TI 5962-9088104QPA

TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
D
D
D
D
D
D
Supply Current . . . 300 μA Max
High Unity-Gain Bandwidth . . . 2 MHz Typ
High Slew Rate . . . 0.45 V/μs Min
Supply-Current Change Over Military Temp
Range . . . 10 μA Typ at VCC ± = ± 15 V
Specified for Both 5-V Single-Supply and
±15-V Operation
Phase-Reversal Protection
D High Open-Loop Gain . . . 6.5 V/μV
D
D
D
D
(136 dB) Typ
Low Offset Voltage . . . 100 μV Max
Offset Voltage Drift With Time
0.005 μV/mo Typ
Low Input Bias Current . . . 50 nA Max
Low Noise Voltage . . . 19 nV/√Hz Typ
description
The TLE202x, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers
using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with
highly improved slew rate and unity-gain bandwidth.
The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic
improvement in unity-gain bandwidth and slew rate over similar devices.
The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both
time and temperature. This means that a precision device remains a precision device even with changes in
temperature and over years of use.
This combination of excellent dc performance with a common-mode input voltage range that includes the
negative rail makes these devices the ideal choice for low-level signal conditioning applications in either
single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry
that eliminates an unexpected change in output states when one of the inputs goes below the negative supply
rail.
A variety of available options includes small-outline and chip-carrier versions for high-density systems
applications.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized
for operation from − 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of − 55°C to 125°C.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
Copyright © 2010, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TLE2021 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
SMALL
OUTLINE†
(D)
SSOP‡
(DB)
CHIP
CARRIER
(FK)
CERAMIC DIP
(JG)
PLASTIC DIP
(P)
TSSOP‡
(PW)
CHIP
FORM§
(Y)
0°C
0
C to
70°C
200 μV
500 μV
TLE2021ACD
TLE2021CD
TLE2021CDBLE
—
—
TLE2021ACP
TLE2021CP
—
TLE2021CPWLE
—
TLE2021Y
−40°C
to
85°C
200 μV
500 μV
TLE2021AID
TLE2021ID
—
—
—
TLE2021AIP
TLE2021IP
—
—
−55 C
−55°C
to
125°C
100 μV
V
500 μV
—
TLE2021MD
—
TLE2021BMFK
TLE2021MFK
TLE2021BMJG
TLE2021MJG
—
TLE2021MP
—
—
†
The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR).
The DB and PW packages are only available left-end taped and reeled.
§ Chip forms are tested at 25°C only.
‡
TLE2022 AVAILABLE OPTIONS
PACKAGED DEVICES
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
TSSOP‡
(PW)
CHIP
FORM§
(Y)
—
TLE2022CDBLE
—
—
—
TLE2022ACP
TLE2022CP
—
—
TLE2022CPWLE
—
—
TLE2022Y
TLE2022BID
TLE2022AID
TLE2022ID
—
—
—
—
TLE2022AIP
TLE2022IP
—
—
—
TLE2022AMD
TLE2022MD
—
—
TLE2022AMFK
TLE2022MFK
TLE2022BMJG
TLE2022AMJG
TLE2022MJG
—
TLE2022AMP
TLE2022MP
—
—
TA
VIOmax
AT 25°C
SMALL
OUTLINE†
(D)
0°C
to
70°C
150 μV
300 μV
500 μV
TLE2022BCD
TLE2022ACD
TLE2022CD
−40°C
to
85°C
150 μV
300 μV
500 μV
−55 C
−55°C
to
125°C
150 μV
300 μV
500 μV
SSOP‡
(DB)
—
†
The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2022CDR).
The DB and PW packages are only available left-end taped and reeled.
§ Chip forms are tested at 25°C only.
‡
TLE2024 AVAILABLE OPTIONS
PACKAGED DEVICES
§
2
TA
VIOmax
AT 25°C
0°C
0
C to 70°C
500 μV
750 μV
1000 μV
−40°C
40 C to 85°C
85 C
−55°C
55 C to 125°C
125 C
SMALL
OUTLINE
(DW)
CHIP
FORM§
(Y)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
PLASTIC
DIP
(N)
TLE2024BCDW
TLE2024ACDW
TLE2024CDW
—
—
TLE2024BCN
TLE2024ACN
TLE2024CN
—
—
TLE2024Y
500 μV
750 μV
1000 μV
TLE2024BIDW
TLE2024AIDW
TLE2024IDW
—
—
TLE2024BIN
TLE2024AIN
TLE2024IN
—
500 μV
750 μV
1000 μV
TLE2024BMDW
TLE2024AMDW
TLE2024MDW
TLE2024BMFK
TLE2024AMFK
TLE2024MFK
TLE2024BMJ
TLE2024AMJ
TLE2024MJ
TLE2024BMN
TLE2024AMN
TLE2024MN
—
Chip forms are tested at 25°C only.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TLE2021
D, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
1
8
2
7
3
6
4
5
NC
OFFSET N1
NC
NC
NC
OFFSET N1
IN−
IN+
VCC − /GND
TLE2021
FK PACKAGE
(TOP VIEW)
NC
VCC+
OUT
OFFSET N2
NC
IN−
NC
IN+
NC
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
VCC+
NC
OUT
NC
NC
V CC−/ GND
NC
OFFSET N2
NC
NC − No internal connection
4
1OUT
1IN−
1IN+
VCC − /GND
1
8
2
7
3
6
4
5
FK PACKAGE
(TOP VIEW)
NC
1OUT
NC
VCC +
NC
D, DB, JG, P, OR PW PACKAGE
(TOP VIEW)
VCC+
2OUT
2IN−
2IN+
NC
1IN −
NC
1IN +
NC
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN −
NC
NC
V CC−/ GND
NC
2IN +
NC
NC − No internal connection
4
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
4OUT
4IN−
4IN +
VCC − /GND
3IN +
3IN −
3OUT
NC
NC − No internal connection
J OR N PACKAGE
(TOP VIEW)
1IN +
NC
VCC +
NC
2IN +
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
4IN +
NC
VCC − /GND
NC
3IN +
1OUT
1IN −
1IN +
VCC +
2IN +
2IN −
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN −
4IN +
VCC − /GND
3IN +
3IN −
3OUT
2IN −
2OUT
NC
3OUT
3IN −
1OUT
1IN −
1IN +
VCC +
2IN +
2IN −
2OUT
NC
FK PACKAGE
(TOP VIEW)
1IN −
1OUT
NC
4OUT
4IN −
DW PACKAGE
(TOP VIEW)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TLE2021Y chip information
This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(7)
(6)
(5)
OFFSET N1
IN +
IN −
OFFSET N2
VCC+
(7)
(1)
(3)
(2)
+
(6)
−
OUT
(5)
(4)
VCC − /GND
78
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax= 150°C
TOLERANCES ARE ± 10%.
(4)
(1)
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
(2)
(3)
54
4
ALL DIMENSIONS ARE IN MILS.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TLE2022Y chip information
This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(7)
(6)
VCC+
IN +
IN −
OUT
(8)
(3)
(2)
(8)
+
(1)
−
+
(7)
−
(5)
80
(6)
IN +
IN −
(4)
(4)
(1)
(5)
OUT
VCC −
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
(2)
(3)
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
86
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TLE2024Y chip information
This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or
ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
VCC +
1IN +
1IN −
2OUT
2IN +
100
3IN −
4OUT
(4)
(3)
+
(2)
(1)
−
+
(7)
(10)
(9)
−
+
(5)
(6)
(8)
−
+
(14)
−
(12)
(13)
1OUT
2IN +
2IN −
3OUT
4IN +
4IN −
(11)
VCC − /GND
140
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
PIN (11) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
equivalent schematic (each amplifier)
VCC+
Q3
Q13
Q7
Q22
Q17
Q28
IN −
IN +
Q34
Q39
Q36
Q38
Q11
D3
Q2
Q32
Q24
Q20
Q8
Q35
Q29
Q19
Q1
Q5
Q31
C4
Q4
Q12
D4
Q14
D1 D2
R7
Q23 Q25
C2
Q10
OUT
Q40
C3
Q21
Q27
R6
R1
C1
OFFSET N1
Q6
Q9
R2
R4
R3
R5
Q15
Q30 Q33
Q26
Q18
Q37
Q16
OFFSET N2
VCC − /GND
ACTUAL DEVICE COMPONENT COUNT
COMPONENT
Transistors
TLE2021
TLE2022
TLE2024
40
80
160
Resistors
7
14
28
Diodes
4
8
16
Capacitors
4
8
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V
Supply voltage, VCC − (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 0.6 V
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±VCC
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA
Output current, IO (each output): TLE2021 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA
TLE2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 mA
TLE2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 40 mA
Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Total current out of VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Case temperature for 60 seconds, TC: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or PW package . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . . 300°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC +, and VCC − .
