LRC LMBT5087LT1

LESHAN RADIO COMPANY, LTD.
Low Noise Transistor
PNP Silicon
LMBT5087LT1
• Pb−Free Package May be Available. The G−Suffix Denotes a
Pb−Free Lead Finish
3
ORDERING INFORMATION
1
Device
LMBT5087LT1
Package
Shipping
SOT–23
3000/Tape & Reel
LMBT5087LT1G SOT–23
3000/Tape & Reel
2
SOT– 23 (TO–236AB)
MAXIMUM RATINGS
Rating
Collector–Emitter Voltage
Collector–Base Voltage
Emitter–Base Voltage
Collector Current — Continuous
Symbol
V CEO
V CBO
V EBO
IC
Value
– 50
– 50
– 3.0
– 50
Unit
Vdc
Vdc
Vdc
mAdc
3
COLLECTOR
1
BASE
DEVICE MARKING
2
EMITTER
LMBT5087LT1=2Q
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation RF-5 Board (1)
T A =25 °C
Derate above 25°C
Symbol
PD
Max
225
Unit
mW
1.8
mW/°C
Thermal Resistance, Junction to Ambient
R θJA
556
°C/W
Total Device Dissipation
Alumina Substrate, (2) T A = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Junction and Storage Temperature
PD
300
mW
R θJA
T J , T stg
2.4
417
–55to+150
mW/°C
°C/W
°C
ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
V (BR)CEO
– 50
—
Vdc
V (BR)CBO
– 50
—
Vdc
—
—
–10
–50
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage
(I C = –1.0 mAdc, I B = 0)
Collector–Base Breakdown Voltage
(I C = –100 µAdc, I E = 0)
Collector Cutoff Current
(V CB = –10 Vdc, I E= 0)
(V CB = –35 Vdc, I E= 0)
1. FR–5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
I CBO
n Adc
M17–1/6
LESHAN RADIO COMPANY, LTD.
LMBT5087LT1
ELECTRICAL CHARACTERISTICS (T
A
= 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Max
Unit
250
250
250
800
––
––
V CE(sat)
––
– 0.3
Vdc
V BE(sat)
––
– 0.85
Vdc
40
—
MHz
C obo
—
4.0
pF
h fe
250
900
—
(I C = –20 mAdc, V CE= –5.0 Vdc,Rs=10kΩ, f = 1.0 kHz)
—
2.0
(I C = –100µAdc, V
—
2.0
ON CHARACTERISTICS
DC Current Gain
(I C = –100µAdc, V CE = –5.0 Vdc)
(I C = –1.0 mAdc, V CE = –5.0 Vdc)
(I C = –10 mAdc, V CE = –5.0 Vdc)
Collector–Emitter Saturation Voltage
(I C = –10 mAdc, I B = –1.0 mAdc)
Base–Emitter Saturation Voltage
h FE
––
(I C = –10 mAdc, I B = –1.0 mAdc)
SMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product
(I C = –500 µAdc, V CE= –5.0 Vdc, f = 20 MHz)
Output Capacitance
(V CB= –5.0 Vdc, I E = 0, f = 1.0 MHz)
Small–Signal Current Gain
(I C= –1.0mAdc, V CE = –5.0Vdc, f = 1.0 kHz)
Noise Figure
= –5.0 Vdc,Rs=3.0kΩ, f = 1.0 kHz)
CE
f
T
NF
dB
M17–2/6
LESHAN RADIO COMPANY, LTD.
LMBT5087LT1
TYPICAL NOISE CHARACTERISTICS
(V CE = – 5.0 Vdc, T A = 25°C)
10
10.0
BANDWIDTH = 1.0 Hz
R~
~0
5.0
30µA
100µA
300µA
1.0mA
2.0
8
5.0
IC=10 µA
3.0
BANDWIDTH = 1.0 Hz
R ~
~
7.0
S
I n , NOISE CURRENT (pA)
e n , NOISE VOLTAGE (nV)
7.0
S
IC=1.0mA
3.0
2.0
300µA
1.0
0.7
100µA
0.5
0.3
30µA
0.2
10µA
1.0
0.1
10
20
50
100
200
500
1.0k
2.0k
5.0k
10
10k
20
50
100
200
500
1.0k
2.0k
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
Figure 1. Noise Voltage
Figure 2. Noise Current
5.0k
10k
NOISE FIGURE CONTOURS
(V CE = – 5.0 Vdc, T A = 25°C)
1.0M
1.0M
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
0.5dB
5.0k
1.0dB
2.0k
1.0k
2.0dB
500
3.0dB
200
100
10
5.0dB
500k
R S , SOURCE RESISTANCE ( Ω )
R S , SOURCE RESISTANCE ( Ω )
500k
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
0.5dB
5.0k
2.0k
1.0dB
1.0k
2.0dB
3.0dB
500
200
5.0dB
100
20
30
50
70
100
200
300
500
700 1.0K
10
20
30
50
70
100
200
300
500
I C , COLLECTOR CURRENT (µA)
I C , COLLECTOR CURRENT (µA)
Figure 3. Narrow Band, 100 Hz
Figure 4. Narrow Band, 1.0 kHz
700 1.0K
1.0M
R S , SOURCE RESISTANCE ( Ω )
500k
10 Hz to 15.7kHz
200k
100k
Noise Figure is Defined as:
50k
20k
NF = 20 log 10
10k
0.5dB
5.0k
2.0k
2.0dB
3.0 dB
5.0dB
500
200
20
30
50
70
100
200
300
1/ 2
S
e n = Noise Voltage of the Transistor referred to the input. (Figure 3)
I n = Noise Current of the Transistor referred to the input. (Figure 4)
1.0dB
1.0k
100
10
e n 2 + 4KTRS + I n2 R S2
( –––––––––––––––)
4KTR
500
K = Boltzman’s Constant (1.38 x 10 –23 j/°K)
T = Temperature of the Source Resistance (°K)
R s = Source Resistance ( Ω )
700 1.0K
I C , COLLECTOR CURRENT (µA)
Figure 5. Wideband
M17–3/6
LESHAN RADIO COMPANY, LTD.
LMBT5087LT1
TYPICAL STATIC CHARACTERISTICS
100
I C , COLLECTOR CURRENT (mA)
TA=25°C
0.8
50mA
10 mA
I C= 1.0 mA
0.6
100 mA
0.4
0.2
350µA
250µA
300µA
200µA
60
150µA
40
100µA
50µA
20
0
0
0.002 0.0050.01 0.02
0.05 0.1 0.2
0.5
1.0
2.0
5.0
10
5.0
15
20
25
30
35
40
V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 6. Collector Saturation Region
Figure 7. Collector Characteristics
1.2
1.0
V BE(sat) @ I C /I B = 10
0.6
1.6
*APPLIES for I C / I B< h FE / 2
0.8
∗ θ VC for V CE(sat)
25°Cto125°C
0
–55°Cto25°C
–0.8
V BE(on)@ V CE= 1.0 V
0.4
25°Cto125°C
–1.6
0.2
10
I B , BASE CURRENT (mA)
T J=25°C
0.8
0
20
1.4
V, VOLTAGE (VOLTS)
I B= 400 µA
T A = 25°C
PULSE WIDTH =300 µs
DUTY CYCLE<2.0%
80
θ V , TEMPERATURE COEFFICIENTS (mV/°C)
VCE,COLLECTOR–EMITTERVOLTAGE(VOLTS)
1.0
V CE(sat) @ I C /I B = 10
θ VB for V BE
–55°Cto25°C
–2.4
0
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 10. “On” Voltages
Figure 11. Temperature Coefficients
M17–4/6
LESHAN RADIO COMPANY, LTD.
LMBT5087LT1
TYPICAL DYNAMIC CHARACTERISTICS
500
1000
V CC= 3.0 V
IC /I B= 10
T J= 25°C
300
200
500
t, TIME (ns)
t, TIME (ns)
70
50
tr
20
200
100
70
50
tf
30
td @ V BE(off)= 0.5 V
10
ts
300
100
30
VCC=–3.0V
IC /I B= 10
IB1=IB2
T J= 25°C
700
20
7.0
10
2.0
3.0
5.0
7.0
10
20
30
50
70
–1.0
100
–2.0
–3.0
–5.0 –7.0 –10
–20
–30
–50
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 10. Turn–On Time
Figure 11. Turn–Off Time
–70 –100
10.0
500
T J= 25°C
T J = 25°C
7.0
=20 V
C ib
CE
C, CAPACITANCE (pF)
V
300
5.0 V
200
100
70
50
0.5
r ( t ) TRANSIENT THERMAL RESISTANCE(NORMALIZED)
f T, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz)
5.0
1.0
0.7
1.0
2.0
3.0
5.0 7.0
10
20
30
5.0
3.0
C ob
2.0
1.0
0.05
50
0.1
0.2
0.5
1.0
2.0
5.0
10
I C , COLLECTOR CURRENT (mA)
V R , REVERSE VOLTAGE (VOLTS)
Figure 12. Current–Gain — Bandwidth Product
Figure 13. Capacitance
1.0
0.7
0.5
20
50
D = 0.5
0.3
0.2
0.2
0.1
0.1
FIGURE 16
DUTY CYCLE, D = t 1 / t 2
D CURVES APPLY FOR POWER
0.05
0.07
0.05
P(pk)
PULSE TRAIN SHOWN
READ TIME AT t 1 (SEE AN–569)
0.02
0.03
t
0.01
1
SINGLE PULSE
0.02
t
Z θJA(t) = r(t) • RθJA
T J(pk) – T A = P (pk) Z θJA(t)
2
0.01
0.01
0.02
0.05
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
200
500
1.0k
2.0k
5.0k
10k
20k
50k
100k
t, TIME (ms)
Figure 14. Thermal Response
M17–5/6
LESHAN RADIO COMPANY, LTD.
LMBT5087LT1
104
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
I C , COLLECTOR CURRENT (nA)
V CC = 30 V
3
10
I CEO
102
101
I
CBO
AND
I CEX @ V BE(off) = 3.0 V
100
10–1
10–2
–4
–2
0
+20
+40
+60
+80
+100
+120
+140
T J , JUNCTION TEMPERATURE (°C)
Figure 15. Typical Collector Leakage Current
+160
A train of periodical power pulses can be represented by
the model as shown in Figure 16. Using the model and the
device thermal response the normalized effective transient
thermal resistance of Figure 14 was calculated for various
duty cycles.
To find Z θJA(t) , multiply the value obtained from Figure 14 by
the steady state value R θJA .
Example:
Dissipating 2.0 watts peak under the following conditions:
t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2)
Using Figure 16 at a pulse width of 1.0 ms and D = 0.2, the
reading of r(t) is 0.22.
The peak rise in junction temperature is therefore
∆T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C.
For more information, see AN–569.
M17–6/6