SITRONIX ST7712

ST
Sitronix
ST7712
262K Color Single-Chip TFT Controller/Driver
1. Introduction
The ST7712 is a single-chip which generates 396 Source lines and 132 gate lines controller/driver for 262K color TFT dot
graphic display. ST7712 support 18-bit high-speed bus interface and Serial Peripheral Interface (SPI), thus it can perform
bi-operation functions, data transfer, and high-speed RAM write function. Display data can be stored in an on-chip display
data RAM of 132x396x6 bits. It can perform display data RAM read/write operation without external operating clock to
minimize power consumption. In addition, because it contains power supply circuits necessary to drive liquid crystal, it is
possible to make a display system with the fewest components.
2. Features
On-chip Low Power Analog Circuit
Driver Output Circuits
−On-chip oscillator circuit
−396 source output
−Voltage converter generating liquid crystal driver up to
−132 gate output
6-time scale
On-chip Display Data RAM
−Simultaneous availability of 262K color with γ-correction
−Capacity: 396 × 132 × 6 =313,632bits
function
−65K colors (RGB)= (565) mode
Operating Voltage Range
−262K colors (RGB)= (666) mode
−Vcc: 2.4~3.3V (logic power supply)
Applicable Duty Ratios
−Vci: 2.5~3.3V (analog power supply)
- Various partial display
−IOVcc: 1.8~3.3V (interface power supply)
- Partial window moving & data scrolling
−Source line voltage: DDVDH=4.5~6.0V
Microprocessor Interface
Package Type
−8/9/16/18-bit parallel bi-directional interface with
−Application for COG
−6800-series or 8080-series
−4-line serial interface
−3-line serial interface
ST7712
Ver 2.2
6800 , 8080 ,4-Line , 3-Line interface
1/113
2006/07/07
ST7712
3. Pad Arrangement
Chip size (um): 15,800x1,380
PAD coordinate: PAD center
Coordinate origin: Chip center
Chip thickness (um): 400±
±25
Bump height (um):15±
±2
Pad Arrangement (Unit: um):
Pad No. 1~ Pad No. 534: 26 x 86
26
30
26
86
116
30
86
28
28
Pad No. 535~ Pad No. 692: 66 x 76
66
25
(min.) 66
76
95
(min.)
Alignment Mark (Unit: um):
Ver 2.3
2/113
2007/07/19
ST7712
4. Pad Center Coordinates
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
1
DUMMYA
7710
570.715
36
G69
6668.5
454.715
2
G1
7620.5
454.715
37
G71
6640.5
570.715
3
G3
7592.5
570.715
38
G73
6612.5
454.715
4
G5
7564.5
454.715
39
G75
6584.5
570.715
5
G7
7536.5
570.715
40
G77
6556.5
454.715
6
G9
7508.5
454.715
41
G79
6528.5
570.715
7
G11
7480.5
570.715
42
G81
6500.5
454.715
8
G13
7452.5
454.715
43
G83
6472.5
570.715
9
G15
7424.5
570.715
44
G85
6444.5
454.715
10
G17
7396.5
454.715
45
G87
6416.5
570.715
11
G19
7368.5
570.715
46
G89
6388.5
454.715
12
G21
7340.5
454.715
47
G91
6360.5
570.715
13
G23
7312.5
570.715
48
G93
6332.5
454.715
14
G25
7284.5
454.715
49
G95
6304.5
570.715
15
G27
7256.5
570.715
50
G97
6276.5
454.715
16
G29
7228.5
454.715
51
G99
6248.5
570.715
17
G31
7200.5
570.715
52
G101
6220.5
454.715
18
G33
7172.5
454.715
53
G103
6192.5
570.715
19
G35
7144.5
570.715
54
G105
6164.5
454.715
20
G37
7116.5
454.715
55
G107
6136.5
570.715
21
G39
7088.5
570.715
56
G109
6108.5
454.715
22
G41
7060.5
454.715
57
G111
6080.5
570.715
23
G43
7032.5
570.715
58
G113
6052.5
454.715
24
G45
7004.5
454.715
59
G115
6024.5
570.715
25
G47
6976.5
570.715
60
G117
5996.5
454.715
26
G49
6948.5
454.715
61
G119
5968.5
570.715
27
G51
6920.5
570.715
62
G121
5940.5
454.715
28
G53
6892.5
454.715
63
G123
5912.5
570.715
29
G55
6864.5
570.715
64
G125
5884.5
454.715
30
G57
6836.5
454.715
65
G127
5856.5
570.715
31
G59
6808.5
570.715
66
G129
5828.5
454.715
32
G61
6780.5
454.715
67
G131
5800.5
570.715
33
G63
6752.5
570.715
68
VCMDUMMY1 5726.5
570.715
34
G65
6724.5
454.715
69
DUMMYB
5631.5
570.715
35
G67
6696.5
570.715
70
S395
5557.5
454.715
Ver 2.3
3/113
2007/07/19
ST7712
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
71
S394
5529.5
570.715
107
S358
4521.5
570.715
72
S393
5501.5
454.715
108
S357
4493.5
454.715
73
S392
5473.5
570.715
109
S356
4465.5
570.715
74
S391
5445.5
454.715
110
S355
4437.5
454.715
75
S390
5417.5
570.715
111
S354
4409.5
570.715
76
S389
5389.5
454.715
112
S353
4381.5
454.715
77
S388
5361.5
570.715
113
S352
4353.5
570.715
78
S387
5333.5
454.715
114
S351
4325.5
454.715
79
S386
5305.5
570.715
115
S350
4297.5
570.715
80
S385
5277.5
454.715
116
S349
4269.5
454.715
81
S384
5249.5
570.715
117
S348
4241.5
570.715
82
S383
5221.5
454.715
118
S347
4213.5
454.715
83
S382
5193.5
570.715
119
S346
4185.5
570.715
84
S381
5165.5
454.715
120
S345
4157.5
454.715
85
S380
5137.5
570.715
121
S344
4129.5
570.715
86
S379
5109.5
454.715
122
S343
4101.5
454.715
87
S378
5081.5
570.715
123
S342
4073.5
570.715
88
S377
5053.5
454.715
124
S341
4045.5
454.715
89
S376
5025.5
570.715
125
S340
4017.5
570.715
90
S375
4997.5
454.715
126
S339
3989.5
454.715
91
S374
4969.5
570.715
127
S338
3961.5
570.715
92
S373
4941.5
454.715
128
S337
3933.5
454.715
93
S372
4913.5
570.715
129
S336
3905.5
570.715
94
S371
4885.5
454.715
130
S335
3877.5
454.715
95
S370
4857.5
570.715
131
S334
3849.5
570.715
96
S369
4829.5
454.715
132
S333
3821.5
454.715
97
S368
4801.5
570.715
133
S332
3793.5
570.715
98
S367
4773.5
454.715
134
S331
3765.5
454.715
99
S366
4745.5
570.715
135
S330
3737.5
570.715
100
S365
4717.5
454.715
136
S329
3709.5
454.715
101
S364
4689.5
570.715
137
S328
3681.5
570.715
102
S363
4661.5
454.715
138
S327
3653.5
454.715
103
S362
4633.5
570.715
139
S326
3625.5
570.715
104
S361
4605.5
454.715
140
S325
3597.5
454.715
105
S360
4577.5
570.715
141
S324
3569.5
570.715
106
S359
4549.5
454.715
142
S323
3541.5
454.715
Ver 2.3
4/113
2007/07/19
ST7712
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
143
S322
3513.5
570.715
179
S286
2505.5
570.715
144
S321
3485.5
454.715
180
S285
2477.5
454.715
145
S320
3457.5
570.715
181
S284
2449.5
570.715
146
S319
3429.5
454.715
182
S283
2421.5
454.715
147
S318
3401.5
570.715
183
S282
2393.5
570.715
148
S317
3373.5
454.715
184
S281
2365.5
454.715
149
S316
3345.5
570.715
185
S280
2337.5
570.715
150
S315
3317.5
454.715
186
S279
2309.5
454.715
151
S314
3289.5
570.715
187
S278
2281.5
570.715
152
S313
3261.5
454.715
188
S277
2253.5
454.715
153
S312
3233.5
570.715
189
S276
2225.5
570.715
154
S311
3205.5
454.715
190
S275
2197.5
454.715
155
S310
3177.5
570.715
191
S274
2169.5
570.715
156
S309
3149.5
454.715
192
S273
2141.5
454.715
157
S308
3121.5
570.715
193
S272
2113.5
570.715
158
S307
3093.5
454.715
194
S271
2085.5
454.715
159
S306
3065.5
570.715
195
S270
2057.5
570.715
160
S305
3037.5
454.715
196
S269
2029.5
454.715
161
S304
3009.5
570.715
197
S268
2001.5
570.715
162
S303
2981.5
454.715
198
S267
1973.5
454.715
163
S302
2953.5
570.715
199
S266
1945.5
570.715
164
S301
2925.5
454.715
200
S265
1917.5
454.715
165
S300
2897.5
570.715
201
S264
1889.5
570.715
166
S299
2869.5
454.715
202
S263
1861.5
454.715
167
S298
2841.5
570.715
203
S262
1833.5
570.715
168
S297
2813.5
454.715
204
S261
1805.5
454.715
169
S296
2785.5
570.715
205
S260
1777.5
570.715
170
S295
2757.5
454.715
206
S259
1749.5
454.715
171
S294
2729.5
570.715
207
S258
1721.5
570.715
172
S293
2701.5
454.715
208
S257
1693.5
454.715
173
S292
2673.5
570.715
209
S256
1665.5
570.715
174
S291
2645.5
454.715
210
S255
1637.5
454.715
175
S290
2617.5
570.715
211
S254
1609.5
570.715
176
S289
2589.5
454.715
212
S253
1581.5
454.715
177
S288
2561.5
570.715
213
S252
1553.5
570.715
178
S287
2533.5
454.715
214
S251
1525.5
454.715
Ver 2.3
5/113
2007/07/19
ST7712
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
215
S250
1497.5
570.715
251
S214
489.5
570.715
216
S249
1469.5
454.715
252
S213
461.5
454.715
217
S248
1441.5
570.715
253
S212
433.5
570.715
218
S247
1413.5
454.715
254
S211
405.5
454.715
219
S246
1385.5
570.715
255
S210
377.5
570.715
220
S245
1357.5
454.715
256
S209
349.5
454.715
221
S244
1329.5
570.715
257
S208
321.5
570.715
222
S243
1301.5
454.715
258
S207
293.5
454.715
223
S242
1273.5
570.715
259
S206
265.5
570.715
224
S241
1245.5
454.715
260
S205
237.5
454.715
225
S240
1217.5
570.715
261
S204
209.5
570.715
226
S239
1189.5
454.715
262
S203
181.5
454.715
227
S238
1161.5
570.715
263
S202
153.5
570.715
228
S237
1133.5
454.715
264
S201
125.5
454.715
229
S236
1105.5
570.715
265
S200
97.5
570.715
230
S235
1077.5
454.715
266
S199
69.5
454.715
231
S234
1049.5
570.715
267
S198
41.5
570.715
232
S233
1021.5
454.715
268
S197
-41.5
454.715
233
S232
993.5
570.715
269
S196
-69.5
570.715
234
S231
965.5
454.715
270
S195
-97.5
454.715
235
S230
937.5
570.715
271
S194
-125.5
570.715
236
S229
909.5
454.715
272
S193
-153.5
454.715
237
S228
881.5
570.715
273
S192
-181.5
570.715
238
S227
853.5
454.715
274
S191
-209.5
454.715
239
S226
825.5
570.715
275
S190
-237.5
570.715
240
S225
797.5
454.715
276
S189
-265.5
454.715
241
S224
769.5
570.715
277
S188
-293.5
570.715
242
S223
741.5
454.715
278
S187
-321.5
454.715
243
S222
713.5
570.715
279
S186
-349.5
570.715
244
S221
685.5
454.715
280
S185
-377.5
454.715
245
S220
657.5
570.715
281
S184
-405.5
570.715
246
S219
629.5
454.715
282
S183
-433.5
454.715
247
S218
601.5
570.715
283
S182
-461.5
570.715
248
S217
573.5
454.715
284
S181
-489.5
454.715
249
S216
545.5
570.715
285
S180
-517.5
570.715
250
S215
517.5
454.715
286
S179
-545.5
454.715
Ver 2.3
6/113
2007/07/19
ST7712
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
287
S178
-573.5
570.715
323
S142
-1581.5
570.715
288
S177
-601.5
454.715
324
S141
-1609.5
454.715
289
S176
-629.5
570.715
325
S140
-1637.5
570.715
290
S175
-657.5
454.715
326
S139
-1665.5
454.715
291
S174
-685.5
570.715
327
S138
-1693.5
570.715
292
S173
-713.5
454.715
328
S137
-1721.5
454.715
293
S172
-741.5
570.715
329
S136
-1749.5
570.715
294
S171
-769.5
454.715
330
S135
-1777.5
454.715
295
S170
-797.5
570.715
331
S134
-1805.5
570.715
296
S169
-825.5
454.715
332
S133
-1833.5
454.715
297
S168
-853.5
570.715
333
S132
-1861.5
570.715
298
S167
-881.5
454.715
334
S131
-1889.5
454.715
299
S166
-909.5
570.715
335
S130
-1917.5
570.715
300
S165
-937.5
454.715
336
S129
-1945.5
454.715
301
S164
-965.5
570.715
337
S128
-1973.5
570.715
302
S163
-993.5
454.715
338
S127
-2001.5
454.715
303
S162
-1021.5
570.715
339
S126
-2029.5
570.715
304
S161
-1049.5
454.715
340
S125
-2057.5
454.715
305
S160
-1077.5
570.715
341
S124
-2085.5
570.715
306
S159
-1105.5
454.715
342
S123
-2113.5
454.715
307
S158
-1133.5
570.715
343
S122
-2141.5
570.715
308
S157
-1161.5
454.715
344
S121
-2169.5
454.715
309
S156
-1189.5
570.715
345
S120
-2197.5
570.715
310
S155
-1217.5
454.715
346
S119
-2225.5
454.715
311
S154
-1245.5
570.715
347
S118
-2253.5
570.715
312
S153
-1273.5
454.715
348
S117
-2281.5
454.715
313
S152
-1301.5
570.715
349
S116
-2309.5
570.715
314
S151
-1329.5
454.715
350
S115
-2337.5
454.715
315
S150
-1357.5
570.715
351
S114
-2365.5
570.715
316
S149
-1385.5
454.715
352
S113
-2393.5
454.715
317
S148
-1413.5
570.715
353
S112
-2421.5
570.715
318
S147
-1441.5
454.715
354
S111
-2449.5
454.715
319
S146
-1469.5
570.715
355
S110
-2477.5
570.715
320
S145
-1497.5
454.715
356
S109
-2505.5
454.715
321
S144
-1525.5
570.715
357
S108
-2533.5
570.715
322
S143
-1553.5
454.715
358
S107
-2561.5
454.715
Ver 2.3
7/113
2007/07/19
ST7712
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
359
S106
-2589.5
570.715
395
S70
-3597.5
570.715
360
S105
-2617.5
454.715
396
S69
-3625.5
454.715
361
S104
-2645.5
570.715
397
S68
-3653.5
570.715
362
S103
-2673.5
454.715
398
S67
-3681.5
454.715
363
S102
-2701.5
570.715
399
S66
-3709.5
570.715
364
S101
-2729.5
454.715
400
S65
-3737.5
454.715
365
S100
-2757.5
570.715
401
S64
-3765.5
570.715
366
S99
-2785.5
454.715
402
S63
-3793.5
454.715
367
S98
-2813.5
570.715
403
S62
-3821.5
570.715
368
S97
-2841.5
454.715
404
S61
-3849.5
454.715
369
S96
-2869.5
570.715
405
S60
-3877.5
570.715
370
S95
-2897.5
454.715
406
S59
-3905.5
454.715
371
S94
-2925.5
570.715
407
S58
-3933.5
570.715
372
S93
-2953.5
454.715
408
S57
-3961.5
454.715
373
S92
-2981.5
570.715
409
S56
-3989.5
570.715
374
S91
-3009.5
454.715
410
S55
-4017.5
454.715
375
S90
-3037.5
570.715
411
S54
-4045.5
570.715
376
S89
-3065.5
454.715
412
S53
-4073.5
454.715
377
S88
-3093.5
570.715
413
S52
-4101.5
570.715
378
S87
-3121.5
454.715
414
S51
-4129.5
454.715
379
S86
-3149.5
570.715
415
S50
-4157.5
570.715
380
S85
-3177.5
454.715
416
S49
-4185.5
454.715
381
S84
-3205.5
570.715
417
S48
-4213.5
570.715
382
S83
-3233.5
454.715
418
S47
-4241.5
454.715
383
S82
-3261.5
570.715
419
S46
-4269.5
570.715
384
S81
-3289.5
454.715
420
S45
-4297.5
454.715
385
S80
-3317.5
570.715
421
S44
-4325.5
570.715
386
S79
-3345.5
454.715
422
S43
-4353.5
454.715
387
S78
-3373.5
570.715
423
S42
-4381.5
570.715
388
S77
-3401.5
454.715
424
S41
-4409.5
454.715
389
S76
-3429.5
570.715
425
S40
-4437.5
570.715
390
S75
-3457.5
454.715
426
S39
-4465.5
454.715
391
S74
-3485.5
570.715
427
S38
-4493.5
570.715
392
S73
-3513.5
454.715
428
S37
-4521.5
454.715
393
S72
-3541.5
570.715
429
S36
-4549.5
570.715
394
S71
-3569.5
454.715
430
S35
-4577.5
454.715
Ver 2.3
8/113
2007/07/19
ST7712
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
431
S34
-4605.5
570.715
467
VCMDUMMY2 -5726.5
570.715
432
S33
-4633.5
454.715
468
G130
-5800.5
454.715
433
S32
-4661.5
570.715
469
G128
-5828.5
570.715
434
S31
-4689.5
454.715
470
G126
-5856.5
454.715
435
S30
-4717.5
570.715
471
G124
-5884.5
570.715
436
S29
-4745.5
454.715
472
G122
-5912.5
454.715
437
S28
-4773.5
570.715
473
G120
-5940.5
570.715
438
S27
-4801.5
454.715
474
G118
-5968.5
454.715
439
S26
-4829.5
570.715
475
G116
-5996.5
570.715
440
S25
-4857.5
454.715
476
G114
-6024.5
454.715
441
S24
-4885.5
570.715
477
G112
-6052.5
570.715
442
S23
-4913.5
454.715
478
G110
-6080.5
454.715
443
S22
-4941.5
570.715
479
G108
-6108.5
570.715
444
S21
-4969.5
454.715
480
G106
-6136.5
454.715
445
S20
-4997.5
570.715
481
G104
-6164.5
570.715
446
S19
-5025.5
454.715
482
G102
-6192.5
454.715
447
S18
-5053.5
570.715
483
G100
-6220.5
570.715
448
S17
-5081.5
454.715
484
G98
-6248.5
454.715
449
S16
-5109.5
570.715
485
G96
-6276.5
570.715
450
S15
-5137.5
454.715
486
G94
-6304.5
454.715
451
S14
-5165.5
570.715
487
G92
-6332.5
570.715
452
S13
-5193.5
454.715
488
G90
-6360.5
454.715
453
S12
-5221.5
570.715
489
G88
-6388.5
570.715
454
S11
-5249.5
454.715
490
G86
-6416.5
454.715
455
S10
-5277.5
570.715
491
G84
-6444.5
570.715
456
S9
-5305.5
454.715
492
G82
-6472.5
454.715
457
S8
-5333.5
570.715
493
G80
-6500.5
570.715
458
S7
-5361.5
454.715
494
G78
-6528.5
454.715
459
S6
-5389.5
570.715
495
G76
-6556.5
570.715
460
S5
-5417.5
454.715
496
G74
-6584.5
454.715
461
S4
-5445.5
570.715
497
G72
-6612.5
570.715
462
S3
-5473.5
454.715
498
G70
-6640.5
454.715
463
S2
-5501.5
570.715
499
G68
-6668.5
570.715
464
S1
-5529.5
454.715
500
G66
-6696.5
454.715
465
S0
-5557.5
570.715
501
G64
-6724.5
570.715
466
DUMMYC
-5631.5
570.715
502
G62
-6752.5
454.715
Ver 2.3
9/113
X
Y
2007/07/19
ST7712
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
503
G60
-6780.5
570.715
539
VCOM1
-7313.33 -583.465
504
G58
-6808.5
454.715
540
DUMMY4
-7140
-583.465
505
G56
-6836.5
570.715
541
VGH
-7045
-583.465
506
G54
-6864.5
454.715
542
VGH
-6950
-583.465
507
G52
-6892.5
570.715
543
VLOUT2
-6855
-583.465
508
G50
-6920.5
454.715
544
C22+
-6760
-583.465
509
G48
-6948.5
570.715
545
C22+
-6665
-583.465
510
G46
-6976.5
454.715
546
C22-
-6570
-583.465
511
G44
-7004.5
570.715
547
C22-
-6475
-583.465
512
G42
-7032.5
454.715
548
C21+
-6380
-583.465
513
G40
-7060.5
570.715
549
C21+
-6285
-583.465
514
G38
-7088.5
454.715
550
C21-
-6190
-583.465
515
G36
-7116.5
570.715
551
C21-
-6095
-583.465
516
G34
-7144.5
454.715
552
C12+
-6000
-583.465
517
G32
-7172.5
570.715
553
C12+
-5905
-583.465
518
G30
-7200.5
454.715
554
C12+
-5810
-583.465
519
G28
-7228.5
570.715
555
C12+
-5715
-583.465
520
G26
-7256.5
454.715
556
C12-
-5620
-583.465
521
G24
-7284.5
570.715
557
C12-
-5525
-583.465
522
G22
-7312.5
454.715
558
C12-
-5430
-583.465
523
G20
-7340.5
570.715
559
C12-
-5335
-583.465
524
G18
-7368.5
454.715
560
VLOUT3
-5240
-583.465
525
G16
-7396.5
570.715
561
VGL
-5145
-583.465
526
G14
-7424.5
454.715
562
VGL
-5050
-583.465
527
G12
-7452.5
570.715
563
VGL
-4955
-583.465
528
G10
-7480.5
454.715
564
VGL
-4860
-583.465
529
G8
-7508.5
570.715
565
IOVCCDUM1 -4715
-583.465
530
G6
-7536.5
454.715
566
IOVCCDUM1 -4620
-583.465
531
G4
-7564.5
570.715
567
IM0
-4525
-583.465
532
G2
-7592.5
454.715
568
IM1
-4430
-583.465
533
G0
-7620.5
570.715
569
IM2