2. Differential voltages are at IN+ with respect to IN −. Excessive current flows if a differential input voltage in excess of approximately
± 600 mV is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D−8
725 mW
5.8 mW/°C
464 mW
377 mW
145 mW
DB−8
525 mW
4.2 mW/°C
336 mW
—
—
DW−16
1025 mW
8.2 mW/°C
656 mW
533 mW
205 mW
FK
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
J−14
1375 mW
11.0 mW/°C
880 mW
715 mW
275 mW
JG−8
1050 mW
8.4 mW/°C
672 mW
546 mW
210 mW
N−14
1150 mW
9.2 mW/°C
736 mW
598 mW
230 mW
P−8
1000 mW
8.0 mW/°C
640 mW
520 mW
200 mW
PW−8
525 mW
4.2 mW/°C
336 mW
—
—
recommended operating conditions
Supply voltage, VCC
Common mode input voltage,
Common-mode
voltage VIC
VCC = ± 5 V
VCC ± = ± 15 V
Operating free-air temperature, TA
8
POST OFFICE BOX 655303
C SUFFIX
I SUFFIX
M SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
±2
± 20
±2
± 20
±2
± 20
0
3.5
0
3.2
0
3.2
−15
13.5
−15
13.2
−15
13.2
0
70
−40
85
−55
125
• DALLAS, TEXAS 75265
UNIT
V
V
°C
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
TLE2021C
MIN
25°C
RS = 50 Ω
120
600
TYP
MAX
100
300
MIN
TYP
MAX
80
200
600
300
UNIT
μV
V
2
2
μV/°C
25°C
0.005
0.005
0.005
μV/mo
25°C
0.2
25
Full range
0
to
3.5
Full range
0
to
3.5
25°C
Full range
4
− 0.3
to
4
25°C
AVD
Large signal differential
Large-signal
voltage amplification
VO = 1.4 V to 4 V,
RL = 10 kΩ
25°C
0.3
Full range
0.3
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin,
RS = 50 Ω
25°C
85
Full range
80
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC /ΔVIO)
VCC = 5 V to 30 V
25°C
105
Full range
100
ICC
Supply current
− 0.3
to
4
4
0.8
4.3
4
0.8
1.5
105
200
300
1.5
85
120
105
110
dB
120
dB
100
200
300
200
300
5
300
300
5
V
V/ V
V/μV
80
300
5
0.8
0.3
110
nA
V
0.85
0.3
100
Full range
0.7
nA
V
4.3
0.85
80
120
− 0.3
to
4
3.9
0.7
85
70
90
0
to
3.5
0.3
110
25
0
to
3.5
0.85
0.3
6
10
70
3.9
1.5
0.2
90
0
to
3.5
4.3
Full range
Full range
25
0
to
3.5
0.7
Low level output voltage
Low-level
6
10
70
3.9
VOL
25°C
0.2
90
25°C
RS = 50 Ω
6
10
25°C
VO = 2.5
2 5 V,
V No load
MIN
TLE2021BC
2
Full range
High level output voltage
High-level
Supply-current change over
operating temperature range
MAX
850
Full range
RL= 10 kΩ
ΔICC
TYP
Full range
VIC = 0,
TLE2021AC
μA
A
μA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
9
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
VOH
Common mode input voltage range
Common-mode
TA†
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
VOM+
Common mode input voltage range
Common-mode
Maximum positive peak
output voltage swing
TEST CONDITIONS
TA†
TLE2021C
MIN
25°C
Full range
500
RS = 50 Ω
200
TYP
MAX
40
100
500
200
UNIT
μV
V
μV/°C
25°C
0.006
0.006
0.006
μV/mo
25°C
0.2
25
−15
to
13.5
Full range
−15
to
13.5
25°C
14
Full range
13.9
25°C
−13.7
Full range
−13.7
AVD
Large signal differential
Large-signal
voltage amplification
VO = ± 10 V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICR min,
RS = 50 Ω
25°C
100
Full range
96
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC /ΔVIO)
VCC ± = ± 2.5 V
to ± 15 V
25°C
105
Full range
100
ICC
Supply current
25°C
1
Full range
1
25°C
6
25
70
−15.3
to
14
14
−13.7
14.3
1
100
−14.1
−13.7
6.5
1
105
100
120
105
350
6
−14.1
V
6.5
V/ V
V/μV
115
dB
120
dB
100
240
350
350
240
350
6
350
350
6
nA
V
96
100
240
14.3
1
115
nA
V
−13.7
96
120
−15.3
to
14
13.9
1
115
90
14
−13.7
6.5
70
−15
to
13.5
13.9
−14.1
25
−15
to
13.5
−15
to
13.5
6
10
90
−15
to
13.5
14.3
0.2
10
70
−15.3
to
14
Full range
Full range
0.2
90
25°C
RS = 50 Ω
6
10
Full range
No load
80
MIN
2
25°C
VO = 0
0,
MAX
2
Full range
RL = 10 kΩ
TLE2021BC
TYP
2
Maximum negative peak
output voltage swing
Supply-current change over
operating temperature range
120
MIN
750
VOM −
ΔICC
MAX
Full range
VIC = 0,
TLE2021AC
TYP
μA
A
μA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
10
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
long term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VIC = 0
0,
RS = 50 Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
Supply
voltage rejection ratio
(ΔVCC ± /ΔVIO)
VCC = 5 V to 30 V
ICC
Supply current
μV
V
2
2
μV/°C
V/°C
25°C
0 005
0.005
0 005
0.005
0 005
0.005
μV/mo
V/mo
25°C
0.5
35
0.4
70
Full range
0
to
3.5
4
−0.3
to
4
33
−0.3
to
4
4
0.8
0.3
0.3
25°C
85
Full range
80
25°C
100
Full range
95
1.5
4.3
4
0.8
87
1.5
103
Full range
600
118
105
450
600
105
dB
120
450
600
7
dB
600
600
7
V
V/ V
V/μV
100
600
7
1.5
85
98
450
0.8
0.85
90
nA
V
0.5
102
nA
V
4.3
0.7
0.5
82
115
−0.3
to
4
0.85
0.4
100
90
3.9
0.7
0.4
70
0
to
3.5
0.85
25°C
30
0
to
3.5
3.9
0.7
6
10
70
0
to
3.5
4.3
0.3
90
0
to
3.5
3.9
Full range
6
10
90
0
to
3.5
Full range
6
10
25°C
25
C
25°C
No load
UNIT
2
Full range
VO = 2.5
2 5 V,
V
MAX
400
25°C
RL = 10 kΩ
TYP
250
25°C
VO = 1.4
1 4 V to 4 V
V,
MIN
550
Full range
Large signal differential
Large-signal
voltage amplification
TLE2022BC
MAX
400
RS = 50 Ω
AVD
TYP
800
25°C
Low level output voltage
Low-level
MIN
600
Full range
VOL
TLE2022AC
MAX
25°C
Full range
High level output voltage
High-level
Supply current change over
operating temperature range
TYP
Full range
Full range
RL = 10 kΩ
ΔICC
TLE2022C
MIN
μA
A
μA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
11
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
VOH
Common mode input
Common-mode
voltage range
TA†
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
long term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TLE2022C
MIN
25°C
VIC = 0
0,
RS = 50 Ω
MAX
150
500
VO = ± 10 V,
V
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
Supply
voltage rejection ratio
(ΔVCC ± /ΔVIO)
5 V to ± 15 V
2.5
VCC ± = ± 2
ICC
Supply current
No load
MAX
70
150
450
300
UNIT
μV
V
0 006
0.006
0 006
0.006
0 006
0.006
μV/mo
V/mo
25°C
0.5
35
0.4
70
Full range
−15
to
13.5
14
Full range
13.9
25°C
−13.7
Full range
−13.7
25°C
0.8
Full range
0.8
25°C
95
Full range
91
25°C
100
Full range
95
−15.3
to
14
6
33
70
−15.3
to
14
14
−13.7
14.3
1
97
−14.1
−13.7
7
1.5
103
100
118
105
550
700
9
−14.1
V
10
V/ V
V/μV
112
dB
120
dB
100
550
700
700
550
700
9
700
700
9
nA
V
96
98
Full range
14.3
1.5
109
nA
V
−13.7
93
115
−15.3
to
14
13.9
1
106
90
14
−13.7
4
70
−15
to
13.5
13.9
−14.1
30
−15
to
13.5
−15
to
13.5
6
10
90
−15
to
13.5
14.3
0.3
10
90
−15
to
13.5
Full range
6
10
25°C
25
C
25°C
VO = 0,
0
300
TYP
25°C
25°C
Large signal differential
Large-signal
voltage amplification
120
MIN
μV/°C
V/°C
RS = 50 Ω
AVD
MAX
2
Full range
RL = 10 kΩ
TLE2022BC
TYP
2
25°C
Maximum negative peak
output voltage swing
MIN
2
Full range
VOM −
TLE2022AC
TYP
700
Full range
Maximum positive peak
output voltage swing
Supply current change over
operating temperature range
TA†
Full range
VOM +
ΔICC
†
Common mode input
Common-mode
voltage range
TEST CONDITIONS
μA
A
μA
Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
12
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VIC = 0,
RS = 50 Ω
TYP
VO = 1.4
1 4 V to 4 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC /ΔVIO)
VCC = 5 V to 30 V
ICC
Supply current
TYP
MAX
600
800
UNIT
μV
V
2
2
2
μV/°C
25°C
0.005
0.005
0.005
μV/mo
25°C
0.6
45
0.5
70
Full range
0
to
3.5
25°C
3.9
Full range
3.7
−0.3
to
4
40
−0.3
to
4
3.9
Full range
0.1
25°C
80
Full range
80
25°C
98
Full range
93
1.5
4.2
4
82
0.8
1.5
100
Full range
1200
115
103
800
1200
95
dB
117
800
1200
15
dB
1200
1200
15
V
V/ V
V/μV
98
1200
15
1.5
85
95
800
0.8
0.95
85
nA
V
0.1
92
nA
V
4.3
0.7
0.4
82
112
−0.3
to
4
0.95
0.1
90
90
3.8
0.7
0.3
70
0
to
3.5
0.95
0.2
35
0
to
3.5
3.7
0.8
6
10
90
0
to
3.5
4.2
0.4
70
0
to
3.5
0.7
25°C
6
10
90
0
to
3.5
Full range
6
10
25°C
25°C
No load
MIN
850
Full range
VO = 2.5
2 5 V,
V
MAX
1050
25°C
Large signal differential
Large-signal
voltage amplification
TYP
1100
RS = 50 Ω
AVD
MIN
1300
Full range
Low level output voltage
Low-level
MAX
TLE2024BC
25°C
25°C
VOL
TLE2024AC
Full range
Full range
High level output voltage
High-level
Supply current change over
operating temperature range
MIN
Full range
RL = 10 kΩ
ΔICC
TLE2024C
μA
A
μA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
13
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
VOH
Common mode input voltage
Common-mode
range
TA†
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
VOM +
Common mode input voltage
Common-mode
range
Maximum positive peak output
voltage swing
TEST CONDITIONS
VIC = 0,
RS = 50 Ω
TYP
VO = ± 10 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC ± /ΔVIO)
2.5
5 V to ± 15 V
VCC ± = ± 2
ICC
Supply current
No load
MIN
TYP
MAX
750
500
950
700
UNIT
μV
V
2
2
2
μV/°C
25°C
0.006
0.006
0.006
μV/mo
25°C
0.6
50
0.5
70
Full range
−15
to
13.5
25°C
13.8
Full range
13.7
25°C
−13.7
Full range
−13.6
25°C
0.4
Full range
0.4
25°C
92
Full range
88
25°C
98
Full range
93
−15.3
to
14
6
45
70
−15.3
to
14
13.9
−13.7
14.2
0.8
14
−14.1
−13.7
94
4
1
105
97
100
1050
Full range
1400
115
103
1050
1400
−14.1
V
7
V/ V
V/μV
108
dB
117
1050
1400
20
dB
1400
1400
20
nA
V
98
1400
20
14.3
93
95
nA
V
1
90
112
−15.3
to
14
−13.6
0.8
102
90
13.9
−13.6
2
70
−15
to
13.5
13.8
−14.1
40
−15
to
13.5
−15
to
13.5
6
10
90
−15
to
13.5
14.1
0.4
10
90
−15
to
13.5
Full range
6
10
25°C
25°C
VO = 0,
0
TLE2024BC
MAX
1200
RS = 50 Ω
Large signal differential
Large-signal
voltage amplification
TYP
1000
Full range
AVD
MIN
25°C
25°C
RL = 10 kΩ
TLE2024AC
MAX
Full range
Full range
Maximum negative peak output
voltage swing
Supply current change over
operating temperature range
TLE2024C
MIN
Full range
VOM −
ΔICC
TA†
μA
A
μA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
14
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
TLE2021I
MIN
25°C
MAX
120
600
Full range
RS = 50 Ω
Large signal differential
Large-signal
voltage amplification
VO = 1.4 V to 4 V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICR min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC /ΔVIO)
VCC = 5 V to 30 V
ICC
Supply current
ΔICC
Supply-current change over
operating temperature range
80
200
600
300
UNIT
μV
V
0.005
0.005
0.005
μV/mo
25°C
0.2
25
0
to
3.5
Full range
0
to
3.2
4
−0.3
to
4
0
to
3.5
4.3
0.3
0.25
−0.3
to
4
4
0.8
25°C
85
Full range
80
25°C
105
Full range
100
4.3
4
0.8
1.5
105
200
300
110
1.5
85
120
105
110
dB
120
dB
100
200
300
200
300
6
300
300
6
V
V/ V
V/μV
80
300
6
0.8
0.9
0.3
nA
V
0.25
100
Full range
4.3
0.7
nA
V
3.9
80
120
− 0.3
to
4
0.9
85
70
90
0
to
3.5
0.25
110
25
0
to
3.2
0.7
0.3
6
10
70
3.9
1.5
0.2
90
0.9
25°C
Full range
25
0
to
3.2
0.7
Full range
6
10
70
3.9
25°C
25°C
0.2
90
25°C
Full range
6
10
Full range
VO = 2.5 V,,
No load
MAX
25°C
25°C
AVD
300
TYP
μV/°C
RS = 50 Ω
Low level output voltage
Low-level
100
MIN
2
25°C
VOL
MAX
2
Full range
RL = 10 kΩ
TLE2021BI
TYP
2
Full range
High level output voltage
High-level
MIN
950
Full range
VIC = 0,
TLE2021AI
TYP
μA
A
μA
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
15
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
VOH
Common mode input voltage range
Common-mode
TA†
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
VOM +
Common-mode
Common
mode input voltage range
Maximum positive peak output
voltage swing
TEST CONDITIONS
TA†
TLE2021I
MIN
25°C
Full range
500
RS = 50 Ω
80
200
MIN
TYP
MAX
40
100
500
200
UNIT
μV
V
2
μV/°C
25°C
0.006
0.006
0.006
μV/mo
25°C
0.2
25°C
25
−15
to
13.5
Full range
−15
to
13.2
25°C
14
Full range
13.9
25°C
−13.7
Full range
−13.6
AVD
Large signal differential
Large-signal
voltage amplification
VO = 10 V,
RL = 10 kΩ
Full range
0.75
CMRR
Common mode rejection ratio
Common-mode
VIC = VICR min,
RS = 50 Ω
25°C
100
Full range
96
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC /ΔVIO)
VCC ± = ± 2. 5 V
to ± 15 V
25°C
105
Full range
100
ICC
Supply current
25°C
25°C
1
6
25
70
−15.3
to
14
14
−13.7
14.3
1
14
−14.1
−13.7
100
6.5
1
115
100
105
240
350
120
105
240
350
−14.1
V
6.5
V/ V
V/μV
115
dB
120
240
350
7
dB
350
350
7
nA
V
100
350
7
14.3
96
100
nA
V
0.75
96
120
−15.3
to
14
−13.6
0.75
115
90
13.9
−13.6
6.5
70
−15
to
13.2
13.9
−14.1
25
−15
to
13.5
−15
to
13.2
6
10
90
−15
to
13.5
14.3
0.2
10
70
−15.3
to
14
Full range
Full range
0.2
90
25°C
RS = 50 Ω
6
10
Full range
VO = 0 V
V, No load
MAX
2
Full range
RL = 10 kΩ
TLE2021BI
TYP
2
Maximum negative peak output
voltage swing
Supply-current change over
operating temperature range
120
MIN
850
VOM −
ΔICC
MAX
Full range
VIC = 0,
TLE2021AI
TYP
μA
A
μA
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
16
TLE2021 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
long term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VIC = 0
0,
RS = 50 Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
Supply
voltage rejection ratio
(ΔVCC ± /ΔVIO)
VCC = 5 V to 30 V
ICC
Supply current
μV
V
2
2
μV/°C
V/°C
25°C
0 005
0.005
0 005
0.005
0 005
0.005
μV/mo
V/mo
25°C
0.5
35
0.4
70
Full range
0
to
3.2
4
−0.3
to
4
33
−0.3
to
4
4
0.8
0.3
0.2
25°C
85
Full range
80
25°C
100
Full range
95
1.5
4.3
4
0.8
87
1.5
103
Full range
600
118
105
450
600
105
dB
120
450
600
15
dB
600
600
15
V
V/ V
V/μV
100
600
15
1.5
85
98
450
0.8
0.9
90
nA
V
0.2
102
nA
V
4.3
0.7
0.5
82
115
−0.3
to
4
0.9
0.2
100
90
3.9
0.7
0.4
70
0
to
3.2
0.9
25°C
30
0
to
3.5
3.9
0.7
6
10
70
0
to
3.2
4.3
0.3
90
0
to
3.5
3.9
Full range
6
10
90
0
to
3.5
Full range
6
10
25°C
25
C
25°C
No load
UNIT
2
Full range
VO = 2.5
2 5 V,
V
MAX
400
25°C
RL = 10 kΩ
TYP
250
25°C
VO = 1.4
1 4 V to 4 V
V,
MIN
550
Full range
Large signal differential
Large-signal
voltage amplification
TLE2022BI
MAX
400
RS = 50 Ω
AVD
TYP
800
25°C
Low level output voltage
Low-level
MIN
600
Full range
VOL
TLE2022AI
MAX
25°C
Full range
High level output voltage
High-level
Supply current change over
operating temperature range
TYP
Full range
Full range
RL = 10 kΩ
ΔICC
TLE2022I
MIN
μA
A
μA
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
17
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
VOH
Common mode input
Common-mode
voltage range
TA†
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
long term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TLE2022I
MIN
25°C
VIC = 0
0,
RS = 50 Ω
MAX
150
500
VO = ± 10 V,
V
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
Supply
voltage rejection ratio
(ΔVCC ± /ΔVIO)
VCC = ± 2
5 V to ± 15 V
2.5
ICC
Supply current
70
150
450
300
UNIT
μV
V
0 006
0.006
0 006
0.006
μV/mo
V/mo
25°C
0.5
35
0.4
70
33
Full range
− 15
to
13.2
14
14
13.9
25°C
− 13.7
Full range
− 13.6
25°C
0.8
Full range
0.8
25°C
95
Full range
91
25°C
100
Full range
95
− 13.7
14.3
1
97
− 14.1
− 13.7
7
1.5
103
100
118
105
550
700
30
− 14.1
V
10
V/ V
V/μV
112
dB
120
dB
100
550
700
700
550
700
30
700
700
30
nA
V
96
98
Full range
14.3
1.5
109
nA
V
− 13.6
93
115
−15.3
to
14
13.9
1
106
90
14
− 13.6
4
70
− 15
to
13.2
13.9
− 14.1
30
− 15
to
13.5
−15.3
to
14
6
10
70
− 15
to
13.2
14.3
0.3
90
− 15
to
13.5
−15.3
to
14
6
10
90
− 15
to
13.5
Full range
6
10
25°C
25
C
Full range
No load
MAX
0 006
0.006
25°C
VO = 0,
0
300
TYP
25°C
25°C
Large signal differential
Large-signal
voltage amplification
120
MIN
μV/°C
V/°C
RS = 50 Ω
AVD
MAX
2
Full range
RL = 10 kΩ
TLE2022BI
TYP
2
25°C
Maximum negative peak
output voltage swing
MIN
2
Full range
VOM −
TLE2022AI
TYP
700
Full range
Maximum positive peak
output voltage swing
Supply current change over
operating temperature range
TA†
Full range
VOM +
ΔICC
†
Common mode input
Common-mode
voltage range
TEST CONDITIONS
μA
A
μA
Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
18
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
Maximum positive peak
output voltage swing
VIC = 0,
RS = 50 Ω
TYP
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC± /ΔVIO)
VCC ± = ± 2
2.5
5 V to ± 15 V
ICC
Supply current
TYP
MAX
600
800
UNIT
μV
V
2
2
2
μV/°C
25°C
0.005
0.005
0.005
μV/mo
25°C
0.6
45
0.5
70
Full range
0
to
3.2
25°C
3.9
Full range
3.7
−0.3
to
4
40
−0.3
to
4
3.9
Full range
0.1
25°C
80
Full range
80
25°C
98
Full range
93
1.5
4.2
4
82
0.8
1.5
100
Full range
1200
115
103
800
1200
95
dB
117
800
1200
30
dB
1200
1200
30
V
V/ V
V/μV
98
1200
30
1.5
85
95
800
0.8
0.95
85
nA
V
0.1
92
nA
V
4.3
0.7
0.4
82
112
−0.3
to
4
0.95
0.1
90
90
3.8
0.7
0.3
70
0
to
3.2
0.95
0.2
35
0
to
3.5
3.7
0.8
6
10
90
0
to
3.5
4.2
0.4
70
0
to
3.2
0.7
25°C
6
10
90
0
to
3.5
Full range
6
10
25°C
25°C
No load
MIN
850
Full range
VO = 0,
0
MAX
1050
25°C
VO = 1.4
1 4 V to 4 V
V,
TYP
1100
RS = 50 Ω
Large signal differential
Large-signal
voltage amplification
MIN
1300
Full range
AVD
MAX
TLE2024BI
25°C
25°C
RL = 10 kΩ
TLE2024AI
Full range
Full range
Maximum negative peak
output voltage swing
Supply current change over
operating temperature range
MIN
Full range
VOM −
ΔICC
TLE2024I
μA
A
μA
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
19
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
VOM +
Common mode input voltage
Common-mode
range
TA†
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
VIO
Input offset voltage
αVIO
Temperature coefficient of input
offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
VOM +
Common mode input voltage
Common-mode
range
Maximum positive peak output
voltage swing
TEST CONDITIONS
VIC = 0,
RS = 50 Ω
TYP
VO = ± 10 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC ± /ΔVIO)
2.5
5 V to ± 15 V
VCC ± = ± 2
ICC
Supply current
No load
MIN
TYP
MAX
750
500
950
700
UNIT
μV
V
2
2
2
μV/°C
25°C
0.006
0.006
0.006
μV/mo
25°C
0.6
50
0.5
70
Full range
−15
to
13.2
25°C
13.8
Full range
13.7
25°C
−13.7
Full range
−13.6
25°C
0.4
Full range
0.4
25°C
92
Full range
88
25°C
98
Full range
93
−15.3
to
14
6
45
70
−15.3
to
14
13.9
−13.7
14.2
0.8
14
−14.1
−13.7
94
4
1
105
97
100
1050
Full range
1400
115
103
1050
1400
−14.1
V
7
V/ V
V/μV
108
dB
117
1050
1400
50
dB
1400
1400
50
nA
V
98
1400
50
14.3
93
95
nA
V
1
90
112
−15.3
to
14
−13.6
0.8
102
90
13.8
−13.6
2
70
−15
to
13.2
13.7
−14.1
40
−15
to
13.5
−15
to
13.2
6
10
90
−15
to
13.5
14.1
0.4
10
90
−15
to
13.5
Full range
6
10
25°C
25°C
VO = 0,
0
TLE2024BI
MAX
1200
RS = 50 Ω
Large signal differential
Large-signal
voltage amplification
TYP
1000
Full range
AVD
MIN
25°C
25°C
RL = 10 kΩ
TLE2024AI
MAX
Full range
Full range
Maximum negative peak output
voltage swing
Supply current change over
operating temperature range
TLE2024I
MIN
Full range
VOM −
ΔICC
TA†
μA
A
μA
† Full range is − 40°C to 85°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
20
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
TLE2021 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
Common mode input
Common-mode
voltage range
25°C
TYP
120
VIC = 0,
RS = 50 Ω
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC ± /ΔVIO)
VCC = 5 V to 30 V
ICC
Supply current
μV/mo
25°C
0.2
25
Full range
0
to
3.2
4
−0.3
to
4
25
90
0
to
3.5
−0.3
to
4
4.3
4
0.7
0.3
0.1
25°C
85
Full range
80
25°C
105
Full range
100
1.5
0.8
0.95
0.3
1.5
85
110
dB
80
120
105
120
dB
100
170
Full range
230
170
230
9
230
230
9
V
V/ V
V/μV
0.1
110
nA
V
3.8
0.8
nA
V
4.3
0.95
25°C
70
0
to
3.2
0.7
Full range
6
10
70
3.8
25°C
Full range
0.2
90
0
to
3.5
25°C
6
10
25°C
Full range
No load
μV
V
0.005
Full range
VO = 2.5
2 5 V,
V
300
μA
A
μA
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
21
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
1 4 V to 4 V
V,
VO = 1.4
200
0.005
25°C
Large-signal
Large
signal differential
voltage amplification
80
UNIT
25°C
RS = 50 Ω
AVD
MAX
μV/°C
Full range
RL = 10 kΩ
600
TYP
2
25°C
Low level output voltage
Low-level
MIN
2
Full range
VOL
TLE2021BM
MAX
1100
Full range
High level output voltage
High-level
Supply current change over
operating temperature range
TLE2021M
MIN
Full range
VOH
ΔICC
TA†
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
Common mode input
Common-mode
voltage range
TEST CONDITIONS
25°C
TYP
120
VIC = 0,
RS = 50 Ω
VO = ± 10 V,
V
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC ± /ΔVIO)
VCC ± = ± 2
2.5
5 V to ± 15 V
ICC
Supply current
No load
200
μV
V
0.006
μV/mo
25°C
0.2
25
Full range
−15
to
13.2
14
Full range
13.8
25°C
−13.7
Full range
−13.6
1
Full range
0.5
25°C
100
Full range
96
25°C
105
Full range
100
6
10
70
−15.3
to
14
25
70
90
−15
to
13.5
−15.3
to
14
14.3
14
14.3
−13.7
−14.1
V
−13.6
6.5
1
6.5
V/ V
V/μV
0.5
115
100
115
dB
96
120
105
120
dB
100
200
300
200
300
10
300
300
10
nA
V
13.8
−14.1
nA
V
−15
to
13.2
Full range
Full range
0.2
90
−15
to
13.5
25°C
6
10
25°C
25°C
VO = 0,
0
100
0.006
25°C
Large-signal
Large
signal differential
voltage amplification
40
UNIT
25°C
RS = 50 Ω
AVD
MAX
μV/°C
Full range
RL = 10 kΩ
500
TYP
2
25°C
Maximum negative peak
output voltage swing
MIN
2
Full range
VOM −
TLE2021BM
MAX
1000
Full range
Maximum positive peak
output voltage swing
Supply current change over
operating temperature range
TLE2021M
MIN
Full range
VOM +
ΔICC
TA†
μA
A
μA
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
22
TLE2021 electrical characteristics at specified free-air temperature, VCC = ±15 V (unless otherwise noted)
TLE2022 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
long term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VIC = 0
0,
RS = 50 Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
Supply
voltage rejection ratio
(ΔVCC ± /ΔVIO)
VCC = 5 V to 30 V
ICC
Supply current
μV
V
2
2
μV/°C
V/°C
25°C
0 005
0.005
0 005
0.005
0 005
0.005
μV/mo
V/mo
25°C
0.5
35
0.4
70
Full range
0
to
3.2
4
−0.3
to
4
33
−0.3
to
4
4
0.8
0.3
0.1
25°C
85
Full range
80
25°C
100
Full range
95
1.5
4.3
4
0.8
87
1.5
103
Full range
600
118
105
450
600
105
dB
120
450
600
37
dB
600
600
37
V
V/ V
V/μV
100
600
37
1.5
85
98
450
0.8
0.95
90
nA
V
0.1
102
nA
V
4.3
0.7
0.5
82
115
−0.3
to
4
0.95
0.1
100
90
3.8
0.7
0.4
70
0
to
3.2
0.95
25°C
30
0
to
3.5
3.8
0.7
6
10
70
0
to
3.2
4.3
0.3
90
0
to
3.5
3.8
Full range
6
10
90
0
to
3.5
Full range
6
10
25°C
25
C
25°C
No load
UNIT
2
Full range
VO = 2
2.5
5V
V,
MAX
400
25°C
RL = 10 kΩ
TYP
250
25°C
VO = 1.4
1 4 V to 4 V
V,
MIN
550
Full range
Large signal differential
Large-signal
voltage amplification
TLE2022BM
MAX
400
RS = 50 Ω
AVD
TYP
800
25°C
Low level output voltage
Low-level
MIN
600
Full range
VOL
TLE2022AM
MAX
25°C
Full range
High level output voltage
High-level
Supply current change over
operating temperature range
TYP
Full range
Full range
RL = 10 kΩ
ΔICC
TLE2022M
MIN
μA
A
μA
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
23
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
VOH
Common mode input
Common-mode
voltage range
TA†
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
long term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TLE2022M
MIN
25°C
VIC = 0
0,
RS = 50 Ω
MAX
150
500
VO = ± 10 V,
V
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
Supply
voltage rejection ratio
(ΔVCC ± /ΔVIO)
VCC ± = ± 2
5 V to ± 15 V
2.5
ICC
Supply current
No load
MAX
70
150
450
300
UNIT
μV
V
0 006
0.006
0 006
0.006
0 006
0.006
μV/mo
V/mo
25°C
0.5
35
0.4
70
33
Full range
−15
to
13.2
14
Full range
13.9
25°C
−13.7
Full range
−13.6
25°C
0.8
Full range
0.8
25°C
95
Full range
91
25°C
100
Full range
95
14
−13.7
14.3
1
97
−14.1
−13.7
7
1.5
103
100
118
105
550
700
60
−14.1
V
10
V/ V
V/μV
112
dB
120
dB
100
550
700
700
550
700
60
700
700
60
nA
V
96
98
Full range
14.3
1.5
109
nA
V
−13.6
93
115
−15.3
to
14
13.9
1
106
90
14
−13.6
4
70
−15
to
13.2
13.9
−14.1
30
−15
to
13.5
−15.3
to
14
6
10
70
−15
to
13.2
14.3
0.3
90
−15
to
13.5
−15.3
to
14
6
10
90
−15
to
13.5
Full range
6
10
25°C
25
C
25°C
VO = 0,
0
300
TYP
25°C
25°C
Large signal differential
Large-signal
voltage amplification
120
MIN
μV/°C
V/°C
RS = 50 Ω
AVD
MAX
2
Full range
RL = 10 kΩ
TLE2022BM
TYP
2
25°C
Maximum negative peak
output voltage swing
MIN
2
Full range
VOM −
TLE2022AM
TYP
700
Full range
Maximum positive peak
output voltage swing
Supply current change over
operating temperature range
TA†
Full range
VOM +
ΔICC
†
Common mode input
Common-mode
voltage range
TEST CONDITIONS
μA
A
μA
Full range is −55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius
equation and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
24
TLE2022 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
TLE2024 electrical characteristics at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
Maximum positive peak
output voltage swing
VIC = 0,
RS = 50 Ω
TYP
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC± /ΔVIO)
VCC ± = ± 2
2.5
5 V to ± 15 V
ICC
Supply current
TYP
MAX
600
800
UNIT
μV
V
2
2
2
μV/°C
25°C
0.005
0.005
0.005
μV/mo
25°C
0.6
45
0.5
70
Full range
0
to
3.2
25°C
3.9
Full range
3.7
−0.3
to
4
40
−0.3
to
4
3.9
Full range
0.1
25°C
80
Full range
80
25°C
98
Full range
93
1.5
4.2
4
82
0.8
1.5
100
Full range
1200
115
103
800
1200
95
dB
117
800
1200
50
dB
1200
1200
50
V
V/ V
V/μV
98
1200
50
1.5
85
95
800
0.8
0.95
85
nA
V
0.1
92
nA
V
4.3
0.7
0.4
82
112
−0.3
to
4
0.95
0.1
90
90
3.8
0.7
0.3
70
0
to
3.2
0.95
0.2
35
0
to
3.5
3.7
0.8
6
10
90
0
to
3.5
4.2
0.4
70
0
to
3.2
0.7
25°C
6
10
90
0
to
3.5
Full range
6
10
25°C
25°C
No load
MIN
850
Full range
VO = 0,
0
MAX
1050
25°C
VO = 1.4
1 4 V to 4 V
V,
TYP
1100
RS = 50 Ω
Large signal differential
Large-signal
voltage amplification
MIN
1300
Full range
AVD
MAX
TLE2024BM
25°C
25°C
RL = 10 kΩ
TLE2024AM
Full range
Full range
Maximum negative peak
output voltage swing
Supply current change over
operating temperature range
MIN
Full range
VOM −
ΔICC
TLE2024M
μA
A
μA
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
25
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
VOM +
Common mode input voltage
Common-mode
range
TA†
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
TEST CONDITIONS
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
VICR
VOM +
Common mode input voltage
Common-mode
range
Maximum positive peak output
voltage swing
TEST CONDITIONS
VIC = 0,
RS = 50 Ω
TYP
VO = ± 10 V
V,
RL = 10 kΩ
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply voltage rejection ratio
Supply-voltage
(ΔVCC ± /ΔVIO)
2.5
5 V to ± 15 V
VCC ± = ± 2
ICC
Supply current
No load
MIN
TYP
MAX
750
500
950
700
UNIT
μV
V
2
2
2
μV/°C
25°C
0.006
0.006
0.006
μV/mo
25°C
0.6
50
0.5
70
Full range
−15
to
13.2
25°C
13.8
Full range
13.7
25°C
−13.7
Full range
−13.6
25°C
0.4
Full range
0.4
25°C
92
Full range
88
25°C
98
Full range
93
−15.3
to
14
6
45
70
−15.3
to
14
13.9
−13.7
14.2
0.8
14
−14.1
−13.7
94
4
1
105
97
100
1050
Full range
1400
115
103
1050
1400
−14.1
V
7
V/ V
V/μV
108
dB
117
1050
1400
85
dB
1400
1400
85
nA
V
98
1400
85
14.3
93
95
nA
V
1
90
112
−15.3
to
14
−13.6
0.8
102
90
13.8
−13.6
2
70
−15
to
13.2
13.7
−14.1
40
−15
to
13.5
−15
to
13.2
6
10
90
−15
to
13.5
14.1
0.4
10
90
−15
to
13.5
Full range
6
10
25°C
25°C
VO = 0,
0
TLE2024BM
MAX
1200
RS = 50 Ω
Large signal differential
Large-signal
voltage amplification
TYP
1000
Full range
AVD
MIN
25°C
25°C
RL = 10 kΩ
TLE2024AM
MAX
Full range
Full range
Maximum negative peak output
voltage swing
Supply current change over
operating temperature range
TLE2024M
MIN
Full range
VOM −
ΔICC
TA†
μA
A
μA
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation
and assuming an activation energy of 0.96 eV.
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
26
TLE2024 electrical characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
TLE2021 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
SR
TEST CONDITIONS
See Figure 1
TA
C SUFFIX
MIN
TYP
I SUFFIX
MAX
MIN
TYP
M SUFFIX
MAX
MIN
TYP
0.5
MAX
0.5
UNIT
Slew rate at unity gain
VO = 1 V to 3 V,
25°C
0.5
Vn
Equivalent input noise voltage
(see Figure 2)
f = 10 Hz
25°C
21
50
21
50
21
V/μs
f = 1 kHz
25°C
17
30
17
30
17
VN(PP)
Peak to peak equivalent input
Peak-to-peak
noise voltage
f = 0.1 to 1 Hz
25°C
0.16
0.16
0.16
f = 0.1 to 10 Hz
25°C
0.47
0.47
0.47
In
Equivalent input noise current
25°C
0.09
0.09
0.9
pA/Hz
B1
Unity-gain bandwidth
See Figure 3
25°C
1.2
1.2
1.2
MHz
φm
Phase margin at unity gain
See Figure 3
25°C
42°
42°
42°
nV/Hz
μV
V
PARAMETER
See Figure 1
TA†
C SUFFIX
MIN
TYP
25°C
0.45
0.65
Full range
0.45
I SUFFIX
MAX
MIN
TYP
0.45
0.65
M SUFFIX
MAX
MIN
TYP
0.45
0.65
SR
Slew rate at unity gain
VO = 1V to 3 V,
V
Vn
Equivalent input noise voltage
(see Figure 2)
f = 10 Hz
25°C
19
50
19
50
19
f = 1 kHz
25°C
15
30
15
30
15
VN(PP)
Peak to peak equivalent input
Peak-to-peak
noise voltage
f = 0.1 to 1 Hz
25°C
0.16
0.16
0.16
f = 0.1 to 10 Hz
25°C
0.47
0.47
0.47
In
Equivalent input noise current
25°C
0.09
0.09
0.09
B1
Unity-gain bandwidth
See Figure 3
25°C
2
2
2
φm
Phase margin at unity gain
See Figure 3
25°C
46°
46°
46°
0.42
0.45
Full range is 0°C to 70°C for the C-suffix devices, − 40°C to 85°C for the I-suffix devices, and − 55°C to 125°C for the M-suffix devices.
MAX
UNIT
V/ s
V/μs
nV/Hz
μV
V
pA/Hz
MHz
27
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
†
TEST CONDITIONS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLE2021 operating characteristics at specified free-air temperature, VCC = ± 15 V
SR
TEST CONDITIONS
C SUFFIX
MIN
See Figure 1
TYP
I SUFFIX
MAX
MIN
0.5
TYP
M SUFFIX
MAX
MIN
0.5
TYP
Slew rate at unity gain
VO = 1 V to 3 V,
Vn
Equivalent input noise voltage
(see Figure 2)
f = 10 Hz
21
50
21
50
21
f = 1 kHz
17
30
17
30
17
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
B1
Unity-gain bandwidth
See Figure 3
φm
Phase margin at unity gain
See Figure 3
MAX
0.5
UNIT
V/μs
nV/√Hz
f = 0.1 to 1 Hz
0.16
0.16
0.16
f = 0.1 to 10 Hz
0.47
0.47
0.47
0.1
0.1
0.1
pA/√Hz
1.7
1.7
1.7
MHz
47°
47°
47°
μV
V
TLE2022 operating characteristics at specified free-air temperature, VCC = ± 15 V
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
PARAMETER
†
TEST CONDITIONS
See Figure 1
C SUFFIX†
TA
MIN
TYP
25°C
0.45
0.65
Full range
0.45
I SUFFIX†
MAX
MIN
TYP
0.45
0.65
M SUFFIX†
MAX
MIN
TYP
0.45
0.65
MAX
UNIT
SR
Slew rate at unity gain
VO = ± 10 V,
V
Vn
Equivalent input noise
voltage (see Figure 2)
f = 10 Hz
25°C
19
50
19
50
19
f = 1 kHz
25°C
15
30
15
30
15
VN(PP)
Peak to peak equivalent
Peak-to-peak
input noise voltage
f = 0.1 to 1 Hz
25°C
0.16
0.16
0.16
f = 0.1 to 10 Hz
25°C
0.47
0.47
0.47
In
Equivalent input noise current
25°C
0.1
0.1
0.1
pA/√Hz
B1
Unity-gain bandwidth
See Figure 3
25°C
2.8
2.8
2.8
MHz
φm
Phase margin at unity gain
See Figure 3
25°C
52°
52°
52°
0.42
0.4
Full range is 0°C to 70°C for the C−suffix devices, −40°C to 85°C for the I suffix devices and −55°C to 125°C for the I−suffix devices.
V/ s
V/μs
nV/√Hz
μV
V
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
PARAMETER
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
28
TLE2022 operating characteristics, VCC = 5 V, TA = 25°C
TLE2024 operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
VO = 1 V to 3 V,
C SUFFIX
MIN
See Figure 1
TYP
I SUFFIX
MAX
MIN
0.5
TYP
M SUFFIX
MAX
MIN
0.5
TYP
0.5
f = 10 Hz
21
50
21
50
21
f = 1 kHz
17
30
17
30
17
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
B1
Unity-gain bandwidth
See Figure 3
φm
Phase margin at unity gain
See Figure 3
MAX
UNIT
V/μs
nV/√ Hz
f = 0.1 to 1 Hz
0.16
0.16
0.16
f = 0.1 to 10 Hz
0.47
0.47
0.47
0.1
0.1
0.1
pA/√Hz
1.7
1.7
1.7
MHz
47°
47°
47°
μV
V
PARAMETER
See Figure 1
C SUFFIX†
TA
MIN
TYP
25°C
0.45
0.7
Full range
0.45
I SUFFIX†
MAX
MIN
TYP
0.45
0.7
M SUFFIX†
MAX
MIN
TYP
0.45
0.7
MAX
UNIT
SR
Slew rate at unity gain
VO = ± 10 V
V,
Vn
Equivalent input noise voltage
(see Figure 2)
f = 10 Hz
25°C
19
50
19
50
19
f = 1 kHz
25°C
15
30
15
30
15
VN(PP)
Peak to peak equivalent input noise
Peak-to-peak
voltage
f = 0.1 to 1 Hz
25°C
0.16
0.16
0.16
f = 0.1 to 10 Hz
25°C
0.47
0.47
0.47
In
Equivalent input noise current
25°C
0.1
0.1
0.1
pA/√Hz
B1
Unity-gain bandwidth
See Figure 3
25°C
2.8
2.8
2.8
MHz
φm
Phase margin at unity gain
See Figure 3
25°C
52°
52°
52°
0.42
0.4
Full range is 0°C to 70°C for the C−suffix devices, −40°C to 85°C for the I suffix devices and −55°C to 125°C for the I−suffix devices.
V/ s
V/μs
nV/√Hz
μV
V
29
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
†
TEST CONDITIONS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TLE2024 operating characteristics at specified free-air temperature, VCC = ± 15 V (unless otherwise noted)
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TLE2021Y electrical characteristics at VCC = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
TEST CONDITIONS
TLE2021Y
MIN
Input offset voltage
Input offset current
IIB
Input bias current
MAX
150
Input offset voltage long-term drift (see Note 4)
IIO
TYP
VIC = 0
0,
μV
0.005
RS = 50 Ω
RS = 50 Ω
UNIT
μV/mo
0.5
nA
35
nA
− 0.3
to
4
V
4.3
V
0.7
V
VICR
Common-mode input voltage range
VOH
Maximum high-level output voltage
VOL
Maximum low-level output voltage
AVD
Large-signal differential voltage amplification
VO = 1.4 to 4 V,
RL = 10 kΩ
1.5
V/μV
CMRR
Common-mode rejection ratio
VIC = VICR min,
RS = 50 Ω
100
dB
kSVR
Supply-voltage rejection ratio (ΔVCC ± /ΔVIO)
VCC = 5 V to 30 V
115
dB
ICC
Supply current
VO = 2.5 V,
400
μA
RL = 10 kΩ
No load
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2021Y operating characteristics at VCC = 5 V, TA = 25°C
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
TLE2021Y
MIN
TYP
VO = 1 V to 3 V
0.5
f = 10 Hz
21
f = 1 kHz
17
MAX
UNIT
V/μs
nV/√Hz
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
0.1
pA/√Hz
B1
Unity-gain bandwidth
1.7
MHz
φm
Phase margin at unity gain
47°
30
POST OFFICE BOX 655303
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
• DALLAS, TEXAS 75265
V
μV
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TLE2022Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
TEST CONDITIONS
TLE2022Y
MIN
Input offset voltage
Input offset voltage long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VIC = 0
0,
TYP
MAX
150
600
0.005
RS = 50 Ω
RS = 50 Ω
UNIT
μV
μV/mo
0.5
nA
35
nA
− 0.3
to
4
V
4.3
V
0.7
V
VICR
Common-mode input voltage range
VOH
Maximum high-level output voltage
VOL
Maximum low-level output voltage
AVD
Large-signal differential voltage amplification
VO = 1.4 to 4 V,
RL= 10 kΩ
1.5
V/μV
CMRR
Common-mode rejection ratio
VIC = VICR min,
RS = 50 Ω
100
dB
kSVR
Supply-voltage rejection ratio (ΔVCC ± /ΔVIO)
VCC = 5 V to 30 V
115
dB
ICC
Supply current
VO = 2.5 V,
No load
450
μA
RL = 10 kΩ
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2022Y operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
SR
TEST CONDITIONS
Slew rate at unity gain
VO = 1 V to 3 V,
See Figure 1
TLE2022Y
MIN
TYP
0.5
f = 10 Hz
21
f = 1 kHz
17
MAX
UNIT
V/μs
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
0.1
pA/√Hz
B1
Unity-gain bandwidth
See Figure 3
1.7
MHz
φm
Phase margin at unity gain
See Figure 3
47°
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
nV/√H
nV/√Hz
V
μV
31
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TLE2024Y electrical characteristics, VCC = 5 V, TA = 25°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLE2024Y
MIN
Input offset voltage long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
TYP
MAX
0.005
VIC = 0,
RS = 50 Ω
RS = 50 Ω
UNIT
μV/mo
0.6
nA
45
nA
−0.3
to
4
V
4.2
V
0.7
V
VICR
Common-mode input voltage range
VOH
High-level output voltage
VOL
Low-level output voltage
AVD
Large-signal differential
voltage amplification
VO = 1.4 V to 4 V,
RL = 10 kΩ
1.5
V/μV
CMRR
Common-mode rejection ratio
VIC = VICRmin,
RS = 50 Ω
90
dB
kSVR
Supply-voltage rejection ratio
(ΔVCC /ΔVIO)
VCC = 5 V to 30 V
112
dB
ICC
Supply current
VO = 2.5 V,
800
μA
RL = 10 kΩ
No load
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLE2024Y operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
TEST CONDITIONS
TYP
0.5
MAX
UNIT
Slew rate at unity gain
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
0.1
pA/√Hz
B1
Unity-gain bandwidth
See Figure 3
1.7
MHz
φm
Phase margin at unity gain
See Figure 3
47°
POST OFFICE BOX 655303
See Figure 1
MIN
SR
32
VO = 1 V to 3 V,
TLE2024Y
f = 10 Hz
21
f = 1 kHz
17
f = 0.1 to 1 Hz
0.16
f = 0.1 to 10 Hz
0.47
• DALLAS, TEXAS 75265
V/μs
nV/√ Hz
μV
V
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
PARAMETER MEASUREMENT INFORMATION
20 kΩ
20 kΩ
5V
15 V
−
VO
VI
+
30 pF
(see Note A)
VO
+
−
VI
−15 V
30 pF
(see Note A)
20 kΩ
(a) SINGLE SUPPLY
20 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 1. Slew-Rate Test Circuit
2 kΩ
2 kΩ
15 V
5V
−
20 Ω
VO
−
VO
+
2.5 V
+
20 Ω
−15 V
20 Ω
20 Ω
(a) SINGLE SUPPLY
(b) SPLIT SUPPLY
Figure 2. Noise-Voltage Test Circuit
VI
100 Ω
10 kΩ
10 kΩ
5V
15 V
−
VI
VO
2.5 V
−
+
+
30 pF
(see Note A)
VO
100 Ω
−15 V
30 pF
(see Note A)
10 kΩ
(a) SINGLE SUPPLY
10 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
PARAMETER MEASUREMENT INFORMATION
5V
VO
VI
+
10 kΩ
VO
+
−
10 kΩ
−
0.1 μF
VI
15 V
− 15 V
10 kΩ
30 pF
(see Note A)
30 pF
(see Note A)
(a) SINGLE SUPPLY
10 kΩ
(b) SPLIT SUPPLY
NOTE A: CL includes fixture capacitance.
Figure 4. Small-Signal Pulse-Response Test Circuit
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
IIB
Input bias current
vs Common-mode input voltage
vs Free-air temperature
II
Input current
vs Differential input voltage
VOM
Maximum peak output voltage
vs Output current
vs Free-air temperature
VOH
High-level output voltage
vs High-level output current
vs Free-air temperature
19, 20
21
VOL
Low-level output voltage
vs Low-level output current
vs Free-air temperature
22
23
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
AVD
Large-signal differential voltage amplification
vs Frequency
vs Free-air temperature
26
27, 28, 29
IOS
Short-circuit output current
vs Supply voltage
vs Free-air temperature
30 − 33
34 − 37
ICC
Supply current
vs Supply voltage
vs Free-air temperature
38, 39, 40
41, 42, 43
CMRR
Common-mode rejection ratio
vs Frequency
44, 45, 46
SR
Slew rate
vs Free-air temperature
47, 48, 49
Voltage-follower small-signal pulse response
5, 6, 7
8, 9, 10
11, 12, 13
14
15, 16, 17
18
24, 25
50, 51
Voltage-follower large-signal pulse response
52 − 57
VN(PP)
Peak-to-peak equivalent input noise voltage
0.1 to 1 Hz
0.1 to 10 Hz
Vn
Equivalent input noise voltage
vs Frequency
B1
Unity-gain bandwidth
vs Supply voltage
vs Free-air temperature
61, 62
63, 64
φm
Phase margin
vs Supply voltage
vs Load capacitance
vs Free-air temperature
65, 66
67, 68
69, 70
Phase shift
vs Frequency
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
58
59
60
26
35
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLE2022
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLE2021
INPUT OFFSET VOLTAGE
20
ÏÏÏÏ
TA = 25°C
16
Percentage of Units − %
Percentage of Units − %
398 Amplifiers Tested From 1 Wafer Lot
VCC ± = ± 15 V
TA = 25°C
P Package
16
ÏÏÏÏÏÏÏÏÏÏÏ
20
231 Units Tested From 1 Wafer Lot
VCC ± = ± 15 V
12
8
4
P Package
12
8
4
0
−600 −450 −300 −150
150 300
450
0
VIO − Input Offset Voltage − μV
0
−600
600
−400
Figure 5
12
600
Figure 6
DISTRIBUTION OF TLE2024
INPUT OFFSET VOLTAGE
−40
796 Amplifiers Tested From 1 Wafer Lot
VCC ± = ± 15 V
TA = 25°C
N Package
TLE2021
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
VCC ± = ± 15 V
TA = 25°C
−35
IIB
I IB − Input Bias Current − nA
Percentage of Units − %
16
−200
0
200
400
VIO − Input Offset Voltage − μV
8
4
−30
−25
−20
−15
−10
−5
0
−1
−0.5
0
0.5
1
VIO − Input Offset Voltage − mV
0
−15
−10
−5
0
5
10
VIC − Common-Mode Input Voltage − V
Figure 8
Figure 7
36
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
TLE2024
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
−50
−60
VCC ± = ± 15 V
TA = 25°C
TA = 25°C
IIIB
IB − Input Bias Current − nA
IIB
I IB − Input Bias Current − nA
−45
VCC ± = ± 15 V
−40
−35
−30
−40
ÁÁ
ÁÁ
−25
−20
−15
−50
−10
−5
0
5
10
VIC − Common-Mode Input Voltage − V
−30
−20
−15
15
−10
−5
−50
−35
VCC ± = ± 15 V
VO = 0
VIC = 0
IIIB
IB − Input Bias Current − nA
IIB
I IB − Input Bias Current − nA
VCC ± = ± 15 V
VO = 0
VIC = 0
−45
−25
−20
−15
−10
−40
−35
−30
−25
−5
−75
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
−20
−75
−50
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
Figure 11
†
15
10
TLE2022
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
TLE2021
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
0
5
Figure 10
Figure 9
−30
0
VIC − Common-Mode Input Voltage − V
Figure 12
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2024
INPUT BIAS CURRENT†
vs
FREE-AIR TEMPERATURE
ÏÏÏÏÏ
ÏÏÏ
ÏÏÏ
ÏÏÏ
1
VCC± = ±15 V
VO = 0
VIC = 0
−50
VCC± = ±15 V
VIC = 0
TA = 25°C
0.9
0.8
I III − Input Current − mA
IIB − Input Bias Current − nA
IIB
−60
ÁÁ
ÁÁ
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
−40
−30
0.7
0.6
0.5
0.4
0.3
0.2
0.1
−20
−75
0
−50
−25
0
25
50
75
100
125
TA − Free-Air Temperature − °C
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
|VID| − Differential Input Voltage − V
Figure 14
Figure 13
TLE2022
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
TLE2021
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
16
VCC ± = ± 15 V
TA = 25°C
14
12
ÏÏÏÏ
ÏÏÏÏ
10
VOM −
8
|VVOM|
OM − Maximum Peak Output Voltage − V
VOM − Maximum Peak Output Voltage − V
V
OM
16
ÏÏÏÏ
ÏÏÏÏ
VOM+
6
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁ
ÁÁ
4
2
0
0
2
4
6
8
IO − Output Current − mA
10
VCC ± = ± 15 V
TA = 25°C
14
12
ÏÏÏÏ
ÏÏÏÏ
10
VOM−
8
38
VOM+
6
4
2
0
0
2
4
6
8
10
|IO| − Output Current − mA
12
Figure 16
Figure 15
†
ÏÏÏ
ÏÏÏ
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
14
1
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2024
MAXIMUM PEAK OUTPUT VOLTAGE
vs
OUTPUT CURRENT
15
ÏÏÏÏ
VCC ± = ± 15 V
TA = 25°C
14
12
ÏÏÏ
ÏÏÏ
10
VOM −
8
|VVOM|
OM − Maximum Peak Output Voltage − V
VOM − Maximum Peak Output Voltage − V
VOM
16
MAXIMUM PEAK OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
ÏÏÏ
VOM +
6
ÁÁ
ÁÁ
ÁÁ
4
2
0
0
2
8
10
4
6
IO − Output Current − mA
12
14
14.5
VOM +
14
VOM −
13.5
13
ÁÁÁ
ÁÁÁ
ÁÁÁ
12.5
12
−75
VCC ± = ± 15 V
RL = 10 kΩ
TA = 25°C
−50
Figure 17
TLE2022 AND TLE2024
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5
VCC = 5 V
TA = 25°C
VOH − High-Level Output Voltage − V
VOH
VOH
VOH − High-Level Output Voltage − V
5
4
3
2
ÁÁ
ÁÁ
1
0
0
−1
−2
−3
−4
−5
−6
IOH − High-Level Output Current − mA
−7
VCC = 5 V
TA = 25°C
4
3
2
1
0
0
−2
−4
−6
−8
−10
IOH − High-Level Output Current − mA
Figure 20
Figure 19
†
125
Figure 18
TLE2021
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
ÁÁ
ÁÁ
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
5
HIGH-LEVEL OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
5
ÁÁ
ÁÁ
VOL
VOL − Low-Level Output Voltage − V
VOH
VOH − High-Level Output Voltage − V
VCC = 5 V
4.8
4.6
No Load
4.4
ÁÁ
ÁÁ
ÁÁ
RL = 10 kΩ
4.2
4
−75
−50 −25
0
25
50
75
100
4
3
2
1
0
125
VCC = 5 V
TA = 25°C
0
0.5
1
1.5
2
2.5
IOL − Low-Level Output Current − mA
TA − Free-Air Temperature − °C
Figure 21
Figure 22
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VOL
VOL − Low-Level Output Voltage − V
1
IOL = 1 mA
0.75
IOL = 0
0.5
0.25
VCC ± = ± 5 V
0
−75
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
VVOPP
O(PP) − Maximum Peak-to-Peak Output Voltage − V
LOW-LEVEL OUTPUT VOLTAGE†
vs
FREE-AIR TEMPERATURE
ÁÁÁ
ÁÁÁ
5
4
3
2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ
1
0
VCC = 5 V
RL = 10 kΩ
TA = 25°C
100
Figure 23
†
40
3
1k
10 k
100 k
f − Frequency − Hz
Figure 24
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1M
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VVOPP
O(PP) − Maximum Peak-to-Peak Output Voltage − V
30
25
20
15
10
ÁÁ
ÁÁÁÁ
ÁÁ ÁÁÁÁ
ÁÁ
ÁÁÁÁ
ÁÁ
VCC ± = ± 15 V
RL = 10 kΩ
TA = 25°C
5
0
100
1k
10 k
100 k
f − Frequency − Hz
1M
Figure 25
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
100
AVD − Large-Signal Differential
Voltage Amplification − dB
60°
80°
Phase Shift
80
100°
VCC ± = ± 15 V
AVD
60
120°
VCC = 5 V
40
140°
20
160°
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
0
−20
10
100
Phase Shift
120
180°
1k
10 k
100 k
f − Frequency − Hz
1M
10 M
200°
Figure 26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
41
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2021
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
TLE2022
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
10
6
RL = 10 kΩ
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
8
5
AVD
AVD − Large-Signal Differential
Voltage Amplification − V/μV
AVD − Large-Signal Differential
Voltage Amplification − V/ μ V
RL = 10 kΩ
VCC ± = ± 15 V
6
4
2
ÏÏÏÏ
ÏÏÏÏ
−50
−25
0
25
50
75
3
ÁÁ
ÁÁ
ÁÁ
VCC = 5 V
0
−75
VCC ± = ± 15 V
4
100
2
1
VCC = 5 V
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
TA − Free-Air Temperature − °C
Figure 28
Figure 27
TLE2024
LARGE-SCALE DIFFERENTIAL VOLTAGE
AMPLIFICATION†
vs
FREE-AIR TEMPERATURE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
10
10
VCC ± = ± 15 V
6
4
2
VCC ± = ± 5 V
0
−75
−50
−25
0
25
50
75
100
125
IIOS
OS − Short-Circuit Output Current − mA
AVD − Large-Signal Differential
Voltage Amplification − V/ μ V
RL = 10 kΩ
8
VO = 0
TA = 25°C
8
6
VID = −100 mV
4
2
0
−2
ÁÁ
ÁÁ
−4
ÏÏÏÏÏ
−6
VID = 100 mV
−8
−10
0
2
TA − Free-Air Temperature − °C
42
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
Figure 30
Figure 29
†
125
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
16
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
12
VO = 0
TA = 25°C
10
ÏÏÏÏÏ
VID = −100 mV
5
0
−5
VID = 100 mV
−10
−15
0
2
4
6
8
10
12
14
TA = 25°C
IIOS
OS − Short-Circuit Output Current − mA
I OS − Short-Circuit Output Current − mA
IOS
15
16
|VCC ±| − Supply Voltage − V
8
VID = −100 mV
VO = VCC
4
0
ÁÁ
ÁÁ
ÁÁ
−4
VID = 100 mV
VO = 0
−8
− 12
5
0
10
15
20
25
VCC − Supply Voltage − V
Figure 32
Figure 31
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÏÏÏÏ
ÏÏÏÏ
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
8
TA = 25°C
10
IOS
I OS − Short-Circuit Output Current − mA
I OS − Short-Circuit Output CUrrent − mA
IOS
15
VID = − 100 mV
VO = VCC
5
0
−5
VID = 100 mV
VO = 0
−10
−15
0
5
10
15
20
25
30
ÁÁ
ÁÁ
VCC − Supply Voltage − V
VCC = 5 V
6
VID = −100 mV
VO = 5 V
4
2
0
−2
VID = 100 mV
VO = 0
−4
−6
−8
− 75
− 50
− 25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
Figure 34
Figure 33
†
30
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
43
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs
FREE-AIR TEMPERATURE
12
VCC = 5 V
VID = −100 mV
VO = 5 V
4
IOS
I OS − Short-Circuit Output Current − mA
IOS
I OS− Short-Circuit Output Current − mA
6
2
0
−2
−4
ÏÏÏ
ÏÏÏÏÏ
ÏÏÏ
−8
−10
−75
−50
−25
0
25
50
75
8
VID = −100 mV
4
0
−4
ÁÁ
ÁÁ
VID = 100 mV
VO = 0
−6
VCC ± = ± 15 V
VO = 0
100
−8
VID = 100 mV
−12
−75
125
−50
TA − Free-Air Temperature −°C
0
25
50
75
−25
TA − Free-Air Temperature − °C
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
250
A
IICC
CC − Supply Current − μua
I OS − Short-Circuit Output Current − mA
IOS
200
5
VID = − 100 mV
0
VID = 100 mV
−10
−50
−25
0
25
50
75
100
125
TA = 125°C
TA = 25°C
100
ÁÁ
ÁÁ
−5
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
150
TA = − 55°C
50
0
0
2
4
6
8
10
12
|VCC ±| − Supply Voltage − V
Figure 38
Figure 37
44
16
VO = 0
No Load
VCC ± = ± 15 V
VO = 0
TA − Free-Air Temperature − °C
†
14
TLE2021
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
15
−15
−75
125
Figure 36
Figure 35
10
100
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
500
TLE2024
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
1000
VO = 0
No Load
800
I CC − Supply Current − μ A
IICC
A
CC − Supply Current − μua
TA = 125°C
No Load
400
TA = 25°C
300
TA = 125°C
TA = − 55°C
ÁÁ
ÁÁ
ÁÁ
200
100
0
ÏÏÏÏ
VO = 0
TA = 25°C
600
TA = − 55°C
400
200
0
2
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
0
16
0
2
4
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
150
VCC ± = ± 2.5 V
125
100
ÁÁ
ÁÁ
75
50
VO = 0
No Load
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
VCC ± = ± 15 V
400
IICC
A
CC − Supply Current − μua
A
IICC
CC − Supply Current − μua
16
500
125
VCC ± = ± 2.5 V
300
200
100
VO = 0
No Load
0
−75
−50
Figure 41
†
14
VCC ± = ± 15 V
175
0
−75
12
TLE2022
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
ÏÏÏÏÏ
ÏÏÏÏÏ
200
25
10
Figure 40
TLE2021
SUPPLY CURRENT†
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
8
|VCC ±| − Supply Voltage − V
Figure 39
225
6
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
125
Figure 42
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
45
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
1000
120
CMRR − Common-Mode Rejection Ratio − dB
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
VCC ± = ± 15 V
800
I CC − Supply Current − μ A
TLE2021
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
TLE2024
SUPPLY CURRENT †
vs
FREE-AIR TEMPERATURE
VCC ± = ± 2.5 V
600
400
200
VO = 0
No Load
0
−75
−50
−25
0
25
50
75
100
VCC ± = ± 15 V
80
VCC = 5 V
60
40
20
TA = 25°C
0
125
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
100
10
100
TA − Free-Air Temperature − °C
Figure 43
CMRR − Common-Mode Rejection Ratio − dB
CMRR − Common-Mode Rehection Ratio − dB
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
120
VCC ± = ± 15 V
80
VCC = 5 V
60
40
20
0
100
1k
10 k
100 k
f − Frequency − Hz
1M
10 M
VCC ± = ± 15 V
100
VCC = 5 V
80
60
40
20
TA = 25°C
0
10
10
100
46
1k
10 k
100 k
1M
10 M
f − Frequency − Hz
Figure 45
†
10 M
TLE2024
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
TA = 25°C
100
1M
Figure 44
TLE2022
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
120
1k
10 k
100 k
f − Frequency − Hz
Figure 46
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022
SLEW RATE†
vs
FREE-AIR TEMPERATURE
TLE2021
SLEW RATE†
vs
FREE-AIR TEMPERATURE
1
1
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏ
ÏÏÏÏ
VCC ± = ± 15 V
0.8
VCC = 5 V
0.6
0.4
0.2
0
−75
VCC ± = ± 15 V
SR − Slew Rate − V/ μ
uss
SR − Slew Rate − V/us
μs
0.8
0.6
VCC = 5 V
0.4
0.2
RL = 20 kΩ
CL = 30 pF
See Figure 1
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
RL = 20 kΩ
CL = 30 pF
See Figure 1
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
Figure 48
Figure 47
TLE2024
SLEW RATE†
vs
FREE-AIR TEMPERATURE
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
1
ÏÏÏÏÏ
SR − Slew Rate − V/
V/sμ s
VCC ± = ± 15 V
0.6
VCC = 5 V
0.4
0.2
0
−75
−25
50
0
25
50
75
100
125
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 4
ÏÏÏÏÏ
ÏÏÏÏÏ
0
ÁÁ
ÁÁ
RL = 20 kΩ
CL = 30 pF
See Figure 1
−50
VO − Output Voltage − mV
VO
100
0.8
−50
−100
TA − Free-Air Temperature − °C
Figure 49
†
125
0
20
40
t − Time − μs
60
80
Figure 50
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
47
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
4
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 4
ÏÏÏÏÏ
2.55
VO − Output Voltage − V
VO
VO − Output Voltage − V
VO
2.6
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
2.5
ÁÁÁ
ÁÁÁ
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
ÏÏÏÏÏ
ÏÏÏÏÏ
3
2
ÁÁ
ÁÁ
2.45
2.4
0
20
40
t − Time − μs
60
1
0
80
0
Figure 51
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
4
VCC = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
2
ÁÁÁ
ÁÁÁ
1
0
3
VCC ± = 5 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
2
1
0
0
20
40
t − Time − μs
60
80
0
20
40
t − Time − μs
Figure 53
48
80
TLE2024
VOLTAGE-FOLLOWER LARGE-SCALE
PULSE RESPONSE
VO − Output Voltage − V
VO
VO
VO − Output Voltage − V
3
60
Figure 52
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
4
20
40
t − Time − μs
Figure 54
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
60
80
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2021
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VO − Output Voltage − V
VO
10
15
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
10
VO
VO − Output Voltage − V
15
TLE2022
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
5
0
ÁÁ
ÁÁ
ÁÁ
ÁÁ
−5
−10
−15
0
20
40
t − Time − μs
60
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
5
0
−5
−10
−15
80
0
TLE2024
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
ÏÏÏÏÏ
15
VO − Output Voltage − V
VO
10
VCC ± = ± 15 V
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 1
5
0
−5
−10
−15
0
20
t − Time − μs
Figure 57
60
80
Figure 56
40
60
80
VN(PP)
VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV
μV
Figure 55
20
40
t − Time − μs
ÁÁ
ÁÁ
ÁÁ
POST OFFICE BOX 655303
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 1 Hz
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
0.5
VCC ± = ± 15 V
0.4
TA = 25°C
0.3
0.2
0.1
0
− 0.1
− 0.2
− 0.3
− 0.4
− 0.5
0
1
• DALLAS, TEXAS 75265
2
3
4
5
t − Time − s
6
7
8
9
10
Figure 58
49
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
PEAK-TO-PEAK EQUIVALENT
INPUT NOISE VOLTAGE
0.1 TO 10 Hz
0.5
VCC ± = ± 15 V
0.4
TA = 25°C
0.3
0.2
0.1
0
− 0.1
− 0.2
− 0.3
ÁÁÁ
ÁÁÁ
ÁÁÁ
− 0.4
− 0.5
0
1
2
3
4
5
6
t − Time − s
7
8
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
VVn
nV/ Hz
n − Equivalent Input Noise Voltage − nVHz
VN(PP)
VNPP − Peak-to-Peak Equivalent Input Noise Voltage − uV
μV
TYPICAL CHARACTERISTICS
9
VCC ± = ± 15 V
RS = 20 Ω
TA = 25°C
See Figure 2
160
120
80
40
0
10
ÏÏÏÏÏ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÏÏÏÏÏ
ÁÁÁÁÁÁ
ÏÏÏÏ
ÏÏÏÏÏ
ÁÁÁÁÁÁ
ÏÏÏÏÏ
200
1
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
2
1
0
2
4
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
4
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
3
10 k
Figure 60
B1
B1 − Unity-Gain Bandwidth − MHz
B1
B
1 − Unity-Gain Bandwidth − MHz
4
6
8
10
12
14
|VCC±| − Supply Voltage − V
16
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
3
2
1
0
0
2
Figure 61
50
100
1k
f − Frequency − Hz
Figure 59
TLE2021
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
0
10
4
6
8
10
12
|VCC±| − Supply Voltage − V
Figure 62
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
14
16
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2021
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
4
TLE2022 AND TLE2024
UNITY-GAIN BANDWIDTH†
vs
FREE-AIR TEMPERATURE
4
RL = 10 kΩ
3
VCC ± = ± 15 V
2
ÏÏÏÏÏ
1
VCC = 5 V
0
−75
−50 −25
0
25
50
75
TA − Free-Air Temperature − °C
100
3
ÏÏÏÏÏÏ
ÏÏÏÏÏÏ
VCC ± = ± 15 V
2
VCC = 5 V
1
0
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
Figure 63
TLE2022 AND TLE2024
PHASE MARGIN
vs
SUPPLY VOLTAGE
53°
φm
m − Phase Margin
φm
m − Phase Margin
55°
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
48°
46°
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
TA = 25°C
See Figure 3
51°
ÁÁ
ÁÁ
44°
49°
47°
42°
40°
0
2
4
6
8
10
12
|VCC ±| − Supply Voltage − V
14
16
45°
0
2
4
6
8
10
12
|VCC±| − Supply Voltage − V
14
16
Figure 66
Figure 65
†
125
Figure 64
TLE2021
PHASE MARGIN
vs
SUPPLY VOLTAGE
50°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
RL = 10 kΩ
CL = 30 pF
See Figure 3
B1
B1 − Unity-Gain Bandwidth − MHz
B
B1
1 − Unity-Gain Bandwidth − MHz
CL = 30 pF
See Figure 3
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
51
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
TYPICAL CHARACTERISTICS
TLE2022 AND TLE2024
PHASE MARGIN
vs
LOAD CAPACITANCE
TLE2021
PHASE MARGIN
vs
LOAD CAPACITANCE
60°
60°
50°
40°
VCC = 5 V
30°
VCC = 5 V
30°
10°
20°
10°
0
20
40
60
80
CL − Load Capacitance − pF
0°
100
0
20
40
60
80
CL − Load Capacitance − pF
50°
48°
TLE2022 AND TLE2024
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
54°
RL = 10 kΩ
CL = 30 pF
See Figure 3
52°
VCC ± = ± 15 V
VCC ± = ± 15 V
50°
φm
m − Phase Margin
φm
m − Phase Margin
46°
44°
42°
VCC = 5 V
40°
38°
36°
−75
48°
ÁÁ
ÁÁ ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
44°
42°
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
VCC = 5 V
46°
40°
−75
RL = 10 kΩ
CL = 30 pF
See Figure 3
−50
Figure 69
52
100
Figure 68
TLE2021
PHASE MARGIN†
vs
FREE-AIR TEMPERATURE
†
RL = 10 kΩ
TA = 25°C
See Figure 3
40°
Figure 67
Á
Á
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁ
ÁÁ
20°
0
VCC ± = ± 15 V
VCC ± = ± 15 V
φm
m − Phase Margin
φm
m − Phase Margin
50°
ÁÁ
ÁÁ
ÁÁ
70°
RL = 10 kΩ
TA = 30 pF
See Figure 3
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
Figure 70
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
APPLICATION INFORMATION
voltage-follower applications
The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For
feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem can
be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).
CF = 20 pF to 50 pF
IF ≤ 1 mA
RF
VCC +
−
VO
VI
+
VCC −
Figure 71. Voltage Follower
Input offset voltage nulling
The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in
Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null
pins may be left disconnected.
OFFSET N1
OFFSET N2
+
IN +
−
IN −
5 kΩ
VCC − (split supply)
1 kΩ
GND (single supply)
Figure 72. Input Offset Voltage Null Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
53
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts™, the model generation software used
with Microsim PSpice™. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and Figure
75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
egnd
ree
cee
Iee
9
din
fb
−
+
rp
+
re1
IN −
IN+
1
2
re2
14
13
Q1
Q2
C1
dp
r2
−
53
dc
11
C2
6
gcm
54
−
ve
de
5
−
ro1
+
OUT
Figure 73. Boyle Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
54
vlim
8
rc2
4
7
+
ga
12
rc1
VCC −
vc
hlim
−
+
90
ro2
vb
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
92
+ dip
91
+
vip
−
−
−
+
vin
TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D − FEBRUARY 1997 − REVISED NOVEMBER 2010
.SUBCKT TLE2021 1 2 3 4 5
*
c1
11 12 6.244E−12
c2
6
7 13.4E−12
c3
87 0 10.64E−9
cpsr 85 86 15.9E−9
dcm+ 81 82 dx
dcm− 83 81 dx
dc
5
53 dx
de
54 5 dx
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
ecmr 84 99 (2 99) 1
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
epsr 85 0 poly(1) (3,4) −60E−6 2.0E−6
ense 89 2 poly(1) (88,0) 120E−6 1
fb
7
99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6
+ −50E7 50E7 50E7 −50E7 547E6
ga
6
0 11 12 188.5E−6
gcm 0
6 10 99 335.2E−12
gpsr 85 86 (85,86) 100E−6
grc1 4
11 (4,11) 1.885E−4
grc2 4
12 (4,12) 1.885E−4
gre1 13 10 (13,10) 6.82E−4
gre2 14 10 (14,10) 6.82E−4
hlim
90 0 vlim 1k
hcmr 80 1 poly(2) vcm+ vcm− 0 1E2 1E2
irp
3
4 185E−6
iee
3
10 dc 15.67E−6
iio
2
0 2E−9
i1
88 0 1E−21
q1
11 89 13 qx
q2
12 80 14 qx
R2
6
9 100.0E3
rcm 84 81 1K
ree 10 99 14.76E6
rn1 87 0 2.55E8
rn2 87 88 11.67E3
ro1 8
5 62
ro2 7
99 63
vcm+ 82 99 13.3
vcm− 83 99 −14.6
vb
9
0 dc 0
vc
3
53 dc 1.300
ve
54 4 dc 1.500
vlim 7
8 dc 0
vlp
91 0 dc 3.600
vln
0
92 dc 3.600
vpsr 0
86 dc 0
.model dx d(is=800.0E−18)
.model qx pnp(is=800.0E−18 bf=270)
.ends
Figure 74. Boyle Macromodel for the TLE2021
.SUBCKT TLE2022 1 2 3 4 5
*
c1
11 12 6.814E−12
c2
6
7 20.00E−12
dc
5
53 dx
de
54 5 dx
dlp
90 91 dx
dln
92 90 dx
dp
4
3 dx
egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
fb
7
99 poly(5) vb vc ve vlp vln 0
+ 45.47E6 −50E6 50E6 50E6 −50E6
ga 6 0
11 12 377.9E−6
gcm 0 6
10 99 7.84E−10
iee
3
10 DC 18.07E−6
hlim 90 0 vlim 1k
q1
11 2 13 qx
q2
12 1 14 qx
r2
6
9 100.0E3
rc1
rc2
ge1
ge2
ree
ro1
ro2
rp
vb
vc
ve
vlim
vlp
vln
.model
.model
.ends
4
4
13
14
10
8
7
3
9
3
54
7
91
0
dx
qx
11 2.842E3
12 2.842E3
10 (10,13) 31.299E−3
10 (10,14) 31.299E−3
99 11.07E6
5 250
99 250
4 137.2E3
0 dc 0
53 dc 1.300
4 dc 1.500
8 dc 0
0 dc 3
92 dc 3
d(is=800.0E−18)
pnp(is=800.0E−18 bf=257.1)
Figure 75. Boyle Macromodel for the TLE2022
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
55
PACKAGE OPTION ADDENDUM
www.ti.com
31-Oct-2013
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
5962-9088101MPA
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088101MPA
TLE2021M
5962-9088102M2A
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088102M2A
TLE2022MFKB
5962-9088102MPA
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088102MPA
TLE2022M
5962-9088103M2A
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088103M2A
TLE2024MFKB
5962-9088103MCA
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
-55 to 125
5962-9088103MC
A
TLE2024MJB
5962-9088104Q2A
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088104Q2A
TLE2021
AMFKB
5962-9088104QPA
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088104QPA
TLE2021AM
5962-9088105Q2A
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088105Q2A
TLE2022A
MFKB
5962-9088105QPA
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088105QPA
TLE2022AM
5962-9088106Q2A
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088106Q2A
TLE2024A
MFKB
5962-9088106QCA
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
-55 to 125
5962-9088106QC
A
TLE2024AMJB
5962-9088107Q2A
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088107Q2A
TLE2021
BMFKB
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
31-Oct-2013
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
5962-9088107QPA
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088107QPA
TLE2021BM
5962-9088108Q2A
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088108Q2A
TLE2022B
MFKB
5962-9088108QPA
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088108QPA
TLE2022BM
5962-9088109Q2A
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088109Q2A
TLE2024
BMFKB
5962-9088109QCA
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
-55 to 125
5962-9088109QC
A
TLE2024BMJB
TLE2021ACD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2021AC
TLE2021ACDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2021AC
TLE2021ACDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2021AC
TLE2021ACDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2021AC
TLE2021ACP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021AC
TLE2021ACPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021AC
TLE2021ACPS
OBSOLETE
SO
PS
8
TBD
Call TI
Call TI
TLE2021ACPSG4
OBSOLETE
SO
PS
8
TBD
Call TI
Call TI
TLE2021AID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2021AI
TLE2021AIDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2021AI
TLE2021AIDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2021AI
TLE2021AIDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2021AI
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
31-Oct-2013
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TLE2021AIP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021AI
TLE2021AIPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2021AI
TLE2021AMFKB
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088104Q2A
TLE2021
AMFKB
TLE2021AMJGB
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088104QPA
TLE2021AM
TLE2021BMFKB
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088107Q2A
TLE2021
BMFKB
TLE2021BMJG
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
TLE2021
BMJG
TLE2021BMJGB
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088107QPA
TLE2021BM
TLE2021CD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
2021C
TLE2021CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
2021C
TLE2021CDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
2021C
TLE2021CDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
2021C
TLE2021CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
0 to 70
TLE2021CP
TLE2021CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
0 to 70
TLE2021CP
TLE2021CPWLE
OBSOLETE
TSSOP
PW
8
TBD
Call TI
Call TI
0 to 70
TLE2021ID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
2021I
TLE2021IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
2021I
TLE2021IDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
2021I
Addendum-Page 3
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
31-Oct-2013
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TLE2021IDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 85
2021I
TLE2021IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 85
TLE2021IP
TLE2021IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-40 to 85
TLE2021IP
TLE2021MD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
2021M
TLE2021MDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2021MJG
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
TLE2021MJG
TLE2021MJGB
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088101MPA
TLE2021M
TLE2022ACD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022AC
TLE2022ACDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022AC
TLE2022ACDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022AC
TLE2022ACDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022AC
TLE2022ACP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022AC
TLE2022ACPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022AC
TLE2022AID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022AI
TLE2022AIDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022AI
TLE2022AIDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022AI
TLE2022AIDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022AI
TLE2022AIP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
Addendum-Page 4
2021M
TLE2022AI
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
31-Oct-2013
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TLE2022AIPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022AMD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AMDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AMDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AMDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022AMFKB
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088105Q2A
TLE2022A
MFKB
TLE2022AMJGB
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088105QPA
TLE2022AM
TLE2022BCDR
OBSOLETE
SOIC
D
8
TLE2022BMFKB
ACTIVE
LCCC
FK
20
1
TLE2022AI
-55 to 125
2022AM
2022AM
-55 to 125
2022AM
2022AM
TBD
Call TI
Call TI
0 to 70
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088108Q2A
TLE2022B
MFKB
TLE2022BMJG
OBSOLETE
CDIP
JG
8
TBD
Call TI
Call TI
-55 to 125
TLE2022BMJGB
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
TLE2022CD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022C
TLE2022CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022C
TLE2022CDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022C
TLE2022CDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022C
TLE2022CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022CP
TLE2022CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022CP
Addendum-Page 5
9088108QPA
TLE2022BM
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
31-Oct-2013
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TLE2022CPSR
OBSOLETE
SO
PS
8
TBD
Call TI
Call TI
TLE2022ID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022I
TLE2022IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022I
TLE2022IDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022I
TLE2022IDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2022I
TLE2022IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022IP
TLE2022IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2022IP
TLE2022MD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022MDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022MDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022MDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2022MFKB
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088102M2A
TLE2022MFKB
TLE2022MJG
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
TLE2022MJG
TLE2022MJGB
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
-55 to 125
9088102MPA
TLE2022M
TLE2024ACDW
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024AC
TLE2024ACDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024AC
TLE2024ACDWR
ACTIVE
SOIC
DW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024AC
TLE2024ACDWRG4
ACTIVE
SOIC
DW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024AC
Addendum-Page 6
0 to 70
-55 to 125
2022M
2022M
-55 to 125
2022M
2022M
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
31-Oct-2013
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TLE2024ACN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024ACN
TLE2024ACNE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024ACN
TLE2024AIDW
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024AI
TLE2024AIDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024AI
TLE2024AIN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024AIN
TLE2024AINE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024AIN
TLE2024AMFKB
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088106Q2A
TLE2024A
MFKB
TLE2024AMJ
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
-55 to 125
TLE2024AMJ
TLE2024AMJB
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
-55 to 125
5962-9088106QC
A
TLE2024AMJB
TLE2024BCDW
OBSOLETE
SOIC
DW
16
TBD
Call TI
Call TI
0 to 70
TLE2024BCN
OBSOLETE
PDIP
N
14
TBD
Call TI
Call TI
0 to 70
TLE2024BIDW
OBSOLETE
SOIC
DW
16
TBD
Call TI
Call TI
-40 to 85
TLE2024BIN
OBSOLETE
PDIP
N
14
TBD
Call TI
Call TI
TLE2024BMDW
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024BMDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024BMFKB
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088109Q2A
TLE2024
BMFKB
TLE2024BMJ
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
-55 to 125
TLE2024BMJ
TLE2024BMJB
ACTIVE
CDIP
J
14
1
TBD
A42
N / A for Pkg Type
-55 to 125
5962-9088109QC
A
Addendum-Page 7
-55 to 125
TLE2024BM
TLE2024BM
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
31-Oct-2013
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
TBD
Call TI
Call TI
Op Temp (°C)
Device Marking
(4/5)
TLE2024BMJB
(1)
TLE2024BMN
OBSOLETE
PDIP
N
14
TLE2024CDW
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024C
TLE2024CDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024C
TLE2024CDWR
ACTIVE
SOIC
DW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024C
TLE2024CDWRG4
ACTIVE
SOIC
DW
16
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024C
TLE2024CN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024CN
TLE2024CNE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024CN
TLE2024IDW
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024I
TLE2024IDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLE2024I
TLE2024IN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024IN
TLE2024INE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLE2024IN
TLE2024MDW
ACTIVE
SOIC
DW
16
40
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
TLE2024M
TLE2024MDWG4
ACTIVE
SOIC
DW
16
100
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
TLE2024M
TLE2024MFKB
ACTIVE
LCCC
FK
20
1
TBD
POST-PLATE
N / A for Pkg Type
-55 to 125
59629088103M2A
TLE2024MFKB
TBD
Call TI
Call TI
-55 to 125
TBD
A42
N / A for Pkg Type
-55 to 125
TBD
Call TI
Call TI
-55 to 125
TLE2024MJ
OBSOLETE
CDIP
J
14
TLE2024MJB
ACTIVE
CDIP
J
14
TLE2024MN
OBSOLETE
PDIP
N
14
1
The marketing status values are defined as follows:
Addendum-Page 8
-55 to 125
5962-9088103MC
A
TLE2024MJB
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
31-Oct-2013
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLE2021, TLE2021A, TLE2021AM, TLE2021M, TLE2022, TLE2022A, TLE2022AM, TLE2022B, TLE2022BM, TLE2022M, TLE2024,
TLE2024A, TLE2024AM, TLE2024B, TLE2024BM, TLE2024M :
• Catalog: TLE2021A, TLE2021, TLE2022A, TLE2022B, TLE2022, TLE2024A, TLE2024B, TLE2024
• Automotive: TLE2021-Q1, TLE2021A-Q1, TLE2021A-Q1, TLE2021-Q1, TLE2022-Q1, TLE2022A-Q1, TLE2022A-Q1, TLE2022-Q1, TLE2024-Q1, TLE2024A-Q1, TLE2024A-Q1,
TLE2024-Q1
Addendum-Page 9
PACKAGE OPTION ADDENDUM
www.ti.com
31-Oct-2013
• Enhanced Product: TLE2021-EP, TLE2021A-EP, TLE2021A-EP, TLE2021-EP, TLE2022-EP, TLE2022A-EP, TLE2022A-EP, TLE2022-EP, TLE2024-EP, TLE2024A-EP, TLE2024AEP, TLE2024-EP
• Military: TLE2021M, TLE2021AM, TLE2022M, TLE2022AM, TLE2022BM, TLE2024M, TLE2024AM, TLE2024BM
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
• Military - QML certified for Military and Defense Applications
Addendum-Page 10
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Oct-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
TLE2021ACDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2021ACDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2021AIDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2021CDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2021CPWR
TSSOP
PW
8
2000
330.0
12.4
7.0
3.6
1.6
8.0
12.0
Q1
TLE2021IDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2022ACDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2022AIDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2022AMDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2022CDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2022IDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2022MDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2024ACDWR
SOIC
DW
16
2000
330.0
16.4
10.75
10.7
2.7
12.0
16.0
Q1
TLE2024CDWR
SOIC
DW
16
2000
330.0
16.4
10.75
10.7
2.7
12.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Oct-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TLE2021ACDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2021ACDR
SOIC
D
8
2500
367.0
367.0
35.0
TLE2021AIDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2021CDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2021CPWR
TSSOP
PW
8
2000
367.0
367.0
35.0
TLE2021IDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2022ACDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2022AIDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2022AMDR
SOIC
D
8
2500
367.0
367.0
35.0
TLE2022CDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2022IDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2022MDR
SOIC
D
8
2500
367.0
367.0
35.0
TLE2024ACDWR
SOIC
DW
16
2000
367.0
367.0
38.0
TLE2024CDWR
SOIC
DW
16
2000
367.0
367.0
38.0
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.400 (10,16)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
0.063 (1,60)
0.015 (0,38)
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0°–15°
0.100 (2,54)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification.
Falls within MIL STD 1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated