TI V62/10606-01XE

ISO7241A-EP
www.ti.com
SLLSE18 – JANUARY 2010
1-Mbps QUAD DIGITAL ISOLATORS
Check for Samples: ISO7241A-EP
FEATURES
1
•
•
•
•
•
4000-Vpeak Isolation, 560-Vpeak VIORM
– UL 1577 , IEC 60747-5-2 (VDE 0884, Rev 2),
IEC 61010-1, IEC 60950-1 and CSA
Approved
4-kV ESD Protection
Operates With 3.3-V or 5-V Supplies
Typical 25-Year Life at Rated Working Voltage
(See Application Note (SLLA197 ) and
Figure 10)
High Electromagnetic Immunity
(See Application Report (SLLA181))
SUPPORTS DEFENSE, AEROSPACE,
AND MEDICAL APPLICATIONS
•
•
•
•
•
•
•
ISO7241A
(TOP VIEW)
APPLICATIONS
•
•
•
•
Controlled Baseline
One Assembly/Test Site
One Fabrication Site
Available in Military (–55°C/125°C)
Temperature Range (1)
Extended Product Life Cycle
Extended Product-Change Notification
Product Traceability
VCC1
GND1
INA
INB
INC
OUTD
EN1
GND1
Industrial Fieldbus
Computer Peripheral Interface
Servo Control Interface
Data Acquisition
(1)
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
VCC2
GND2
OUTA
OUTB
OUTC
IND
EN2
GND2
Additional temperature ranges available - contact factory
DESCRIPTION
See the Product Notification section. The ISO7241A is a quad-channel digital isolator with multiple channel
configurations and output enable functions. This device has logic input and output buffers separated by TI’s
silicon dioxide (SiO2) isolation barrier. Used in conjunction with isolated power supplies, this device blocks high
voltage, isolate grounds, and prevent noise currents from entering the local ground and interfering with or
damaging sensitive circuitry.
The ISO7241A has three channels the same direction and one channel in opposition.
This device has TTL input thresholds and a noise-filter at the input that prevents transient pulses from being
passed to the output of the device.
A periodic update pulse is sent across the barrier to ensure the proper dc level of the output. If this dc-refresh
pulse is not received, the input is assumed to be unpowered or not being actively driven, and the failsafe circuit
drives the output to a logic high state. (See ISO7240CF (SLLS869) or contact TI for a logic low failsafe option).
The ISO7241A may be powered from either 3.3-V or 5-V supplies on either side in any 3.3-V / 3.3-V, 5-V / 5-V,
5-V / 3.3-V, or 3.3-V / 5-V combination. Note that the signal input pins are 5-V tolerant regardless of the voltage
supply level being used.
This device is characterized for operation over the ambient temperature range of –55°C to 125°C.
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2010, Texas Instruments Incorporated
ISO7241A-EP
SLLSE18 – JANUARY 2010
www.ti.com
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
FUNCTION DIAGRAM
Galvanic Isolation
Barrier
DC Channel
Filter
OSC
+
PWM
Pulse Width
Demodulation
Vref
Carrier Detect
EN
IN
Input
+
Filter
Data MUX
AC Detect
Vref
OUT
Output Buffer
AC Channel
Table 1. Device Function Table (1)
INPUT VCC
(1)
OUTPUT VCC
(1)
(2)
2
OUTPUT ENABLE
(EN)
OUTPUT
(OUT)
H
H or Open
H
L
H or Open
L
X
L
Z
PU
PU
Open
H or Open
H
PD
PU
X
H or Open
H
PD
PU
X
L
Z
PU = Powered Up; PD = Powered Down ; X = Irrelevant; H = High Level; L = Low Level
Table 2. ORDERING INFORMATION (1)
PACKAGE (2)
TA
–55°C to 125°C
INPUT
(IN)
DW
Reel
ORDERABLE PART NUMBER
TOP-SIDE MARKING
ISO7241AMDWREP
ISO7241AM
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
Web site at www.ti.com.
