MICROSEMI APT58M80J

APT58M80J
800V, 58A, 0.11Ω Max
N-Channel MOSFET
S
S
Power MOS 8™ is a high speed, high voltage N-channel switch-mode power MOSFET.
A proprietary planar stripe design yields excellent reliability and manufacturability. Low
switching loss is achieved with low input capacitance and ultra low Crss "Miller" capacitance. The intrinsic gate resistance and capacitance of the poly-silicon gate structure
help control slew rates during switching, resulting in low EMI and reliable paralleling,
even when switching at very high frequency. Reliability in flyback, boost, forward, and
other circuits is enhanced by the high avalanche energy capability.
D
G
SO
2
T-
27
"UL Recognized"
file # E145592
ISOTOP ®
D
APT58M80J
Single die MOSFET
G
S
TYPICAL APPLICATIONS
FEATURES
• Fast switching with low EMI/RFI
• PFC and other boost converter
• Low RDS(on)
• Buck converter
• Ultra low Crss for improved noise immunity
• Two switch forward (asymmetrical bridge)
• Low gate charge
• Single switch forward
• Avalanche energy rated
• Flyback
• RoHS compliant
• Inverters
Absolute Maximum Ratings
Symbol
ID
Parameter
Unit
Ratings
Continuous Drain Current @ TC = 25°C
58
Continuous Drain Current @ TC = 100°C
36
A
IDM
Pulsed Drain Current
VGS
Gate-Source Voltage
±30
V
EAS
Single Pulse Avalanche Energy 2
3725
mJ
IAR
Avalanche Current, Repetitive or Non-Repetitive
43
A
1
325
Thermal and Mechanical Characteristics
Typ
Max
Unit
W
PD
Total Power Dissipation @ TC = 25°C
960
RθJC
Junction to Case Thermal Resistance
0.13
RθCS
Case to Sink Thermal Resistance, Flat, Greased Surface
Operating and Storage Junction Temperature Range
VIsolation
RMS Voltage (50-60hHz Sinusoidal Waveform from Terminals to Mounting Base for 1 Min.)
WT
Torque
Package Weight
Terminals and Mounting Screws.
Microsemi Website - http://www.microsemi.com
-55
150
°C/W
°C
V
2500
1.03
oz
29.2
g
10
in·lbf
1.1
N·m
1-2007
TJ,TSTG
0.15
Rev A
Min
Characteristic
050-8111
Symbol
Static Characteristics
TJ = 25°C unless otherwise specified
Symbol
Parameter
Test Conditions
Min
VBR(DSS)
Drain-Source Breakdown Voltage
VGS = 0V, ID = 250µA
800
∆VBR(DSS)/∆TJ
Breakdown Voltage Temperature Coefficient
RDS(on)
Drain-Source On Resistance
VGS(th)
Gate-Source Threshold Voltage
∆VGS(th)/∆TJ
Zero Gate Voltage Drain Current
IGSS
Gate-Source Leakage Current
Dynamic Characteristics
Symbol
Forward Transconductance
Ciss
Input Capacitance
Crss
Reverse Transfer Capacitance
Coss
Output Capacitance
TJ = 125°C
0.87
0.09
4
-10
0.11
5
100
500
±100
Min
VGS = 0V, VDS = 25V
f = 1MHz
Effective Output Capacitance, Charge Related
Co(er)
5
Effective Output Capacitance, Energy Related
Unit
V
V/°C
Ω
V
mV/°C
µA
nA
Typ
80
17550
300
1745
Max
Unit
S
pF
825
VGS = 0V, VDS = 0V to 533V
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
td(on)
Turn-On Delay Time
tf
VGS = 0V
Test Conditions
VDS = 50V, ID = 43A
4
td(off)
TJ = 25°C
Max
TJ = 25°C unless otherwise specified
Co(cr)
tr
VDS = 800V
Typ
VGS = ±30V
Parameter
gfs
3
VGS = VDS, ID = 5mA
Threshold Voltage Temperature Coefficient
IDSS
Reference to 25°C, ID = 250µA
VGS = 10V, ID = 43A
3
APT58M80J
Current Rise Time
Turn-Off Delay Time
410
570
95
290
100
145
435
125
VGS = 0 to 10V, ID = 43A,
VDS = 400V
Resistive Switching
VDD = 533V, ID = 43A
RG = 2.2Ω 6 , VGG = 15V
Current Fall Time
nC
ns
Source-Drain Diode Characteristics
Symbol
IS
ISM
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 1
Test Conditions
MOSFET symbol
showing the
integral reverse p-n
junction diode
(body diode)
Diode Forward Voltage
ISD = 43A, TJ = 25°C, VGS = 0V
trr
Reverse Recovery Time
ISD = 43A, VDD = 100V 3
Qrr
Reverse Recovery Charge
Peak Recovery dv/dt
Typ
Max
Unit
58
A
G
VSD
dv/dt
Min
D
325
S
diSD/dt = 100A/µs, TJ = 25°C
ISD ≤ 43A, di/dt ≤1000A/µs, VDD = 533V,
TJ = 125°C
1.0
1100
42
V
ns
µC
10
V/ns
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Starting at TJ = 25°C, L = 4.03mH, RG = 2.2Ω, IAS = 43A.
050-8111
Rev A
1-2007
3 Pulse test: Pulse Width < 380µs, duty cycle < 2%.
4 Co(cr) is defined as a fixed capacitance with the same stored charge as COSS with VDS = 67% of V(BR)DSS.
5 Co(er) is defined as a fixed capacitance with the same stored energy as COSS with VDS = 67% of V(BR)DSS. To calculate Co(er) for any value of
VDS less than V(BR)DSS, use this equation: Co(er) = 5.57E-8/VDS^2 + 7.15E-8/VDS + 2.75E-10.
6 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
250
V
GS
= 10V
TJ = -55°C
TJ = 25°C
150
100
TJ = 125°C
50
TJ = 150°C
5.5V
60
50
5V
40
30
20
0
4.5V
4V
0
VDS> ID(ON) x RDS(ON) MAX.
250µSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
300
ID, DRAIN CURRENT (A)
RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE
NORMALIZED TO
VGS = 10V @ 43A
2.0
1.5
1.0
30
25
20
15
10
5
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 2, Output Characteristics
350
0.5
250
200
TJ = -55°C
150
TJ = 25°C
100
TJ = 125°C
50
0
25 50 75 100 125 150
0
-55 -25
TJ, JUNCTION TEMPERATURE (°C)
Figure 3, RDS(ON) vs Junction Temperature
0
100
0
8
7
6
5
4
3
2
1
VGS, GATE-TO-SOURCE VOLTAGE (V)
Figure 4, Transfer Characteristics
30,000
90
TJ = 25°C
70
TJ = 125°C
60
Ciss
10,000
TJ = -55°C
80
C, CAPACITANCE (pF)
gfs, TRANSCONDUCTANCE
= 6, & 6.5V
GS
70
Figure 1, Output Characteristics
2.5
= 10, & 15V
GS
V
10
30
25
20
15
10
5
0
VDS(ON), DRAIN-TO-SOURCE VOLTAGE (V)
3.0
V
J
80
ID, DRIAN CURRENT (A)
ID, DRAIN CURRENT (A)
T = 125°C
90
200
0
APT58M80J
100
50
40
30
1,000
Coss
100
Crss
20
10
800
600
400
200
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 6, Capacitance vs Drain-to-Source Voltage
VDS = 160V
10
VDS = 400V
8
6
VDS = 640V
4
2
100 200 300 400 500 600 700 800
Qg, TOTAL GATE CHARGE (nC)
Figure 7, Gate Charge vs Gate-to-Source Voltage
0
300
250
200
TJ = 25°C
150
TJ = 150°C
1-2007
12
0
350
ID = 43A
14
0
10
70
100
50
0
1.5
1.2
0.9
0.6
0.3
VSD, SOURCE-TO-DRAIN VOLTAGE (V)
Figure 8, Reverse Drain Current vs Source-to-Drain Voltage
0
Rev A
VGS, GATE-TO-SOURCE VOLTAGE (V)
16
60
50
40
30
20
ID, DRAIN CURRENT (A)
Figure 5, Gain vs Drain Current
10
050-8111
0
ISD, REVERSE DRAIN CURRENT (A)
0
I
10
13µs
100µs
1ms
Rds(on)
10ms
1
100ms
DM
Rds(on)
13µs
100µs
10
0.1
10
100
1000
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 9, Forward Safe Operating Area
1ms
10ms
100ms
DC line
TJ = 150°C
TC = 25°C
1
Scaling for Different Case & Junction
Temperatures:
ID = ID(T = 25 C)*(TJ - TC)/125
DC line
C
°
1
10
100
1000
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 10, Maximum Forward Safe Operating Area
TJ (°C)
TC (°C)
0.0271
0.102
Dissipated Power
(Watts)
0.0767
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
ZEXT
TJ = 125°C
TC = 75°C
1
I
100
DM
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
100
0.1
APT58M80J
400
400
1.04
Figure 11, Transient Thermal Impedance Model
D = 0.9
0.12
0.10
0.7
0.08
0.5
0.06
Note:
0.3
0.04
t1
t2
0.02
0
PDM
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.14
t1 = Pulse Duration
t
0.1
0.05
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (seconds)
Figure 12. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration
1.0
SOT-227 (ISOTOP®) Package Outline
11.8 (.463)
12.2 (.480)
31.5 (1.240)
31.7 (1.248)
7.8 (.307)
8.2 (.322)
r = 4.0 (.157)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
25.2 (0.992)
0.75 (.030) 12.6 (.496) 25.4 (1.000)
0.85 (.033) 12.8 (.504)
4.0 (.157)
4.2 (.165)
(2 places)
1-2007
14.9 (.587)
15.1 (.594)
Rev A
3.3 (.129)
3.6 (.143)
38.0 (1.496)
38.2 (1.504)
050-8111
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
1.95 (.077)
2.14 (.084)
* Source
30.1 (1.185)
30.3 (1.193)
Drain
* Emitter terminals are shorted
internally. Current handling
capability is equal for either
Source terminal.
* Source
Gate
Dimensions in Millimeters and (Inches)
ISOTOP® is a registered trademark of ST Microelectronics NV. Microsemi's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234
5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.