TI TLC5911

TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
D
D
D
D
D
D
D
D
Drive Capability and Output Counts
– 80 mA (Current Sink) x 16 Bits
Constant Current Output Range
– 5 to 80 mA (Current Value Setting for All
Output Terminals Using External Resistor
and Internal Brightness Control Register)
Constant Current Accuracy
– ± 4 % (Maximum Error Between Bits)
Voltage Applied to Constant Current Output
Terminals
– Minimum 0.4 V (Output Current 5 mA to
40 mA)
– Minimum 0.7 V (Output Current 40 mA to
80 mA)
1024 Gray Scale Display
– Pulse Width Control 1024 Steps
Brightness Adjustment†
– All Output Current Adjustment for 64
Steps (Adjustment for Brightness
Deviation Between LED Modules)
– Output Current Adjustment by Output
(OUT0 to OUT15) for 128 Steps
(Adjustment for Brightness Deviation
Between Dots)
– Brightness Control by 16 Steps
Frequency Division Gray Scale Control
Clock (Brightness Adjustment for Panel)
Gray Scale Clock Generation
– Gray Scale Control Clock Generation by
Internal PLL or External Input Selectable
Clock Invert/Noninvert Selectable at
Cascade Operation
– Clock Invert Selectable to Reduce
Changes in Duty Ratio
D
D
D
D
D
D
D
D
D
D
Protection
– Watchdog Timer (WDT) Function (Turn
Output Off When Scan Signal Stopped)
– Thermal Shutdown (TSD) Function (Turn
Output Off When Junction Temperature
Exceeds Limit)
LOD
– LED Open Detection (Detection for LED
Disconnection)
Data Input/Output‡
– Port A (for Data Display)
– Clock Synchronized 10 Bit Parallel Input
(Schmitt-Triggered Input)
– Clock Synchronized 10 Bit Parallel
Output (3-State Output)
– Port B (for Dot Correction Data)
– Clock Synchronized 7 Bit Parallel Input
(Schmitt-Triggered Input)
– Clock Synchronized 7 Bit Parallel Output
Input/Output Signal Level
– CMOS Level
Power Supply Voltage
– 4.5 V to 5.5 V (Logic, Analog and
Constant Current)
– 3 V to 5.5 V (Interface)
Maximum Output Voltage . . . 15 V
Data Transfer Rate . . . 20 MHz (Max)
Gray Scale Clock Frequency
– 16 MHz (Max) Using Internal PLL
– 8 MHz (Max) Using External Clock
Operating Free-Temperature Range
– 20°C to 85°C
100-Pin Package HTQFP (PD = 4.7 W,
TA = 25°C)
† Adjustable for these functions independently.
‡ Allows to write all the data at port A by setting.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
description
The TLC5911 is a constant current driver incorporating shift register, data latch, and constant current circuitry
with a current value adjustable, PLL circuitry for gray scale control clock generation, and 1024 gray scale display
using pulse width control. The output current is maximum 80 mA with 16 bits, and the current value of constant
current output can be set by one external resistor. The device has two channel I/O ports. The brightness
deviation between LED modules (ICs) can be adjusted by external data input from the display data port, and
the brightness control for the panel can be accomplished by the brightness adjustment circuitry. Independent
of these functions, the device incorporates the shift register and data latch to correct the deviation between
LEDs by adjusting the output current using data from the dot correction data port. Moreover, the device
incorporates WDT circuitry, which turns constant current output off when the scan signal stops during the
dynamic scanning operation, and TSD circuitry, which turns constant current output off when the junction
temperature exceeds the limit. Also the LED open detection (LOD) circuitry is used to make error signal output
at the LED disconnection.
pin assignments
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VCCLED
XDWN2TST
GNDANA
XDPOUT
WDCAP
TSENA
IREF
VCCANA
DCDOUT0
DCDOUT1
DCDOUT2
DCDOUT3
DCDOUT4
DCDOUT5
DCDOUT6
DOUT0
DOUT1
DOUT2
DOUT3
DOUT4
DOUT5
DOUT6
DOUT7
DOUT8
DOUT9
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
GNDLED
OUT0
OUT1
GNDLED
OUT2
OUT3
GNDLED
OUT4
OUT5
GNDLED
OUT6
OUT7
GNDLED
OUT8
OUT9
GNDLED
OUT10
OUT11
GNDLED
OUT12
OUT13
GNDLED
OUT14
OUT15
GNDLED
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
TEST3
TEST2
GNDLOG
TEST1
DPOL
DCENA
BCENA
VCCLOG
DCDIN6
DCDIN5
DCDIN4
DCDIN3
DCDIN2
DCDIN1
DCDIN0
DIN9
DIN8
DIN7
DIN6
DIN5
DIN4
DIN3
DIN2
DIN1
DIN0
PZP PACKAGE
(TOP VIEW)
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VCOIN
RBIAS
MAG0
MAG1
MAG2
PDOUT
GSPOL
GSCLK
BLANK
XENABLE
XOE
DCLK
XLATCH
DCCLK
XDCLAT
RSEL0
RSEL1
LEDCHK
NC
WDTRG
XDOWN1
XDOWN2
BOUT
XGSOUT
XPOUT
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
functional block diagram
XOE
BCENA
DCLK
DPOL
XENABLE
DOUT(9–0)
DCLK
Control
XDPOUT
DIN(9–0),
XLATCH
1 x 10 bit B.C.
Data Shift Register
Data Latch
16 x 10 bit
Data Shift Register
RSEL(1–0)
DCDIN(6–0),
XDCLAT,
DCCLK
..........
8
16 x 10 bit
Data Latch
..........
MAG(2–0), GSPOL,
GSCLK, RBIAS,
VCOIN, PDOUT
PLL
10 bit
Clock Countor
16 x 10 bit
Data Comparator
BLANK
WDCAP
WDTRG
..........
16 bit
LED Driver+LOD
WDT
LEDCHK
XDOWN2TST
..........
TSENA
XPOUT
XGSOUT
BOUT
OUT0
···
OUT15
XDOWN1
XDOWN2
16 bit
Current Controller
TSD
..........
IREF
16 x 7 bit
D.C. Data Latch
DCENA
..........
16 x 7 bit
D.C. Data Shift Register
DCDOUT(6–0)
Legend:
B.C. (Brightness Control): Adjustment for brightness deviation between LED modules, and between panels.
D.C. (Dot Control): Adjustment for brightness deviation between dots.
NOTE: All the input terminals are with Schmitt triggered inverter except RBIAS, VCOIN, PDOUT, IREF and WDCAP.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
functional block diagram for shift register and data latch
XOE
10 16
DATA
S/R
DCLK
DPOL
XENABLE
DCLK
Controller
a
10 16
DATA
Comparator
†
A
b
B
DCCLK
10
DATA
LATCH
a
c
10
b
A
10
L
c
10
DIN(9–0)
DOUT(9–0)
HI–Z
A
10
b
DCDIN(6–0)
10
10
a
B
H
10
B.C.
S/R
10
B.C.
LATCH
Clock Counter
Current Controller
c
7
a
XLATCH
XDCLAT
A
b
B
7
c
DCDOUT(6–0)
‡
7
RSEL(1–0)
D.C.
S/R
7 16
D.C.
LATCH
7 16
H
L
7 16
BCENA
Default
DCENA
† Connecting to 16th 10-bit Bus
‡ Connecting to 16th 7-bit Bus
Legend:
B.C. (Brightness Control): Adjustment for brightness deviation between LED modules, and between panels.
D.C. (Dot Control): Adjustment for brightness deviation between dots.
RSEL
RSEL1
4
RSEL0
CONNECTION
L
L
A – a, B – c
L
H
A – b, B – c
H
L
A–c
H
H
INHIBIT
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7 16
DATA
Comparator
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
equivalent input and output schematic diagrams
Input
DOUT0–9, DCDOUT0–6, XGSOUT, XPOUT, BOUT
VCCIF
VCCLOG
OUTPUT
INPUT
GNDLOG
GNDLOG
OUTn
XDOWN1, XDOWN2
XDOWN1, XDOWN2
OUTn
GNDLOG
GNDLED
Terminal Functions
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
TERMINAL
NAME
BCENA
NO.
94
I/O
DESCRIPTION
I
Brightness control enable. When BCENA is low, the brightness control latch is set to the
default value. The output current value in this status is 100% of the value set by an external
resistor. The frequency division ratio of GSCLK is1/1. When BCENA is high, writing to
brightness control latch is enabled.
BLANK
67
I
Blank (Light off). When BLANK is high, all output of the constant current driver are turned
off. When GSPOL is high, all the output is turned on (LED on) synchronizing to the falling
edge of GCLK after next rising edge of GSCLK when BLANK goes from high to low. When
GSPOL is low, all the output is turned on (LED on) synchronizing to the rising edge of GCLK
after next falling edge of GSCLK when BLANK goes from high to low.
BOUT
53
O
BLANK buffered output
DCCLK
62
I
Clock input for data transfer. The input data is from DCDIN (port B) . The output data at
DCDOUT. All data on the shift register for dot correction data from DCDIN is shifted by 1 bit
and is synchronized to the rising edge of DCCLK.
DCDIN0 –
DCDIN6
86,87,88,
89,90,91,92
I
Input for 7 bit parallel data (port B). These terminals are used as shift register input for dot
correction data.
DCDOUT0 –
DCDOUT6
34,35,36,
37,38,39,40
O
Output for 7 bit parallel data (port B). These terminals are used as shift register output for
dot correction data.
DCENA
95
I
Latch enable for dot correction data. When DCENA is low, the latch is set to the default value.
At this time, the output current value is 100% of the value set by an external resistor.
DCLK
64
I
Clock input for data transfer. The input data is from DIN (port A) , all the data on the shift
register selected by RSEL0, 1 and the output data at DOUT are shifted by 1 bit and
synchronized to DCLK. Note that whether synchronizing to the rising or falling edge of DCLK
is dependent on the value of DPOL.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
Terminal Functions (Continued)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
TERMINAL
NAME
I/O
DESCRIPTION
DIN0 – DIN9
76,77,78,79,80,
81,82,83,84,85
I
Input for 10 bit parallel data (port A). These terminals are inputs for shift register for gray
scale data, brightness control, and dot correction data. The register selected is determined
by RSEL0, 1.
DOUT0 – DOUT9
41,42,43,44,45,
46,47,48,49,50
O
Output for 10 bit parallel data (port A). These terminals are outputs for shift register for gray
scale data, brightness control, and dot correction data. The register selected is determined
by RSEL0, 1.
DPOL
96
I
Selects the valid edge of DCLK. When DPOL is high, the rising edge of DCLK is valid. When
DPOL is low, the falling edge of DCLK is valid.
GNDANA
28
Analog ground (Internally connected to GNDLOG and GNDLED)
GNDLOG
98
Logic ground (Internally connected to GNDANA and GNDLED)
GNDLED
1,4,7,10,13,
16,19,22,25
LED driver ground (Internally connected to GNDANA and GNDLED)
GSCLK
68
I
Clock input for gray scale. When MAG0 through MAG2 are all low, GSCLK is used for pulse
width control. When MAG0 through MAG2 are not low, GSCLK is used for PLL timing control.
The gray scale display is accomplished by lighting the LED until the number of GSCLK or
PLL clocks counted is equal to the data latched.
GSPOL
69
I
Select the valid edge of GSCLK. When GSPOL is high, the rising edge of GSCLK is valid.
When GSPOL is low, the falling edge of GSCLK is valid.
IREF
32
I/O
Constant current value setting. LED current is set to the desired value by connecting an
external resistor between IREF and GND. The 38 times current is compared to current
across the external resistor sink on the output terminal.
LEDCHK
58
I
LED disconnection detection enable. When LEDCHK is high, the LED disconnection
detection is enabled and XDOWN2 is valid. When LEDCHK is low, the LED disconnection
detection is disabled.
73,72,71
I
PLL multiple ratio setting. The clock frequency generated by PLL referenced to GSCLK is
set .
MAG0 – MAG2
NC
57
No internal connection
2,3,5,6,8,9,11,
12,14,15,17,18,
20,21,23,24
O
Constant current output
PDOUT
70
I/O
Resistor connection for PLL feedback adjustment
RBIAS
74
I/O
Resistor connection for PLL oscillation frequency setting
OUT0 – DOUT15
60
59
I
Input/output port selection and shift register data latch switching.
When RSEL1 is low and RSEL0 is low, the gray scale data shift register latch is selected to
port A, and the dot correction register latch is selected to port B.
When RSEL1 is low and RSEL0 is high, the brightness control register latch is selected to
port A, and the dot correction register latch is selected to port B.
When RSEL1 is high and RSEL0 is low, the dot correction register latch is selected to port A
and no register latch is selected to port B.
TEST1 – TEST3
97,99,100
I
TEST. Factory test terminal. These terminals should be connected to GND.
THERMAL PAD
Package bottom
RSEL0
RSEL1
6
NO.
Heat sink pad. This pad is connected to the lowest potential IC or thermal layer.
TSENA
31
I
TSD enable. When TSENA is high, TSD is enabled. When TSENA is low, TSD is disabled.
VCCANA
33
Analog power supply voltage
VCCLOG
93
Logic power supply voltage
VCCLED
26
LED driver power supply voltage
VCOIN
75
I/O
Capacitance connection for PLL feedback adjustment
WDCAP
30
I/O
WDT detection time adjustment. WDT detection time is adjusted by connecting a capacitor
between WDCAP and GND. When WDCAP is directly connected to GND, the WDT function
is disabled. In this case, WDTRG should be tied to high or low level.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
Terminal Functions (Continued)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
TERMINAL
NAME
NO.
I/O
DESCRIPTION
WDTRG
56
I
WDT trigger input. By applying a scan signal to this terminal, the scan signal can be
monitored by turning the constant current output off and protecting the LED from the damage
of burning when the scan signal stops during the constant period designed.
XDCLAT
61
I
Data latch for dot correction. When XDCLAT is high, data on the shift register for dot
correction data from DCDIN (port B) goes through latch. When XDCLAT is low, the data is
latched. Accordingly, if data on the shift register is changed during XDCLAT high, the new
value is latched (level latch).
XDOWN1
55
O
Shutdown. XDOWN1 is configured as open collector. It goes low when the constant current
output is shut down by the WDT or TSD function.
XDOWN2
54
O
LED disconnection detection output. XDOWN2 is configured as open collector. XDOWN2
goes low when a LED disconnection is detected.
XDPOUT
29
O
DPOL output inverted
XDWN2TST
27
I
Test for XDOWN2. When XDWN2TST is low, XDOWN2 goes low. (This terminal is internally
pulled up with 50 kΩ)
XENABLE
66
I
DCLK enable. When XENABLE is low, data transfer is enabled. Data transfer starts on the
valid edge of DCLK after XENABLE goes low. During XENABLE high, no data is transferred.
XGSOUT
52
O
Clock output for gray scale. When MAG0 through MAG2 are all low, a clock with GSCLK
inverted appears on this terminal. When MAG0 through MAG2 are not low., PLLCLK
appears on this terminal.
XLATCH
63
I
Latch. When XLATCH is high, data on shift register from DIN (port A) goes through latch.
When XLATCH is low, data is latched. Accordingly, if the data on the shift register is changed
during XLATCH high, this new value is latched (level latch).
XOE
65
I
Data output enable. When XOE is low, the DOUT0–9 terminals are driven. When XOE is
high, the DOUT0–9 terminals go to a high-impedance state.
XPOUT
51
O
GSPOL output inverted
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†
Logic supply voltage, VCC(LOG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Supply voltage for constant current circuit, VCC(LED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Analog supply voltage, VCC(ANA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 7 V
Output current (DC), IOL(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 mA
Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VCCLOG + 0.3 V
Output voltage range, V(DOUT), V(DCDOUT), V(BOUT), V(XPOUT) and V(XGSOUT) – 0.3 V to VCCLOG + 0.3 V
Output voltage range, VO and V(XDOWNn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to 16 V
Storage temperature range, Tstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 150°C
Continuous total power dissipation at (or below) TA = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 W
Power dissipation rating at (or above) TA = 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38.2m W/°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values are with respect to GNDLOG terminal.
recommended operating conditions
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
dc characteristics
MIN
NOM
MAX
UNIT
Logic supply voltage, VCC(LOG)
4.5
5
5.5
V
Supply voltage for constant current circuit, VCC(LED)
4.5
5
5.5
V
Analog power supply, VCC(ANA)
4.5
5
5.5
V
–0.3
0
0.3
V
–0.3
0
0.3
V
15
V
Voltage between VCC, V(DIFF1)
Voltage between GND, V(DIFF2)
Voltage applied to constant current
output, VO
V(DIFF1) =
VCC(LOG) – VCC(ANA)
VCC(LOG) – VCC(LED)
VCC(ANA) – VCC(LED)
V(DIFF2)=
GND(LOG) – GND(ANA)
GND(LOG) – GND(LED)
GND(ANA) – GND(LED)
OUT0 to OUT15 off
High–level input voltage, VIH
0.8 VCC(LOG)
Low–level input voltage, VIL
VCC(LOG)
0.2 VCC(LOG)
GND(LOG)
VCC(LOG) = 4.5 V,
DOUT0 to DOUT9, DCDOUT0 to DCDOUT5,
BOUT, XGSOUT, XPOUT
–1
Low–level output current, IOL
VCC(LOG) = 4.5 V,
DOUT0 to DOUT9, DCDOUT0 to DCDOUT5,
BOUT, XGSOUT, XPOUT
1
Constant output current, IOL(C)
V(CCLOG) = 4.5 V, XDOWN1, XDOWN2
OUT0 to OUT15
High–level output current, IOH
Operating free–air temperature range, TA
PLL resistor, R(BIAS)
At 16 MHz oscillation
PLL resistor, R(PD)
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V
mA
5
–20
PLL capacitance, C(VCO)
V
5
mA
80
mA
85
°C
1
µF
22
kΩ
30
kΩ
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
recommended operating conditions (continued)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
Á
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ac characteristics, VCC(LOG)= VCC(ANA) = VCC(LED) = 4.5 V to 5.5 V, TA = – 20 to 85°C (unless otherwise noted)
MIN
DCLK DCCLK clock frequency,
frequency f(DCLK)/f(DCCLK)
DCLK,
TYP
MAX
At single operation
20
At cascade operation
15
DCLK, DCCLK pulse duration (high- or low-level), tw(h)/tw(l)
GSCLK clock frequency, f(GSCLK)
20
GSCLK pulse duration (high- or low-level), tw(h)/tw(l)
40
PLLCLK clock frequency, f(PLLCLK)
WDT clock frequency, f(WDT)
UNIT
MHz
ns
8
MHz
16
MHz
8
MHz
ns
WDT pulse duration (high- or low-level), tw(h)/tw(l)
40
ns
XLATCH, XDCLAT pulse duration (high-level), tw(h)
30
ns
Rise/fall time, tr/tf
100
ns
Setup time, tsu
DINn – DCLK
DCDINn – DCCLK
BLANK – GSCLK
XENABLE – DCLK
XLATCH – DCLK
XLATCH – GSCLK
XDCLAT – DCCLK
RSEL – DCLK
RSEL – DCCLK
RSEL – XLATCH
RSEL – XDCLAT
5
5
10
15
10
10
10
10
15
30
15
ns
Hold time, th
DINn – DCLK
DCDINn – DCCLK
XENABLE – DCLK
XLATCH – DCLK
XDCLAT – DCCLK
RSEL – DCLK
RSEL – DCCLK
RSEL – XLATCH
RSEL – XDCLAT
15
15
20
30
20
20
20
20
10
ns
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
electrical characteristics, LEDCHK = L, MIN/MAX: VCC(LOG) = VCC(ANA) = VCC(LED) = 4.5 V to 5.5 V,
TA = –20 to 85°C, TYP: VCC(LOG) = VCC(ANA) = VCC(LED) = 5 V, TA = 25°C (unless otherwise noted)
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
Á
ÁÁÁ
ÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
PARAMETER
TEST CONDITIONS
MIN
IOH = – 1 mA, DOUTn, DCOUTn, XGSOUT,
XPOUT, BOUT
VCC(LOG)
– 0.5
VOH
High-level output voltage
VOL
g
Low-level output voltage
IOL = 1 mA, DOUTn, DCOUTn, XGSOUT,
XPOUT, BOUT
Input current
IOL = 5 mA, XDOWN1, XDOWN2
VI = VCC(LOG) or GND(LOG)
II
I(LOG)
I(ANA)
I(LED)
Supply current (logic)
Supply current (analog)
Supply current
(constant current driver)
TYP
MAX
UNIT
V
0.5
V
0.5
±1
µA
Input signal is static,
TSENA = H, WDCAP = OPEN,
No PLL is used
1
mA
Input signal is static,
TSENA = H, WDCAP = OPEN,
PLL multiple ratio = 1042
3
mA
Data transfer,
DCLK = 20 MHz, GSCLK = 8 MHz
No PLL is used
35
45
Data transfer,
DCLK = 20 MHz, GSCLK = 15 kHz
PLL multiple ratio = 1042
39
49
BLANK = L, R(IREF) = 1200 Ω
6.5
8
BLANK = L, R(IREF) = 600 Ω
13
15
LED turn off, R(IREF) = 1200 Ω
12
20
LED turn off, R(IREF) = 600 Ω
20
35
VO = 1 V, R(IREF) = 1200 Ω
all output bits turn on
12
20
VO = 1 V, R(IREF) = 600 Ω
all output bits turn on
20
35
mA
mA
mA
IOL(C1)
Constant output current
(includes error between bits)
VO = 1 V, V(IREF) = 1.2 V,
R(IREF) = 1200 W
35
40
45
mA
IOL(C2)
Constant output current
(includes error between bits)
VO = 0.7 V, V(IREF) = 1.2 V
R(IREF) = 600 W
70
80
90
mA
OUT0 to OUT15 (VOUTn = 15 V)
0.1
µA
XDOWN1, 2 (VXDOWNn = 15 V)
1
µA
DOUTn, DCDOUTn
(VOUTn = VCCLOG or GND)
1
µA
IOL(K)
Constant out
output
ut leakage current
∆IOL(C)
Constant output current error
between bit
VCC(LOG)=VCC(ANA)=VCC(LED)
VO = 1 V, R(IREF) = 600 W
All output bits turn on
± 1%
± 4%
I∆OL(C1)
Changes in constant output current
depend on supply voltage
VO = 1 V, R(IREF) = 600 W,
VIREF = 1.2 V
± 1%
± 4%
V
I∆OL(C2)
Changes in constant output current
depend on output voltage
VO = 1 V to 3 V, R(IREF) = 600 Ω,
VIREF = 1.2 V, 1 bit output turn on
± 1%
± 3%
V
T(tsd)
T(wdt)
TSD detection temperature
Junction temperature
150
160
170
°C
WDT detection temperature
No external capacitor
5
10
15
ms
V(IREF)
Voltage reference
BCENA = L, R(IREF) = 9.6 kΩ,
V(LEDDET)
Voltage applied to LED
disconnection detection
P(LLJITTER)
PLL jitter
10
1.2
0.2
R(BIAS) = 22 kΩ, R(PD) = 30 kΩ,
C(VCO) = 0.1 µF
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V
0.3
0.4
0.4%
2%
V
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
switching characteristics, CL = 15 pF, MIN/MAX: VCC(LOG) = VCC(ANA) = VCC(LED) = 4.5 V to 5.5 V, TA
= –20 to 85°C, TYP: VCC(LOG) = VCC(ANA) = VCC(LED) = 5 V, TA = 25°C (unless otherwise noted)
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
PARAMETER
TEST CONDITIONS
MIN
DOUTn, DCDOUTn
tr
tf
Rise time
Fall time
XGSOUT, BOUT, XPOUT
30
12
30
110
DOUTn, DCDOUTn
10
30
10
30
XGSOUT, BOUT, XPOUT
30
45
BLANK↑ – OUT0
40
50
70
BLANK – BOUT
10
20
40
GSCLK – OUT0 (see Note 2)
ns
ns
7
GSCLK – XGSOUT
10
20
40
DCLK – DOUTn
15
30
45
DCLK – DCDOUTn
15
30
45
DCCLK – DCDOUTn
15
30
45
XOE↓ – DOUTn (see Note 3)
10
20
35
XOE↑ – DOUTn (see Note 3)
10
15
25
RSEL – DOUTn
10
20
LEDCHK – XDOWN2
UNIT
130
OUTn+1 – OUTn
Propagation delay time
MAX
12
OUTn (see Figure 1)
OUTn (see Figure 1)
td
TYP
ns
40
1000
NOTES: 2. MAG0 to MAG2 are all low level.
3. Until DOUT is turned on (drive) or turned off (Hi-Z).
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PARAMETER MEASUREMENT INFORMATION
VCC
51 Ω
VCC
IREF
OUTn
GND
600 Ω
15 pF
Figure 1. Rise Time and Fall Time Test Circuit for OUTn
VIH or VOH
100%
VIH
90%
50%
10%
VIL
tr
VIL or VOL
0%
tf
td
100%
VIH
50%
100%
50%
0%
VIL
tw(h)
0%
tw(l)
Figure 2. Timing Requirements
12
VIH or VOH
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VIL or VOL
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
setting for output constant current value
On the constant current output terminals (OUT0–15), approximately 38 times the current which flows through
the external resistor, R(IREF) (connected between IREF and GND), can flow. The external resistor value is
calculated using the following equation:
R(IREF) (Ω) ≅ 38 × 1.2 (V) / IOL(C)(A) where both BCENA and DCENA are low.
Note that more current flows if IREF is connected to GND directly.
constant output current operation
The constant current output turns on (sink constant current), if GSPOL is high and if all the gray scale data
latched into the gray scale latch is not zero on the falling edge of the gray scale clock after the next rising edge
of the gray scale clock when BLANK goes from high to low. After that, the number of the falling edge is counted
by the 10-bit gray scale counter. Then, the output counted corresponding to the gray scale data is turned off
(stop to sink constant current). The gray scale clock can be selected, as discussed in later section, from GSCLK
or by internal PLL circuitry. If the shift register for the gray scale is updated during XLATCH high, the data on
the gray scale data latch is also updated affecting the number of the gray scale of constant current output.
Accordingly, during the on-state of the constant current output, XLATCH should be kept at a low level and the
gray scale data latch should be held.
input/output port and shift register selection
The TLC5911 supplies two parallel input ports such as DIN (10 bits : port A) and DCDIN (7 bits: port B). The
DIN and DCDIN ports also supply DCLK and DCCLK for the shift clock, XLATCH and XDCLAT for latch, and
DOUT and DCDOUT for output, respectively. The device has three kinds of shift register latchs such as the gray
scale data, brightness control, and dot correction. The port and shift registers can be selected by RSEL0 and
RSEL1. The selection of the shift registers will be done by RESL0 and RSEL1 as shown in Table 1. Note that
the RSELn setting is done at DCLK low and DPOL high (DCLK is high when DPOL is low). When only port A
is used, DCDIN, DCDOUT, DCCLK, and XDCLAT should be connected to GND.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
Á
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Table 1. Shift Register Latch Selection
SELECTED SHIFT REGISTER LATCH
PORT A
RSEL1
PORT B
RSEL0
DIN, DCLK, XLATCH, DOUT
DCDIN, DCCLK, XDCLAT
DCDOUT
L
L
Gray scale data displayed
Dot correction
Dot correction
L
H
Brightness control
Dot correction
Dot correction
H
L
Dot correction (see Note 4)
Not connected
Dot correction
H
H
N/A (inhibit)
N/A (inhibit)
N/A (inhibit)
NOTE 4: Zero is output to DOUT7 through DOUT9.
shift register latch for gray scale data
The shift register latch for the gray scale data is configured with 16 × 10 bits. The gray scale data, configured
with 10 bits, represents the time when constant current output is being turned on, and the data range is 0 to 1023
(00h to 3FFh). When the gray scale data is 0, the time is shortest, and the output is not turned on (light off). On
the other hand, when the gray scale data is 1023, the time is longest, and it turns on during the time of the 1023
clocks from the gray scale clock. The configuration of the shift register and the latch for gray scale data is shown
in Figure 3.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
Latch for Gray Scale Data
XLATCH
OUT15
Data
OUT14
Data
OUT1
Data
OUT0
Data
(10 bits)
(10 bits)
(10 bits)
(10 bits)
2nd byte
DIN9 MSB
DIN0 LSB
1st byte
DIN9 MSB
DIN0 LSB
Shift Register for Gray Scale Data
DOUT0 to 9
16th byte
DIN9 MSB
DIN0 LSB
15th byte
DIN9 MSB
DIN0 LSB
DCLK
DIN0 to 9
Figure 3. Relationship Between Shift Register and Latch for Gray Scale Data
shift register latch for brightness control
The shift register latch for brightness control is configured with 1 × 10 bits. Using the shift register latch for the
brightness control, the division ratio of the gray scale clock can be set and the output current value on constant
current output can be adjusted. When powered up, the latch data is indeterminate and the shift register is not
initialized. When these functions are used, data should be written to the shift register latch prior to lighting-on
(BLANK=L). Also, it is prohibited from rewriting the latch value for the brightness control when the constant
current output is turned on. When these functions are not used, the latch value can be set to the default value
setting of BCENA at low level (connect to GND). Also, DIN9 is assigned to the LSB of the reference current
control to maintain compatibility with the TLC5901/02/03 family. The configuration of the shift register and the
latch for brightness control is shown in Figure 4.
Latch for Brightness Control
Gray Scale Clock Division Ratio Data Set
XLATCH
0
0
0
MSB
Current Data Adjusted On Constant Current Output
0
1
LSB
MSB
1
1
1
1
1
(see Note A)
LSB
Shift Register for Brightness Control
DOUT0 to 9
DIN8
DATA
DIN7
DATA
DIN6
DATA
DIN5
DATA
DIN4
DATA
DIN3
DATA
DIN2
DATA
DIN1
DATA
DIN0
DATA
DIN9
DATA
DCLK
DIN0 to 9
NOTE A: Indicates default value at BCENA low.
Figure 4. Relationship Between Shift Register and Latch for Brightness Control
shift register latch for dot correction
The shift register latch for dot correction is configured with 16 × 7 bits. Using the shift register latch for dot
correction, the current value on the constant current output can be set individually. When powered up, the latch
data is indeterminate and the shift register is not initialized. When these functions are used, data should be
written to the shift register latch prior to lighting-on (BLANK=L). Also, rewriting the latch value for dot correction
when the constant current output is turned on is inhibited. When these functions are not used, the latch value
can be set to the default value setting of DCENA at low level (connect to GND). The configuration of the shift
register and the latch for dot correction is shown in Figure 5.
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
Latch for Dot Correction
XDCLAT
OUT15
Data
OUT14
Data
OUT1
Data
OUT0
Data
(7 bits)
(7 bits)
(7 bits)
(7 bits)
2nd byte
DCDIN6 MSB
DCDIN0 LSB
1st byte
DCDIN6 MSB
DCDIN0 LSB
Shift Register for Dot Correction
DCDOUT0 to 6
16th byte
DCDIN6 MSB
DCDIN0 LSB
15th byte
DCDIN6 MSB
DCDIN0 LSB
DCCLK
DCDIN0 to 6
Using Port B (RSEL0=L or H, RSEL1=L)
Latch for Dot Correction
XLATCH
OUT15
Data
OUT14
Data
OUT1
Data
OUT0
Data
(7 bits)
(7 bits)
(7 bits)
(7 bits)
2nd byte
DIN6 MSB
DIN0 LSB
1st byte
DIN6 MSB
DIN0 LSB
Shift Register for Dot Correction
DOUT0 to 6
16th byte
DIN6 MSB
DIN0 LSB
15th byte
DIN6 MSB
DIN0 LSB
DCLK
DIN0 to 6
Using Port A (RSEL0=L, RSEL1=H)
Figure 5. Relationship Between the Shift Register and the Latch for Dot Correction
write data to shift register latch
The shift register latch written is selected using the RSEL0 and RSEL1 terminal. At port A, the data is applied
to the DIN data input terminal, clocked into the shift register and synchronized to the rising edge of DCLK after
XENABLE is pulled low. At port B, the data is applied to the DCDIN data input terminal, clocked into the shift
register, and synchronized to the rising edge of DCCLK. The shift register for the gray scale data is configured
with 16 × 10 bits and the shift register for dot correction is configured with 16 × 7 bits resulting in sixteen times
DCLK. The shift register for the brightness control is configured with 1 × 10 bits resulting in one times DCLK.
At the number of DCLK input for each case, data can be written into the shift register. In this condition, when
the XLATCH at port A or the XDCLAT at port B is pulled high, data in the shift register is clocked into the latch
(data through). When the XLATCH at port A or XDCLAT at port B is pulled low, data is held (latch).
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
brightness control function
By writing data into the brightness control latch, current on all the constant current outputs can be adjusted to
control the variation of brightness between ICs. The division ratio for the gray scale clock can be set to control
the variation of brightness for the total panel system. Furthermore, by writing data into the dot correction latch,
current on each constant current output can be adjusted.
output current adjustment on all constant current outputs – brightness adjustment between ICs
By using the lower 6 bits of the brightness control latch, output current can be adjusted in 64 steps as 1 step
of 0.8% of the current ratio between 100% and 50.8% when the output current is set to 100% of an external
resistor (note that the current value is lower if the constant current output is corrected using the dot correction
function). By using this function, the brightness control between modules (ICs) can be adjusted sending the
desired data externally even if ICs are mounted on a print-circuit board. When BCENA is pulled low, the output
current is set to 100%.
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
Table 2. Relative Current Ratio For Total Constant Current Output
CURRENT RATIO
%
20 (mA)
80 (mA)
CODE
VIREF
(TYP)
50.8
10.2
40.6
MSB 000000 LSB
0.60
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
99.2
19.8
79.7
20.0
80.0
111110
111111†
1.19
100
1.20
† BCENA is low.
frequency division ratio setting for gray scale clock – panel brightness adjustment
By using the upper 4 bits of the brightness control latch, the gray scale clock can be divided into 1/1 to 1/16.
If the gray scale clock is set to 16 times the speed of frequency (1024×16=16384) during horizontal scanning
time, the brightness can be adjusted in 16 steps by selecting the frequency division ratio. By using this function,
the total panel brightness can be adjusted at once, and applied to the brightness of day or night. When BCENA
is pulled low, the gray scale clock is not divided. When BCENA is pulled high, the brightness can be adjusted
as shown in Table 3.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Table 3. Relative Brightness Ratio For Total Constant Current Output
CODE
FREQUENCY DIVISION
RATIO
RELATIVE
BRIGHTNESS RATIO
(%)
MSB 0000 LSB†
1/1
6.3
.
.
.
.
.
.
.
.
.
.
.
.
1110
1/15
93.8
1111
1/16
100
† BCENA is low.
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
output current adjustment on each constant current output – LED brightness adjustment
By using the dot correction latch, the output current on each constant current output can be adjusted in 128 steps
as 1 step of 0.8% of the current ratio between 100% and 0% when the output current is set to 100% of an external
resistor at 7Fh of the latched value and the lower 6 bits of the brightness control register. By using this function,
the brightness deviation from the LED brightness variation can be minimized. When DCENA is pulled low, the
output current is set to 100% without the dot correction.
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Table 4. Relative Current Ratio By Constant Current Output
CODE
CURRENT RATIO %
MSB 0000000 LSB
0.0
IOL(C)=40 (mA)
0.0
.
.
.
.
.
.
.
.
.
.
.
.
1111110
1111111†
99.2
39.7
100
40
† DCENA is low.
clock edge selection
The high speed clock signal is diminished due to the duty ratio change through the multiple stages of the IC or
module as shown in Figure 6.
IN
A
OUT
IN
A
IN
IN’
A
A’
OUT
OUT
a) Propagate through multiple stages buffer
with slow falling edge
A’
OUT
OUT’
b) Insert inverter between buffers
Figure 6. Clock Edge Selection
In Figure 6a, if the falling edge at the internal buffer is behind the rising edge, the clock will disappear if a multiple
cascade connection is made. To resolve this problem, the duty ratio can be held unchanged using the
connection as shown in Figure 6b if the valid clock edge can be selected (arrow in Figure 6). Note that the clock
delay is not avoided even in this case.
The device incorporates the clock edge selection function for each DCLK and GSCLK. By using this function,
the falling edge or rising edge for the valid edge can be selected depending on the status of DPOL and GSPOL,
thus the degradation for the duty ratio can be reduced. The relationship between each signal is shown in Table 5.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Table 5. Valid Edge For DCLK and GSCLK
DPOL
DCLK valid edge
H
DCLK↑
Operation at XENABLE = H
Pull DCLK to low level
L
DCLK↓
Pull DCLK to high level
GSPOL
GSCLK valid edge
PLL operation
H
GSCLK↑
Synchronize to the high level of DCLK
L
GSCLK↓
Synchronize to the low level of DCLK
The device supplies the XPOUT and XGSOUT output terminals for the cascade operation which inverts GSPOL
and GSCLK respectively. It also supplies the BOUT output terminal as a buffered BLANK to make timing easy
with GSCLK and XGSOUT.
gray scale clock generation
When MAG<0:2> are all low, the clock input from the GSCLK terminal is used as the gray scale clock with no
change, and except for this case the internal PLL generates the clock for the gray scale control clock. When
using the PLL, the gray scale clock is generated by adjusting the clock to have the same number of pulses as
the multiple ratio of the GSCLK reference period (when GSCLK and GSPOL are kept at the same level). The
ratio in this case is determined depending on MAG0 through MAG2 as shown in Table 6.
When using the PLL, the internal PLLCLK is clocked out at the XGSOUT terminal. Therefore, the clock can be
utilized for other devices on the same print-circuit board. Note that the number of ICs connected is limited
depending on the frequency.
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
Table 6. PLL Multiple Ratio
18
MAG2
MAG1
MAG0
MULTIPLE RATIO
XGSOUT
L
L
L
L
H
1 (Signal to control GSCLK by GSPOL)
28+6(=262)
Inverted GSCLK
L
L
H
L
L
H
H
H
L
L
H
L
H
H
H
L
H
H
H
29+10(=522)
210+18(=1042)
211+34(=2082)
212+66(=4162)
213+130(=8322)
214+258(=16642)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PLLCLK
(Gray scale clock is internally generated)
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
gray scale clock generation (continued)
MAG<2:0>
Except all low level
Except all low level
GSPOL
GSCLK
XGSOUT
PLLCLK
Same number of pulse as ratio
Same number of pulse as ratio
a) GSPOL is low
a) GSPOL is high
Figure 7. Gray Scale Clock Generation
The oscillation frequency bandwidth as referenced for the PLL can be set by an external resistor connected
between RBIAS and GND. The relation between the external resistor and the oscillation frequency is shown
in Table 7.
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
Table 7. PLL Oscillation Frequency
RBIAS
22 kΩ
30 kΩ
62 kΩ
12 0kΩ
FREQUENCY
13 to 16 MHz
8 to 14 MHz
4 to 9 MHz
3 to 5 MHz
Note that it takes 30 ms for the PLL to be stabilized. Furthermore, to make the PLL operation stabilized, a resistor
and a capacitor connection is required between VCOIN, PDOUT and GND. The recommended values are
shown in the Figure 8.
PDOUT
VCOIN
C(VCO)
R(pd)
Recommeded Value
0.1 to 1 µF
R(pd)
22 to 62 kΩ
C(VCO)
Figure 8. Resistor and Capacitor Connection
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
protection
This device incorporates WDT and TSD functions. If the WDT or TSD functions, the constant current output is
stopped and XDOWN1 goes low. Therefore, by monitoring the XDOWN1 terminal, these failures can be
detected immediately. Since the XDOWN1 output is configured as open collector, outputs of multiple ICs are
brought together.
WDT (watchdog timer)
The constant current output is forced to turn off and XDOWN1 goes low when the fixed period elapsed after the
signal applied to WDTRG has not been changed. Therefore, by connecting a scan signal (a signal to the control
line displayed) to WDTRG, the stop of the scan signal can be detected and the constant current output is turned
off preventing the LED from burning and damage caused by continuous LED turn on at the dynamic scanning
operation. The detection time can be set using an external capacitor, C1. The typical value is approximately 10
ms without capacitor, 160 ms with a1000 pF capacitor, and 1500 ms with a 0.01 µF capacitor. During static
operation, the WDT function is disabled connecting the WDCAP to GND (high or low level should be applied
to WDTRG). Note that normal operations will be resumed changing the WDTRG level when WDT functions.
WDT operational time T (ms) ≅ 10 + 0.15 x C1 (pF)
Time (ms)
1500
TLC5911
Scan Signal
WDTRG
WDCAP
160
C1
10
0
0.001
0.01
C1 – External Capacitor – µF
Figure 9. WDT Operational Time and Usage Example
TSD (thermal shutdown)
When the junction temperature exceeds the limit, TSD functions and turns the constant current output off, and
XDOWN1 goes low. When TSD is used, TSENA is pulled high. When TSD is not used, TSENA is pulled low.
To recover from the constant current output off-state to normal operations, the power supply should be turned
off or TSENA should be pulled low once.
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
LOD function (LED open detection)
When LEDCHK is low, the LED disconnection detection function is disabled and XDOWN2 goes to a
high-impedance state. When LEDCHK is high, the LED disconnection detection function is enabled, and
XDOWN2 goes low if any LED is disconnected while monitoring the OUTn terminals to be turned on. This
function is operational for sixteen OUTn terminals individually. To determine which constant current output is
disconnected, the level of XDOWN2 is checked 16 times from OUT0 to OUT15 turning one constant current
output on. The power supply voltage should be set so the constant current output applied is above 0.4 V when
the LED is turned on normally. Also, since approximately 1000 ns is required from turning the constant current
output on to XDOWN2 output, the gray scale data to be turned on during that period should be applied.
Table 8 is an example of XDOWN2 output status using four LEDs .
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Table 8. XDOWN2 Output Example
LED NUMBER
1
2
3
4
LED STATUS
GOOD
NG
GOOD
NG
OUTn
ON
ON
ON
ON
DETECTION RESULT
GOOD
NG
GOOD
NG
XDOWN2
LOW (by case 2, 4)
LED NUMBER
1
2
3
4
LED STATUS
GOOD
NG
GOOD
NG
OUTn
ON
ON
OFF
OFF
DETECTION RESULT
GOOD
NG
GOOD
GOOD
XDOWN2
LOW (by case 2)
LED NUMBER
1
2
3
4
LED STATUS
GOOD
NG
GOOD
NG
OUTn
OFF
OFF
OFF
OFF
DETECTION RESULT
GOOD
GOOD
GOOD
GOOD
XDOWN2
HIGH-IMPEDANCE
noise reduction
concurrent switching noise reduction
Concurrent switching noise has a potential to occur when multiple outputs turn on or off at the same time. To
prevent this noise, the device has delay output terminals such as XGSOUT, BOUT for GSCLK (gray scale clock),
and BLANK (blanking signal) respectively. By connecting these outputs to the GSCLK and BLANK terminals
of next stage IC, it allows differences in the switching time between ICs. When GSCLK is output to GSOUT
through the device, duty will be changed between input and output. The number of stages to be connected will
be limited depending on the frequency.
delay between constant current output
The constant current output has a delay time of approximately 20 ns between outputs. It means approximately
300 ns delay time exists between OUT0 and OUT15. This time difference by delay is effective for the reduction
of concurrent switching noise.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
others
power supply
The following should be taken into consideration:
D
D
VCCLOG, VCCANA and VCCLED should be supplied by a single power supply to minimize voltage
differences between these terminals.
The bypass capacitor should be located between the power supply and GND to eliminate the variation of
power supply voltage.
GND
Although GNDLOG, GNDANA, and GNDLED are internally tied together, these terminals should be externally
connected to reduce noise influence.
thermal pad
The thermal pad should be connected to GND to eliminate the noise influence, since it is connected to the bottom
side of IC chip. Also, the desired thermal effect will be obtained by connecting this pad to the PCB pattern with
better thermal conductivity.
4.7
3.2
2.3
1.48
0
–20
Output Voltage (Constant Current) – V
PD – Total Power Dissipation – W
power rating free-air temperature
0
0
25
85
TA – Free-Air Temperature – °C
NOTES: A. The IC is mounted on PCB.
PCB size : 102 × 76 × 1.6 [mm3], four layers with the internal two layers being plane. The thermal pad is soldered to the PCB
pattern of 10 × 10 [mm2]. For operation above 25°C free-air temperature, derate linearly at the rate of 38.2 mW/°C.
VCC(LOG)=VCC(ANA)=VCC(LED)=5 V, IOL(C) = 80 mA, ICC is a typical value.
B. The thermal impedance will be varied depending on the mounting conditions. Since the PZP package established a low
thermal impedance by radiating heat from the thermal pad, the thermal pad should be soldered to the pattern with a low thermal
impedance.
C. The material for the PCB should be selected considering the thermal characteristics since the temperature will rise around
the thermal pad.
Figure 10. Power Rating
22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
PRINCIPLES OF OPERATION
90
80
70
IOL(C) – mA
60
50
40
30
20
10
0
0.1
1.0
10.0
R(IREF) (kΩ)
Conditions : VO = 1 V, V(IREF) = 1.2 V
^ R (IREF)(kW)
V
I
OL(C)
R
(mA)
(IREF)
(V)
38
(IREF)
W
(k )
^I
46
OL(C)
(mA)
NOTE: The brightness control and dot corrected value are set at 100%.
The resistor, R(IREF), should be located as close as possible to the IREF terminal to avoid noise influence.
Figure 11. Current on Constant Current Output vs External Resistor
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
DPOL
XOE
XENABLE
tsu(XENABLE–DCLK)
1/f(DCLK)
th(XENABLE–DCLK)
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
DCLK
tsu(DIN–DCLK)
tw(l)(DCLK)
tw(h)(DCLK)
DIN0
D00_A
D01_A
D02_A
D0E_A
D0F_A
D00_B
D0D_B
D0E_B
D0F_B
D00_C
D01_C
DIN9
D90_A
D91_A
D92_A
D9E_A
D9F_A
D90_B
D9D_B
D9E_B
D9F_B
D90_C
D91_C
th(DIN–DCLK)
th(XLATCH–DCLK)
tsu(XLATCH–DCLK)
XLATCH
tw(h)(XLATCH)
DOUT0
HI–Z
D00_A
D01_A
D0E_A
D0F_A
D00_B
DOUT9
HI–Z
D90_A
D91_A
D9E_A
D9F_A
D90_B
td(XOE↓–DOUT)
td(DCLK–DOUT)
DPOL
DCLK
DPOL and DCLK can be replaced with the combination of these signals enclosed by the parenthesis (Both are inverted each other).
Figure 12. Timing Diagram (Shift Register for Gray Scale Data)
td(XOE↑–DOUT)
Template Release Date: 7–11–94
RSEL1
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
24
RSEL0
BCENA
RSEL0
tsu(RSEL–XLATCH)
th(RSEL–XLATCH)
RSEL1
XOE
td(XOE↓–DOUT)
DPOL
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
XENABLE
tsu(RSEL–DCLK)
tsu(RSEL–DCLK)
DCLK
DIN0
D0_A
D0_B
D0_C
D0_J
D0_K
D0_L
D0_M
D0_N
D0_O
DIN9
D9_A
D9_B
D9_C
D9_J
D9_K
D9_L
D9_M
D9_N
D9_O
th(XLATCH–DCLK)
XLATCH
tw(h)(XLATCH)
BCL_0–5
Default Value 1
D<5:0>_A
Default Value 1
D<9:6>_A
Default Value 0
(Brightness Control Latch-Internal Signal)
BCL_6–9
Default Value 0
td(XOE↑–DOUT)
DOUT0
HI–Z
D0_A
D0_C
D0_E
D0_F
D0_G
D0_H
D0_I
DOUT9
HI–Z
D9_A
D9_C
D9_E
D9_F
D9_G
D9_H
D9_I
DPOL and DCLK can be replaced with signals inverted each other same as shift register for gray scale data.
25
Figure 13. Timing Diagram (Shift Register for Brightness Control)
TLC5911
LED DRIVER
td(DCLK–DOUT)
SLLS402 – DECEMBER 1999
tsu(RSEL–DOUT)
tsu(XENABLE–DCLK)
RSEL1
tsu(RSEL–XDCLAT)
th(RSEL–XDCLAT)
tsu(RSEL–DCCLK)
tsu(RSEL–DCCLK)
DCCLK
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
DCDIN0
D0_A
D0_B
D0_C
D0_J
D0_K
D0_L
D0_M
D0_N
D0_O
DCDIN5
D5_A
D5_B
D5_C
D5_J
D5_K
D5_L
D5_M
D5_N
D5_O
th(XDCLAT–DCCLK)
XDCLAT
tw(h)(XDCLAT)
DCL_0–15
Default Value “1”
Dx<15:0>_A
(Note)
(Dot Correction Latch-Internal Signal: 6 bit x 16)
Default Value “1”
td(DCCLK–DCDOUT)
DCDOUT0
D0_A
D0_C
D0_E
D0_F
D0_G
D0_H
D0_I
DCDOUT5
D5_A
D5_C
D5_E
D5_F
D5_G
D5_H
D5_I
NOTE : Register value is immediately before DCLAT↓.
Figure 14. Timing Diagram (Shift Register for Dot Correction: Using Port B)
Template Release Date: 7–11–94
RSEL0
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
26
DCENA
RSEL0
RSEL1
tsu(RSEL–XLATCH)
th(RSEL–XLATCH)
XOE
td(XOE↓–DOUT)
DPOL
XENABLE
tsu(RSEL–DCLK)
tsu(RSEL–DCLK)
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
DCLK
DIN0
...
DIN9
D0_A
D0_B
D0_C
D0_J
D0_K
D0_L
D0_M
D0_N
D0_O
D9_A
D9_B
D9_C
D9_J
D9_K
D9_L
D9_M
...
D9_N
D9_O
th(XLATCH–DCLK)
XLATCH
tsu(RSEL–DOUT)
DOUT0
DOUT5
td(XOE↑–DOUT)
HI–Z
D0_A
D0_C
D0_E
D0_F
D0_G
D0_H
D0_I
HI–Z
D5_A
D5_C
D5_E
D5_F
D5_G
D5_H
D5_I
td(XOE↓–DOUT)
HI–Z
td(DCLK–DCDOUT)
DCDOUT5
...
D0_A
D0_C
D0_E
D0_F
D0_G
D0_H
D0_I
D5_A
D5_C
D5_E
D5_F
D5_G
D5_H
D5_I
DPOL and DCLK can be replaced with signals inverted each other same as shift register for gray scale data.
27
Figure 15. Timing Diagram (Shift Register for Dot Correction: Using Port A)
TLC5911
LED DRIVER
DCDOUT0
SLLS402 – DECEMBER 1999
DOUT
<9:6>
tw(h)(XLATCH)
td(DCLK–DOUT)
BLANK
GSPOL
tsu(BLANK–GSCLK)
1/f(GSCLK)
td(BLANK–OUT0)
GSCLK
1/f(WDT)
tw(l)(GSCLK)
tw(h)(GSCLK)
WDTRG
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
tw(h)(WDTRG)
tw(l)(WDTRG)
td(BLANK–OUT0)
td(GSCLK–OUT0)
OFF
OUT0
ON (See Note1)
td(OUTn+1–OUTn)
OUT15
(SeeNote1)
OFF
OFF
(SeeNote1)
td(OUTn+1–OUTn)
ON (See Note1)
OFF
OUT1
twdt
td(GSCLK–OUT0)
ON (See Note1)
OFF
OFF
OFF
(SeeNote1)
(SeeNote1)
OFF
OFF
(SeeNote1)
(SeeNote1)
HI–Z
XDOWN1
(See Note2)
XDOWN2
(See Note2)
td(GSCLK–XDOWN2)
td(BLANK–BOUT)
BOUT
td(GSCLK–XGSOUT)
XGSOUT
td(LEDCHK–XDOWN2)
td(LEDCHK–XDOWN2)
LEDCHK
GSPOL, GSCLK and XGSOUT can be replaced with signals inverted each other.
NOTE 1: ON or OFF, or ON time is varied depend on the gray scale data and BLANK.
NOTE 2: When LED is disconnected.
Figure 16. Timing Diagram (Constant Current Output) – MAG0 to MAG2 Are All Zero
(See Note2)
Template Release Date: 7–11–94
tsu(XLATCH–GSCLK)
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
28
XLATCH
TLC5911
LED DRIVER
SLLS402 – DECEMBER 1999
MECHANICAL DATA
PZP (S-PQFP-G100)
PowerPAD PLASTIC QUAD FLATPACK
0,27
0,17
0,50
75
0,08 M
51
50
76
Thermal Pad
(see Note D)
26
100
0,13 NOM
1
25
12,00 TYP
Gage Plane
14,20
SQ
13,80
16,20
SQ
15,80
1,05
0,95
0,25
0,15
0,05
0°– 7°
0,75
0,45
Seating Plane
0,08
1,20 MAX
4146929/A 04/99
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion.
The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.The dimensions of the thermal
pad are 2 mm × 2 mm (maximum). The pad is centered on the bottom of the package.
E. Falls within JEDEC MS-026
PowerPAD is a trademark of Texas Instruments Incorporated.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated