ICHAUS IC-NQTSSOP20ET

iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 1/25
FEATURES
APPLICATIONS
♦ Resolution of up to 8192 angle steps per sine/cosine period
♦ Binary and decimal resolution settings, e.g. 500, 512, 1000,
1024; programmable angle hysteresis
♦ Conversion time of just 250 ns including amplifier settling
♦ Count-safe vector follower principle, realtime system with
70 MHz sampling rate
♦ Direct sensor connection; selectable input gain
♦ Front-end signal conditioning features offset (8 bit), amplitude
ratio (5 bit) and phase (6 bit) calibration
♦ 250 kHz input frequency
♦ Parameterization and absolute angle output via bidirectional
high-speed synchronous-serial BiSS Interface (B protocol)
♦ A QUAD B incremental outputs with selectable minimum
transition distance (e.g. 0.25 µs for 1 MHz at A)
♦ Index signal processing adjustable in position and width
♦ Fault monitoring: frequency, amplitude, configuration (CRC)
♦ Multiturn counting to 8 bit or 24 bit
♦ Fully re-programmable by BiSS interface with access to serial
EEPROM to store setup
♦ ESD protection and TTL-/CMOS-compatible outputs
♦ Interpolator IC for position data
acquisition from analog
sine/cosine sensors
♦ Optical linear/rotary encoders
♦ MR sensor systems
PACKAGES
TSSOP20
BLOCK DIAGRAM
Copyright © 2002, 2009 iC-Haus
http://www.ichaus.com
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 2/25
DESCRIPTION
iC-NQ is a monolithic A/D converter which, by applying a count-safe vector follower principle, converts
sine/cosine sensor signals with a selectable resolution and hysteresis into angle position data. This absolute value is output via a high-speed synchronousserial BiSS interface and trails a master clock rate of
up to 10 Mbit/s, or, alternatively, can be set so that it is
compatible with SSI. A period counter supplements
the position data with a multiturn count and can be
configured for BiSS single-cycle data output.
At the same time any changes in output data are
converted into incremental A QUAD B encoder signals. Here, the minimum transition distance can be
adapted to suit the system on hand (cable length, external counter). A synchronised zero index is generated and output to Z if enabled by the PZERO and
NZERO inputs.
The front-end amplifiers are configured as instrumentation amplifiers, permitting sensor bridges to be di-
rectly connected without the need for external resistors. Various programmable D/A converters are available for the conditioning of sine/cosine sensor signals with regard to offset, amplitude ratio and phase
errors. Front-end gain can be set in stages graded
to suit all common differential sensor signals from
approximately 20 mVpp to 1.5 Vpp, and also singleended sensor signals from 40 mVpp to 3 Vpp respectively.
Two serial interfaces have been included to permit configuration of the device, connection of an
EEPROM or synchronous-serial data transfer (BiSS).
Both interfaces are bidirectional and enable the complete configuration of the device including the transfer
of setup and system data to the EEPROM for permanent storage. If the memory is detected following a
power-down reset, the chip setup is read in and automatically repeated if a CRC error occurs.
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 3/25
CONTENTS
PACKAGES
4
INCREMENTAL SIGNALS
15
ABSOLUTE MAXIMUM RATINGS
5
SIGNAL MONITORING and ERROR
MESSAGES
17
TEST FUNCTIONS
18
THERMAL DATA
5
ELECTRICAL CHARACTERISTICS
6
CHARACTERISTICS: Diagrams . . . . . . .
OPERATING REQUIREMENTS: BiSS and SSI
Interface
8
8
PARAMETER and REGISTER
10
SIGNAL CONDITIONING
11
CONVERTER FUNCTIONS
12
MAXIMUM POSSIBLE CONVERTER
FREQUENCY
13
Serial data output
. . . . . . . . . . . . . . .
13
Incremental output to A, B and Z . . . . . . .
14
BiSS INTERFACE
Protocol and Data Format . . . . .
Sensor Data Communication . . .
Register Data Communication . .
Sensor Data Output in SSI Format
Examples of SSI formats . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
19
19
20
20
21
21
EEPROM INTERFACE
21
APPLICATION HINTS
Principle Input Circuits . . . . . . . . . . . . .
Basic circuit . . . . . . . . . . . . . . . . . . .
22
22
23
EVALUATION BOARD
23
DESIGN REVIEW: Notes On Chip Functions
24
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 4/25
PACKAGES TSSOP20 (according to JEDEC Standard)
PIN CONFIGURATION
TSSOP20 4.4 mm, lead pitch 0.65 mm
PIN FUNCTIONS
No. Name Function
1
2
3
4
5
6
PCOS
NCOS
VDDA
GNDA
VREF
A
Input Cosine +
Input Cosine +5 V Supply Voltage (analog)
Ground (analog)
Reference Voltage Output
Incremental Output A
Analog signal COS+ (TMA mode)
PWM signal for Offset Sine (Calib.)
7 B
Incremental Output B
Analog signal COS- (TMA mode)
PWM signal for Offset Cosine (Calib.)
8 Z
Output Index Z
PWM signal for Phase/Ratio (Calib.)
9 GND
Ground
10 VDD
+5 V Supply Voltage (digital)
11 SLI
BiSS interface, data input
12 MA
BiSS interface, clock line
13 SLO
BiSS interface, data output
14 SDA
EEPROM interface, data line
Analog signal SIN+ (TMA mode)
15 SCL
EEPROM interface, clock line
Analog signal SIN- (TMA mode)
16 NERR Error Input/Output, active low
17 PZERO Input Zero Signal +
18 NZERO Input Zero Signal 19 PSIN
Input Sine +
20 NSIN
Input Sine External connections linking VDDA to VDD and GND to GNDA are required.
*) If only a single iC-NQ device and no BiSS chain circuitry is used, pin SLI can remain unwired or can be linked
to ground (GND).
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 5/25
ABSOLUTE MAXIMUM RATINGS
These ratings do not imply operating conditions; functional operation is not guaranteed. Beyond these ratings device damage may occur.
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Max.
G001 VDDA
Analog Supply Voltage
-0.3
6
V
G002 VDD
G003 Vpin()
Digital Supply Voltage
-0.3
6
V
-0.3
6
V
Voltage at
PSIN, NSIN, PCOS, NCOS, PZERO,
NZERO, VREF, NERR, SCL,
SDA, MA, SLI, SLO, A, B, Z
G004 Imx(VDDA) Current in VDDA
V() < VDDA + 0.3 V
V() < VDD + 0.3 V
-50
50
mA
G005 Imx(GNDA) Current in GNDA
-50
50
mA
G006 Imx(VDD)
Current in VDD
-50
50
mA
G007 Imx(GND) Current in GND
-50
50
mA
G008 Imx()
Current in
PSIN, NSIN, PCOS, NCOS, PZERO,
NZERO, VREF, NERR, SCL, SDA,
MA, SLI, SLO, A, B, Z
-10
10
mA
G009 Ilu()
Pulse Current in all pins
(Latch-up Strength)
according to Jedec Standard No. 78;
Ta = 25 °C, pulse duration 10 ms,
VDDA = VDDAmax , VDD = VDDmax ,
Vlu() = (-0.5...+1.5) x Vpin()max
-100
100
mA
G010 Vd()
ESD Susceptibility at all pins
HBM 100 pF discharged through 1.5 kΩ
2
kV
G011 Tj
Junction Temperature
-40
150
°C
G012 Ts
Storage Temperature Range
-40
150
°C
THERMAL DATA
Operating Conditions: VDDA = VDD = 5 V ±10 %
Item
No.
T01
Symbol
Parameter
Conditions
Unit
Min.
Ta
Operating Ambient Temperature Range
TSSOP20 ET -40/125
All voltages are referenced to ground unless otherwise stated.
All currents into the device pins are positive; all currents out of the device pins are negative.
-25
-40
Typ.
Max.
85
125
°C
°C
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 6/25
ELECTRICAL CHARACTERISTICS
Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Typ.
Max.
Total Device
001
VDDA,
VDD
Permissible Supply Voltage
4.5
5.5
V
002
I(VDDA)
Supply Current in VDDA
003
I(VDD)
Supply Current in VDD
fin() = 200 kHz; A, B, Z open
15
mA
fin() = 200 kHz; A, B, Z open
20
004
Von
Turn-on Threshold VDDA, VDD
3.2
mA
005
006
Vhys
Turn-on Threshold Hysteresis
200
Vc()hi
Clamp Voltage hi at
PSIN, NSIN, PCOS, NCOS,
PZERO, NZERO, VREF
007
Vc()lo
008
Vc()hi
V
mV
0.3
1.6
V
Clamp Voltage lo at
I() = -1 mA, other pins open
PSIN, NSIN, PCOS, NCOS,
PZERO, NZERO, VREF, NERR,
SCL, SDA, MA, SLI, SLO, A, B, Z
-1.6
-0.3
V
Clamp Voltage hi at
NERR, SCL, SDA, MA,
SLI, SLO, A, B, Z
0.3
1.6
V
-10
-15
10
15
mV
mV
Input Amplifiers PSIN, NSIN, PCOS, NCOS
101 Vos()
Input Offset Voltage
Vc()hi = V() - VDDA;
I() = 1 mA, other pins open
4.4
Vc()hi = V() - VDD;
I() = 1 mA, other pins open
Vin() and G() in accordance with table Gain
Select;
G ≥ 20
G < 20
102
TCos
Input Offset Voltage
Temperature Drift
see 101
±10
µV/K
103
Iin()
Input Current
V() = 0 V ... VDDA
-50
50
nA
104
GA
Gain Accuracy
G() in accordance with table Gain Select
95
102
%
105
106
GArel
Gain SIN/COS Ratio Accuracy
G() in accordance with table Gain Select
97
103
fhc
Cut-off Frequency
G = 80
G = 2.667
230
650
kHz
kHz
107
SR
Slew Rate
G = 80
G = 2.667
4
9
V/µs
V/µs
%
Sin/D Conversion: Accuracy
201
AAabs
Absolute Angle Accuracy without referred to 360° input signal, G = 2.667,
calibration
Vin = 1.5 Vpp, HYS = 0
-1.0
1.0
DEG
202
AAabs
Absolute Angle Accuracy after
calibration
referred to 360° input signal, HYS = 0, internal
signal amplitude of 2 ... 4 Vpp
-0.5
+0.5
DEG
203
AArel
Relative Angle Accuracy
referred to output signal period of A/B,
G = 2.667, Vin = 1.5 Vpp, SELRES = 1024,
FCTR = 0x0004 ... 0x00FF, fin < finmax
(see table 14)
-10
10
%
Reference Voltage
I(VREF) = -1 mA ... +1 mA
48
52
%
VDDA
Oscillator Frequency
presented at SCL with subdivision
of 2048;
VDDA = VDD = 5 V ±10 %
VDDA = VDD = 5 V
52
60
90
83
MHz
MHz
±0.35
Reference Voltage VREF
801
VREF
Oscillator
A01 fosc()
A02
TCosc
Oscillator Frequency Temperature Drift
A03
VCosc
Oscillator Frequency Power Supply Dependance
VDDA = VDD = 5 V
72
-0.1
%/K
+10.6
%/V
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 7/25
ELECTRICAL CHARACTERISTICS
Operating Conditions: VDDA = VDD = 5 V ±10 %, Tj = -40 ... 125 °C, unless otherwise stated
Item
No.
Symbol
Parameter
Conditions
Unit
Min.
Typ.
Max.
Zero Comparator
B01
Vos()
Input Offset Voltage
V() = Vcm()
-20
20
mV
B02
Iin()
Input Current
V() = 0 V ... VDDA
-50
50
nA
B03
Vcm()
Common-Mode Input Voltage
Range
1.4
VDDA1.5
V
B04
Vdm()
Differential Input Voltage Range
0
VDDA
V
V
Incremental Outputs A, B, Z and BiSS Interface Output SLO
D01 Vs()hi
Saturation Voltage hi
Vs()hi = VDD - V(); I() = -4 mA
0.4
D02 Vs()lo
Saturation Voltage lo
I() = 4 mA
0.4
V
D03 tr()
Rise Time
CL() = 50 pF
60
ns
D04 tf()
Fall Time
CL() = 50 pF
D05 RL()
Permissible Load at A, B
TMA = 1 (calibration mode)
60
1
ns
MΩ
BiSS Interface: Inputs MA, SLI
E01
Vt()hi
Threshold Voltage hi
E02
Vt()lo
Threshold Voltage lo
E03
Vt()hys
Hysteresis
E04
Ipu(MA)
E05
E06
Ipd(SLI)
E07
2
V
0.8
V
Vt()hys = Vt()hi - Vt()lo
300
mV
Pull-up Current in MA
V() = 0 ... VDD - 1 V
-240
-120
-25
Pull-down Current in SLI
V() = 1 ... VDD
20
120
300
µA
fclk(MA)
Permissible Clock Frequency at
MA
SSI protocol
BiSS B protocol: sensor mode
BiSS B protocol: register mode
4
10
0.25
MHz
MHz
MHz
tp(MASLO)
Propagation Delay: MA edge vs. all modes, RL(SLO) ≥ 1 kΩ
SLO output
10
50
ns
0
E08
tbusy()s
Processing Time Sensor Mode
delay of start bit
E09
tbusy()r
Processing Time Register Mode
delay of start bit with read access to EEPROM
E10
tidle()
Interface Blocking Time
powering up with no EEPROM
µA
0
0
2
ms
1
1.5
ms
2
V
EEPROM Interface, Control Logic: Inputs SDA, NERR
F01
Vt()hi
Threshold Voltage hi
F02
Vt()lo
Threshold Voltage lo
F03
Vt()hys
Hysteresis
F04
tbusy()cfg
Duration of Startup Configuration error free EEPROM access
Vt()hys = Vt()hi - Vt()lo
0.8
V
300
mV
5
7
ms
EEPROM Interface, Control Logic: Outputs SDA, SCL, NERR
G01 f()
Write/Read Clock at SCL
G02 Vs()lo
Saturation Voltage lo
I() = 4 mA
20
G03 Ipu()
Pull-up Current
V() = 0 ... VDD - 1 V
G04 ft()
Fall Time
CL() = 50 pF
G05 tmin()lo
Error Signal Indication Time at
NERR (lo signal)
MA = hi, no BiSS access, amplitude or frequeny
error
G06 Tpwm()
Error Signal PWM Cycle Duration fosc() subdivided 222
at NERR
G07 RL()
Permissible Load at SDA, SCL
TMA = 1 (calibration mode)
-600
-300
100
kHz
0.45
V
-75
µA
60
10
60.7
1
ns
ms
ms
MΩ
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 8/25
CHARACTERISTICS: Diagrams
0%
60%
40%
0%
twhi()/T
110%
90%
50%
100%
AArel ±10%
AArel ±10%
Figure 1: Definition of relative angle error.
$ tMTD
Figure 2: Definition of minimum transition distance.
0.15°
0.1°
0.05°
0
-0.05°
-0.1°
-0.15°
0°
90°
180°
270°
Figure 3: Typical residual absolute angle error after calibration.
360°
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 9/25
OPERATING REQUIREMENTS: BiSS and SSI Interface
Operating Conditions: VDD = 5 V ±10 %, Ta = -25 ... 85 °C; input levels lo = 0 ... 0.45 V, hi = 2.4 V ... VDD
Item
No.
Symbol
Parameter
Conditions
Fig.
Unit
Min.
Max.
SSI Output (SELSSI = 1)
I001 TMAS
Permissible Clock Period
4
250
2x ttos
ns
I002 tMASh
Clock Signal Hi Level Duration
CFGTOS = 0x01
4
25
ttos
ns
I003 tMASl
Clock Signal Lo Level Duration
4
25
ttos
ns
5
100
BiSS Sensor Mode
I004 TMAS
Permissible Clock Period
CFGTOR selected in accordance with
table on page 15
ns
I005 tMASh
Clock Signal Hi Level Duration
5
25
I006 tMASl
Clock Signal Lo Level Duration
5
25
ns
6
4
µs
0
ttos
ns
BiSS Register Mode
I007 TMAR
Permissible Clock Period
CFGTOR selected in accordance with
table on page 15
I008 tidle
I009 tMARh
Permissible Clock Halt (idle)
6
Clock Signal Hi Level Duration
6
I010 tMARh
Clock Signal Hi Level Duration
I011 tMARl
Clock Signal Lo Level Duration
6
I012 tMA0h
"Logic 0" Hi Level Duration
6
10
I013 tMA1h
"Logic 1" Hi Level Duration
6
70
read out of register data
Figure 4: Timing diagram of SSI output.
Figure 5: Timing diagram of BiSS sensor mode.
Figure 6: Timing diagram of BiSS register mode.
6
30
indefinite
ttor
ns
70
%
TMAR
ttor
ns
30
%
TMAR
90
%
TMAR
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 10/25
PARAMETER and REGISTER
Signal Monitoring
and Error Messages . . . . . . . . . . . . . . . . . . . . . . . Page 17
SELAMPL: Amplitude Monitoring, function
AMPL:
Amplitude Monitoring, thresholds
AERR:
Amplitude Error
FERR:
Frequency Error
Register Description . . . . . . . . . . . . . . . . . . . . . . . Page 10
Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . Page 11
GAIN:
Gain Select
SINOFFS:
Offset Calibration Sine
COSOFFS: Offset Calibration Cosine
REFOFFS: Offset Calibration Reference
RATIO:
Amplitude Calibration
PHASE:
Phase Calibration
Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 18
TMODE:
Test Mode
TMA:
Analog Test Mode
Converter Function . . . . . . . . . . . . . . . . . . . . . . . . Page 12
SELRES:
Resolution
HYS:
Hysteresis
FCTR:
Max. Permissible Converter Frequency
BiSS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page 19
CFGTOS:
Interface Timeout
CFGTOR:
Interface Timeout
M2S:
Period Counter Output
BiSSMOD: Protocol Version
Incremental Signals . . . . . . . . . . . . . . . . . . . . . . . Page 15
CFGABZ:
Output A, B, Z
ROT:
Direction of Rotation
CBZ:
Period Counter Configuration
ENRESDEL: Output Turn-On Delay
ZPOS:
Zero Signal Position
CFGZ:
Zero Signal Length
CFGAB:
Zero Signal Logic
SELSSI:
CFGSSI:
RPL:
SSI Compatibility
SSI Output
Register Access Safety Level
OVERVIEW
Adr
Bit 7
0x00
BiSSMOD
0x01
0x02
0x03
Bit 6
Bit 5
Bit 4
Bit 2
HYS(2:0)
ENRESDEL
SELSSI
Bit 1
Bit 0
SELRES(4:0)
ZPOS(4:0)
ROT
CFGSSI(1:0)
CBZ
CFGABZ(1:0)
CFGAB(1:0)
0x04
CFGZ(1:0)
RPL(1:0)
AERR
FERR
FCTR(7:0)
0x05
0x06
Bit 3
M2S(1:0)
FCTR(14:8)
CFGTOR(1:0)
CFGTOS(1:0)
0x07*
TMODE(2:0)
TMA
Reserved address / internal use
0x08
GAIN(3:0)
RATIO(3:0)
0x09
SINOFFS(7:0)
0x0A
COSOFFS(7:0)
0x0B
PHASE(5:0)
0x0C
REFOFFS
SELAMPL
0x0D
0x0E
0x0F
CRC(7:0) check sum over address 0-14 with CRC polynomial: "100100111" (read out of EEPROM)
EEPROM
0x10 0x1F
0x00 - 0xF
Reserved EEPROM register section storing iC-NQ device setup
0x20 0x77
0x10 - 0x67
Free EEPROM registers
0x78 0x7F
0x68 - 0x6F
EEPROM: BiSS Identifier, ROM: Device ID iC-NQ X3: 4E 51 58 33 {ADR0} 00 69 43**
As no access protections are selected all registers are accessible by read and write operations (see RPL).
*) Programming to value 0x00 is recommended. **) iC-NQ V2: 4E 51 56 32 {Adr 0x00} 00 69 43
Table 5: Register layout
RATIO(4)
AMPL(1:0)
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 11/25
SIGNAL CONDITIONING
Input stages SIN and COS are configured as instrumentation amplifiers. The amplifier gain must be selected in accordance with the sensor signal level and
GAIN
programmed to register GAIN according to the following table. Half of the supply voltage is output to VREF
as center voltage to help DC level adaptation.
Adr 0x08, Bit 7:4
Code
0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x00
Amplification
80.000
66.667
53.333
40.000
33.333
28.571
26.667
20.000
14.287
10.000
8.000
6.667
5.333
4.000
3.333
2.667
Differential
up to 50 mVpp
up to 60 mVpp
up to 75 mVpp
up to 0.1 Vpp
up to 0.12 Vpp
up to 0.14 Vpp
up to 0.15 Vpp
up to 0.2 Vpp
up to 0.28 Vpp
up to 0.4 Vpp
up to 0.5 Vpp
up to 0.6 Vpp
up to 0.75 Vpp
up to 1 Vpp
up to 1.2 Vpp
up to 1.5 Vpp
Sine/Cosine Input Signal Levels Vin()
Amplitude
Average value (DC)
Single-ended
Differential
Single-ended
up to 100 mVpp
0.7 V ... VDDA - 1.2 V
0.8 V ... VDDA - 1.2 V
up to 120 mVpp
0.7 V ... VDDA - 1.2 V
0.8 V ... VDDA - 1.2 V
up to 0.15 Vpp
0.7 V ... VDDA - 1.2 V
0.8 V ... VDDA - 1.2 V
up to 0.2 Vpp
1.2 V ... VDDA - 1.2 V
1.3 V ... VDDA - 1.3 V
up to 0.24 Vpp
1.2 V ... VDDA - 1.2 V
1.3 V ... VDDA - 1.3 V
up to 0.28 Vpp
0.7 V ... VDDA - 1.2 V
0.8 V ... VDDA - 1.3 V
up to 0.3 Vpp
1.2 V ... VDDA - 1.2 V
1.3 V ... VDDA - 1.3 V
up to 0.4 Vpp
0.7 V ... VDDA - 1.2 V
0.8 V ... VDDA - 1.3 V
up to 0.56 Vpp
1.2 V ... VDDA - 1.3 V
1.4 V ... VDDA - 1.4 V
up to 0.8 Vpp
1.2 V ... VDDA - 1.3 V
1.4 V ... VDDA - 1.5 V
up to 1 Vpp
0.8 V ... VDDA - 1.4 V
1.0 V ... VDDA - 1.6 V
up to 1.2 Vpp
0.8 V ... VDDA - 1.4 V
1.1 V ... VDDA - 1.7 V
up to 1.5 Vpp
0.9 V ... VDDA - 1.5 V
1.3 V ... VDDA - 1.9 V
up to 2 Vpp
1.2 V ... VDDA - 1.6 V
1.7 V ... VDDA - 2.1 V
up to 2.4 Vpp
1.2 V ... VDDA - 1.7 V
1.8 V ... VDDA - 2.3 V
up to 3 Vpp
1.3 V ... VDDA - 1.8 V
2.0 V ... VDDA - 2.6 V
Table 6: Gain Select
SINOFFS
Adr 0x09, Bit 7:0
RATIO
Adr 0x0B, Bit 0, Adr 0x08, Bit 3:0
COSOFFS
Adr 0x0A, Bit 7:0
Code
COS / SIN
Code
COS / SIN
Code
Output Offset
Input Offset
0x00
0V
0V
0x00
0x01
1.0000
1.0067
0x10
0x11
1.0000
0.9933
0x01
-7.8125 mV
-7.8125* mV / GAIN
...
...
...
...
...
...
...
0x0F
1.1
0x1F
0.9000
0x7F
0x80
-0.9922 V
0V
-0.9922 V / GAIN
0V
0x81
+7,8125 mV
+7.8125 mV / GAIN
...
0xFF
...
+0.9922 V
...
+0.9922 V / GAIN
Notes
*) With REFOFFS = 0x00 und VDDA = 5 V.
Table 7: Offset Calibration Sine/Cosine
Table 9: Amplitude Calibration
PHASE
Adr 0x0B, Bit 7:2
Code
Phase Shift
Code
Phase Shift
0x00
0x01
90°
90.703125°
0x20
0x21
90°
89.296875°
...
...
...
...
102.65625°
102.65625°
0x32
...
77.34375°
77.34375°
102.65625°
0x3F
77.34375°
REFOFFS
Adr 0x0B, Bit 1
0x12
...
Code
Reference Voltage
0x1F
0x00
Depending on VDDA
(example of application: MR sensors)
Not depending on VDDA
(example of application: Sin/Cos encoders)
0x01
Table 8: Offset Calibration Reference
Table 10: Phase Calibration
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 12/25
CONVERTER FUNCTIONS
SELRES
Adr 0x00, Bit 4:0
Code
Decimal
Resolutions
Examples of Permissible
Input Frequencies finmax
(FCTR 0x0004, 0x4304)
-
0x10
2000
650 Hz, 2.6 kHz
-
0x11
1600
812 Hz, 3.3 kHz
0x02
0x03
8192
158 Hz, 635 Hz
0x12
0x13
1000
800
1.3 kHz, 5.2 kHz
1.6 kHz, 6.5 kHz
0x04
4096
317 Hz, 1.27 kHz
0x14
500
2.6 kHz, 10.4 kHz
0x05
0x06
2048
1024
634 Hz, 2.54 kHz
1.27 kHz, 5.1 kHz
0x15
0x16
400
250 *1
3.2 kHz, 13 kHz
5.2 kHz, 20.8 kHz
0x07
512
2.54 kHz, 10.2 kHz
0x17
125 *1,2
5.2 kHz, 20.8 kHz
0x08
0x09
256
128
5.1 kHz, 20.3 kHz
10.2 kHz, 40.6 kHz
0x18
0x19
320
160 *2
4.1 kHz, 16.3 kHz
4.1 kHz, 16.3 kHz
0x0A
64
20.3 kHz, 81.3 kHz
0x1A
80 *4
4.1 kHz, 16.3 kHz
0x0B
0x0C
32
16
40.6 kHz, 162.5 kHz
81.3 kHz (max. 250 kHz @ 0x4202)
0x1B
0x1C
40 *8
200
4.1 kHz, 16.3 kHz
6.5 kHz, 26 kHz
0x0D
8
162 kHz (max. 250 kHz @ 0x4102)
0x1D
100 *2
6.5 kHz, 26 kHz
0x0E
0x0F
-
0x1E
0x1F
50 *1,4
25 *1,8
6.5 kHz, 26 kHz
6.5 kHz, 26 kHz
Notes
*1
SELRES
Adr 0x00, Bit 4:0
Code
Binary
Resolutions
0x00
0x01
Examples of Permissible
Input Frequencies finmax
(FCTR 0x0004, 0x4304)
Table 11: Binary Resolutions
Not useful with increment A quad B output.
*2,4,8
The internal converter resolution is higher
by factor 2, 4 or 8.
Table 12: Decimal Resolutions
HYS
Adr 0x01, Bit 7:5
Code
Hysteresis in
degree
0x00
0°
0x01
0.0879°
0x02
0.1758°
0x03
Hysteresis in
LSB
Absolute error*
1 LSB @
12 bit
1/2 LSB @
10 bit
0.044°
0.3516°
1 LSB @
10 bit
0.176°
0x04
0.7031°
1/2 LSB @
8 bit
0.352°
0x05
0x06
1.4063°
5.625°
1 LSB @ 8 bit
0.703°
2.813°
0x07
45°
only
recommended
for calibration
22.5°
Notes
*) The absolute error is equivalent to one half the
angle hysteresis
Table 13: Hysteresis
0.088°
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 13/25
MAXIMUM POSSIBLE CONVERTER FREQUENCY
The converter frequency automatically adjusts to the
value necessary for the input frequency and resolution.
This value ranges from zero to a maximum dependent
on the oscillator frequency which can be set using register FCTR.
tion step-down feature can be enabled via the FCTR
register. Should the input frequency exceed the frequency limit of the selected converter resolution, the
LSB is kept stable and not resolved any further; the
interpolation resolution halves.
Serial data output
For BiSS or SSI output the maximum possible converter frequency can be adjusted to suit the maximum input frequency; an automatic converter resolu-
If the next frequency limit is overshot, the LSB and the
LSB+1 are kept stable and so on. When the input frequency again sinks below this frequency limit, the fine
resolution automatically returns.
Max. Possible Converter Frequency For Serial Data Output
Resolution
Protocol
Max. Input Frequency
Restrictions
Requirements
at high input frequencies
FCTR
Min. Res. bin dec BiSS SSI finmax
0x0004
X
X
X
X
f(OSC)min / 40 / Resolution –
0x4102
≥8
X
X
X
X
f(OSC)min / 24 / Resolution Rel. angle error 2x increased
0x4202
≥ 16
X
X
X
X
2 x f(OSC)min / 24 / Res.
Rel. angle error 4x increased
0x4304
≥ 32
X
X
X
X
4 x f(OSC)min / 40 / Res.
Rel. angle error 8x increased
0x4602
≥ 64
X
X
X
4 x f(OSC)min / 24 / Res.
Resolution lowered by factor of 2
0x4A02 ≥ 128
X
X
X
8 x f(OSC)min / 24 / Res.
Res. lowered by factor of 2-4
0x4E02 ≥ 256
X
X
X
16 x f(OSC)min / 24 / Res.
Res. lowered by factor of 2-8
0x5202
≥ 512
X
X
X
32 x f(OSC)min / 24 / Res.
Res. lowered by factor of 2-16
0x5602
≥ 1024
X
X
X
64 x f(OSC)min / 24 / Res.
Res. lowered by factor of 2-32
0x5A02 ≥ 2048
X
X
X
128 x f(OSC)min / 24 / Res. Res. lowered by factor of 2-64
0x5E02 ≥ 4096
X
X
X
256 x f(OSC)min / 24 / Res. Res. lowered by factor of 2-128
0x6202
8192
X
X
X
512 x f(OSC)min / 24 / Res. Res. lowered by factor of 2-256
Notes
*) Calculated with fosc()min taken from Electrical Characteristics item A01.
Table 14: Maximum converter frequency for serial data output.
Examples*
finmax [kHz] at resol.
8192 1024 200
0.16
1.27
6.5
0.26
2.1
10.8
0.53
4.2
21.6
0.64
5.1
26.0
1.1
8.5
2.1
16.9
4.2
33.8
8.5
67.7
16.9
135
33.8
250
67.7
135
-
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 14/25
Incremental output to A, B and Z
There are two criteria which must be considered when
setting the maximum possible converter frequency via
the FCTR register:
nals. A digital zero-delay glitch filter then takes care
of a temporal edge-to-edge separation, guaranteeing
spike-free output signals after an ESD impact to the
sensor, for instance.
1. The maximum input frequency
2. System limitations, e.g. due to slow counters or
cable transmission
A serial data output is simultaneously possible at any
time, using the BiSS or SSI protocol. However, for the
transfer of angle data to the output register the incremental output is halted for one period of the clock signal applied to pin MA.
When facing system limitations it is useful to preselect a minimum transition distance for the output sig1. Max. Possible Converter Frequency Defined By The Maximum Input Frequency
Output Frequency Resolution Maximum Input Frequency
Restrictions
fout @ finmax
Requirem.
at high input frequencies
FCTR
A, B
bin dec finmax
0x0004
325 kHz
X
X
f(OCS)min / 40 / Resolution
None
0x4102
542 kHz
X
X
f(OSC)min / 24 / Resolution
Relative angle error 2x increased
0x4202
1.08 MHz
X
X
2 x f(OSC)min / 24 Res.
Relative angle error 4x increased
0x4304
1.3 MHz
X
X
4 x f(OSC)min / 40 / Res.
Relative angle error 8x increased
Notes
*) Calculated with fosc()min taken from Electrical Characteristics item A01.
Examples*
finmax [kHz] at resol.
8192 1024 200
0.16
1.27
6.5
0.26
2.1
10.8
0.53
4.2
21.6
0.64
5.1
26.0
Table 15: Max. converter frequency for incremental A/B/Z output, defined by the max. input frequency
2. Max. Possible Converter Frequency Defined By The Minimum Transition Distance
Output Frequency Resolution Minimum Transition Distance Restrictions
Example*
fout @ tMTD
Requirem. at A, B
at high input frequencies
tMTD [µsec]
FCTR
A, B
bin dec tMTD
0x00FF 10 kHz
X
X
2048 / f(OSC)max
None
22.8
0x00FE 10.05 kHz
X
X
2040 / f(OSC)max
None
22.7
0x00FD 10.09 kHz
X
X
2032 / f(OSC)max
None
22.6
...
...
...
...
...
...
...
0x0006
366 kHz
X
X
56 / f(OSC)max
None
0.62
0x0005
427 kHz
X
X
48 / f(OSC)max
None
0.53
0x0004
512 kHz
X
X
40 / f(OSC)max
None
0.44
0x4102
854 kHz
X
X
24 / f(OSC)max
Relative angle error 2x increased
0.27
0x4202
1.7 MHz
X
X
12 / f(OSC)max
Relative angle error 4x increased
0.13
0x4304
2.1 MHz
X
X
10 / f(OSC)max
Relative angle error 8x increased
0.11
Notes
*) Calculated with fosc()max taken from El.Char. item A01; the min. transition distance refers to output A vs. output B
without reversing the sense of rotation.
Table 16: Max. converter frequency for incremental A/B/Z output, defined by the min. transition distance
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 15/25
INCREMENTAL SIGNALS
CFGABZ
Adr 0x02, Bit 3:2
Code
Mode
A
B
Z
0x00
Normal
A
B
Z
0x01
Control signals for
external period counters
CA
CB
CZ
0x02
Calibration mode
OFFS SIN
The following settings
are required additionally:
SELRES = 0x0D
ZPOS = 0x00
HYS = 0x07
ROT = 0x00
AERR = 0x00
1.1
0.9
1.1
0.9
Figure 7: Offset
Figure 8: Offset
SIN*
0x03
PHASE
OFFS COS
+...V
-...V
Figure 9: Phase*
COS*
Calibration mode
OFFS SIN
The following settings
are required additionally:
SELRES = 0x0D
ZPOS = 0x00
HYS = 0x07
ROT = 0x00
AERR = 0x00
1.1
0.9
1.1
0.9
Figure 10: Offset
Figure 11: Offset
SIN*
Notes
RATIO
OFFS COS
+...V
-...V
Figure 12: Amplitude*
COS*
*) Trimmed accurately when duty cycle is 50 %;
Recommended trimming order (after selecting GAIN): Offset, Phase, Amplitude Ratio, Offset;
Table 17: Outputs A, B, Z
Code
ROT
Adr 0x02, Bit 5
Direction
0x00
Not inverted
0x01
Inverted
SIN
Table 18: Direction of Rotation
COS
cw: F->0
CBZ
Adr 0x02, Bit 4
Code
Clear by zero
0x00
Disabled
0x01
Enabled
FFFFFF
P(23:0)
000000
ccw: 0->F
A
B
Z
Table 19: Reset Enable for Period Counter
ENRESDEL
Adr 0x02, Bit 7
Code
Output*
Function
0x00
immediately
An external counter displays the
absolute angle following power on.
0x01
after 5 ms
An external counter only displays
changes vs. the initial power-on
condition (moving halted to
reapply power is precondition.)
Notes
*) Output delay after device configuration and
internal reset.
Table 20: Output Turn-On Delay A, B, Z
-180°
-90°
0°
45°
90°
180°
Figure 13: Clear by zero function of the period
counter when enabled by CBZ = 1.
Example for chip release iC-NQ V2
at resolution 64 (SELRES = 0x0A),
zero signal at 45° (ZPOS = 0x04, CFGAB = 0x00) and the direction of rotation
not inverted (ROT = 0x00, COS leads
SIN).
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 16/25
Adr 0x01, Bit 4:0
CFGZ
Adr 0x02, Bit 1:0
Chip versions iC-NQ X2, iC-NQ X3:
Code
Length
Code
Position
0x00
90°
0x00
0x08
0°
90°
0x01
0x02.. 03
180°
Synchronization
0x10
180°
0x18
270°
ZPOS
Table 22: Zero Signal Length
Chip version iC-NQ V2:
CFGAB
Code
Position
Code
Adr 0x03, Bit 5:4
Z = 1 for
0x01
11.25° (1 x 11.25°)
0x00
B = 1, A = 1
...
...
0x1F
348.75° (31 x 11.25°)
0x01
0x02
B = 0, A = 1
B = 1, A = 0
Notes
The zero signal is only output if released by the
input pins (for instance with PZERO = 5 V, NZERO =
VREF).
0x03
B = 0, A = 0
Table 23: Zero Signal Logic
Table 21: Zero Signal Position
SIN
COS
A
B
Z (CFGZ= 0)
Z (CFGZ= 1)
Z (CFGZ= 2)
-180°
-90°
0°
45°
90°
180° Winkel
Figure 14: Incremental output signals for various length of the zero signal.
Example for chip release iC-NQ V2 with resolution 64 (SELRES = 0x0A), a zero signal position
of 45° (ZPOS = 0x04, CFGAB = 0x00) and no reversal of the rotational sense (ROT = 0x00, COS
leads SIN).
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 17/25
SIGNAL MONITORING and ERROR MESSAGES
Vss
SELAMPL
AMPL
Adr 0x0C, Bit 2
Adr 0x0C, Bit 1:0
Code
Max ( |Sin| , |Cos| )
Voltage threshold Vth
Output amplitude*
0x00
0x01
0.60 x VDDA
0.64 x VDDA
1.4 Vpp (0.28 x VDDA)
2.0 Vpp (0.40 x VDDA)
0x02
0.68 x VDDA
2.6 Vpp (0.51 x VDDA)
0x03
0.72 x VDDA
3.1 Vpp (0.62 x VDDA)
Code
Sin2 + Cos2
Vthmin ↔ Vthmax
Output amplitude*
0x04
0.48 ↔ 0.68 x VDDA
2.4 Vpp ↔ 3.4 Vpp
Vthmax
0x05
0x06
0.56 ↔ 0.76 x VDDA
0.64 ↔ 0.84 x VDDA
2.8 Vpp ↔ 3.8 Vpp
3.2 Vpp ↔ 4.2 Vpp
Vthmin
0x07
0.72 ↔ 0.92 x VDDA
3.6 Vpp ↔ 4.6 Vpp
Notes
*) Entries are calculated with VDDA = 5 V.
Vth
Figure 15: Signal monitoring of minimum amplitude.
Table 24: Signal Amplitude Monitoring
AERR
Code
Adr 0x03, Bit 1
Amplitude error message
0x00
disabled
0x01
enabled
Each phase in the configuration process is signaled by
NERR = low; the signal is only reset following a successful CRC (cyclic redundancy check).
Table 25: Amplitude Error
FERR
Adr 0x03, Bit 0
Code
Excessive frequency error message
0x00
0x01
disabled
enabled
Note
Input frequency monitoring is operational for
resolutions ≥ 16
Table 26: Frequency Error
Configuration Error
-
Figure 16: Sin2 + Cos2 signal monitoring.
If the data transfer from the EEPROM is faulty and the
CRC unsuccessful, then the configuration phase is automatically repeated.
The process aborts following a third unsuccessful attempt and the error message output remains set to low
until a write access occurs at address 0 via the BiSS
Interface (internal reset).
To enable the successful diagnosis of faults other types
of error are signaled at NERR using a PWM code as
given in the key on the left.
Messaging always released
Table 27: Configuration Error
Error Keys
Failure Mode
Pin NERR
Error bits E1, E0 with
BiSS and SSI
No error
Amplitude error
HI
LO/HI = 75 %
(AERR = 0: HI)
LO/HI = 50 %
(FERR = 0: HI)
11
01
(11)
10
(11)
Configuration
LO
00
Undervoltage
System error
LO
NERR = low caused
by an external error
signal
00
00
Frequency error
Table 28: Error Keys
Two error bits are provided to enable communication
via the BiSS Interface; these bits can decode four different types of error. If NERR is held at low by an external source, such as an error message from the system, for example, this can also be verified via the BiSS
Interface.
Error events are stored for the BiSS sensor data output
and deleted afterwards. Errors at NERR are displayed
for a minimum of ca. 10 ms, as far as no BiSS readout
causes a deletion.
If an error in amplitude occurs the conversion process is terminated and the incremental output signals
halted. An error in amplitude rules out the possibility of
an error in frequency.
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 18/25
TEST FUNCTIONS
TMODE
Adr 0x06, Bit 3:1
TMA
Adr 0x06, Bit 0
Code
Signal at Z
Description
Code
Pin A
Pin B
Pin SDA
Pin SCL
0x00
Z
no test mode
0x00
A
B
SDA
SCL
0x01
0x02
A xor B
ENCLK
Output A EXOR B
iC-Haus device test
0x01
COS+
COS-
SIN+
SIN-
Notes
0x03
NLOCK
iC-Haus device test
0x04
0x05
CLK
DIVC
iC-Haus device test
iC-Haus device test
0x06
PZERO - NZERO
iC-Haus device test
To permit the verification of GAIN and OFFSET
settings, the input amplifier outputs are available at
the pins. To operate the converter a signal of 4 Vpp
is the ideal here and should not be exceeded. Pin
loads above 1 MΩ are adviceable for accurate
measurements.
0x07
TP
iC-Haus device test
Condition
CFGABZ = 0x00
Table 30: Analog Test Mode
Table 29: Test Mode
Parameter GAIN ideally adjusts the signal levels to ca.
4 Vpp and should not be touched afterwards.
5V
A: COS+
SDA: Sin+
Both scope display modes are feasible for OFFS (positive values) or RATIO adjustments; regarding the adjustment of PHASE the X/Y mode may be preferred.
For OFFS adjustment towards negative values the test
signals COS- (pin B) and SIN- (pin SCL) are relevant.
0V
Y/T 1 V/Div vert.
X/Y 1 V/Div vert. 1 V/Div hor.
Figure 17: Calibrated signals with TMA mode.
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 19/25
BiSS INTERFACE
Serial BiSS communication differentiates between the
fast cyclic transmission of sensor data for the output of
angle position and period counter data and the transmission of register data which can include bidirectional
read and write access.
The required mode of communication is initiated by the
interface master; as a slave iC-NQ determines up to
which maximum clock interval the selected mode is retained. Sensor mode timeout ttos and register mode
timeout ttor thus give the master a minimum clock frequency of fclk(MA)min.
Protocol and Data Format
CFGTOS
Adr 0x06, Bit 5:4
Code
Timeout ttos
Sensor mode
Ref. clock
counts
fclk(MA) min*
0x00
0x01
typ. 128 µs
typ. 16 µs
256-259
32-35
11 kHz
88 kHz
0x02
typ. 4 µs
8-11
352 kHz
0x03
typ. 1 µs
2-5
1.41 MHz
CFGTOR
Adr 0x06, Bit 7:6
Code
Timeout ttor
Regist. mode
Ref. clock
counts
fclk(MA) min*
0x00
typ. 1 ms
2049-2060
1.4 kHz
3...13
DATA
0x01
0x02
typ. 256 µs
typ. 32 µs
513-514
67-68
5.5 kHz
42 kHz
Angle Data S(12:0):
3 to 13 bits (singleturn position)
1
ERROR
Error bit E1 (amplitude error)
0x03
not permitted
–
1
ERROR
Error bit E0 (frequency error)
5
CRC
Polynomial 0x25
x5 + x2 + x0 (inverted bit output)
6*
CRC
Polynomial 0x43*
x6 + x1 + x0 (inverted bit output)
Notes
Figure 18: BiSS B Protocol
–
32
fosc
A ref. clock count is equal to
(see El. Char.
A01 ). The permissible max. clock frequency is
specified by item E06 .
Table 31: Interface Timeouts
M2S
Adr 0x00, Bit 6:5
Single-Cycle Data Channel: SCD
Type
Label
Bits
0, 8
DATA
0,8, 12, 24*
Period Counter P(7:0)
Period Counter P(23:0)*
(multiturn position)
Multicycle Data Channel: MCD - not in use
Bits
Type
1
zero bit
Label
Register Data Channel: CD
SCD
CRC Poly.
MCD
Bits
Type
Label
Code
SCD*
not in use
3
ID
Slave ID
7
ADR
Register Address
0x00
Chip releases iC-NQ X2, iC-NQ X3:
0x25
1 zero bit
1
WNR
Write-Not-Read Command
0x01
P(7:0)
4
CRC
Polynomial 0x13
x4 + x1 + x0 (inverted bit output)
0x00
Chip release iC-NQ V2:
0x25
1 zero bit
Adr
Content
0x01
P(7:0)
0x25
1 zero bit
0x10.. 1F
Device Configuration Data
0x02
0x03
P(11:0)
P(23:0)
0x43
0x43
1 zero bit
n/a
0x20.. 77
OEM Daten
0x78.. 7F
BiSS Identifier
Notes
*) Period counter output via SCD
CRC
Polynomial 0x13
x4 + x1 + x0 (inverted bit Output)
0x25
1 zero bit
8
4
Table 32: Period Counter Output
BiSSMOD
Adr 0x00, Bit 7
Code
Version
Description
0x00
B
BiSS B without multicycle data
0x01
C
Transparency for BiSS C
Table 33: Protocol Version
Table 34: BiSS Data Channels
*) For chip release iC-NQ V2
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 20/25
Sensor Data Communication
The sensor data produced by iC-NQ contains 3 to 13
bits of angle value (S), the period counter (P) with up
to 24 bits (optional), 2 bits of error messages (E1, E0),
and 5 CRC bits (C). Here, M2S sets the output enable
for the position counter; the counter bits, with the MSB
leading, are transmitted in front of the angle value.
Figure 19: BiSS B protocol
The 5 bit CRC output is based on the polynomial 0x25
(100101b), the 6 bit CRC output on the polynomial
0x43 (1000011b) and comes active with longer SCD
data. Generally, CRC bits are output inverted.
As soon as the storage of sensor data is initiated Latch
conversion is paused for one MA clock cycle. This time
must be taken into consideration when calculating the
maximum input frequency. The synchronization output
at Z (CFGZ = 0x02) is stored until the start bit of the
previous slave arrives.
Figure 20: BiSS C protocol transparency, no interpretation of CDM
Register Data Communication
SCD: Angle data
Bits
Type
Label
13
2
DATA
ERROR
Angle Data S(12:0)
Error bits E1, E0
5
CRC
Polynomial 0x25
1
Zero bit
Config.
SELRES = 0x03, M2S = 0x00
Table 35: Format example 1
For as long as the configuration error is active the
longest timeout is used for the register mode independent of CFGTOR. Thus when configuring via BiSS
CFGTOR and RPL should be written before address 0.
A write access at Address 0 triggers an internal reset.
This allows the period counter to be set to zero and
configuration errors to be reset; the EEPROM is not
read out a second time.
SCD: Angle data with 8-bit period counter
Bits
Typ
Label
8
DATA
Period Counter S(7:0)
13
DATA
Angle Data S(12:0)
2
5
ERROR
CRC
Error Bits E1, E0
Polynomial 0x25
1
Zero bit
Config.
SELRES = 0x03, M2S = 0x01
Table 36: Format example 2
Register access via BiSS can be limited using the programming bits RPL according to the following table.
RPL
Adr 0x03, Bit 3:2
RPL
Configuration
Address 0-31
User
Address
32-119
BiSS Identifier
Address 120-127
0x00
Read / Write
Read /
Write
Read / Write
0x01
Read
Read
0x02
-
Read /
Write
Read /
Write
0x03
-
Read
Read
Read
Table 37: Register Access Safety Level
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 21/25
Sensor Data Output in SSI Format
With SELSSI = 1 the communication timing is switched
to SSI compatibility. Data output is in binary format
starting with the MSB. It can be configured if the error
bits are to be send afterwards.
CFGSSI
Adr 0x03, Bit 7:6
Code
Additional bits
Ring register operation
0x00
E1, E0, zero bit
no
0x01
0x02
none
E1, E0, zero bit
no
yes
0x03
none
yes
Table 38: SSI Output
Examples of SSI formats
SSI Output Formats
13-bit SSI
Res
Mode Error CRC
10 bit SSI
X
-
T1
T2
T3
T4... T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24 T25
S9
S8
S7
S6 ... S0
E1
E0
Example
13 bit SSI
-
-
S12 S11 S10 S9 ... S3
S2
S1
0
Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop
0
0
S0
Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop Stop
0
0
0
0
0
0
0
0
0
0
0
*1
Example
SSI-R -
-
0
S12 S11 S10 S9 ... S3
S2
S1
S0
0
0
0
0
Stop S12 S11 S10 S9
0
0
0
0
0
0
0
S8
S7
S6
S5
S4
S3
S2
*2
0
Example
25-bit SSI
13 bit SSI
X
-
S12 S11 S10 S9 ... S3
S2
S1
S0
E1
E0
Example
8 + 13 SSI
bit*3
X
-
P7
P6
P5
P4 ... P0, S10 S9
S12, S11
S8
S7
S6
0
Stop Stop Stop Stop Stop Stop Stop Stop Stop
0
0
0
0
0
0
0
0
0
0
S5
S4
S3
S2
S1
S0
E1
E0
0
Stop
0
0
Example
Configuration Input SLI = 0, SELSSI = 1 CFGMCD = 0x00, CFGSSI = 0x00, unless otherwise noted.
*1 CFGSSI = 0x01; *2 CFGSSI = 0x03; *3 CFGMCD = 0x01
Caption SSI protocol
SSI ring operation
Table 39: SSI Output Formats
EEPROM INTERFACE
Serial EEPROM components permitting operation
from 3.3 V to 5 V can be connected (such as 24C02, for
example). When the device is switched on the memory
area of bytes 0 to 15 is mapped onto iC-NQ’s registers.
The higher memory areas, bytes 16-111, are readily
available to the system via BiSS. The EEPROM ad-
dresses 0-111 are mapped onto the BiSS addresses
16-127. If no EEPROM is connected the device must
be configured via BiSS and address 0 written last. In
this case iC-NQ does not respond to addresses 16119; reading addresses 120-127 sends the device ID
plus the contents of register 0 to address 124.
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 22/25
APPLICATION HINTS
Principle Input Circuits
PSIN
+
PSIN
11µApp
PSIN
+
RS1
25kS
-
1Vss to 120S
S
-
RS2
25kS
NSIN
NSIN
+
PSIN
INPUT SIN
VREF
RS
120S
NSIN
-
SENSOR
iC-NQ
case
NSIN
+
INPUT SIN
VREF
SENSOR
iC-NQ
case
Figure 22: Input circuit for current signals of 11 µA.
Figure 21: Input circuit for voltage signals of 1 Vpp
with no ground reference. When grounds
are not separated the connection NSIN
to VREF must be omitted.
R3
1kS
+5V
R001
1kS
R1
1kS
R2
1kS
V-GEN
1Vpp
PSIN
+
PSIN
+
R002
1kS
+
-
R4
1kS
-
V-GEN
2Vpp
-
NSIN
NSIN
+
+
INPUT SIN
INPUT SIN
VREF
VREF
iC-NQ
Figure 23: Input circuit for single-side voltage or current source signals with ground reference (adaptation via resistors R3, R4).
iC-NQ
Figure 24: Simplified input wiring for single-side
voltage signals with ground reference.
R1
10kS
+TTL
-TTL or open
-
5kS
RS3
1kS
PSIN
+
5kS
PSIN
-
+
+
+SIN
R2
10kS
120S
RS2
5kS
-SIN
Ip
10µApp
RS1
5kS
GAIN= 10
CS1
220pF
RS4
1kS
NSIN
+
-
In
10µApp
NSIN
+
INPUT SIN
ENCODER
VREF
case
CS2
47nF
iC-NQ
INPUT SIN
VREF
iC-NQ
Figure 25: Input circuit for differential current sink
sensor outputs, eg. using Opto Encoder
iC-WG.
Figure 26: Combined input circuit for 11 µA, 1 Vpp
(with 120 Ω termination) or TTL encoder
signals. RS3/4 and CS1 serve as protection against ESD and transients.
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 23/25
Basic circuit
Figure 27: Basic circuit for evaluation of magneto-resistor bridge sensors.
EVALUATION BOARD
The iC-NQ device is equipped with an evaluation board
for test purposes; descriptions are available separately.
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 24/25
DESIGN REVIEW: Notes On Chip Functions
iC-NQ X2
iC-NQ X3
No.
Function, Parameter/Code
Description and Application Hints
1
SELRES
Illegal setting:
0x0E for resolution 4
A minimal resolution of 8 is required for the frequency monitoring function and
period counting as well. Thus, a binary resolution of 4 is not permitted when
using the period counter and the serial interface for data output with the BiSS or
SSI protocol.
A resolution of 4 may be used for solely incremental applications with A/B/Z
output, what then requires the deactivation of the frequency monitoring function
(by FERR set to 0x00).
2
ZPOS
Illegal settings:
0x01...0x07, 0x09...0x0F,
0x11...0x17, 0x19...0x1F
Illegal settings of ZPOS delay accurate converter operation following power on.
Depending on the sin/cos input signals (phase angle) the A/B outputs can
provide pulses causing an external counter to alternately count up and down.
This may disturb the startup of a drive if the motion controller tolerates only single
A/B edges during standstill checking.
The converter operation is again accurate when the sin/cos input signals have
changed, by a maximum of 45 angular degrees.
3
M2S
Illegal settings:
0x02, 0x03
Illegal settings, enabling a period counter output of 12 or 24 bits, may cause
position data jumping with fast changes in the direction of count (e.g. applications
with length gauges).
It is thus advisable to use 8-bit period counting (M2S 0x01) and to capture the
overflow in the external microcontroller.
Table 40: Notes on chip functions regarding iC-NQ chip releases X2, X3
iC-NQ V2
No.
Function, Parameter/Code
Description and Application Hints
1
SELRES
See description given for iC-NQ X2, X3
2
No further exclusions known at time of printing.
Table 41: Notes on chip functions regarding iC-NQ chip release V2
iC-Haus expressly reserves the right to change its products and/or specifications. An Infoletter gives details as to any amendments and additions made to the
relevant current specifications on our internet website www.ichaus.de/infoletter; this letter is generated automatically and shall be sent to registered users by
email.
Copying – even as an excerpt – is only permitted with iC-Haus approval in writing and precise reference to source.
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions
in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of
merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which
information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or
areas of applications of the product.
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade
mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.
As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical
applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of
use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued
annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in
Hanover (Hannover-Messe).
We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations
of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can
be put to.
iC-NQ
13-bit Sin/D CONVERTER WITH CALIBRATION
Rev D1, Page 25/25
ORDERING INFORMATION
Type
Package
Order Designation
iC-NQ
TSSOP20 4.4 mm
iC-NQ TSSOP20
iC-NQ TSSOP20 ET -40/125
Evalutaion Board
iC-NQ EVAL NQ1D
For technical support, information about prices and terms of delivery please contact:
iC-Haus GmbH
Am Kuemmerling 18
D-55294 Bodenheim
GERMANY
Tel.: +49 (61 35) 92 92-0
Fax: +49 (61 35) 92 92-192
Web: http://www.ichaus.com
E-Mail: [email protected]
Appointed local distributors: http://www.ichaus.com/sales_partners