NEC UPC2762TB

DATA SHEET
BIPOLAR ANALOG INTEGRATED CIRCUITS
µPC2762TB,µPC2763TB,µPC2771TB
3 V, SUPER MINIMOLD SILICON MMIC
MEDIUM OUTPUT POWER AMPLIFIER
FOR MOBILE COMMUNICATIONS
DESCRIPTION
The µPC2762TB, µPC2763TB and µPC2771TB are silicon monolithic integrated circuits designed as amplifier for
mobile communications. These ICs operate at 3 V. The medium output power is suitable for RF-TX of mobile
communications system.
These IC is manufactured using NEC’s 20 GHz fT NESAT™III silicon bipolar process. This process uses direct
silicon nitride passivation film and gold electrodes. These materials can protect the chip surface from pollution and
prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.
FEATURES
• Supply voltage
: VCC = 2.7 to 3.3 V
• Medium output power
: µPC2762TB; PO(1 dB) = +8.0 dBm TYP. @ f = 0.9 GHz
µPC2763TB; PO(1 dB) = +9.5 dBm TYP. @ f = 0.9 GHz
µPC2771TB; PO(1 dB) = +11.5 dBm TYP. @ f = 0.9 GHz
: µPC2762TB; GP = 13 dB TYP. @ f = 0.9 GHz
• Power gain
µPC2763TB; GP = 20 dB TYP. @ f = 0.9 GHz
µPC2771TB; GP = 21 dB TYP. @ f = 0.9 GHz
• Upper limit operating frequency
: µPC2762TB; fu = 2.9 GHz TYP. @ 3dB Bandwidth
µPC2763TB; fu = 2.7 GHz TYP. @ 3dB Bandwidth
µPC2771TB; fu = 2.2 GHz TYP. @ 3dB Bandwidth
• High-density surface mounting
: 6-pin super minimold package (2.0 × 1.25 × 0.9 mm)
APPLICATIONS
• Buffer amplifiers for mobile telephones : µPC2762TB, µPC2763TB
: µPC2771TB
• PA driver for PDC800M
ORDERING INFORMATION
Part Number
µPC2762TB-E3
Package
Marking
6-pin super minimold
C1Z
µPC2763TB-E3
C2A
µPC2771TB-E3
C2H
Supplying Form
Embossed tape 8 mm wide.
1, 2, 3 pins face the perforation side of the tape.
Qty 3 kpcs/reel.
Remark To order evaluation samples, please contact your local NEC sales office.
Part number for sample order: µPC2762TB, µPB2763TB, µPC2771TB
Caution Electro-static sensitive devices
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all devices/types available in every country. Please check with local NEC representative for
availability and additional information.
Document No. P12710EJ3V0DS00 (3rd edition)
Date Published February 2001 N CP(K)
Printed in Japan
The mark
shows major revised points.
©
1997, 2001
µPC2762TB, µPC2763TB, µPC2771TB
PIN CONNECTIONS
3
2
1
(Bottom View)
C1Z
(Top View)
Pin No.
Pin Name
1
INPUT
4
4
3
2
GND
5
5
2
3
GND
6
6
1
4
OUTPUT
5
GND
6
VCC
Marking is an example of µPC2762TB
PRODUCT LINE-UP (TA = +25°C, V CC = Vout = 3.0 V, ZS = ZL = 50 Ω)
Part No.
µPC2762T
fu
(GHz)
PO(1 dB)
(dBm)
GP
(dB)
ICC
(mA)
2.9
+8.0 @ f = 0.9 GHz
13.0 @ f = 0.9 GHz
26.5
+7.0 @ f = 1.9 GHz
15.5 @ f = 1.9 GHz
+9.5 @ f = 0.9 GHz
20.0 @ f = 0.9 GHz
+6.5 @ f = 1.9 GHz
21.0 @ f = 1.9 GHz
+11.5 @ f = 0.9 GHz
21.0 @ f = 0.9 GHz
+9.5 @ f = 1.5 GHz
21.0 @ f = 1.5 GHz
+8.0 @ f = 0.9 GHz
19.0 @ f = 0.9 GHz
+7.0 @ f = 1.9 GHz
21.0 @ f = 1.9 GHz
+7.0 @ f = 2.4 GHz
22.0 @ f = 2.4 GHz
+9.5 @ f = 0.9 GHz
21.5 @ f = 0.9 GHz
+9.0 @ f = 1.9 GHz
20.5 @ f = 1.9 GHz
+8.0 @ f = 2.4 GHz
20.5 @ f = 2.4 GHz
µPC2762TB
µPC2763T
2.7
µPC2763TB
µPC2771T
2.2
µPC2771TB
µPC8181TB
µPC8182TB
4.0
2.9
Package
6-pin minimold
27.0
6-pin minimold
C2A
6-pin super minimold
36.0
6-pin minimold
C2H
6-pin super minimold
23.0
6-pin super minimold
C3E
30.0
6-pin super minimold
C3F
Caution The package size distinguishes between minimold and super minimold.
Data Sheet P12710EJ3V0DS
C1Z
6-pin super minimold
Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.
2
Marking
µPC2762TB, µPC2763TB, µPC2771TB
SYSTEM APPLICATION EXAMPLE
Digital cellular telephone
RX
DEMOD.
I
Q
÷N
PLL
SW
PLL
I
0°
Phase
shifter
TX
90°
PA
Q
: µ PC2762TB, 2763TB, 2771TB applicable
Caution The insertion point is different due to the specifications of conjunct devices.
Data Sheet P12710EJ3V0DS
3
µPC2762TB, µPC2763TB, µPC2771TB
PIN EXPLANATION
Pin
No.
1
Pin Name
INPUT
Applied
Voltage
(V)
–
Pin
Voltage
1.31
1.01
0.97
2
3
5
4
6
GND
OUTPUT
VCC
0
Voltage
as same
as VCC
through
external
inductor
2.7 to 3.3
Function and Applications
Internal Equivalent Circuit
Note
(V)
–
–
–
Signal input pin. A internal
matching circuit, configured with
resistors, enables 50 Ω
connection over a wide band.
A multi-feedback circuit is
designed to cancel the
deviations of hFE and resistance.
This pin must be coupled to
signal source with capacitor for
DC cut.
Ground pin. This pin should be
connected to system ground
with minimum inductance.
Ground pattern on the board
should be formed as wide as
possible.
All the ground pins must be
connected together with wide
ground pattern to decrease
impedance difference.
Signal output pin. The inductor
must be attached between VCC
and output pins to supply
current to the internal output
transistors.
6
4
1
*
3
2
5
* µ PC2762TB does not have
this capacitance.
Power supply pin, which biases
the internal input transistor.
This pin should be externally
equipped with bypass capacitor
to minimize its impedance.
Note Pin voltage is measured at VCC = 3.0 V. Above: µPC2762TB, Center: µPC2763TB, Below: µPC2771TB.
4
Data Sheet P12710EJ3V0DS
µPC2762TB, µPC2763TB, µPC2771TB
ABSOLUTE MAXIMUM RATINGS
Ratings
Parameter
Symbol
µPC2762TB
µPC2763TB
Conditions
Supply Voltage
VCC
TA = +25°C, pin 4 and pin 6
Total Circuit Current
ICC
TA = +25°C
Power Dissipation
PD
Mounted on double copper clad
50 × 50 × 1.6 mm epoxy glass PWB,
TA = +85°C
Operating Ambient Temperature
µPC2771TB
3.6
70
Unit
V
77.7
mA
270
mW
TA
−40 to +85
°C
Storage Temperature
Tstg
−55 to +150
°C
Input Power
Pin
TA = +25°C
+10
+13
dBm
RECOMMENDED OPERATING RANGE
Parameter
Symbol
MIN.
TYP.
MAX.
Unit
Remark
Supply Voltage
VCC
2.7
3.0
3.3
V
Same voltage should be applied to
pin 4 and pin 6.
Operating Frequency
fopt
0.8
−
1.9
GHz
Data Sheet P12710EJ3V0DS
Only for µPC2771TB
5
µPC2762TB, µPC2763TB, µPC2771TB
ELECTRICAL CHARACTERISTICS
(Unless otherwise specified, TA = +25°C, V CC = Vout = 3.0 V, ZS = ZL = 50 Ω)
µPC2762TB, µPC2763TB
µPC2762TB
Parameter
Symbol
µPC2763TB
Unit
Test Conditions
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
−
26.5
35.0
−
27.0
35.0
mA
Circuit Current
ICC
No signal
Power Gain
GP
f = 0.9 GHz
f = 1.9 GHz
11
11.5
13
15.5
16
17.5
18
18
20
21
23
24
dB
Noise Figure
NF
f = 0.9 GHz
f = 1.9 GHz
−
−
6.5
7.0
8.0
9.0
−
−
5.5
5.5
7.0
7.5
dB
3 dB down below from
gain at f = 0.1 GHz
2.7
2.9
−
2.3
2.7
−
GHz
Upper Limit Operating
Frequency
fu
Isolation
ISL
f = 0.9 GHz
f = 1.9 GHz
22
20
27
25
−
−
25
24
30
29
−
−
dB
Input Return Loss
RLin
f = 0.9 GHz
f = 1.9 GHz
6.0
5.5
9.0
8.5
−
−
8.0
8.0
11.0
11.0
−
−
dB
Output Return Loss
RLout
f = 0.9 GHz
f = 1.9 GHz
8.0
9.0
11.0
12.0
−
−
5.0
6.0
7.0
9.0
−
−
dB
PO (1 dB)
f = 0.9 GHz
f = 1.9 GHz
+5.5
+4.5
+8.0
+7.0
−
−
+7.0
+4.0
+9.5
+6.5
−
−
dBm
1 dB Gain Compression Output
Power
µPC2771TB
µPC2771TB
Parameter
Unit
Test Conditions
MIN.
TYP.
MAX.
Circuit Current
ICC
No signal
−
36.0
45.0
mA
Power Gain
GP
f = 0.9 GHz
f = 1.5 GHz
19
18
21
21
24
24
dB
Noise Figure
NF
f = 0.9 GHz
f = 1.5 GHz
−
−
6.0
6.0
7.5
7.5
dB
3 dB down below from gain at f = 0.1 GHz
1.8
2.2
−
GHz
Upper Limit Operating
Frequency
6
Symbol
fu
Isolation
ISL
f = 0.9 GHz
f = 1.5 GHz
25
25
30
30
−
−
dB
Input Return Loss
RLin
f = 0.9 GHz
f = 1.5 GHz
10
10
14
14
−
−
dB
Output Return Loss
RLout
f = 0.9 GHz
f = 1.5 GHz
6.5
5.5
9.0
8.5
−
−
dB
1 dB Gain Compression Output
Power
PO (1 dB)
f = 0.9 GHz
f = 1.5 GHz
+9.0
+7.0
+11.5
+9.5
−
−
dBm
Saturated Output Power
PO (sat)
f = 0.9 GHz
f = 1.5 GHz
−
−
+12.5
+11.0
−
−
dBm
Data Sheet P12710EJ3V0DS
µPC2762TB, µPC2763TB, µPC2771TB
STANDARD CHARACTERISTICS FOR REFERENCE
(Unless otherwise specified, TA = +25°C, V CC = Vout = 3.0 V, ZS = ZL = 50 Ω)
µPC2762TB, µPC2763TB
Reference
Parameter
Saturated
Output Power
Adjacent Channel
Power
Symbol
PO (sat)
Padj
µPC2762TB
Test Conditions
µPC2763TB
Unit
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
−
−
+9.0
+8.5
−
−
−
−
+11.0
+8.0
−
−
dBm
∆f = ±50 kHz
∆f = ±100 kHz
−
−
−64
−64
−
−
−
−
−61
−62
−
−
dBc
2 sine wave input.
Output of each tone
f1 = 0.900 GHz
f2 = 0.902 GHz
−
−16
−
−
−27
−
dBc
PO (each) = +4 dBm
f1 = 1.900 GHz
f2 = 1.902 GHz
−
−10
−
−
−14
−
dBc
f = 0.9 GHz
f = 1.9 GHz
f = 0.9 GHz
π/4 QPSK waveNote
PO = +4 dBm
3rd Order
Intermodulation
IM3
Distortion
Note π/4 DQPSK modulated wave input, data rate 42 kbps, Filter roll off α = 0.5, PN 9
µPC2771TB
Reference
Parameter
Adjacent Channel
Power 1
Symbol
Padj1
Test Conditions
Unit
MIN.
TYP.
MAX.
∆f = ±50 kHz
∆f = ±100 kHz
−
−
−61
−72
−
−
dBc
∆f = ±50 kHz
∆f = ±100 kHz
−
−
−59
−71
−
−
dBc
2 sine wave input.
Output of each tone
f1 = 0.900 GHz
f2 = 0.902 GHz
−
−18
−
dBc
PO (each) = +7 dBm
f1 = 1.500 GHz
f2 = 1.502 GHz
−
−12
−
dBc
f = 0.9 GHz
π/4 QPSK waveNote
PO = +7 dBm
Adjacent Channel
Power 2
Padj2
f = 1.5 GHz
π/4 QPSK waveNote
PO = +7 dBm
3rd Order
Intermodulation
Distortion
IM3
Note π/4 DQPSK modulated wave input, data rate 42 kbps, Filter roll off α = 0.5, PN 9
Data Sheet P12710EJ3V0DS
7
µPC2762TB, µPC2763TB, µPC2771TB
TEST CIRCUIT
VCC
1 000 pF
C3
L
6
50 Ω
C1
IN
C2
4
1
50 Ω
OUT
1 000 pF
1 000 pF
2, 3, 5
COMPONENTS OF TEST CIRCUIT
EXAMPLE OF ACTUAL APPLICATION COMPONENTS
FOR MEASURING ELECTRICAL
CHARACTERISTICS
Type
Value
C1, C2
Bias Tee
1 000 pF
C3
Capacitor
1 000 pF
L
Bias Tee
1 000 nH
Type
Value
Operating Frequency
C1 to C3
Chip capacitor
1 000 pF
100 MHz or higher
L
Chip inductor
100 nH
100 MHz or higher
10 nH
2.0 GHz or higher
INDUCTOR FOR THE OUTPUT PIN
The internal output transistor of this IC consumes 20 mA, to output medium power. To supply current for output
transistor, connect an inductor between the Vcc pin (pin 6) and output pin (pin 4). Select large value inductance, as
listed above.
The inductor has both DC and AC effects. In terms of DC, the inductor biases the output transistor with minimum
voltage drop to output enable high level. In terms of AC, the inductor make output-port-impedance higher to get
enough gain. In this case, large inductance and Q is suitable.
For above reason, select an inductance of 100 Ω or over impedance in the operating frequency. The gain is a
peak in the operating frequency band, and suppressed at lower frequencies.
The recommendable inductance can be chosen from example of actual application components list as shown
above.
CAPACITORS FOR THE VCC, INPUT, AND OUTPUT PINS
Capacitors of 1 000 pF are recommendable as the bypass capacitor for the Vcc pin and the coupling capacitors
for the input and output pins.
The bypass capacitor connected to the Vcc pin is used to minimize ground impedance of Vcc pin. So, stable bias
can be supplied against Vcc fluctuation.
The coupling capacitors, connected to the input and output pins, are used to cut the DC and minimize RF serial
impedance. Their capacitance are therefore selected as lower impedance against a 50 Ω load. The capacitors thus
perform as high pass filters, suppressing low frequencies to DC.
To obtain a flat gain from 100 MHz upwards, 1 000 pF capacitors are used in the test circuit. In the case of under
10 MHz operation, increase the value of coupling capacitor such as 10 000 pF. Because the coupling capacitors are
determined by equation, C = 1/(2πRfc).
8
Data Sheet P12710EJ3V0DS
µPC2762TB, µPC2763TB, µPC2771TB
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD
AMP-2
3
Top View
1
2
IN
OUT
C
C
6
L
5
4
C
1Z
→
Mounting direction
(Marking is an example for µ PC2762TB)
VCC
C
COMPONENT LIST
Notes
1. 30 × 30 × 0.4 mm double sided copper clad polyimide board.
Value
2. Back side: GND pattern
C
1 000 pF
3. Solder plated on pattern
L
Example: 10 nH
4.
: Through holes
For more information on the use of this IC, refer to the following application note: USAGE AND APPLICATIONS
OF 6-PIN SUPER MINI-MOLD SILICON MEDIUM-POWER HIGH-FREQUENCY AMPLIFIER MMIC (P13252E).
Data Sheet P12710EJ3V0DS
9
µPC2762TB, µPC2763TB, µPC2771TB
TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°°C)
− µPC2762TB −
CIRCUIT CURRENT vs. OPERATING
AMBIENT TEMPERATURE
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
50
50
No signal
VCC = 3.0 V
40
Circuit Current ICC (mA)
Circuit Current ICC (mA)
No signal
30
20
10
0
1
2
3
Supply Voltage VCC (V)
40
30
20
10
0
– 60 – 40 – 20
0
+20 +40 +60 +80 +100
Operating Ambient Temperature TA (°C)
4
NOISE FIGURE, POWER GAIN
vs. FREQUENCY
POWER GAIN vs. FREQUENCY
20
18
10
8
6
Power Gain GP (dB)
Noise Figure NF (dB)
16
GP
14
VCC = 2.7 V
VCC = 3.3 V
VCC = 3.0 V
16
Power Gain GP (dB)
18
12
10
8
6
NF
4
4
2
2
0.1
VCC = 3.3 V
VCC = 3.0 V
0.3
1.0
Frequency f (GHz)
TA = – 40°C
8
0.1
3.0
VCC = 3.0 V
0.3
1.0
Frequency f (GHz)
3.0
INPUT RETURN LOSS, OUTPUT RETURN
LOSS vs. FREQUENCY
0
Input Return Loss RLin (dB)
Output Return Loss RLout (dB)
VCC = 3.0 V
Isolation ISL (dB)
TA = +25°C
12
VCC = 2.7 V
0
10
14
10
ISOLATION vs. FREQUENCY
– 10
– 20
– 30
– 40
0.1
TA = +85°C
1.0
0.3
Frequency f (GHz)
3.0
VCC = 3.0 V
RLin
– 10
– 20
RLout
– 30
– 40
0.1
Data Sheet P12710EJ3V0DS
1.0
0.3
Frequency f (GHz)
3.0
µPC2762TB, µPC2763TB, µPC2771TB
− µPC2762TB −
OUTPUT POWER vs. INPUT POWER
+15
VCC = 3.0 V
f = 0.9 GHz
VCC = 3.0 V
Output Power Pout (dBm)
Output Power Pout (dBm)
f = 0.9 GHz
+10
VCC = 3.3 V
+5
VCC = 2.7 V
0
–5
–10
–20
–15
OUTPUT POWER vs. INPUT POWER
+15
–10
–5
Input Power Pin (dBm)
0
+10
+5
0
–5
OUTPUT POWER vs. INPUT POWER
–10
–5
Input Power Pin (dBm)
0
+5
OUTPUT POWER vs. INPUT POWER
f = 1.9 GHz
VCC = 3.0 V
VCC = 3.0 V
f = 1.9 GHz
Output Power Pout (dBm)
+10
VCC = 3.3 V
+5
VCC = 2.7 V
0
–5
–10
–20
–15
–10
–5
Input Power Pin (dBm)
TA = –40°C
0
–5
VCC = 3.3 V
Pin = +3 dBm
+11
VCC = 3.0 V
+9
VCC = 2.7 V
+7
+5
+3
0.1
1.0
0.3
Frequency f (GHz)
3.0
–15
–10
–5
Input Power Pin (dBm)
0
+5
SATURATED OUTPUT POWER vs.
FREQUENCY
Saturated Output Power PO (sat) (dBm)
+13
TA = +85°C
TA = +25°C
+5
–10
–20
+5
0
+10
SATURATED OUTPUT POWER vs.
FREQUENCY
Saturated Output Power PO (sat) (dBm)
–15
+15
+15
Output Power Pout (dBm)
TA = –40°C
–10
–20
+5
TA = +85°C
TA = +25°C
+13
TA = +25°C TA = +85°C
+11
Pin = +3 dBm
VCC = 3.0 V
+9
TA = –40°C
+7
+5
+3
0.1
Data Sheet P12710EJ3V0DS
1.0
0.3
Frequency f (GHz)
3.0
11
µPC2762TB, µPC2763TB, µPC2771TB
− µPC2762TB −
–60
f1 = 0.900 GHz
f2 = 0.902 GHz
–50
VCC = 3.3 V
–40
–30
VCC = 3.0 V
VCC = 2.7 V
–20
–10
0
–15
–10
–5
0
+5
+10
Output Power of Each Tone PO (each) (dBm)
3rd Order Intermodulation Distortion IM3 (dBc)
3rd Order Intermodulation Distortion IM3 (dBc)
3RD ORDER INTERMODULATION DISTORTION 3RD ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
vs. OUTPUT POWER OF EACH TONE
–60
f1 = 1.900 GHz
f2 = 1.902 GHz
–50
VCC = 3.3 V
–40
VCC = 3.0 V
–30
VCC = 2.7 V
–20
–10
0
–15
–10
–5
0
+5
+10
Output Power of Each Tone PO (each) (dBm)
Remark The graphs indicate nominal characteristics.
12
Data Sheet P12710EJ3V0DS
µPC2762TB, µPC2763TB, µPC2771TB
S-PARAMETERS (TA = +25°°C, VCC = Vout = 3.0 V)
− µPC2762TB −
S11-FREQUENCY
0.1 G
2.0 G
3.0 G
S22-FREQUENCY
3.0 G
0.1G
2.0 G
1.0 G
Data Sheet P12710EJ3V0DS
13
µPC2762TB, µPC2763TB, µPC2771TB
TYPICAL S-PARAMETER VALUES (TA = +25°°C)
µPC2762TB
VCC = Vout = 3.0 V, ICC = 29 mA
FREQUENCY
MHz
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.338
0.346
0.348
0.340
0.329
0.324
0.341
0.359
0.378
0.375
0.363
0.353
0.357
0.377
0.402
0.414
0.426
0.434
0.448
0.463
0.483
0.492
0.492
0.486
0.489
0.500
0.511
0.511
0.494
0.465
0.441
−1.3
−2.0
−1.2
−1.9
−3.1
−6.2
−8.1
−7.6
−6.5
−5.1
−5.2
−6.7
−8.8
−11.7
−12.7
−13.2
−13.6
−16.1
−19.0
−21.7
−23.9
−25.8
−29.7
−34.6
−40.4
−44.6
−48.5
−50.4
−52.9
−55.9
−60.6
4.560
4.581
4.616
4.661
4.689
4.726
4.844
4.927
5.057
5.179
5.306
5.400
5.567
5.706
5.820
5.987
6.081
6.182
6.229
6.328
6.382
6.431
6.424
6.329
6.146
5.997
5.822
5.693
5.553
5.334
5.157
−3.4
−7.6
−11.3
−15.8
−19.5
−23.6
−27.4
−31.5
−35.8
−41.0
−45.9
−51.0
−56.5
−61.7
−68.0
−73.7
−80.1
−86.7
−93.2
−99.7
−106.7
−113.8
−121.2
−128.8
−136.1
−143.1
−149.9
−157.0
−163.0
−169.5
−175.5
0.039
0.039
0.039
0.040
0.040
0.041
0.042
0.043
0.044
0.045
0.047
0.047
0.048
0.049
0.052
0.052
0.055
0.056
0.057
0.057
0.058
0.058
0.060
0.060
0.062
0.061
0.064
0.066
0.065
0.065
0.066
1.0
2.7
6.8
8.1
11.6
13.7
15.8
18.1
19.3
20.3
22.1
23.7
26.1
24.5
26.7
26.8
29.0
28.2
28.5
28.0
28.5
29.0
30.1
30.2
31.1
32.1
31.4
34.0
33.8
35.5
35.5
0.310
0.311
0.302
0.296
0.290
0.292
0.291
0.292
0.284
0.280
0.285
0.288
0.288
0.285
0.282
0.285
0.288
0.291
0.286
0.282
0.282
0.282
0.278
0.268
0.260
0.251
0.248
0.237
0.222
0.203
0.189
−5.5
−9.5
−12.3
−16.2
−20.2
−24.1
−26.2
−28.3
−30.9
−35.3
−40.0
−43.4
−45.7
−47.9
−52.8
−58.1
−62.0
−66.1
−70.4
−76.2
−81.5
−86.9
−91.7
−98.4
−104.5
−111.3
−116.7
−121.5
−128.3
−134.5
−141.1
14
S11
S21
S12
Data Sheet P12710EJ3V0DS
S22
K
2.23
2.20
2.20
2.18
2.20
2.12
2.01
1.90
1.77
1.72
1.64
1.62
1.54
1.44
1.32
1.27
1.18
1.14
1.09
1.07
1.01
0.99
0.99
1.01
1.02
1.05
1.03
1.04
1.11
1.20
1.27
µPC2762TB, µPC2763TB, µPC2771TB
TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°°C)
− µPC2763TB −
CIRCUIT CURRENT vs. OPERATING
AMBIENT TEMPERATURE
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
50
50
No signal
VCC = 3.0 V
40
Circuit Current ICC (mA)
Circuit Current ICC (mA)
No signal
30
20
10
0
1
2
3
Supply Voltage VCC (V)
40
30
20
10
0
+20 +40 +60 +80 +100
– 60 – 40 – 20
0
Operating Ambient Temperature TA (°C)
4
NOISE FIGURE, POWER GAIN
vs. FREQUENCY
24
18
V
CC ==3.0
VCC
3.0V
V
CC ==2.7
VCC
2.7V
16
V
CC ==3.3
VCC
3.3V
12
5
10
4
8
3
Power Gain GP (dB)
20
14
6
NF
0.1
A =
TA
=––40°C
40 °C
T
A =
TA
=+25°C
+25 °C T
20
A =
TA
=+25°C
+25 °C
18 T
16
T
A =
TA
=––40°C
40 °C
T
A =
TA
=+85°C
+85 °C
14
12
10
8
CC ==2.7
VCC
2.7V
V
CC ==3.0
VCC
3.0V V
1.0
0.3
Frequency f (GHz)
6
3.0
0
0
VCC = 3.0 V
– 10
– 20
– 30
– 40
0.3
1.0
Frequency f (GHz)
VCC = 3.0 V
0.1
1.0
0.3
Frequency f (GHz)
3.0
INPUT RETURN LOSS, OUTPUT RETURN
LOSS vs. FREQUENCY
ISOLATION vs. FREQUENCY
– 50
0.1
T
A =
TA
=+85°C
+85 °C
22
GP
Input Return Loss RLin (dB)
Output Return Loss RLout (dB)
6
Power Gain GP (dB)
7
Isolation ISL (dB)
Noise Figure NF (dB)
22
POWER GAIN vs. FREQUENCY
24
V
CC ==3.3
VCC
3.3V
3.0
RLRLo
out
VCC = 3.0 V
– 10
– 20
RLin
– 30
– 40
0.1
Data Sheet P12710EJ3V0DS
1.0
0.3
Frequency f (GHz)
3.0
15
µPC2762TB, µPC2763TB, µPC2771TB
− µPC2763TB −
OUTPUT POWER vs. INPUT POWER
+15
OUTPUT POWER vs. INPUT POWER
+15
VCC = 3.3 V
f = 0.9 GHz
VCC = 3.0 V
+10
Output Power Pout (dBm)
Output Power Pout (dBm)
f = 0.9 GHz
VCC = 3.0 V
+5
VCC = 2.7 V
0
–5
– 10
– 25
– 20
– 15
– 10
–5
Input Power Pin (dBm)
+10
TA = – 40°C
+5
TA = +25°C
0
TA = +85°C
–5
OUTPUT POWER vs. INPUT POWER
– 20
– 15
– 10
–5
Input Power Pin (dBm)
0
OUTPUT POWER vs. INPUT POWER
+15
+15
f = 1.9 GHz
f = 1.9 GHz
VCC = 3.0 V
VCC = 3.3 V
VCC = 3.0 V
+10
Output Power Pout (dBm)
Output Power Pout (dBm)
TA = – 40°C
– 10
– 25
0
TA = +85°C
VCC = 2.7 V
+5
0
–5
TA = +85°C
+10
TA = – 40°C
+5
TA = +25°C
TA = – 40°C
0
TA = +85°C
–5
TA = +25°C
– 10
– 25
– 20
– 15
– 10
–5
Input Power Pin (dBm)
– 10
– 25
0
16
+15
Pin = – 3 dBm
VCC = 3.3 V
+13
+11
VCC = 3.0 V
+9
+7
VCC = 2.7 V
+5
+3
0.1
1.0
0.3
Frequency f (GHz)
3.0
– 15
– 10
–5
Input Power Pin (dBm)
0
SATURATED OUTPUT POWER vs.
FREQUENCY
Saturated Output Power PO (sat) (dBm)
Saturated Output Power PO (sat) (dBm)
SATURATED OUTPUT POWER vs.
FREQUENCY
– 20
+15
TA = +85°C
+13
Pin = – 3 dBm
VCC = 3.0 V
+11
TA = +25°C
+9
TA = – 40°C
+7
+5
+3
0.1
Data Sheet P12710EJ3V0DS
1.0
0.3
Frequency f (GHz)
3.0
µPC2762TB, µPC2763TB, µPC2771TB
− µPC2763TB −
– 60
f1 = 0.900 GHz
f2 = 0.902 GHz
– 50
VCC = 3.3 V
VCC = 3.0 V
– 40
VCC = 2.7 V
– 30
– 20
– 10
0
– 15
– 10
–5
0
+5
+10
Output Power of Each Tone PO (each) (dBm)
3rd Order Intermodulation Distortion IM3 (dBc)
3rd Order Intermodulation Distortion IM3 (dBc)
3RD ORDER INTERMODULATION DISTORTION 3RD ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
vs. OUTPUT POWER OF EACH TONE
– 60
f1 = 1.900 GHz
f2 = 1.902 GHz
– 50
VCC = 3.3 V
– 40
VCC = 3.0 V
– 30
VCC = 2.7 V
– 20
– 10
0
– 15
– 10
–5
0
+5
+10
Output Power of Each Tone PO (each) (dBm)
Remark The graphs indicate nominal characteristics.
Data Sheet P12710EJ3V0DS
17
µPC2762TB, µPC2763TB, µPC2771TB
S-PARAMETERS (TA = +25°°C, VCC = Vout = 3.0 V)
− µPC2763TB −
S11-FREQUENCY
0.1 G
1.0 G
3.0 G
2.0 G
S22-FREQUENCY
3.0 G
0.1 G
2.0 G
1.0 G
18
Data Sheet P12710EJ3V0DS
µPC2762TB, µPC2763TB, µPC2771TB
TYPICAL S-PARAMETER VALUES (TA = +25°°C)
µPC2763TB
VCC = Vout = 3.0 V, ICC = 28 mA
FREQUENCY
MHz
MAG.
S11
ANG.
MAG.
S21
ANG.
MAG.
S12
ANG.
MAG.
ANG.
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.231
0.242
0.250
0.245
0.242
0.241
0.263
0.291
0.316
0.322
0.318
0.309
0.322
0.344
0.371
0.380
0.388
0.378
0.378
0.375
0.369
0.351
0.331
0.306
0.300
0.294
0.290
0.270
0.248
0.219
0.198
−1.4
−0.2
2.7
2.8
2.0
−2.2
−5.3
−5.6
−5.1
−4.0
−5.4
−9.0
−14.2
−20.6
−23.7
−27.5
−30.6
−36.4
−42.1
−46.6
−50.5
−53.8
−59.8
−66.4
−73.1
−75.8
−77.1
−77.7
−78.7
−82.3
−88.7
10.210
10.305
10.464
10.655
10.863
11.093
11.544
11.843
12.291
12.676
13.066
13.311
13.661
13.845
13.824
13.890
13.634
13.236
12.724
12.290
11.707
11.130
10.524
9.824
9.152
8.583
8.029
7.610
7.240
6.827
6.516
−3.8
−8.5
−12.9
−18.2
−22.8
−28.1
−33.2
−39.0
−45.1
−52.4
−59.8
−67.3
−75.8
−83.9
−93.0
−101.5
−110.5
−119.6
−127.9
−136.1
−144.0
−151.7
−159.1
−165.9
−172.3
−178.2
176.2
170.6
166.1
161.2
156.9
0.023
0.023
0.024
0.024
0.026
0.027
0.028
0.029
0.029
0.030
0.031
0.031
0.033
0.033
0.035
0.035
0.036
0.035
0.035
0.035
0.035
0.036
0.036
0.034
0.035
0.034
0.035
0.037
0.039
0.039
0.040
2.4
7.8
9.3
13.4
16.1
19.9
22.3
22.5
23.9
25.6
24.1
27.0
28.8
28.5
30.1
28.1
29.2
29.9
30.9
32.9
33.0
35.7
36.8
38.7
40.1
43.8
46.3
47.7
51.1
53.6
55.1
0.406
0.412
0.407
0.407
0.405
0.414
0.419
0.424
0.424
0.425
0.438
0.442
0.441
0.434
0.435
0.439
0.439
0.428
0.411
0.393
0.385
0.373
0.359
0.336
0.321
0.306
0.299
0.288
0.270
0.253
0.244
−4.1
−7.5
−9.9
−13.9
−17.6
−21.6
−24.6
−27.7
−31.9
−37.1
−42.5
−47.8
−51.2
−56.0
−62.2
−68.9
−74.6
−81.3
−87.0
−93.4
−99.6
−104.9
−110.3
−117.5
−123.3
−129.4
−133.9
−138.6
−143.6
−150.1
−156.2
Data Sheet P12710EJ3V0DS
S22
K
1.68
1.66
1.58
1.55
1.44
1.37
1.25
1.16
1.09
1.02
0.96
0.96
0.90
0.87
0.82
0.80
0.78
0.84
0.89
0.94
0.99
1.06
1.13
1.31
1.41
1.55
1.58
1.63
1.67
1.79
1.88
19
µPC2762TB, µPC2763TB, µPC2771TB
TYPICAL CHARACTERISTICS (Unless otherwise specified, TA = +25°°C)
− µPC2771TB −
CIRCUIT CURRENT vs. OPERATING
AMBIENT TEMPERATURE
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
50
50
No signal
VCC = 3.0 V
No signal
Circuit Current ICC (mA)
Circuit Current ICC (mA)
40
30
20
10
0
1
2
3
Supply Voltage VCC (V)
40
30
20
10
0
0
– 60 – 40 – 20
+20 +40 +60 +80 +100
Operating Ambient Temperature TA (°C)
4
NOISE FIGURE, POWER GAIN
vs. FREQUENCY
24
VCC = 2.7 V VCC = 3.0 V
7
6
20
VCC = 3.3 V
GP
VCC = 3.3 V
18
VCC = 3.0 V
16
VCC = 2.7 V
14
VCC = 3.3 V
12
5
10
4
8
3
6
0.1
NF
VCC = 3.0 V
0.3
1.0
Frequency f (GHz)
3.0
18
3.0
INPUT RETURN LOSS, OUTPUT RETURN
LOSS vs. FREQUENCY
0
– 10
– 20
– 30
0.1
0.3
1.0
Frequency f (GHz)
3.0
Input Return Loss RLin (dB)
Outpur Return Loss RLout (dB)
VCC = 3.0 V
Isolation ISL (dB)
TA = +85°C
20
VCC = 3.0 V
14
0.1
0.3
1.0
Frequency f (GHz)
0
20
TA = – 40°C
16
VCC = 2.7 V
ISOLATION vs. FREQUENCY
– 40
TA = +25°C
22
Power Gain GP (dB)
Power Gain GP (dB)
Noise Figure NF (dB)
22
POWER GAIN vs. FREQUENCY
24
VCC = 3.0 V
RLout
– 10
– 20
RLin
– 30
– 40
Data Sheet P12710EJ3V0DS
0.1
0.3
1.0
Frequency f (GHz)
3.0
µPC2762TB, µPC2763TB, µPC2771TB
− µPC2771TB −
OUTPUT POWER vs. INPUT POWER
OUTPUT POWER vs. INPUT POWER
+15
+15
VCC = 3.3 V
Output Power Pout (dBm)
Output Power Pout (dBm)
+10
VCC = 2.7 V
+5
VCC = 3.0 V
0
TA = +85°C
f = 0.9 GHz
VCC = 3.0 V
f = 0.9 GHz
+10
TA = – 40°C
TA = +25°C
+5
TA = +25°C
TA = – 40°C
0
TA = +85°C
–5
–5
– 25
– 20
–5
– 15
– 10
Input Power Pin (dBm)
0
– 25
OUTPUT POWER vs. INPUT POWER
0
+15
f = 1.5 GHz
VCC = 3.3 V
+10
Output Power Pout (dBm)
Output Power Pout (dBm)
– 15
– 10
–5
Input Power Pin (dBm)
OUTPUT POWER vs. INPUT POWER
+15
VCC = 2.7 V
+5
VCC = 3.0 V
0
–5
– 10
f = 1.5 GHz
VCC = 3.0 V
– 20
– 15
– 10
–5
Input Power Pin (dBm)
TA = +85°C
TA = +25°C
+10
TA = – 40°C
+5
TA = +25°C
0
TA = – 40°C
TA = +85°C
–5
– 25
– 25
0
OUTPUT POWER vs. INPUT POWER
– 20
– 15
– 10
–5
Input Power Pin (dBm)
0
OUTPUT POWER vs. INPUT POWER
+15
+15
f = 1.9 GHz
f = 1.9 GHz
VCC = 3.0 V
VCC = 3.3 V
+10
Output Power Pout (dBm)
Output Power Pout (dBm)
– 20
VCC = 3.0 V
+5
VCC = 2.7 V
0
–5
– 10
TA = +85˚C
+10
TA = +25˚C
+5
TA = – 40˚C
0
–5
– 10
– 25
– 20
– 15
– 10
–5
Input Power Pin (dBm)
0
– 25
Data Sheet P12710EJ3V0DS
– 20
– 15
– 10
–5
Input Power Pin (dBm)
0
21
µPC2762TB, µPC2763TB, µPC2771TB
− µPC2771TB −
+17
Pin = –3 dBm
+15
VCC = 3.3 V
+13
+11
VCC = 3.0 V
VCC = 2.7 V
+9
+7
+5
0.1
0.3
1.0
Frequency f (GHz)
SATURATED OUTPUT POWER vs.
FREQUENCY
Saturated Output Power PO (sat) (dBm)
Saturated Output Power PO (sat) (dBm)
SATURATED OUTPUT POWER vs.
FREQUENCY
+17
Pin = –3 dBm
VCC = 3.0 V
TA= +25°C
+15
TA= +85°C
+13
+11
TA= –40°C
+9
+7
+5
3.0
0.1
0.3
1.0
Frequency f (GHz)
3.0
–60
f1 = 0.900 GHz
f2 = 0.902 GHz
–50
VCC = 3.3 V
–40
–30
VCC = 3.0 V
VCC = 2.7 V
–20
–10
0
–15
+5
–5
+10
–10
0
Output Power of Each Tone PO (each) (dBm)
3rd Order Intermodulation Distortion IM3 (dBc)
3rd Order Intermodulation Distortion IM3 (dBc)
3RD ORDER INTERMODULATION DISTORTION 3RD ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
vs. OUTPUT POWER OF EACH TONE
–60
–50
VCC = 3.3 V
–40
–30
VCC = 3.0 V
VCC = 2.7 V
–20
–10
0
–15
+5
–10
–5
0
+10
Output Power of Each Tone PO (each) (dBm)
Remark The graphs indicate nominal characteristics.
22
f1 = 1.500 GHz
f2 = 1.502 GHz
Data Sheet P12710EJ3V0DS
µPC2762TB, µPC2763TB, µPC2771TB
S-PARAMETERS (TA = +25°°C, VCC = Vout = 3.0 V)
− µPC2771TB −
S11-FREQUENCY
0.1 G
2.0 G
3.0 G
S22-FREQUENCY
3.0 G
0.1G
2.0 G
Data Sheet P12710EJ3V0DS
23
µPC2762TB, µPC2763TB, µPC2771TB
TYPICAL S-PARAMETER VALUES (TA = +25°°C)
µPC2771TB
VCC = Vout = 3.0 V, ICC = 35 mA
FREQUENCY
MHz
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
MAG.
ANG.
100.0000
200.0000
300.0000
400.0000
500.0000
600.0000
700.0000
800.0000
900.0000
1000.0000
1100.0000
1200.0000
1300.0000
1400.0000
1500.0000
1600.0000
1700.0000
1800.0000
1900.0000
2000.0000
2100.0000
2200.0000
2300.0000
2400.0000
2500.0000
2600.0000
2700.0000
2800.0000
2900.0000
3000.0000
3100.0000
0.045
0.057
0.075
0.090
0.105
0.118
0.138
0.163
0.186
0.202
0.219
0.233
0.252
0.267
0.285
0.293
0.304
0.290
0.285
0.273
0.267
0.254
0.237
0.221
0.212
0.208
0.202
0.190
0.178
0.154
0.147
19.7
37.0
41.3
43.3
42.2
40.2
34.9
32.5
29.4
26.3
21.7
15.4
8.4
−0.1
−6.8
−13.9
−20.9
−28.1
−35.3
−41.8
−47.4
−51.6
−57.1
−61.1
−68.8
−72.2
−74.1
−76.3
−76.7
−82.3
−88.0
10.570
10.638
10.775
11.004
11.275
11.586
12.041
12.367
12.844
13.300
13.771
14.082
14.365
14.336
14.142
13.929
13.428
12.722
11.966
11.232
10.500
9.815
9.168
8.570
7.967
7.507
7.004
6.667
6.336
6.003
5.772
−4.7
−9.5
−14.1
−19.4
−24.4
−30.0
−35.9
−42.1
−48.8
−56.6
−64.6
−73.5
−83.2
−92.6
−102.4
−112.0
−121.6
−131.0
−139.6
−147.5
−154.8
−161.7
−168.0
−173.7
−179.7
174.9
170.0
164.7
160.7
155.6
151.3
0.028
0.028
0.029
0.030
0.030
0.031
0.031
0.032
0.032
0.032
0.033
0.033
0.036
0.036
0.036
0.037
0.039
0.038
0.038
0.038
0.039
0.040
0.041
0.041
0.042
0.043
0.045
0.047
0.051
0.051
0.054
0.8
5.0
8.6
11.1
14.9
15.8
19.8
20.1
23.2
23.9
24.9
26.6
28.8
30.0
32.0
31.6
32.5
34.7
36.1
37.4
39.1
41.4
43.7
48.3
48.3
50.8
53.7
54.2
57.7
56.5
59.3
0.327
0.325
0.323
0.326
0.331
0.342
0.350
0.359
0.361
0.371
0.389
0.400
0.405
0.402
0.406
0.413
0.414
0.401
0.387
0.378
0.366
0.356
0.342
0.325
0.322
0.314
0.309
0.303
0.292
0.287
0.279
−6.2
−11.5
−16.2
−20.9
−26.4
−32.0
−37.3
−42.8
−49.4
−56.1
−62.5
−69.3
−75.4
−83.6
−91.6
−99.3
−105.8
−113.7
−120.8
−127.6
−133.1
−138.0
−142.8
−148.3
−152.6
−156.7
−160.1
−164.0
−167.8
−172.8
−176.4
24
S11
S21
S12
Data Sheet P12710EJ3V0DS
S22
K
1.65
1.63
1.58
1.49
1.45
1.37
1.29
1.20
1.15
1.11
1.03
0.99
0.92
0.91
0.90
0.89
0.88
0.96
1.03
1.09
1.14
1.20
1.28
1.37
1.44
1.49
1.53
1.56
1.55
1.62
1.61
µPC2762TB, µPC2763TB, µPC2771TB
PACKAGE DIMENSIONS
6-PIN SUPER MINIMOLD (UNIT: mm)
2.1±0.1
0.2+0.1
–0.05
0.65
0.65
1.3
Data Sheet P12710EJ3V0DS
0.15+0.1
–0.05
0 to 0.1
0.7
0.1 MIN.
0.9±0.1
2.0±0.2
1.25±0.1
25
µPC2762TB, µPC2763TB, µPC2771TB
NOTES ON CORRECT USE
(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired oscillation).
All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to the VCC pin.
(4) The inductor must be attached between VCC and output pins. The inductance value should be determined in
accordance with desired frequency.
(5) The DC cut capacitor must be attached to input pin.
RECOMMENDED SOLDERING CONDITIONS
This product should be soldered under the following recommended conditions.
For soldering methods and
conditions other than those recommended below, contact your NEC sales representative.
Soldering Method
Soldering Conditions
Recommended Condition Symbol
Infrared Reflow
Package peak temperature: 235°C or below
Time: 30 seconds or less (at 210°C)
Count: 3, Exposure limit: NoneNote
IR35-00-3
VPS
Package peak temperature: 215°C or below
Time: 40 seconds or less (at 200°C)
Count: 3, Exposure limit: NoneNote
VP15-00-3
Wave Soldering
Soldering bath temperature: 260°C or below
Time: 10 seconds or less
Count: 1, Exposure limit: NoneNote
WS60-00-1
Partial Heating
Pin temperature: 300°C or below
Time: 3 seconds or less (per side of device)
Exposure limit: NoneNote
–
Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.
Caution Do not use different soldering methods together (except for partial heating).
For details of recommended soldering conditions for surface mounting, refer to information document
SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).
26
Data Sheet P12710EJ3V0DS
µPC2762TB, µPC2763TB, µPC2771TB
[MEMO]
Data Sheet P12710EJ3V0DS
27
µPC2762TB, µPC2763TB, µPC2771TB
ATTENTION
OBSERVE PRECAUTIONS
FOR HANDLING
ELECTROSTATIC
SENSITIVE
DEVICES
NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.
• The information in this document is current as of February, 2001. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.
• No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
• NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.
• Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.
• While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.
• NEC semiconductor products are classified into the following three quality grades:
"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
developed based on a customer-designated "quality assurance program" for a specific application. The
recommended applications of a semiconductor product depend on its quality grade, as indicated below.
Customers must check the quality grade of each semiconductor product before using it in a particular
application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.
The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's
data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not
intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.
(Note)
(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for
NEC (as defined above).
M8E 00. 4