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
ISO7241A-EP
www.ti.com
SLLSE18 – JANUARY 2010
ABSOLUTE MAXIMUM RATINGS (1)
VALUE
UNIT
VCC
Supply voltage (2), VCC1, VCC2
–0.5 to 6
V
VI
Voltage at IN, OUT, EN
–0.5 to 6
V
IO
Output current
±15
mA
Human Body Model
JEDEC Standard 22, Test Method A114-C.01
ESD
Electrostatic Field-Induced-Charged Device
discharge
Model
TJ
Maximum junction temperature
Machine Model
(1)
(2)
JEDEC Standard 22, Test Method C101
±4
All pins
ANSI/ESDS5.2-1996
kV
±1
±200
V
170
°C
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to network ground terminal and are peak voltage values.
RECOMMENDED OPERATING CONDITIONS
MIN
VCC
Supply voltage (1), VCC1, VCC2
IOH
High-level output current
IOL
Low-level output current
tui
3.15
TYP
MAX
5.5
4
UNIT
V
mA
–4
mA
Input pulse width
1
μs
1/tui
Signaling rate
0
1000
kbps
VIH
High-level input voltage (IN) (EN on all devices)
2
VCC
V
VIL
Low-level input voltage (IN) (EN on all devices)
0
0.8
V
TJ
Junction temperature
H
External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9
certification
(1)
150
1000
°C
A/m
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V.
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
3
ISO7241A-EP
SLLSE18 – JANUARY 2010
www.ti.com
ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 5-V (1) OPERATION
, over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
UNIT
SUPPLY CURRENT
Quiescent
ICC1
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
1 Mbps
Quiescent
ICC2
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
1 Mbps
6.5
11
13
20
13
20
mA
mA
ELECTRICAL CHARACTERISTICS
IOFF
Sleep mode output current
EN at 0 V, Single channel
VCC – 0.8
IOH = –20 μA, See Figure 1
VCC – 0.1
VOH
High-level output voltage
VOL
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
IIL
Low-level input current
CI
Input capacitance to ground
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient immunity
VI = VCC or 0 V, See Figure 4
(1)
μA
0
IOH = –4 mA, See Figure 1
V
IOL = 4 mA, See Figure 1
0.4
IOL = 20 μA, See Figure 1
0.1
150
mV
10
IN from 0 V to VCC
–10
25
V
μA
2
pF
50
kV/μs
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V.
SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 5-V OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion (1) |tPHL – tPLH|
tsk(o)
Channel-to-channel output skew
tr
Output signal rise time
tf
Output signal fall time
tPHZ
Propagation delay, high-level-to-high-impedance output
tPZH
Propagation delay, high-impedance-to-high-level output
tPLZ
Propagation delay, low-level-to-high-impedance output
tPZL
Propagation delay, high-impedance-to-low-level output
tfs
Failsafe output delay time from input power loss
(1)
(2)
4
See Figure 1
MIN
TYP
40
MAX
95
10
(2)
2
See Figure 1
See Figure 2
See Figure 3
2
ns
ns
ns
2
15
20
15
20
15
20
15
20
12
UNIT
ns
μs
Also referred to as pulse skew.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
ISO7241A-EP
www.ti.com
SLLSE18 – JANUARY 2010
ELECTRICAL CHARACTERISTICS: VCC1 at 5-V, VCC2 at 3.3-V (1) OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
6.5
11
8
13
8
13
UNIT
SUPPLY CURRENT
Quiescent
ICC1
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
1 Mbps
Quiescent
ICC2
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
1 Mbps
mA
mA
ELECTRICAL CHARACTERISTICS
IOFF
Sleep mode output current
EN at 0 V, Single channel
VOH
High-level output voltage
IOH = –4 mA, See Figure 1
IOH = –20 μA, See Figure 1
VCC – 0.8
V
VCC – 0.1
IOL = 4 mA, See Figure 1
0.4
IOL = 20 μA, See Figure 1
0.1
VOL
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
IIL
Low-level input current
CI
Input capacitance to ground
CMTI
Common-mode transient immunity VI = VCC or 0 V, See Figure 4
(1)
μA
0
(5-V side)
150
mV
10
IN from 0 V to VCC
–10
IN at VCC, VI = 0.4 sin (4E6πt)
25
V
μA
2
pF
50
kV/μs
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V.
SWITCHING CHARACTERISTICS: VCC1 at 5-V, VCC2 at 3.3-V OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion (1) |tPHL – tPLH|
tsk(o)
Channel-to-channel output skew
tr
Output signal rise time
tf
Output signal fall time
tPHZ
Propagation delay, high-level-to-high-impedance output
tPZH
Propagation delay, high-impedance-to-high-level output
tPLZ
Propagation delay, low-level-to-high-impedance output
tPZL
Propagation delay, high-impedance-to-low-level output
tfs
Failsafe output delay time from input power loss
(1)
(2)
See Figure 1
MIN
TYP
40
MAX
100
11
(2)
3
See Figure 1
See Figure 2
See Figure 3
2
UNIT
ns
ns
ns
2
15
20
15
20
15
20
15
20
18
ns
μs
Also known as pulse skew
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
5
ISO7241A-EP
SLLSE18 – JANUARY 2010
www.ti.com
ELECTRICAL CHARACTERISTICS: VCC1 at 3.3-V, VCC2 at 5-V (1) OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
UNIT
SUPPLY CURRENT
Quiescent
ICC1
Quiescent
ICC2
4
7
4
7
13
20
13
20
VI = VCC or 0 V, All channels, no load, EN1 at 3 V, EN2 at 3 V
1 Mbps
VI = VCC or 0 V, All channels, no load, EN1 at 3 V, EN2 at 3 V
1 Mbps
mA
mA
ELECTRICAL CHARACTERISTICS
IOFF
Sleep mode output current EN at VCC, Single channel
VOH
High-level output voltage
IOH = –4 mA, See Figure 1
VCC – 0.8
IOH = –20 μA, See Figure 1
V
VCC – 0.1
IOL = 4 mA, See Figure 1
0.4
IOL = 20 μA, See Figure 1
0.1
VOL
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
IIL
Low-level input current
CI
Input capacitance to
ground
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient
immunity
VI = VCC or 0 V, See Figure 4
(1)
μA
0
(5-V side)
150
mV
10
IN from 0 V to VCC
–10
2
25
V
μA
pF
50
kV/μs
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V.
SWITCHING CHARACTERISTICS: VCC1 at 3.3-V and VCC2 at 5-V OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
40
100
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion (1) |tPHL – tPLH|
tsk(o)
Channel-to-channel output skew
tr
Output signal rise time
tf
Output signal fall time
tPHZ
Propagation delay, high-level-to-high-impedance output
15
20
tPZH
Propagation delay, high-impedance-to-high-level output
15
20
tPLZ
Propagation delay, low-level-to-high-impedance output
15
20
tPZL
Propagation delay, high-impedance-to-low-level output
15
20
tfs
Failsafe output delay time from input power loss
(1)
(2)
6
See Figure 1
11
(2)
2.5
See Figure 1
See Figure 2
See Figure 3
2
ns
ns
ns
2
12
UNIT
ns
μs
Also known as pulse skew
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
ISO7241A-EP
www.ti.com
SLLSE18 – JANUARY 2010
ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3 V (1) OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
UNIT
SUPPLY CURRENT
Quiescent
ICC1
1 Mbps
Quiescent
ICC2
1 Mbps
VI = VCC or 0 V, all channels, no load, EN1 at 3 V,
EN2 at 3 V
4
7
4
7
VI = VCC or 0 V, all channels, no load, EN1 at 3 V,
EN2 at 3 V
8
13
8
13
mA
mA
ELECTRICAL CHARACTERISTICS
IOFF
Sleep mode output current
EN at 0 V, single channel
VCC – 0.4
IOH = –20 μA, See Figure 1
VCC – 0.1
VOH
High-level output voltage
VOL
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
IIL
Low-level input current
CI
Input capacitance to ground
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient immunity
VI = VCC or 0 V, See Figure 4
(1)
μA
0
IOH = –4 mA, See Figure 1
V
IOL = 4 mA, See Figure 1
0.4
IOL = 20 μA, See Figure 1
0.1
150
mV
10
IN from 0 V or VCC
–10
25
V
μA
2
pF
50
kV/μs
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V.
SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 3.3-V OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH| (1)
tsk(o)
Channel-to-channel output skew
tr
Output signal rise time
tf
Output signal fall time
tPHZ
Propagation delay, high-level-to-high-impedance output
tPZH
Propagation delay, high-impedance-to-high-level output
tPLZ
Propagation delay, low-level-to-high-impedance output
tPZL
Propagation delay, high-impedance-to-low-level output
tfs
Failsafe output delay time from input power loss
(1)
(2)
See Figure 1
MIN
TYP MAX
45
110
12
(2)
UNIT
ns
3.5
See Figure 1
See Figure 2
See Figure 3
2
ns
2
15
20
15
20
15
20
15
20
18
ns
μs
Also referred to as pulse skew.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
7
ISO7241A-EP
SLLSE18 – JANUARY 2010
www.ti.com
ISOLATION BARRIER
PARAMETER MEASUREMENT INFORMATION
IN
Input
Generator
VI
50 W
NOTE A
VCC1
VI
VCC1/2
VCC1/2
OUT
0V
tPHL
tPLH
CL
NOTE B
VO
VO
VOH
90%
50%
50%
10%
tr
VOL
tf
A.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3
ns, tf ≤ 3 ns, ZO = 50Ω.
B.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms
Vcc
Vcc
ISOLATION BARRIER
0V
RL = 1 kW ±1%
IN
Input
Generator
VI
OUT
EN
Vcc/2
VI
t PZL
VO
VO
CL
Vcc/2
0V
t PLZ
Vcc
0.5 V
50%
NOTE
B
50 W
VOL
3V
ISOLATION BARRIER
NOTE A
IN
Input
Generator
VI
Vcc
OUT
VO
Vcc/2
VI
Vcc/2
0V
EN
50 W
t PZH
CL
NOTE
B
RL = 1 kW ±1%
VO
VOH
50%
0.5 V
t PHZ
0V
NOTE A
A.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3
ns, tf ≤ 3 ns, ZO = 50Ω.
B.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
Figure 2. Enable/Disable Propagation Delay Time Test Circuit and Waveform
8
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
ISO7241A-EP
www.ti.com
SLLSE18 – JANUARY 2010
PARAMETER MEASUREMENT INFORMATION (continued)
VI
0V
or
VCC1
IN
VCC1
ISOLATION BARRIER
VCC1
2.7 V
VI
OUT
VO
0V
tfs
VOH
CL
NOTE B
VO
50%
fs low
VOL
A.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
B.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3
ns, tf ≤ 3 ns, ZO = 50Ω.
Figure 3. Failsafe Delay Time Test Circuit and Voltage Waveforms
VCC1
VCC2
S1
IN
ISOLATION BARRIER
C = 0.1 mF± 1%
GND1
C = 0.1 mF± 1%
OUT
NOTE B
Pass-fail criteria:
Output must
remain stable
VOH or VOL
GND2
VCM
A.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
B.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3
ns, tf ≤ 3 ns, ZO = 50Ω.
Figure 4. Common-Mode Transient Immunity Test Circuit and Voltage Waveform
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
9
ISO7241A-EP
SLLSE18 – JANUARY 2010
www.ti.com
DEVICE INFORMATION
PACKAGE CHARACTERISTICS
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
UNIT
L(I01)
Minimum air gap (Clearance)
Shortest terminal-to-terminal distance through air
8.34
mm
L(I02)
Minimum external tracking (Creepage)
Shortest terminal-to-terminal distance across the
package surface
8.1
mm
0.008
mm
Minimum Internal Gap (Internal
Clearance)
Distance through the insulation
RIO
Isolation resistance
Input to output, VIO = 500 V, all pins on each side of the
barrier tied together creating a two-terminal device
CIO
Barrier capacitance Input to output
CI
Input capacitance to ground
>1012
Ω
VI = 0.4 sin (4E6πt)
2
pF
VI = 0.4 sin (4E6πt)
2
pF
DEVICE I/O SCHEMATICS
Enable
VCC
Output
Input
VCC
VCC
VCC
VCC
1 MW
1 MW
500 W
8W
500 W
IN
EN
VCC
VCC
OUT
13 W
REGULATORY INFORMATION
VDE
CSA
UL
Certified according to IEC
60747-5-2
Approved under CSA Component Acceptance
Notice
Recognized under 1577 Component Recognition
Program (1)
File Number: 40016131
File Number: 1698195
File Number: E181974
(1)
Production tested ≥ 3000 Vrms for 1 second in accordance with UL 1577.
THERMAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
Low-K Thermal Resistance (1)
168
High-K Thermal Resistance
96.1
UNIT
θJA
Junction-to-air
θJB
Junction-to-Board Thermal Resistance
61
°C/W
θJC
Junction-to-Case Thermal Resistance
48
°C/W
PD
(1)
10
Device Power Dissipation
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,
Input a 50% duty cycle square wave
°C/W
220
mW
Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
ISO7241A-EP
www.ti.com
SLLSE18 – JANUARY 2010
TYPICAL CHARACTERISTIC CURVES
INPUT VOLTAGE THRESHOLD
vs
FREE-AIR TEMPERATURE
VCC1 FAILSAFE THRESHOLD
vs
FREE-AIR TEMPERATURE
1.4
3
5 V Vth+
1.3
2.9
VCC1 - Failsafe Threshold - V
Input Voltage Threshold - V
1.35
3.3 V Vth+
1.25
1.2
Air Flow at 7 cf/m,
Low_K Board
1.15
5 V Vth1.1
2.8
VCC at 5 V or 3.3 V,
Load = 15 pF,
Air Flow at 7/cf/m,
Low-K Board
2.7
Vfs+
2.6
2.5
Vfs-
2.4
2.3
2.2
1.05
1
-40
3.3 V Vth-25
-10
2.1
5
20
35
50
65
80
TA - Free-Air Temperature - °C
95
110
2
-40
125
-10
5
20
35
50
65
80
95
110
125
TA - Free-Air Temperature - °C
Figure 5.
Figure 6.
HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
50
50
VCC = 5 V
Load = 15 pF,
TA = 25°C
Load = 15 pF,
TA = 25°C
45
40
IO - Output Current - mA
40
IO - Output Current - mA
-25
VCC = 3.3 V
30
20
35
VCC = 3.3 V
30
25
VCC = 5 V
20
15
10
10
5
0
0
0
2
4
VO - Output Voltage - V
6
0
Figure 7.
1
2
3
VO - Output Voltage - V
4
5
Figure 8.
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
11
ISO7241A-EP
SLLSE18 – JANUARY 2010
www.ti.com
APPLICATION INFORMATION
2 mm
max. from
VCC1
VCC1
2 mm
max. from
VCC2
VCC2
0.1 mF
0.1 mF
1
16
2
15
IN A
3
14
OUT A
IN B
4
13
OUT B
IN C
5
12
OUT C
OUT D
6
11
IND
7
10
8
9
GND1
GND2
EN1
EN2
GND2
GND1
ISO7241A
Figure 9. Typical Application Circuit
LIFE EXPECTANCY vs. WORKING VOLTAGE
WORKING LIFE -- YEARS
100
VIORM at 560-V
28 Years
10
0
120
250
500
750
880
1000
WORKING VOLTAGE (VIORM) -- V
Figure 10. Time-Dependant Dielectric Breakdown Testing Results
12
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
ISO7241A-EP
www.ti.com
SLLSE18 – JANUARY 2010
PRODUCT NOTIFICATION
An ISO7241A anomaly occurs when a negative-going pulse below the specified 1-μs minimum bit width is input
to the device. The output locks in a logic-low condition until the next rising edge occurs after a 1-μs period.
Positive noise edges in pulses of less than the minimum specified 1 μs have no effect on the device, and are
properly filtered.
To prevent noise from interfering with ISO7241A performance, it is recommended that an appropriately sized
capacitor be placed on each input of the device
Figure 11. ISO7241A Anomaly
Submit Documentation Feedback
Copyright © 2010, Texas Instruments Incorporated
Product Folder Link(s): ISO7241A-EP
13
PACKAGE OPTION ADDENDUM
www.ti.com
20-Feb-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
Samples
(Requires Login)
ISO7241AMDWREP
ACTIVE
SOIC
DW
16
2000
TBD
Call TI
Call TI
ISO7241AMDWREPG4
ACTIVE
SOIC
DW
16
2000
TBD
Call TI
Call TI
V62/10606-01XE
ACTIVE
SOIC
DW
16
2000
TBD
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF ISO7241A-EP :
• Catalog: ISO7241A
NOTE: Qualified Version Definitions:
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
20-Feb-2012
• Catalog - TI's standard catalog product
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
Wireless Connectivity
www.ti.com/wirelessconnectivity
TI E2E Community Home Page
e2e.ti.com
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated