data-In/Data-Out
Mask Enable
No Connect
Row-Address Strobe
Chip-Select
Serial Presence-Detect (SPD)
Device Address Input
SPD Clock
SPD Address / Data
3.3-V Supply
Ground
Write Enable
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
Pin Assignments
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
PIN
PIN
NAME
NO.
PIN
NAME
NO.
PIN
NAME
NO.
NAME
NO.
1
VSS
DQ0
43
86
VSS
DQ32
127
44
VSS
NC
85
2
128
VSS
CKE0
3
DQ1
45
S2
87
DQ33
129
S3
4
DQ2
46
DQMB2
88
DQ34
130
DQMB6
5
DQ3
47
DQMB3
89
DQ35
131
DQMB7
6
VDD
DQ4
48
NC
90
NC
49
91
133
8
DQ5
50
VDD
NC
VDD
DQ36
132
7
92
DQ37
134
VDD
NC
9
DQ6
51
NC
93
DQ38
135
NC
10
DQ7
52
NC
94
DQ39
136
NC
11
DQ8
53
NC
95
DQ40
137
NC
12
VSS
DQ9
54
97
VSS
DQ41
138
55
VSS
DQ16
96
13
139
VSS
DQ48
14
DQ10
56
DQ17
98
DQ42
140
DQ49
15
DQ11
57
DQ18
99
DQ43
141
DQ50
16
DQ12
58
DQ19
100
DQ44
142
DQ51
17
DQ13
59
DQ45
143
60
102
VDD
DQ52
61
NC
103
VDD
DQ46
144
19
VDD
DQ14
VDD
DQ20
101
18
145
NC
20
DQ15
62
NC
104
DQ47
146
NC
21
NC
63
CKE1
105
NC
147
NC
22
NC
64
NC
148
65
107
VSS
DQ53
66
DQ22
108
VSS
NC
149
24
VSS
NC
VSS
DQ21
106
23
150
DQ54
25
NC
67
DQ23
109
NC
151
DQ55
26
68
111
VDD
CAS
152
69
VSS
DQ24
110
27
VDD
WE
153
VSS
DQ56
28
DQMB0
70
DQ25
112
DQMB4
154
DQ57
29
DQMB1
71
DQ26
113
DQMB5
155
DQ58
30
S0
72
DQ27
114
S1
156
DQ59
31
NC
73
115
RAS
157
32
74
116
158
75
DQ29
117
VSS
A1
VDD
DQ60
33
VSS
A0
VDD
DQ28
159
DQ61
34
A2
76
DQ30
118
A3
160
DQ62
35
A4
77
DQ31
119
A5
161
DQ63
36
A6
78
120
A7
162
37
A8
79
VSS
CK2
121
A9
163
VSS
CK3
38
A10
80
NC
122
A11/BA0
164
NC
39
NC
81
NC
123
NC
165
SA0
40
VDD
VDD
82
SDA
124
SA1
83
SCL
125
VDD
CK1
166
41
167
SA2
42
CK0
84
VDD
126
NC
168
VDD
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
3
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
dual-in-line memory module and components
The dual-in-line memory module and components include:
D
D
D
PC substrate: 1,27 ± 0,1 mm (0.05 inch) nominal thickness; 0.005 inch/inch maximum warpage
Bypass capacitors: Multilayer ceramic
Contact area: Nickel plate and gold plate over copper
functional block diagram for the TM2SN64EPU
S0
RC
CS
CK: U0, U4
CS
RC
CK0
CK: U1, U5
U0
DQMB0
DQM
R
DQ[0:7]
8
DQMB4
DQ[32:39]
8
CK: U2, U6
RC
CK1
DQM
R
DQ[0:7]
RC
U4
CK: U3, U7
DQ[0:7]
RC
CK2
CS
C
CS
RC
CK3
U1
DQMB1
DQM
R
DQ[8:15]
8
U5
DQMB5
R
DQ[0:7]
C
DQM
DQ[40:47]
8
DQ[0:7]
R = 10 Ω
RC = 10 Ω
C = 10 pF
S2
VDD
CS
U2
DQMB2
DQM
R
DQ[16:23]
8
U[0:7]
Two 0.1 µF
(minimum) per
SDRAM
U[0:7]
CS
U6
DQMB6
DQM
R
DQ[0:7]
VSS
DQ[48:55]
8
DQ[0:7]
SPD EEPROM
CS
CS
U3
DQMB3
DQM
R
DQ[24:31]
RAS
CAS
WE
CKE0
A[0:11]
4
8
SDA
A0
A1
A2
SA0
SA1
SA2
U7
DQMB7
DQM
R
DQ[0:7]
SCL
DQ[56:63]
RAS: SDRAM U[0:7]
CAS: SDRAM U[0:7]
WE: SDRAM U[0:7]
CKE: SDRAM U[0:7]
A[0:11]: SDRAM U[0:7]
POST OFFICE BOX 1443
8
DQ[0:7]
LEGEND: CS =
SPD =
• HOUSTON, TEXAS 77251–1443
Chip select
Serial Presence Detect
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
functional block diagram for the TM4SN64EPU
S1
VDD
S0
CS
CS
CS
U[0:7], UB[0:7]
Two 0.1 µF
(minimum) per
SDRAM
U[0:7], UB[0:7]
CS
VSS
U0
DQMB0
DQM
R
DQ[0:7]
8
UB0
DQM
U4
DQMB4
R
DQ[0:7]
DQ[0:7]
CS
CS
DQ[32:39]
8
UB4
DQM
DQM
DQ[0:7]
DQ[0:7]
CS
CS
R = 10 Ω
Rc = 10 Ω
VDD
U1
DQMB1
DQM
R
DQ[8:15]
8
UB1
DQM
U5
DQMB5
R
DQ[0:7]
DQ[0:7]
DQ[40:47]
8
UB5
DQM
DQM
DQ[0:7]
DQ[0:7]
10 K
CKE1
CKE: UB[0:7]
CKE0
CKE: U[0:7]
RAS
RAS: U[0:7], UB[0:7]
CAS
CAS: U[0:7], UB[0:7]
WE
WE: U[0:7], UB[0:7]
A[0:11]
A[0:11]: U[0:7], UB[0:7]
RC
S3
CK: U0, U4
CK0
S2
RC
CK: U1, U5
CS
CS
CS
RC
CS
CK: UB0, UB4
CK1
U2
DQMB2
DQM
R
DQ[16:23]
8
UB2
DQM
U6
DQMB6
DQM
R
DQ[0:7]
DQ[0:7]
DQ[48:55]
8
CK: UB1, UB5
UB6
RC
CK: U2, U6
DQM
CK2
DQ[0:7]
RC
DQ[0:7]
RC
CK: U3, U7
RC
CK: UB2, UB6
CS
U3
DQMB3
R
DQ[24:31]
8
CS
CS
U7
UB3
DQM
DQM
DQ[0:7]
DQ[0:7]
CS
DQMB7
R
DQ[56:63]
8
CK3
CK: UB3, UB7
UB7
DQM
DQM
DQ[0:7]
DQ[0:7]
RC
SPD EEPROM
SCL
SDA
A0
A1
A2
SA0 SA1 SA2
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
5
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
absolute maximum ratings over ambient temperature range (unless otherwise noted)†
Supply voltage range, VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
Voltage range on any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 4.6 V
Short-circuit output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Power dissipation: TM2SN64EPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 W
TM4SN64EPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 W
Ambient temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to VSS.
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
v
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
recommended operating conditions
MIN
NOM
MAX
UNIT
3
3.3
3.6
V
VDD
VSS
Supply voltage
VIH
VIH-SPD
High-level input voltage
2
High-level input voltage for the SPD device
Low-level input voltage ‡
2
Supply voltage
VIL
TA
Ambient temperature
‡ VIL MIN = –1.5 V ac (pulse width
0
V
VDD + 0.3
5.5
V
V
–0.3
0.8
V
0
70
°C
5 ns)
capacitance over recommended ranges of supply voltage and ambient temperature,
f = 1 MHz (see Note 2)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
TM2SN64EPU
PARAMETER
MIN
MAX
TM4SN64EPU
MIN
MAX
UNIT
Ci(CK)
Input capacitance, CK input
22
22
pF
Ci(AC)
Input capacitance, address and control inputs: A0 – A11, RAS, CAS, WE
42
82
pF
Ci(CKE)
Input capacitance, CKE input
42
42
pF
Co
Output capacitance
10
18
pF
Ci(DQMBx)
Input capacitance, DQMBx input
12
12
pF
Ci(Sx)
Input capacitance, Sx input
22
22
pF
Ci/o(SDA)
Input/output capacitor, SDA input
9
9
pF
7
7
pF
Ci(SPD)
Input capacitor, SA0, SA1, SA2, SCL inputs
NOTE 2: VDD = 3.3 V ± 0.3 V. Bias on pins under test is 0 V.
6
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
electrical characteristics over recommended ranges of supply voltage and ambient temperature
(unless otherwise noted) (see Note 3)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
"
" ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
" ÁÁÁ
" ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
TM2SN64EPU
PARAMETER
VOH
VOL
High-level output voltage
II
Input current (leakage)
IO
ICC1
ICC2P
ICC2PS
ICC2N
ICC2NS
ICC3P
ICC3PS
ICC3N
ICC3NS
ICC4
ICC5
TEST CONDITIONS
IOH = – 2 mA
IOL = 2 mA
Low-level output voltage
’2SN64EPU-12A
MIN
MAX
2.4
’2SN64EPU-12
MIN
MAX
2.4
UNIT
V
0.4
0.4
V
0 V < VI < VDD + 0.3 V,
All other pins = 0 V to VDD
10
10
µA
Output current (leakage)
0 V < VO < VDD +0.3 V,
Output disabled
10
10
µA
680
600
mA
Operating current
Burst length = 1,
CAS latency = 2
tRC ≥ tRC MIN
IOH/IOL = 0 mA, one bank
CAS latency = 3
activated (see Note 4)
760
760
mA
CKE ≤ VIL MAX, tCK = 15 ns (see Note 5)
16
16
mA
CKE and CK ≤ VIL MAX, tCK = ∞ (see Note 6)
16
16
mA
CKE ≥ VIH MIN, tCK = 15 ns (see Note 5)
240
240
mA
CKE ≥ VIH MIN, CK ≤ VIL MAX, tCK = ∞
(see Note 6)
16
16
mA
CKE ≤ VIL MAX, tCK = 15 ns (see Note 5)
64
64
mA
CKE and CK ≤ VIL MAX, tCK = ∞ (see Note 6)
64
64
mA
CKE ≥ VIH MIN, tCK = 15 ns (see Note 5)
280
280
mA
CKE ≥ VIH MIN, CK ≤ VIL MAX, tCK = ∞
(see Note 6)
80
80
mA
Page burst, IOH/IOL = 0 mA CAS latency = 2
All banks activated,,
nCCD = one cycle
CAS latency = 3
(see Note 7)
1040
880
mA
1240
1240
mA
CAS latency = 2
600
560
mA
CAS latency = 3
680
680
mA
Precharge
g standby
y current in
power-down mode
Precharge standby current in
non-power-down mode
Active standbyy current
power-down mode
in
Active standby current
non-power-down mode
in
Burst current
Auto refresh current
Auto-refresh
tRC ≤ tRC MIN
ICC6
Self-refresh current
CKE ≤ VIL MAX
16
16
mA
NOTES: 3. All specifications apply to the device after power-up initialization. All control and address inputs must be stable and valid.
4. Control, DQ, and address inputs change state twice during tRC.
5. Control, DQ, and address inputs change state once every 30 ns.
6. Control, DQ, and address inputs do not change.
7. Control, DQ, and address inputs change once every cycle.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
7
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
electrical characteristics over recommended ranges of supply voltage and ambient temperature
(unless otherwise noted) (see Note 3)
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
"
" ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
" ÁÁÁ
" ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
TM4SN64EPU
PARAMETER
VOH
VOL
High-level output voltage
II
Input current (leakage)
IO
ICC1
ICC2P
ICC2PS
ICC2N
ICC2NS
ICC3P
ICC3PS
ICC3N
ICC3NS
ICC4
ICC5
TEST CONDITIONS
IOH = – 2 mA
IOL = 2 mA
Low-level output voltage
’4SN64EPU-12A
MIN
MAX
2.4
’4SN64EPU-12
MIN
MAX
2.4
UNIT
V
0.4
0.4
V
0 V < VI < VDD + 0.3 V,
All other pins = 0 V to VDD
20
20
µA
Output current (leakage)
0 V < VO < VDD +0.3 V,
Output disabled
20
20
µA
696
616
mA
Operating current
Burst length = 1,
CAS latency = 2
tRC ≥ tRC MIN
IOH/IOL = 0 mA, one bank
CAS latency = 3
activated (see Note 4)
776
776
mA
CKE ≤ VIL MAX, tCK = 15 ns (see Note 5)
32
32
mA
CKE and CK ≤ VIL MAX, tCK = ∞ (see Note 6)
32
32
mA
CKE ≥ VIH MIN, tCK = 15 ns (see Note 5)
480
480
mA
CKE ≥ VIH MIN, CK ≤ VIL MAX, tCK = ∞
(see Note 6)
32
32
mA
CKE ≤ VIL MAX, tCK = 15 ns (see Note 5)
128
128
mA
CKE and CK ≤ VIL MAX, tCK = ∞ (see Note 6)
128
128
mA
CKE ≥ VIH MIN, tCK = 15 ns (see Note 5)
560
560
mA
CKE ≥ VIH MIN, CK ≤ VIL MAX, tCK = ∞
(see Note 6)
160
160
mA
Page burst, IOH/IOL = 0 mA CAS latency = 2
All banks activated,,
nCCD = one cycle
CAS latency = 3
(see Note 7)
1056
896
mA
1256
1256
mA
CAS latency = 2
616
570
mA
CAS latency = 3
696
696
mA
Precharge
g standby
y current in
power-down mode
Precharge standby current in
non-power-down mode
Active standbyy current
power-down mode
in
Active standby current
non-power-down mode
in
Burst current
Auto refresh current
Auto-refresh
tRC ≤ tRC MIN
ICC6
Self-refresh current
CKE ≤ VIL MAX
32
32
mA
NOTES: 3. All specifications apply to the device after power-up initialization. All control and address inputs must be stable and valid.
4. Control, DQ, and address inputs change state twice during tRC.
5. Control, DQ, and address inputs change state once every 30 ns.
6. Control, DQ, and address inputs do not change.
7. Control, DQ, and address inputs change once every cycle.
8
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
ac timing requirements†
’xSN64EPU-12A‡
MIN
MAX
’xSN64EPU-12
MIN
9
MAX
UNIT
tAC2
tAC3
Access time, CK high to data out, CAS latency = 2 (see Note 8)
tCK2
tCK3
Cycle time, CK, CAS latency = 2
15
18
ns
Cycle time, CK, CAS latency = 3
12
12
ns
tLZ
tHZ
Delay time, CK high to DQ in low-impedance state (see Note 9)
tRAS
Delay time, ACTV command to DEAC or DCAB command
60
tRC
Delay time, ACTV, MRS, REFR, or SLFR to ACTV, MRS, REFR, or SLFR
command
90
108
ns
tRCD
Delay time, ACTV command to READ, READ-P, WRT, or WRT-P command
(see Note 11)
30
30
ns
tRP
tRRD
Delay time, DEAC or DCAB command to ACTV, MRS, REFR, or SLFR command
30
36
ns
Delay time, ACTV command in one bank to ACTV command in the other bank
24
24
ns
tRSA
tAPR
Delay time, MRS command to ACTV, MRS, REFR, or SLFR command
24
24
ns
tOH
tIH
Hold time, CK high to data out
3
3
ns
Hold time, address, control, and data input
1
1.5
ns
tCESP
tCH
Power down/self-refresh exit time
10
10
ns
Pulse duration, CK high
4
4
ns
tCL
tIS
Pulse duration, CK low
4
4
ns
Setup time, address, control, and data input
3
3
ns
tAPW
tWR
Final data in of WRT-P operation to ACTV, MRS, SLFR, or REFR command
60
60
ns
Delay time, final data in of WRT operation to DEAC or DCAB command
15
tT
tREF
Transition time (see Note 12)
nCCD
nCDD
Delay time, READ or WRT command to an interrupting command
1
Delay time, CS low or high to input enabled or inhibited
0
0
0
0
cycle
nCLE
nCWL
Delay time, CKE high or low to CK enabled or disabled
1
1
1
1
cycle
Delay time, final data in of WRT operation to READ, READ-P, WRT, WRT-P
1
nDID
nDOD
Delay time, ENBL or MASK command to enabled or masked data in
0
0
0
0
cycle
Delay time, ENBL or MASK command to enabled or masked data out
2
2
2
2
cycle
Access time, CK high to data out, CAS latency = 3 (see Note 8)
9
3
Delay time, CK high to DQ in high-impedance state (see Note 10)
10
ns
9
ns
3
10
100 000
72
ns
10
ns
100 000
ns
tRP – (CL –1) ∗ tCK
Final data out of READ-P operation to ACTV, MRS, SLFR, or REFR command
1
Refresh interval
ns
20
5
1
64
ns
5
64
1
ns
ms
cycle
1
cycle
nHZP2
Delay time, DEAC or DCAB command to DQ in high-impedance state,
CAS latency = 2
2
2
cycle
nHZP3
Delay time, DEAC or DCAB command to DQ in high-impedance state,
CAS latency = 3
3
3
cycle
nWCD Delay time, WRT command to first data in
0
0
0
0
cycle
† All references are made to the rising transition of CK unless otherwise noted.
‡ -12A speed device is supported only at – 5% to +10% VDD
NOTES: 8. tAC is referenced from the rising transition of CK that is previous to the data-out cycle. For example, the first data out tAC is referenced
from the rising transition of CK that is CAS latency – one cycle after the READ command. Access time is measured at output
reference level 1.4 V.
9. tLZ is measured from the rising transition of CK that is CAS latency – one cycle after the READ command.
10. tHZ MAX defines the time at which the outputs are no longer driven and is not referenced to output voltage levels.
11. For read or write operations with automatic deactivate, tRCD must be set to satisfy minimum tRAS.
12. Transition time, tT, is measured between VIH and VIL.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
9
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
serial presence detect
The serial presence detect (SPD) is contained in a 2K-bit serial EEPROM located on the module. The SPD
nonvolatile EEPROM contains various data such as module configuration, SDRAM organization, and timing
parameters (see tables below). Only the first 128 bytes are programmed by Texas Instruments, while the
remaining 128 bytes are available for customer use. Programming is done through a IIC bus using the clock
(SCL) and data (SDA) signals. All Texas Instruments modules comply with the current JEDEC SPD Standard.
See the Texas Instruments Serial Presence Detect Technical Reference (literature number SMMU001) for
further details.
Tables in this section list the SPD contents as follows:
Table 1 – TM2SN64EPU
Table 2 – TM4SN64EPU
Table 1. Serial Presence-Detect Data for the TM2SN64EPU
BYTE
NO.
10
DESCRIPTION OF FUNCTION
TM2SN64EPU-12A
TM2SN64EPU-12
ITEM
DATA
ITEM
DATA
0
Defines number of bytes written into serial memory
during module manufacturing
128 bytes
80h
128 bytes
80h
1
Total number of bytes of SPD memory device
256 bytes
08h
256 bytes
08h
2
Fundamental memory type (FPM, EDO, SDRAM, . . .)
SDRAM
04h
SDRAM
04h
3
Number of row addresses on this assembly
11
0Bh
11
0Bh
4
Number of column addresses on this assembly
9
09h
9
09h
5
Number of module banks on this assembly
1 bank
01h
1 bank
01h
6
Data width of this assembly
64 bits
40h
64 bits
40h
7
Data width continuation
8
Voltage interface standard of this assembly
00h
00h
LVTTL
01h
LVTTL
01h
9
SDRAM cycle time at maximum supported CAS latency
(CL), CL = X
tCK = 12 ns
C0h
tCK = 12 ns
C0h
10
SDRAM access from clock at CL = X
tAC = 9 ns
90h
tAC = 9 ns
90h
11
DIMM configuration type (non-parity, parity, error
correcting code [ECC])
Non-Parity
00h
Non-Parity
00h
12
Refresh rate / type
15.6 µs/
self-refresh
80h
15.6 µs/
self-refresh
80h
13
SDRAM width, primary DRAM
14
Error-checking SDRAM data width
15
Minimum clock delay, back-to-back random column
addresses
16
17
18
CAS latencies supported
19
20
21
SDRAM module attributes
x8
08h
x8
08h
N/A
00h
N/A
00h
1 CK cycle
01h
1 CK cycle
01h
Burst lengths supported
1, 2, 4, 8
0Fh
1, 2, 4, 8
0Fh
Number of banks on each SDRAM device
2 banks
02h
2 banks
02h
2, 3
06h
2, 3
06h
CS latency
0
01h
0
01h
Write latency
0
01h
0
01h
Non-buffered/
Non-registered
00h
Non-buffered/
Non-registered
00h
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
serial presence detect (continued)
Table 1. Serial Presence-Detect Data for the TM2SN64EPU (Continued)
BYTE
NO.
DESCRIPTION OF FUNCTION
SDRAM device attributes: general
23
Minimum clock cycle time at CL = X – 1
24
Maximum data-access time from clock at CL = X – 1
25
26
27
Minimum row precharge time
28
Minimum row-active to row-active delay
29
Minimum RAS-to-CAS delay
30
Minimum RAS pulse width
31
Density of each bank on module
DATA
1Eh
VDD tolerance =
(+10%),
Burst read / write,
precharge all,
auto precharge
0Eh
F0h
90h
tCK = 18 ns
tAC = 10 ns
A0h
Minimum clock cycle time at CL = X – 2
N/A
00h
N/A
00h
Maximum data-access time from clock at CL = X – 2
N/A
00h
N/A
00h
tRP = 30 ns
tRRD = 24 ns
1Eh
tRP = 36 ns
tRRD = 24 ns
24h
tRCD = 30 ns
tRAS = 60 ns
1Eh
1Eh
3Ch
tRCD = 30 ns
tRAS = 72 ns
16M Bytes
04h
16M Bytes
04h
Rev. 1
01h
Rev. 1
01h
7
07h
89
59h
97h
9700...00h
97h
9700...00h
18h
SPD revision
Checksum for byte 0 – 62
Manufacturer’s JEDEC ID code per JEP – 106E
Manufacturing location†
TBD
TBD
Manufacturer’s part number†
Die revision code†
TBD
TBD
TBD
TBD
TBD
TBD
93–94
PCB revision code†
Manufacturing date†
TBD
TBD
95–98
Assembly serial number†
TBD
TBD
99–125
Manufacturer specific data†
Vendor specific data†
TBD
TBD
TBD
TBD
System integrator’s specific data‡
Open
TBD
TBD
73–90
91
92
126–127
128–166
167–255
30h
18h
48h
Superset features (may be used in the future)
63
72
ITEM
tCK = 15 ns
tAC = 9 ns
62
64 – 71
TM2SN64EPU-12
DATA
VDD tolerance =
(+10%) / (– 5%).
Burst read / write,
precharge all,
auto precharge
22
32 – 61
TM2SN64EPU-12A
ITEM
† TBD indicates values are determined at manufacturing time and are module dependent.
‡ These TBD values are determined and programmed by the customer (optional).
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
11
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
serial presence detect (continued)
Table 2. Serial Presence-Detect Data for the TM4SN64EPU
BYTE
NO.
TM4SN64EPU-12
ITEM
DATA
ITEM
DATA
0
Defines number of bytes written into serial memory during
module manufacturing
128 bytes
80h
128 bytes
80h
1
Total number of bytes of SPD memory device
256 bytes
08h
256 bytes
08h
2
Fundamental memory type (FPM, EDO, SDRAM, . . .)
SDRAM
04h
SDRAM
04h
3
Number of row addresses on this assembly
11
0Bh
11
0Bh
4
Number of column addresses on this assembly
9
09h
9
09h
5
Number of module banks on this assembly
2 banks
02h
2 banks
02h
6
Data width of this assembly
64 bits
40h
64 bits
40h
7
Data width continuation
8
Voltage interface standard of this assembly
LVTTL
01h
LVTTL
01h
9
SDRAM cycle time at maximum supported CAS latency
(CL), CL = X
tCK = 12 ns
C0h
tCK = 12 ns
C0h
10
SDRAM access from clock at CL = X
tAC = 9 ns
90h
tAC = 9 ns
90h
11
DIMM configuration type (non-parity, parity, error correcting
code [ECC])
Non-Parity
00h
Non-Parity
00h
12
Refresh rate / type
15.6 µs/
self-refresh
80h
15.6 µs/
self-refresh
80h
13
SDRAM width, primary DRAM
x8
08h
x8
08h
14
Error-checking SDRAM data width
N/A
00h
N/A
00h
15
Minimum clock delay, back-to-back random column
addresses
1 CK cycle
01h
1 CK cycle
01h
16
Burst lengths supported
1, 2, 4, 8
0Fh
1, 2, 4, 8
0Fh
17
Number of banks on each SDRAM device
2 banks
02h
2 banks
02h
18
CAS latencies supported
2, 3
06h
2, 3
06h
19
CS latency
0
01h
0
01h
20
Write latency
0
01h
0
01h
00h
Non-buffered/
Non-registered
00h
1Eh
VDD tolerance =
(+10%),
Burst read / write,
precharge all,
auto precharge
0Eh
21
12
TM4SN64EPU-12A
DESCRIPTION OF FUNCTION
00h
Non-buffered/
Non-registered
SDRAM module attributes
VDD tolerance =
(+10%) / (– 5%).
Burst read / write,
precharge all,
auto precharge
22
SDRAM device attributes: general
23
Minimum clock cycle time at CL = X – 1
24
Maximum data-access time from clock at CL = X – 1
25
26
00h
tCK = 15 ns
tAC = 9 ns
F0h
90h
tCK = 18 ns
tAC = 10 ns
A0h
Minimum clock cycle time at CL = X – 2
N/A
00h
N/A
00h
Maximum data-access time from clock at CL = X – 2
N/A
00h
N/A
00h
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
30h
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
serial presence detect (continued)
Table 2. Serial Presence-Detect Data for the TM4SN64EPU (Continued)
BYTE
NO.
DESCRIPTION OF FUNCTION
27
Minimum row precharge time
28
Minimum row-active to row-active delay
29
Minimum RAS-to-CAS delay
30
Minimum RAS pulse width
31
Density of each bank on module
32–61
SPD revision
63
Checksum for byte 0 – 62
72
TM4SN64EPU-12
DATA
ITEM
DATA
tRP = 30 ns
tRRD = 24 ns
1Eh
tRP = 36 ns
tRRD = 24 ns
24h
tRCD = 30 ns
tRAS = 60 ns
1Eh
1Eh
3Ch
tRCD = 30 ns
tRAS = 72 ns
16M Bytes
04h
16M Bytes
04h
Rev. 1
01h
Rev. 1
01h
8
08h
90
5Ah
97h
9700...00h
97h
9700...00h
18h
Manufacturer’s JEDEC ID code per JEP – 106E
Manufacturing location†
TBD
TBD
Manufacturer’s part number†
Die revision code†
TBD
TBD
TBD
TBD
TBD
TBD
93–94
PCB revision code†
Manufacturing date†
TBD
TBD
95–98
Assembly serial number†
TBD
TBD
99–125
TBD
TBD
126–127
Manufacturer specific data†
Vendor specific data†
TBD
TBD
128–166
System integrator’s specific data‡
TBD
TBD
167–255
Open
73–90
91
92
18h
48h
Superset features (may be used in the future)
62
64 – 71
TM4SN64EPU-12A
ITEM
† TBD indicates values are determined at manufacturing time and are module dependent.
‡ These TBD values are determined and programmed by the customer (optional).
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
13
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
device symbolization (TM2SN64EPU)
TM2SN64EPU
-SS
Unbuffered Key Position
3.3-V Voltage Key Position
YY
MM
T
-SS
=
=
=
=
Year Code
Month Code
Assembly Site Code
Speed Code
NOTE A: Location of symbolization may vary.
14
YYMMT
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
TM2SN64EPU 2097152 BY 64-BIT
TM4SN64EPU 4194304 BY 64-BIT
SYNCHRONOUS DYNAMIC RAM MODULES
SMMS681 – AUGUST 1997
MECHANICAL DATA
BS (R-PDIM-N168)
DUAL IN-LINE MEMORY MODULE
5.255 (133,48)
5.245 (133,22)
Notch 0.157 (4,00) x 0.122 (3,10) Deep
2 Places
0.039 (1,00) TYP
0.125 (3,18)
(Note D)
0.054 (1,37)
0.046 (1,17)
Notch 0.079 (2,00) x 0.122 (3,10) Deep
2 Places
0.050 (1,27)
0.014 (0,35) MAX
0.118 (3,00) TYP
0.125 (3,18)
0.700 (17,78) TYP
0.118 (3,00) DIA
2 Places
1.130 (28,70)
1.120 (28,45)
0.106 (2,70) MAX
0.157 (4,00) MAX
(For Double Sided DIMM Only)
4088181/A 06/97
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Falls within JEDEC MO-161
Dimension includes De–panelization variations; applies between notch and tab edge.
Outline may vary above notches to allow router/panelization irregularities.
POST OFFICE BOX 1443
• HOUSTON, TEXAS 77251–1443
15
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated