ANPEC APL5336KI-TRL

APL5336
Source and Sink, 1.5A, Fast Transient Response Linear Regulator
Features
General Description
•
Provide Bi-direction Output Currents
-Sourcing and Sinking Current up to 1.5A
The APL5336 linear regulator is designed to provide a
regulated voltage with bi-direction output current for DDR-
•
Built-in Soft-Start
•
•
•
Power-On-Reset Monitoring on VCNTL and VIN
pins
Fast Transient Response
Stable with Ceramic Output Capacitors
SDRAM termination voltage. The APL5336 integrates two
power transistors to source or sink load current up to
•
±20mV High System Output Accuracy over Load
1.5A. It also features internal soft-start, current-limit, thermal shutdown and enable control functions into a single
chip.
The internal soft-start controls the rising rate of the output
voltage to prevent inrush current during start-up. The
current-limit circuit detects the output current and limits
and Temperature Ranges
•
Adjustable Output Voltage by External Resistors
•
Current-Limit Protection
•
On-Chip Thermal Shutdown
•
Shutdown for Standby or Suspend Mode
•
Simple SOP-8 and SOP-8 with Exposed Pad
the current during short-circuit or current overload
conditions. The on-chip thermal shutdown provides thermal protection against any combination of overload that
would create excessive junction temperatures.
The output voltage of APL5336 is regulated to track the
voltage on VREF pin. An proper resistor divider connected
(SOP-8P) Packages
•
to VIN, GND, and VREF pins is used to provide a half
voltage of VIN to VREF pin. In addition, connect an exter-
Lead Free and Green Devices Available
nal ceramic capacitor and a open-drain transistor to VREF
pin for external soft-start and shutdown control.
(RoHS Compliant)
Applications
Pulling and holding the voltage on VREF below the enable voltage threshold shuts down the output. The output
•
DDRII/III SDRAM Termination Voltage
•
Motherboard and VGA Card Power Supplies
•
Setop Box
•
SSTL-2/3 Termination Voltage
of APL5336 will be high impedance after being shut down
by VREF or the thermal shutdown function.
Pin Configuration
Simplified Application Circuit
VCNTL
+5V
VIN
+1.8V/+1.5V
1
3
VIN
VCNTL
APL5336
VREF
VOUT
GND
2
VIN 1
8 VCNTL
GND 2
7 VCNTL
VREF 3
6 VCNTL
VOUT 4
5 VCNTL
6
4
Top View of SOP-8
VOUT
0.9V / 0.75V
Shutdown
Enable
VIN 1
8 NC
GND 2
7 NC
VREF 3
6 VCNTL
VOUT 4
5 NC
Top View of SOP-8P
Exposed Pad (connected to GND plane
for better heat dissipation)
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
1
www.anpec.com.tw
APL5336
Ordering and Marking Information
Package Code
K : SOP-8
KA : SOP-8P
Operating Ambient Temperature Range
I : -40 to 85 ° C
Handling Code
TR : Tape & Reel
Assembly Material
L : Lead Free Device G : Halogen and Lead Free Device
APL5336
Assembly Material
Handling Code
Temperature Range
Package Code
APL5336 K:
APL5336
XXXXX
APL5336 KA:
APL5336
XXXXX
XXXXX - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant
with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak
reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in
homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).
Absolute Maximum Ratings
Symbol
(Note 1)
Rating
Unit
VCNTL Supply Voltage (VCNTL to GND)
-0.3 ~ 7
V
VIN Supply Voltage (VIN to GND)
-0.3 ~ 7
V
VREF
VREF Input Voltage (VREF to GND)
-0.3 ~ 7
V
VOUT
VOUT Output Voltage (VOUT to GND)
-0.3 ~ VIN+0.3V
V
VCNTL
VIN
Parameter
PD
Power Dissipation
TJ
Junction Temperature
TSTG
TSDR
Internally Limited
Storage Temperature Range
Maximum Lead Soldering Temperature, 10 Seconds
W
150
o
-65 ~ 150
o
260
o
C
C
C
Note 1: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device.
Thermal Characteristics
Symbol
Parameter
Rating
Unit
SOP-8
80
°C/W
SOP-8P
55
Junction-to-Ambient Thermal Resistance in Free Air (Note 2)
θJA
θJC
Junction-to-Case Thermal Resistance in Free Air (Note 3)
SOP-8P
o
C/W
20
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Note 3: The exposed pad of SOP-8P is soldered directly on the PCB. The case temperature is measured at the center of the exposed pad on the underside
of the SOP-8P package.
Recommended Operating Conditions
Symbol
VCNTL
Parameter
Range
Unit
VCNTL Supply Voltage
3.0 ~ 5.5
V
VIN
VIN Supply Voltage
1.2 ~ 5.5
V
VREF
VREF Input Voltage
0.7 ~ VCNTL – 2.2
V
VOUT
VOUT Output Voltage
VREF ± 0.02
V
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
2
www.anpec.com.tw
APL5336
Recommended Operating Conditions (Cont.)
Symbol
Parameter
Range
Unit
-1.5 ~ +1.5
A
IOUT
VOUT Output Current (Note 4)
CIN
Capacitance of Input Capacitor
10 ~ 100
µF
Equivalent Series Resistor (ESR) of Input Capacitor
0 ~ 200
mΩ
COUT
TA
TJ
8 ~ 47
µF
Total Output Capacitance (Note 5)
10 ~ 330
µF
Ambient Temperature
-40 ~ 85
o
-40 ~ 125
o
Capacitance of Output Multi-layer Ceramic Capacitor (MLCC)
Junction Temperature
C
C
Note 4: The symbol “+” means the VOUT sources current to load; the symbol “-” means the VOUT sinks current from load to GND.
Note 5: It’s necessary to use a multi-layer ceramic capacitor 8µF at least as an output capacitor. Please place the ceramic capacitor near VOUT pin
as close as possible. Besides, the other kinds of capacitors (like Electrolytic, PoSCap, tantalum capacitors) can be used as the output
capacitors in parallel.
Electrical Characteristics
Refer to the typical application circuit. These specifications apply over VCNTL=5V, VIN=1.8V or 1.5V, VREF=0.5VIN, CIN=10µF, COUT=10µF
(MLCC) and TA= -40~85°C, unless otherwise specified. Typical values are at TA=25°C.
Symbol
Parameter
Test Conditions
APL5336
Unit
Min
Typ
Max
IOUT= 0A
-
1
2
mA
VREF=0V (Shutdown)
-
-
5
µA
VREF = GND (Shutdown)
-
-
5
µA
VCNTL Rising
2.5
2.75
2.9
V
-
0.35
-
V
VIN Rising
0.7
0.9
1.05
-
0.3
-
V
SUPPLY CURRENT
ICNTL
VCNTL Supply Current
IVIN
VIN Supply Current at Shutdown
POWER-ON-RESET (POR)
Rising VCNTL POR Threshold
VCNTL POR Hysteresis
Rising VIN POR Threshold
VIN POR Hysteresis
OUTPUT VOLTAGE
VOUT
VOS
VOUT Output Voltage
IOUT=0A, VREF=0.7V ~ 2.8V
-
VREF
-
V
System Accuracy
Over temperature and load current
ranges
-20
-
20
mV
IOUT=+10mA
-7
-1
-
IOUT=-10mA
-
+8
+12
IOUT=+10mA ~ +1.5A
-13
-8
-
IOUT=-10mA ~ -1.5A
-
+4
+8
VOUT Offset Voltage
(VOUT -VREF)
Load Regulation
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
3
mV
mV
www.anpec.com.tw
APL5336
Electrical Characteristics (Cont.)
Refer to the typical application circuit. These specifications apply over VCNTL=5V, VIN=1.8V or 1.5V, VREF=0.5VIN, CIN=10µF, COUT=10µF
(MLCC) and TA= -40~85°C, unless otherwise specified. Typical values are at TA=25°C.
Symbol
Parameter
APL5336
Test Conditions
Min
Typ
Max
2
3
Unit
PROTECTIONS
ILIM
Sourcing Current
(VIN=1.8V)
TJ=25oC
1.8
o
TJ=125 C
1.6
-
-
Sinking Current
(VIN=1.8V)
TJ=25oC
-2
-2.2
-3
TJ=125oC
-1.6
-
-
Sourcing Current
(VIN=1.5V)
TJ=25oC
1.6
1.8
2.6
TJ=125oC
1.1
-
-
TJ=25 C
-1.6
-1.8
-2.6
TJ=125oC
-1.1
-
-
-
150
-
-
40
-
Current-Limit
Sinking Current
(VIN=1.5V)
TSD
Thermal Shutdown Temperature
TJ rising
Thermal Shutdown Hysteresis
o
A
A
o
C
ENABLE and SOFT-START
VREF Enable Voltage Threshold
0.15
0.3
0.4
V
IVREF
VREF Bias Current
-100
-
+100
nA
TSS
Soft-Start Interval
0.1
0.2
0.4
ms
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
4
www.anpec.com.tw
APL5336
Typical Operating Characteristics
Sourcing Current-Limit vs.
Junction Temperature
VOUT Offset Voltage vs.
Junction Temperature
3.5
8
3
Current-Limit,ILIM (A)
VOUT Offset Voltage,VOS (mV)
10
6
IOUT= -10mA
4
IOUT= 10mA
2
0
-2
2.5
2
VIN=2.5V
1.5
VIN=1.8V
VIN=1.5V
1
Sourcing Current
VREF=0.5xVIN
VCNTL=5V
0.5
VIN=1.5V
0
-4
-50
-25
0
25
50
75
100
125
-50
150
-25
Junction Temperature (TJ ,oC)
Sinking Current-Limit vs.
Junction Temperature
3.5
-10
3
-20
2.5
VIN=2.5V
VIN=1.8V
VIN=1.5V
1.5
1
Sinking Current
VREF=0.5xVIN
VCNTL=5V
0.5
0
-50
-25
0
50
75
100
125
-50
-60
VIN=1.5V,IOUT=1.5A
VIN=1.5V,IOUT=0.5A
-80
1000
125
10000
100000
1000000
Frequency (HZ)
Sinking Current-Limit vs.
Junction Temperature
3
2.5
2.5
VIN=1.8V
2
Current-Limit,ILIM (A)
Current-Limit,ILIM (A)
100
VIN=2.5V,IOUT=1.5A
VIN=2.5V,IOUT=0.5A
-40
Sourcing Current-Limit vs.
Junction Temperature
1.5
VIN=1.5V
1
0
75
-30
Junction Temperature (TJ ,oC)
0.5
50
VCNTL=5V, COUT=10µF(MLCC)
VREF=0.5xVIN
-70
25
25
VCNTL Power Supply
Rejection Ratio (PSRR)
0
VCNTL PSRR (dB)
Current-Limit,ILIM (A)
4
2
0
Junction Temperature (TJ ,oC)
Sourcing Current
VREF=0.5xVIN
VCNTL=3.3V
-50
-25
0
2
1.5
VIN=1.8V
VIN=1.5V
1
0.5
Sinking Current
VREF=0.5xVIN
VCNTL=3.3V
0
25
50
75
100
-50
125
Junction Temperature (oC)
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
-25
0
25
50
75
100
125
Junction Temperature (oC)
5
www.anpec.com.tw
APL5336
Operating Waveforms
VCNTL = 5V, V IN = 1.8V or 1.5V, VREF=0.5xVIN, CIN=COUT=10µF(MLCC)
Load Transient Response (VIN=1.8V)
Load Transient Response (VIN=1.8V)
IOUT=10mA to 1.5A
IOUT=10mA to 1.5A to 10mA
VOUT
1
VOUT
1
IOUT
IOUT
2
2
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 1µs/Div
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 200µs/Div
Load Transient Response (VIN=1.8V)
Load Transient Response (VIN=1.8V)
IOUT=1.5A to 10mA
IOUT=-10mA to -1.5A to -10mA
VOUT
VOUT
1
1
IOUT
2
IOUT
2
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 200µs/Div
6
www.anpec.com.tw
APL5336
Operating Waveforms (Cont.)
VCNTL = 5V, V IN = 1.8V or 1.5V, VREF=0.5xVIN, CIN=COUT=10µF(MLCC)
Load Transient Response (VIN=1.8V)
Load Transient Response (VIN=1.8V)
IOUT=-10mA to -1.5A
IOUT=-1.5A to -10mA
VOUT
VOUT
1
1
IOUT
IOUT
2
2
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 1µs/Div
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 1µs/Div
Load Transient Response (VIN=1.5V)
Load Transient Response (VIN=1.5V)
IOUT=10mA to 1A
IOUT=10mA to 1A to 10mA
VOUT
1
VOUT
1
IOUT
IOUT
2
2
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 200µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 1µs/Div
7
www.anpec.com.tw
APL5336
Operating Waveforms (Cont.)
VCNTL = 5V, V IN = 1.8V or 1.5V, VREF=0.5xVIN, CIN=COUT=10µF(MLCC)
Load Transient Response (VIN=1.5V)
Load Transient Response (VIN=1.5V)
IOUT=1A to 10mA
IOUT=-10mA to -1A to -10mA
VOUT
VOUT
1
1
2
IOUT
IOUT
2
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 200µs/Div
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 1µs/Div
Load Transient Response (VIN=1.5V)
Load Transient Response (VIN=1.5V)
IOUT=-10mA to -1A
IOUT=-1A to -10mA
VOUT
VOUT
1
1
2
2
IOUT
IOUT
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 1µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
CH1: VOUT, 20mV/Div, AC
CH2: IOUT, 0.5A/Div, DC
TIME: 1µs/Div
8
www.anpec.com.tw
APL5336
Operating Waveforms (Cont.)
VCNTL = 5V, V IN = 1.8V or 1.5V, VREF=0.5xVIN, CIN=COUT=10µF(MLCC)
Power ON Test (VIN=1.8V)
RLoad=1 Ω
Power OFF Test (VIN=1.8V)
RLoad=1 Ω
VIN
VIN
1
1
VOUT
VOUT
IOUT
IOUT
2
2
3
3
CH1: VIN, 1V/Div, DC
CH2: VOUT, 500mV/Div, DC
CH3: IOUT, 1A/Div, DC
CH1: VIN, 1V/Div, DC
CH2: VOUT, 500mV/Div, DC
CH3: IOUT, 1A/Div, DC
TIME: 50ms/Div
TIME: 5ms/Div
Power OFF Test (VIN=1.5V)
Power ON Test (VIN=1.5V)
RLoad=1 Ω
RLoad=1 Ω
VIN
VIN
1
1
VOUT
VOUT
IOUT
2
2
IOUT
3
3
CH1: VIN, 1V/Div, DC
CH2: VOUT, 500mV/Div, DC
CH3: IOUT, 1A/Div, DC
CH1: VIN, 1V/Div, DC
CH2: VOUT, 500mV/Div, DC
CH3: IOUT, 1A/Div, DC
TIME: 50ms/Div
TIME: 5ms/Div
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
9
www.anpec.com.tw
APL5336
Pin Description
PIN NO.
PIN NAME
FUNCTION
1
VIN
Main Power Input Pin. Connect this pin to a voltage source and an input capacitor. The
APL5336 sources current to VOUT pin by controlling the upper pass MOSFET, providing a
current path from VIN to VOUT.
2
GND
Power and Signal Ground. Connect this pin to system ground plane with shortest traces.
The APL5336 sinks current from VOUT pin by controlling the lower pass MOSFET, providing
a current path from VOUT to GND. This pin is also the ground path for internal control
circuitry.
3
VREF
Reference Voltage Input and Active-high Enable Control Pin. Apply a voltage to this pin as a
reference voltage for the APL5336. Connect this pin to a resistor diver, between VIN and
GND, and a capacitor for filtering noise purpose. Applying and holding the voltage below the
enable voltage threshold on this pin by an open-drain transistor shuts down the output.
During shutdown, the VOUT pin has high input impedance.
4
VOUT
Output Pin of The Regulator. Connect this pin to load and output capacitors (>8µF MLCC is
necessary) required for stability and improving transient response. The output voltage is
regulated to track the reference voltage and capable of sourcing or sinking current up to
1.5A.
5, 7, 8 (SOP-8P)
NC
5 ~ 8 (SOP-8)
6 (SOP-8P)
VCNTL
Power Input Pin for Internal Control Circuitry. Connect this pin to a voltage source, providing
a bias for the internal control circuitry. A decoupling capacitor is connected near this pin.
Exposed Pad
(SOP-8P only)
GND
Chip Substrate Connection of The Chip. Connect this pad to system ground plane for good
thermal conductivity.
No Internal Connection.
Block Diagram
VIN
VCNTL
Power-OnReset
VREF
Enable
EN
POR
VREF
Thermal
Shutdown
THSD
Error
Amplifier
and
Soft-Start
VOUT
CurrentLimit
GND
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
10
www.anpec.com.tw
APL5336
Typical Application Circuit
VCNTL
+5V
VIN
+1.8V/+1.5V
1
C2
47µF
R1
100kΩ
3
VIN
VCNTL
APL5336
VREF
GND
Q1
Enable
R2
100kΩ
4
VOUT
0.9V/0.75V
2
VREF
Shutdown
VOUT
C1
1µF
6
C5
10µF
C4
1µF
C3
100µF
(optional)
The ceramic capacitor C5 ( at least 8µF) is necessary for output stability.
Function Description
Power-On-Reset
low 0.3V (typical) shuts down the output of the regulator.
In the typical application, an NPN transistor or N-channel
A Power-On-Reset (POR) circuit monitors both input voltages at VCNTL and VIN pins to prevent wrong logic
MOSFET is used to pull down the VREF while applying a
“high” signal to turn on the transistor. When shutdown
controls. The POR function initiates a soft-start process
after both of the supply voltages exceed their rising POR
function is active, both of the internal power MOSFETs are
turned off and the impedance of the VOUT pin is larger
voltage thresholds during powering on.
than 10MΩ.
Output Voltage Regulation
Internal and External Soft-Start
The output voltage on VOUT pin is regulated to track the
reference voltage applied on VREF pin. Two internal N-
The APL5336 is designed with an internal soft-start function to control the rise rate of the output voltage to prevent
channel power MOSFETs controlled by high bandwidth
error amplifiers regulate the output voltage by sourcing
inrush current during start-up.
When release the pull-low transistor connected with VREF
current from VIN pin or sinking current to GND pin. An
internal output voltage sense pad is bonded to the VOUT
pin, the current via the resistor divider charges the external soft-start capacitor (C4) and the VREF starts to rise up.
pin with a bonding wire for perfect load regulation.
For preventing the two power MOSFETs from shoot-
The IC starts a soft-start process when the VREF reaches
the enable voltage threshold. The output voltage is regu-
through, a small voltage offset between the positive inputs of the two error amplifiers is designed. It results in
lated to follow the lower voltage, which is either the internal soft-start voltage ramp or the VREF voltage, to rise up.
higher output voltage while the regulator sinks light or
heavy load current.
The external soft-start interval is programmable by the
resistor-divider and the soft-start capacitor (C4).
The APL5336 provides very fast load transient response
at small output capacitance to save total cost.
Thermal Shutdown
Current-Limit
The thermal shutdown circuit limits the junction temperature of the APL5336. When the junction temperature ex-
The APL5336 monitors the output current, both sourcing
and sinking current, and limits the maximum output cur-
ceeds 150 C, a thermal sensor turns off the both pass
transistors, allowing the device to cool down. The ther-
rent to prevent damages during current overload or shortcircuit (shorted from VOUT to GND or VIN) conditions.
mal sensor allows the regulator to regulate again after
o
the junction temperature cools by 40 C, resulting in a
Enable
The VREF pin is a multi-function input pin which is the
pulsed output during continuous thermal overload
o
conditions. The thermal limit is designed with a 40 C
reference voltage input pin and the enable control input
pin. Applying and holding the voltage (VREF) on VREF be-
hysteresis to lower the average TJ during continuous thermal overload conditions, increasing lifetime of the
o
APL5336.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
11
www.anpec.com.tw
APL5336
Application Information
Table 1 provides the suitable output capacitors for
APL5336
Power Sequencing
The input sequence of powers applied for VIN and VCNTL
Vendor
Murata
is not necessary to be concerned.
Description
10µF, 6.3V, X7R, 0805, GRM21BR70J106K
10µF, 6.3V, X5R, 0805, GRM21BR60J106K
Reference Voltage
Murata website: www.murata.com
A reference voltage is applied at the VREF pin by a resistor divider between VIN and GND pins. An external by-
Table 1: Output Capacitor Guide
pass capacitor is also connected to VREF. The capacitor
and the resistor divider form a low-pass filter to reduce
Operation Region and Power Dissipation
The APL5336 maximum power dissipation depends on
the thermal resistance and temperature difference be-
the inherent reference noise from VIN. The capacitor is a
0.1µF or greater ceramic capacitor and connected as close
tween the die junction and ambient air. The power dissipation PD across the device is:
to VREF as possible. More capacitance and large resistor divider will increase the soft-start interval. Do not place
PD ≤
any additional loading on this reference input pin.
Input Capacitor
(TJ − TA )
θJA
Where (TJ-TA) is the temperature difference between the
junction and ambient air. θJA is the thermal resistance
The APL5336 requires proper input capacitors to supply
current surge during stepping load transients to prevent
o
between junction and ambient air. Assuming the TA=25 C
o
and maximum TJ=150 C (typical thermal limit threshold),
the input rail from dropping. Because the parasitic inductors from the voltage sources or other bulk capacitors to
the maximum power dissipation is calculated as:
the VIN pin limit the slew rate of the input current, more
(150 − 25)
80
= 1.56( W )
PD(max) =
parasitic inductance needs more input capacitance. For
the APL5336, the total capacitance of input capacitors
value including MLCC and aluminum electrolytic capaci-
For normal operation, do not exceed the maximum junc-
tors should be larger than 10µF.
For VCNTL pin, a capacitor of 0.47µF (MLCC) or above is
o
tion temperature of TJ = 125 C. The calculated power dissipation should less than:
recommended for noise decoupling.
(125 − 25)
80
= 1.25( W )
PD =
Output Capacitor
The APL5336 needs a proper output capacitor to maintain circuit stability and improve transient response. In
order to insure the circuit stability, a 10µF X5R or X7R
PCB Layout Consideration
MLCC output capacitor is sufficient at all operating temperatures and it must be placed near the VOUT. The maxi-
Figure 1 illustrates the layout. Below is a checklist for
your layout:
mum distance from output capacitor to VOUT must within
10mm. Total output capacitors value including MLCC and
1. Please place the input capacitors close to the VIN.
2. Please place the output capacitors close to the VOUT,
aluminum electrolytic capacitors should be larger than
10µF.
a MLCC capacitor larger than 8µF must be placed
near the VOUT. The distance from VOUT to output
MLCC must be less than 10mm.
3. To place APL5336 and output capacitors near the load
is good for load transient response.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
12
www.anpec.com.tw
APL5336
Application Information (Cont.)
Recommended Minimum Footprint
4. Large current paths, the bold lines in Figure 1, must
0.024
8
7
6
5
8
0.072
have wide tracks.
5. For SOP-8P package, please solder the thermal pad
0.024
7
to the APL5336 to top-layer ground plane. Numerous
vias 0.254mm in diameter should be used to connect
5
0.138
0.118
0.212
0.212
both top-layer and internal ground planes. The ground
planes and PCB form a heat sink to channel major
6
0.072
PCB Layout Consideration (Cont.)
power dissipation of the APL5336 into ambient air.
Large ground plane is good for heatsinking. Optimum
performance can only be achieved when the device is
mounted on a PC board according to the board layout
1
2
0.050
diagrams which are shown as Figure 2.
3
4
Unit : Inch
SOP-8
1
2
0.050
3
4
Unit : Inch
SOP-8P
APL5336
VIN
C2
VCNTL
VREF
VOUT
GND
C5
C3
(optional)
Figure 1
For dissipating
heat
VCNTL
C2
+
Ground
C3
+
C5
VIN
<10mm
VOUT
SOP-8
VCNTL
For dissipating
heat
Ground
C2
+
C3
+
C5
VIN
<10mm
VOUT
Ground
SOP-8P
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
13
www.anpec.com.tw
APL5336
Package Information
SOP-8
D
E
E1
SEE VIEW A
h X 45
°
c
A
0.25
b
GAUGE PLANE
SEATING PLANE
A1
A2
e
L
VIEW A
S
Y
M
B
O
L
SOP-8
INCHES
MILLIMETERS
MIN.
MAX.
A
MIN.
MAX.
1.75
0.069
0.004
0.25
0.010
A1
0.10
A2
1.25
b
0.31
0.51
0.012
0.020
c
0.17
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
5.80
6.20
0.228
0.244
E1
3.80
4.00
0.150
0.157
e
0.049
1.27 BSC
0.050 BSC
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
0
0°
8°
0°
8°
Note: 1. Follow JEDEC MS-012 AA.
2. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
3. Dimension “E” does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 10 mil per side.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
14
www.anpec.com.tw
APL5336
Package Information
SOP-8P
D
SEE VIEW
A
E
E1
THERMAL
PAD
E2
D1
h X 45
°
c
A
0.25
b
L
0
GAUGE PLANE
SEATING PLANE
A1
A2
e
VIEW A
S
Y
M
B
O
L
SOP-8P
MILLIMETERS
MIN.
INCHES
MAX.
A
MAX.
MIN.
0.063
1.60
A1
0.00
A2
1.25
b
0.31
0.006
0.000
0.15
0.049
0.51
0.012
0.020
0.010
c
0.17
0.25
0.007
D
4.80
5.00
0.189
0.197
D1
2.25
3.50
0.098
0.138
E
5.80
6.20
0.228
0.244
E1
3.80
4.00
0.150
0.157
E2
2.00
3.00
0.079
0.118
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
0
0°
8°
0°
e
1.27 BSC
0.050 BSC
8°
Note : 1. Follow JEDEC MS-012 BA.
2. Dimension "D" does not include mold flash, protrusions
or gate burrs. Mold flash, protrusion or gate burrs shall not
exceed 6 mil per side .
3. Dimension "E" does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 10 mil per side.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
15
www.anpec.com.tw
APL5336
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
A
H
330.0±2.00 50 MIN.
SOP-8(P)
P0
4.0±0.10
T1
P1
8.0±0.10
C
d
D
12.4+2.00 13.0+0.50
1.5 MIN.
-0.00
-0.20
P2
D0
2.0±0.05
1.5+0.10
-0.00
D1
E1
20.2 MIN. 12.0±0.30 1.75±0.10
T
1.5 MIN.
W
A0
B0
F
5.5±0.05
K0
0.6+0.00
6.40±0.20 5.20±0.20 2.10±0.20
-0.40
(mm)
Devices Per Unit
Package Type
SOP-8(P)
Unit
Tape & Reel
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
Quantity
2500
16
www.anpec.com.tw
APL5336
Reflow Condition
(IR/Convection or VPR Reflow)
tp
TP
Critical Zone
TL to TP
Ramp-up
Temperature
TL
tL
Tsmax
Tsmin
Ramp-down
ts
Preheat
25
t 25°C to Peak
Time
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TST
ESD
Latch-Up
Method
MIL-STD-883D-2003
MIL-STD-883D-1005.7
JESD-22-B, A102
MIL-STD-883D-1011.9
MIL-STD-883D-3015.7
JESD 78
Description
245°C, 5 sec
1000 Hrs Bias @125°C
168 Hrs, 100%RH, 121°C
-65°C~150°C, 200 Cycles
VHBM > 2KV, VMM > 200V
10ms, 1tr > 100mA
Classification Reflow Profiles
Profile Feature
Average ramp-up rate
(TL to TP)
Preheat
- Temperature Min (Tsmin)
- Temperature Max (Tsmax)
- Time (min to max) (ts)
Time maintained above:
- Temperature (TL)
- Time (tL)
Peak/Classification Temperature (Tp)
Time within 5°C of actual
Peak Temperature (tp)
Ramp-down Rate
Time 25°C to Peak Temperature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
3°C/second max.
3°C/second max.
100°C
150°C
60-120 seconds
150°C
200°C
60-180 seconds
183°C
60-150 seconds
217°C
60-150 seconds
See table 1
See table 2
10-30 seconds
20-40 seconds
6°C/second max.
6°C/second max.
6 minutes max.
8 minutes max.
Note: All temperatures refer to topside of the package. Measured on the body surface.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
17
www.anpec.com.tw
APL5336
Classification Reflow Profiles (Cont.)
Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures
3
3
Package Thickness
Volume mm
<350
Volume mm
≥350
<2.5 mm
≥2.5 mm
240 +0/-5°C
225 +0/-5°C
225 +0/-5°C
225 +0/-5°C
Table 2. Pb-free Process – Package Classification Reflow Temperatures
3
Package Thickness
3
Volume mm
<350
Volume mm
350-2000
3
Volume mm
>2000
<1.6 mm
260 +0°C*
260 +0°C*
260 +0°C*
1.6 mm – 2.5 mm
260 +0°C*
250 +0°C*
245 +0°C*
≥2.5 mm
250 +0°C*
245 +0°C*
245 +0°C*
* Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated
classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL
level.
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Apr., 2008
18
www.anpec.com.tw