IXYS IXGT30N60C2D1

HiPerFASTTM IGBT
with Diode
C2-Class High Speed IGBTs
Symbol
Test Conditions
IXGH 30N60C2D1 VCES
IXGT 30N60C2D1 IC25
VCE(sat)
tfi typ
Maximum Ratings
VCES
TJ = 25°C to 150°C
600
V
VCGR
TJ = 25°C to 150°C; RGE = 1 MΩ
600
V
VGES
Continuous
±20
V
VGEM
Transient
±30
V
IC25
TC = 25°C (limited by leads)
70
A
IC110
TC = 110°C
30
A
ICM
TC = 25°C, 1 ms
150
A
SSOA
(RBSOA)
PC
VGE = 15 V, TVJ = 125°C, RG = 10 Ω
Clamped inductive load @ ≤ 600 V
TC = 25°C
TO-247 AD (IXGH)
C (TAB)
G
A
190
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
300
°C
Features
250
°C
z
Maximum lead temperature for soldering
1.6 mm (0.062 in.) from case for 10 s
Plastic body for 10s
Md
Mounting torque (TO-247)
Weight
TO-247
TO-268
Symbol
Test Conditions
VGE(th)
ICES
1.13/10Nm/lb.in.
6
4
Characteristic Values
(TJ = 25°C, unless otherwise specified)
min. typ. max.
= 250 µA, VCE = VGE
IC
VCE = VCES
VGE = 0 V
IGES
VCE = 0 V, VGE = ±20 V
VCE(sat)
IC
= 24 A, VGE = 15 V
g
g
2.5
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
1.8
G
G = Gate,
E = Emitter,
z
z
z
V
200
3
µA
mA
±100
nA
2.7
V
V
z
z
z
z
z
E
C (TAB)
C = Collector,
TAB = Collector
Very high frequency IGBT
Square RBSOA
High current handling capability
MOS Gate turn-on
- drive simplicity
PFC circuits
Uninterruptible power supplies (UPS)
Switched-mode and resonant-mode
power supplies
AC motor speed control
DC servo and robot drives
DC choppers
Advantages
z
z
z
© 2005 IXYS All rights reserved
E
Applications
z
5.0
C
TO-268 (IXGT)
ICM = 60
TJ
= 600 V
= 70 A
= 2.7 V
= 32 ns
High power density
Very fast switching speed for high
frequency aaplications
High power surface mountable
package
DS99169A(01/05)
IXGH 30N60C2D1
IXGT 30N60C2D1
Symbol
gfs
Test Conditions
Characteristic Values
(TJ = 25°C, unless otherwise specified)
min. typ. max.
IC = 24 A; VCE = 10 V,
Pulse test, t ≤ 300 µs, duty cycle ≤ 2 %
18
VCE = 25 V, VGE = 0 V, f = 1 MHz
Cres
Qg
Qge
S
1430
pF
140
pF
40
pF
70
nC
10
nC
23
nC
13
ns
∅P
Cies
Coes
28
IC = 24 A, VGE = 15 V, VCE = 300 V
Qgc
td(on)
tri
Inductive load, TJ = 25°°C
15
td(off)
IC = 24 A, VGE = 15 V
VCE = 400 V, RG = 5 Ω
70
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Inductive load, TJ = 125°°C
IC = 24 A, VGE = 15 V
VCE = 400 V, RG = 5 Ω
Eoff
ns
140
ns
60
ns
0.19
0.30 mJ
13
ns
17
ns
0.22
mJ
120
ns
130
ns
0.59
mJ
e
Dim.
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
2.2
2.6
A2
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
TO-268 Outline
0.65 K/W
RthJC
RthCK
TO-247 AD Outline
(TO-247)
0.25
Reverse Diode (FRED)
K/W
Characteristic Values
(TJ = 25°C, unless otherwise specified)
min. typ. max.
Symbol
Test Conditions
VF
IF = 30 A, VGE = 0 V, Pulse test
t ≤ 300 µs, duty cycle d ≤ 2 %
IRM
t rr
IF = 30 A, VGE = 0 V, -diF/dt =100 A/µs, TJ = 100°C
VR = 100 V
TJ = 100°C 100
IF = 1 A; -di/dt = 100 A/µs; VR = 30 V
25
TJ =150°C
1.6
2.5
V
V
4
A
ns
ns
0.9 K/W
RthJC
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered by
one or moreof the following U.S. patents:
4,835,592
4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,710,405B2
6,710,463
6,727,585
6,759,692
6771478 B2
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
IXGH 30N60C2D1
IXGT 30N60C2D1
Fig. 1. Output Characteristics
@ 25 Deg. C
Fig. 2. Extended Output Characteristics
@ 25 deg. C
270
50
VGE = 15V
13V
11V
45
40
13V
210
30
I C - Amperes
35
I C - Amperes
VGE = 15V
240
9V
7V
25
20
15
11V
180
150
9V
120
90
7V
60
10
30
5V
5
5V
0
0
0.5
1
1.5
2
2.5
3
3.5
0
2
4
6
Fig. 3. Output Characteristics
@ 125 Deg. C
12
14
16
18
1.2
VGE = 15V
13V
11V
40
V GE = 15V
9V
1.1
V C E (sat)- Normalized
45
I C - Amperes
10
Fig. 4. Dependence of V CE(sat ) on
Tem perature
50
35
7V
30
25
20
15
5V
10
I C = 48A
1.0
0.9
I C = 24A
0.8
0.7
0.6
5
I C = 12A
0.5
0
0.5
1
1.5
2
2.5
3
25
3.5
50
75
100
125
150
TJ - Degrees Centigrade
V CE - Volts
Fig. 5. Collector-to-Em itter Voltage
vs. Gate-to-Em itter voltage
Fig. 6. Input Adm ittance
200
4.5
TJ = 25ºC
I C = 48A
24A
12A
180
160
I C - Amperes
4
VC E - Volts
8
V C E - Volts
V C E - Volts
3.5
3
140
120
100
80
60
2.5
TJ = 25ºC
125ºC
40
20
2
0
5
6
7
8
9
10 11
12 13 14 15 16 17
V G E - Volts
© 2005 IXYS All rights reserved
3
4
5
6
7
8
V G E - Volts
9
10
11
12
IXGH 30N60C2D1
IXGT 30N60C2D1
Fig. 8. Dependence of Turn-Off
Energy on RG
Fig. 7. Transconductance
35
2000
TJ = 125ºC
VGE = 15V
VCE = 400V
1800
30
1600
E off - microJoules
g f s - Siemens
25
TJ = 25ºC
125ºC
20
15
10
I C = 48A
1400
1200
1000
I C = 24A
800
600
400
5
200
0
I C = 12A
0
0
20
40
60
80
100 120 140 160 180 200
5
10
15
20
I C - Amperes
1000
E off - microJoules
E off - microJoules
R G = 5Ω
VGE = 15V
VCE = 400V
1200
800
TJ = 125ºC
600
400
TJ = 25ºC
200
35
40
45
50
1400
R G = 5Ω
VGE = 15V
VCE = 400V
1200
30
Fig. 10. Dependence of Turn-Off
Energy on Tem perature
Fig. 9. Dependence of Turn-Off
Energy on IC
1400
25
R G - Ohms
I C = 48A
1000
800
600
I C = 24A
400
200
I C = 12A
0
0
10
15
20
25
30
35
40
45
50
25
35
I C - Amperes
55
65
75
85
95
105 115 125
TJ - Degrees Centigrade
Fig. 11. Dependence of Turn-Off
Sw itching Tim e on RG
Fig. 12. Dependence of Turn-Off
Sw itching Tim e on IC
200
td(off)
tfi - - - - - -
400
TJ = 125ºC
VGE = 15V
VCE = 400V
350
300
250
200
I C = 12A
I C = 24A
I C = 48A
150
100
Switching Time - nanosecond
450
Switching Time - nanosecond
45
td(off)
tfi - - - - - -
180
R G = 5Ω
VGE = 15V
VCE = 400V
160
140
TJ = 125ºC
120
100
80
60
TJ = 25ºC
40
5
10
15
20
25
30
R G - Ohms
35
40
45
50
10
15
20
25
30
35
I C - Amperes
40
45
50
IXGH 30N60C2D1
IXGT 30N60C2D1
Fig. 13. Dependence of Turn-Off
Sw itching Tim e on Tem perature
Fig. 14. Gate Charge
15
td(off)
tfi - - - - - -
160
120
VCE = 300V
I C = 24A
I G = 10mA
12
I C = 48A
24A
12A
R G = 5Ω
VGE = 15V
VCE = 400V
140
VG E - Volts
Switching Time - nanosecond
180
100
80
I C = 12A
24A
48A
60
9
6
3
40
0
25
35
45
55
65
75
85
95
105 115 125
0
10
20
TJ - Degrees Centigrade
30
40
50
60
70
Q G - nanoCoulombs
Fig. 15. Capacitance
10000
Capacitance - p F
f = 1 MHz
C ies
1000
C oes
100
C res
10
0
5
10
15
20
25
30
35
40
V C E - Volts
Fig. 16. Maxim um Transient Therm al Resistance
R (th) J C - (ºC/W)
1.0
0.5
0.1
1
© 2005 IXYS All rights reserved
10
Pulse Width - milliseconds
100
1000
IXGH 30N60C2D1
IXGT 30N60C2D1
1000
60
A
nC
50
IF
30
TVJ= 100°C
25
800
Qr
IF= 60A
IF= 30A
IRM
IF= 60A
IF= 30A
40
20
600
TVJ=150°C
30
15
TVJ=100°C
400
20
10
TVJ=25°C
200
10
0
TVJ= 100°C
A
0
1
0
100
3 V
2
5
A/µs 1000
-diF/dt
VF
Fig. 17. Forward current IF versus VF
Fig. 18. Reverse recovery charge
90
2.0
200
600 A/µs
800 1000
-diF/dt
400
Fig. 19. Peak reverse current IRM
1.00
TVJ= 100°C
µs
V
VFR
15
trr
Kf
0
20
TVJ= 100°C
ns
1.5
0
tfr
0.75
VFR
tfr
80
IF= 60A
IF= 30A
1.0
10
0.50
5
0.25
IRM
70
0.5
Qr
0.0
0
40
80
120 °C 160
60
0
200
TVJ
400
600
800 1000
A/µs
0
0
400
-diF/dt
Fig.
,II
Fig.20.
20.Dynamic
Dynamicparameters
parametersQQ
r r,RM
RM
Fig. 21. Recovery time trr versus
1
K/W
0.00
600 A/µs
800 1000
diF/dt
Fig. 22. Peak forward voltage VFR
Constants for ZthJC calculation:
i
1
2
0.1
ZthJC
0.01
0.001
0.00001
200
DSEP 29-06
0.0001
0.001
0.01
Fig. 23. Transient thermal resistance junction to case
0.1
s
t
1
Rthi (K/W)
ti (s)
0.502
0.193
0.0052
0.0003