-4335
-583.465
534
DUMMYD
-7710
570.715
570
IM3
-4240
-583.465
535
DUMMY1
-7710
-583.465
571
IOGNDDUM1 -4145
-583.465
536
DUMMY2
-7609.15
-583.465
572
IOGNDDUM1 -4050
-583.465
537
DUMMY3
-7508.3
-583.465
573
FLM
-3955
-583.465
538
VCOM1
-7408.33
-583.465
574
XCS
-3860
-583.465
Ver 2.3
10/113
Y
2007/07/19
ST7712
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
575
SCL
-3765
-583.465
611
VCI
-295
-583.465
576
SDI
-3670
-583.465
612
VCI
-200
-583.465
577
SDO
-3575
-583.465
613
VCI
-105
-583.465
578
RS
-3480
-583.465
614
VCI
-10
-583.465
579
RW_WR
-3385
-583.465
615
VCI
85
-583.465
580
E_RD
-3290
-583.465
616
VDDO
180
-583.465
581
DB0
-3195
-583.465
617
VDDO
275
-583.465
582
DB1
-3100
-583.465
618
VCILVL
370
-583.465
583
DB2
-3005
-583.465
619
OSC1
495
-583.465
584
DB3
-2910
-583.465
620
OSC2
590
-583.465
585
DB4
-2815
-583.465
621
GND
715
-583.465
586
DB5
-2720
-583.465
622
GND
810
-583.465
587
DB6
-2625
-583.465
623
GND
905
-583.465
588
DB7
-2530
-583.465
624
GND
1000
-583.465
589
DB8
-2435
-583.465
625
GND
1095
-583.465
590
IOGNDDUM2
-2340
-583.465
626
GND
1190
-583.465
591
IOGNDDUM2
-2245
-583.465
627
AGND
1298.775 -583.465
592
DB9
-2150
-583.465
628
AGND
1393.775 -583.465
593
DB10
-2055
-583.465
629
AGND
1502.415 -583.465
594
DB11
-1960
-583.465
630
AGND
1597.415 -583.465
595
DB12
-1865
-583.465
631
AGND
1692.415 -583.465
596
DB13
-1770
-583.465
632
AGND
1787.415 -583.465
597
DB14
-1675
-583.465
633
FUSA0
1896.055 -583.465
598
DB15
-1580
-583.465
634
FUSA1
1996.055 -583.465
599
DB16
-1485
-583.465
635
FUSA2
2096.055 -583.465
600
DB17
-1390
-583.465
636
FUSA3
2196.055 -583.465
601
XRESET
-1295
-583.465
637
FUSA4
2296.055 -583.465
602
IOVCC
-1200
-583.465
638
VSSF
2396.055 -583.465
603
IOVCC
-1105
-583.465
639
FUS0
2496.055 -583.465
604
VCC
-960
-583.465
640
FUS1
2596.055 -583.465
605
VCC
-865
-583.465
641
FUS2
2696.055 -583.465
606
VCC
-770
-583.465
642
FUS3
2796.055 -583.465
607
VCC
-675
-583.465
643
FUS4
2896.055 -583.465
608
VCC
-580
-583.465
644
REGP
3025
-583.465
609
VCC
-485
-583.465
645
VGS
3120
-583.465
610
VCI
-390
-583.465
646
VGS
3215
-583.465
Ver 2.3
11/113
2007/07/19
ST7712
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
647
VMON
3310
-583.465
671
C11+
5590
-583.465
648
VCI1
3405
-583.465
672
C11+
5685
-583.465
649
VCI1
3500
-583.465
673
C11+
5780
-583.465
650
VCI1
3595
-583.465
674
VLPWR
5875
-583.465
651
VCI1
3690
-583.465
675
VCOMR
5970
-583.465
652
VCI1
3785
-583.465
676
VREG1OUT
6065
-583.465
653
VCI1
3880
-583.465
677
DUMMY5
6160
-583.465
654
VCIOUT
3975
-583.465
678
VCOMH
6255
-583.465
655
VCIOUT
4070
-583.465
679
VCOMH
6350
-583.465
656
VCIOUT
4165
-583.465
680
VCOMH
6445
-583.465
657
VCIOUT
4260
-583.465
681
VCOML
6570
-583.465
658
DDVDH
4355
-583.465
682
VCOML
6665
-583.465
659
DDVDH
4450
-583.465
683
VCOML
6760
-583.465
660
DDVDH
4545
-583.465
684
VLOUT4
6855
-583.465
661
DDVDH
4640
-583.465
685
VCL
6950
-583.465
662
DDVDH
4735
-583.465
686
VCL
7045
-583.465
663
DDVDH
4830
-583.465
687
DUMMY6
7140
-583.465
664
VLOUT1
4925
-583.465
688
VCOM2
7313.33
-583.465
665
VLOUT1
5020
-583.465
689
VCOM2
7408.33
-583.465
666
C11-
5115
-583.465
690
DUMMY7
7508.3
-583.465
667
C11-
5210
-583.465
691
DUMMY8
7609.15
-583.465
668
C11-
5305
-583.465
692
DUMMY9
7710
-583.465
669
C11-
5400
-583.465
670
C11+
5495
-583.465
Ver 2.3
12/113
2007/07/19
ST7712
5. Block Diagram
S0 TO S395
VciLVL
Vci
VciOUT
Voltage
Adjustment
Circuit
VGH,VGL
Source Drivers
G0 TO G131
Gate Drivers
Vci1
VLOUT1
DDVDH
VLOUT2
VGH
VLOUT3
VGL
VLOUT4
VCL
V0~V63
Step-up
Ciruit
Gate Driver
Outputs
Controller
Circuit
Data Latches
RESET
Oscillator
VREG1OUT
VcomH
VcomL
Vcom
VGS
Display Data RAM
(DDRAM)
[396X132X6]
Vcom
Circuit
Gamma
adjustment
and
Gray scale
generator
OSC1
OSC2
Timing
Generator
Display
Address
Counter
Address Counter
Data
Register
Instruction
Register
Bus
Holder
Instruction
Decoder
MPU INTERFACE(PARALLEL & SERIAL)
D0 to D17
13/113
SDO
SDI
E_RD
SCL
RW_WR
RS
XCS
XRESET
IM3
IM2
IM1
IM0
Ver 2.3
2007/07/19
ST7712
6. Pin Function
6.1 Microprocessor Interface
Name
I/O
Description
No.
IM0~IM3
I
Pins to select interface mode with MPU.
4
IM3
IM2
IM1
IM0
Interface type
Acceptable
color mode
0
0
0
0
68-system 16 bits parallel
65K
0
0
0
1
68-system 8 bits parallel
65K
0
0
1
0
80-system 16 bits parallel
65K
0
0
1
1
80-system 8 bits parallel
65K
0
1
0
0
4-line SPI
65K
0
1
0
1
3-line SPI
65K
1
0
0
0
68-system 18 bits parallel
65K, 262K
1
0
0
1
68-system 9 bits parallel
65K, 262K
1
0
1
0
80-system 18 bits parallel
65K, 262K
1
0
1
1
80-system 9 bits parallel
65K, 262K
Select the ST7712.
XCS
I
1
Connect
Pin
GND/
IOVcc
MCU
When XCS pin is set to “Low”, ST7712 is selected and accessible.
When XCS pin is set to “High”, ST7712 is not selected and not accessible.
MCU
Select register.
RS
I
When RS pins is set to “Low”: Register Index
When RS pin is set to “High”: Register value/Pixel Data
Read/Write execution control pin.
MPU Type
E_RD
1
MCU
1
MCU
Description
Read / Write control input pin
-RW = “H”: When E is “H”, D0 to D17 are in an output
E_RD
I
6800-series
E
state.
-RW = “L”: The data on D0 to D17 are latched at the
falling edge of the E signal.
Read enable clock input pin
8080-series
/RD
When /RD is “L”, D0 to D17 are in an output state.
In 3 lines and 4 lines-system bus interface is fixed to “L”
Read/Write execution control pin
MPU type
RW_WR
RW_WR
I
Description
Read / Write control input pin
6800-series
RW
RW = “H” : read
RW = “L” : write
Ver 2.3
14/113
2007/07/19
ST7712
Write enable clock input pin
8080-series
/WR
The data on D0 to D17 are latched at the
rising edge of the /WR signal.
In 3 lines and 4 lines-system bus interface write data at the “L” level.
In 3 lines and 4 lines-system bus interface read data at the “H” level.
Connect to an external resistor for R-C oscillation.
2
MCU or
external
RC circuit
-
18-bit parallel bi-directional data bus in 68-systemt/80-system bus interface mode.
18
MCU
1
MCU
Reset pin.
XRESET
1
I
When XRESET is "L", initialization is executed.
OSC1,
I
OSC2
DB0~DB17
I/O
8-bit bus: DB17-DB10 are used ,and DB9~DB0 are fixed to “H” or “L”
9-bit bus: DB17-DB9 are used ,and DB8~DB0 are fixed to “H” or “L”
16-bit bus: DB17-DB10 and DB8-DB1 are used; DB9 and DB0 are fixed to “H” or
“L”
18-bit bus: DB17-DB0 are all used.
Synchronizing clock signal with amplitude IOVcc-GND in Serial Peripheral Interface
SCL
I
(SPI).
SDI
I
Pins for serial data input (SDI). Input at the rising edge of SCL.
1
MCU
SDO
O
Pins for serial data output (SDO). Output at the falling edge of SCL.
1
MCU
Source line output signal.
396
-
S0~S395
O
132
-
1
MCU
Logic-side Vcc: 2.4~3.3V. Logic-side GND: 0V
12
Supply to interface pins, XREST, XCS, RW_WR, E_RD, RS, DB17-0.
2
Power
supply
Power
supply
Analog output signals to source of TFT. If not used, leave open-circuit.
Gate line output signal.
G0~G131
O
High voltage output signals to gates of TFT. If not used, leave open-circuit.
Frame head pulse with amplitude IOVcc-GND. Use when writing data to RAM in
FLM
O
synchronization with FLM.
Vcc, GND
-
IOVcc=1.8V~3.3V. IOVcc must be supplied with the voltage in the same condition with
IOVcc
the internal logic voltage Vcc. When IOVcc=Vcc and assembled on COG, connect to
Vcc on the FPC to avoid noise.
Ver 2.3
15/113
2007/07/19
ST7712
6.2 Power Supply Pins
Name
I/O
Description
No.
AGND
I
Ground pin for analog.
6
Vci
I
Power pins for analog circuit. Connect an external power supply of
6
Connect
Pin
Power
supply
Power
supply
2.5~3.3V.
VciLVL
I
1
Power
supply
Internal reference voltage with amplitude Vci-GND.
4
Stabilizing
capacitor,
Vci1
Reference voltage for the step-up circuit 2.
6
VciOUT
2
Stabilizing
capacitor,
Generate a reference voltage (VciOUT, REGP) in accordance to the
ratio set with VC2~0 registers from VciLVL level. Connect to the same
power supply as the Vci, which has separate wiring from the VciLVL
on the FPC.
VciOUT
O
Vci1
I/O
Set Vci1 so that VLOUT2 and VLOUT3 do not exceed the
pre-determined ranges.
VLOUT1
O
Output voltage from step-up circuit 1 . VLOUT1 = 4.0~5.5V
DDVDH
DDVDH
I/O
Power supply for TFT source driver. DDVDH=4.5V~6.0V
6
VLOUT1
VLOUT2
O
Output voltage from step-up circuit 2.
1
Stabilizing
capacitor,
VGH
VLOUT2
VLOUT2 = max 16.5V
VGH
I
Power supply for TFT gate drive. VGH max. = 16.5V.
2
VLOUT3
O
Output voltage from step-up circuit 2.
1
Stabilizing
capacitor,
VGL
Power supply for TFT gate drive. VGL = min. – 15V.
4
VLOUT3
Output voltage from step-up circuit 4.
1
Stabilizing
capacitor,
VLOUT3 = min -15V
VGL
I
VLOUT4
O
VCL
I
C11+,C11-
I/O
C12+,C12C21+,C21-
VLOUT4 = 0 ~ -3.3V
VCL
Power supply for VcomL drive. Connect to VLOUT4. VCL=0V~3.3V
2
VLOUT4
Step-up capacitor connection pins for step-up circuit 1.
8
Step-up
capacitor
Step-up capacitor connection pins for step-up circuit 2 and circuit 4.
16
Step-up
capacitor
I/O
C22+,C22Output voltage generated from stepped-up of REGP voltage.
1
Capacitor
VREG1OUT becomes (1) a source driver grayscale reference voltage
VREG1OUT
O
Step-up
VDH, (2) a VcomH level reference voltage, or (3) a Vcom amplitude
reference voltage. Connect to a stabilizing capacitor. VREG1OUT =
3.0 ~ (DDVDH – 0.5)V.
Vcom1
Ver 2.3
O
A power supply for the TFT common electrode. Output an alternating
16/113
4
TFT
2007/07/19
ST7712
Vcom2
command
electrode
current with amplitude VcomH-VcomL. The alternating cycle is
changeable with register setting. The COM register controls the
operation start/halt.
This pin indicates a high level of Vcom generated in driving the Vcom
VcomH
3
O
alternation.
When the Vcom alternation is driven, this pin indicates a low level of
VcomL
O
Stabilizing
Capacitor
3
Stabilizing
Capacitor
Vcom.
An internal register can be used to adjust the voltage.
Use to adjust VcomH with an external variable resistor.
VcomR
I
1
Variable
resistor or
open
To adjust VcomH, place a variable resistor between VREG1OUT and
GND.
VGS
I
A reference level for the grayscale voltage generating circuit.
2
GND
VMON
--
Test pin. Leave open.
1
Open
Test pin. Connect to capacitors externally or leave open.
1
Capacitor
VLPWR
-or open
REGP
--
Test pin. Leave open.
1
Open
VSSF
--
For Vcom voltage fine tune by trim fuse
1
Open
FUS0~4
--
Test pin. Leave open.
5
Open
FUSA0~A4
--
For Vcom voltage fine tune by trim fuse
4
Open
VDDO
--
Test pin. Connect to capacitors externally
2
Capacitor
or open
Internal IOVcc level. Use to fix the electric potential for unused
2
Open
IOVccDUM1
O
4
Open
2
Open
interface or fixed pins . When not used, leave open.
Internal GND level. Use to fix the electric potential for unused
IOGNDDUM1,2
O
interface or fixed pins. When not used, leave open.
A power supply for the TFT common electrode. Output an alternating
current with amplitude VcomH-VcomL. The alternating cycle is
VCMDUMMY1,2
-changeable with register setting. The COM register controls the
operation start/halt.
DUMMYA,B,C,D
--
DUMMY pad, When no used, leave open
4
open
DUMMY1,2,3,4,5,6,7,8,9
--
DUMMY pad, When no used, leave open
9
open
Ver 2.3
17/113
2007/07/19
ST7712
7. Functional Description
7.1 Microprocessor Interface
Chip Select Input
There is XCS pin for chip selection. The ST7712 can connect with MPU when XCS is "L". If XCS is “H”, these pins are
set to any other combination, RS, E_RD, and RW_WR inputs are disabled and DB0 to DB17 are to be high impedance.
And, in case of 4-line/3-line serial interface, the internal shift register and the counter are reset.
7.1.1 Selecting Parallel / Serial Interface
ST7712 has 10 types of interface with MPU, including two serial and eight parallel interfaces. This parallel or serial
interface is determined by IM3~IM0 pins as shown in table 7.1.1.
Table 7.1.1 Parallel / Serial Interface Mode
Acceptable
IM3
IM2
IM1
IM0
Interface type
Data Bus
Color mode
0
0
0
0
68-series 16 bits parallel
DB17~DB10, DB8~DB1
65K
0
0
0
1
68-series 8 bits parallel
DB17~DB10
65K
0
0
1
0
80-series 16 bits parallel
DB17~DB10, DB8~DB1
65K
0
0
1
1
80-series 8 bits parallel
DB17~DB10
65K
0
1
0
0
4-line SPI
SDI, SDO
65K
0
1
0
1
3-line SPI
SDI, SDO
65K
1
0
0
0
68-series 18 bits parallel
DB17~DB0
65K, 262K
1
0
0
1
68-series 9 bits parallel
DB17~DB9
65K, 262K
1
0
1
0
80-series 18 bits parallel
DB17~DB0
65K, 262K
1
0
1
1
80-series 9 bits parallel
DB17~DB9
65K, 262K
7.1.2 8-bit/9-bit/16-bit/18-bit Parallel Interface
The ST7712 identifies various types of the data bus signals according to combinations of RS, E_RD and WR_RW. The
signal types are shown as table 7.1.2.
Table 7.1.2 Parallel Data Transfer
Common
68-system
80-system
Description
Ver 2.3
RS
E
RW
RD
WR
H
H
H
L
H
Display data read out
H
H
L
H
L
Display data write
L
H
H
L
H
Register status read
L
H
L
H
L
Writes to internal register (instruction)
18/113
2007/07/19
ST7712
7.1.2.1 Relation between Data Bus and Gradation Data
ST7712 offers the 65K color display, 262K color display.
When using either 65K or 262K, you can specify color for each of R, G, B by using the palette function.
Use the command (“Entry Mode (03H)” ID[1:0]) for switching between these modes.
(1) 65K color display
1. 8-bit mode
D17
D16
D15
D14
D13
D12
D11
D10
D9
R4
R3
R2
R1
R0
G5
G4
G3
--
G2
G1
G0
B4
B3
B2
B1
B0
--
st
1 write
nd
2 write
D8
D7
D6
D5
D4
D3
D2
D1
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
D0
--
--
--
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
“--”: Don’t care
2 16-bit mode
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
R4
R3
R2
R1
R0
G5
G4
G3
--
G2
G1
G0
B4
B3
B2
B1
B0
--
write
Data is acquired through signal write operation and then written to the display RAM.
“--”: Don’t care
(2) 262K color display
1. 9-bit mode
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
st
R5
R4
R3
R2
R1
R0
G5
G4
G3
--
--
--
--
--
--
--
--
nd
G2
G1
G0
B5
B4
B3
B2
B1
B0
1 write
2 write
--
--
--
--
--
--
--
--
D0
---
A single pixel of data is read after the second write operation as shown, and it is written in the display RAM.
“--”: Don’t care
2. 18 bit mode
Write
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
R5
R4
R3
R2
R1
R0
G5
G4
G3
G2
G1
G0
B5
B4
B3
B2
B1
B0
Data is acquired through signal write operation and then written to the display RAM.
7.1.3 Serial Interface
The 4-line serial interface uses four pins XCS, SDI/SDO, SCL, and RS to enter commands and data. Meanwhile, the
3-line serial interface uses three pins XCS, SDI/SDO and SCL for the same purpose.
Data read is not available in the serial interface. Data entered must be 8 bits in 4-line serial interface and 9 bits in 3-line
serial interface. Refer to the following chart for entering commands, parameters or gray-scale data.
The relation between gray-scale data and data bus in the serial input is the same as that in the parallel interface mode at
every gradation.
Ver 2.3
19/113
2007/07/19
ST7712
4-line SPI
th
When entering data (parameters): RS= HIGH at the rising edge of the 8 SCL.
th
When entering instruction register: RS= LOW at the rising edge of the 8 SCL
3-line SPI
st
When entering data (parameters): SDI= HIGH at the rising edge of the 1 SCL.
st
When entering instruction register: SDI= LOW at the rising edge of the 1 SCL.
If XCS is caused to HIGH before 8 bits from D7 to D0 are entered, the data concerned is invalidated. Before
entering succeeding sets of data, you must correctly input the data concerned again.
Ver 2.3
20/113
2007/07/19
ST7712
In order to avoid data transfer error due to incoming noise, it is recommended to set XCS at HIGH on byte basis to
initialize the serial-to-parallel conversion counter and the register.
th
When executing the command RAMWR, set XCS to HIGH after writing the last address (after starting the 9 pulse
th
in case of 9-bit serial input or after starting the 8 pulse in case of 8-bit serial input).
Ver 2.3
21/113
2007/07/19
ST7712
7-2 Access to DDRAM and Internal Registers
ST7712 realizes high-speed data transfer because the access from MPU is a sort of pipeline processing done via the
bus holder attached to the internal, requiring the cycle time alone without needing the wait time.
For example, when MPU writes data to the DDRAM, the data is once held by the bus holder and then written to the
DDRAM before the succeeding write cycle is started. When MPU reads data from the DDRAM, the first read cycle is
dummy and the bus holder holds the data read in the dummy cycle, and then it read from the bus holder to the system
bus in the succeeding read cycle. Fig. 7.2.1 and Fig 7.2.2 illustrates these relations.
Fig 7.2.1
Ver 2.3
22/113
2007/07/19
ST7712
8080 series 16 bits/18 bits interface mode
MPU signal
Write Operation
RS
/WR
DATA
N
D(N)
D(N+1)
D(N+2)
D(N+3)
N
D(N)
D(N+1)
D(N+2)
D(N+3)
N
N+1
N+2
Internal signals
/WR
BUS HOLDER
SOURCE ADDRESS
N+3
Fig 7.2.2
Ver 2.3
23/113
2007/07/19
ST7712
SPI 4-Line interface mode
SPI 3–Line interface mode
Ver 2.3
24/113
2007/07/19
ST7712
7.3 Display Data RAM (DDRAM)
7.3.1 DDRAM
It is 396 X 132 X 6 bits capacity RAM prepared for storing dot data. You can access a desired bit by specifying the gate
address and source address. Since display data from MCU D8 to D0 and D17 to D9 correspond to one or two pixels of
RGB, data transfer related restrictions are reduced, realizing the display flexing.
MCU’s read and write operations to and from the RAM are performed via the I/O buffer circuit; Reading of the RAM for
the liquid crystal drive is controlled from another separate circuit. Refer to the following memory map for the RAM
configuration.
Memory Map (When using the 65Kcolor. 8-bit mode)
RGB alignment
Column
Pixels
SS=0
Color
0
Data
Pixels
SS=1
Color
Data
GS=0
GS=1
0
1
2
3
4
5
6
7
131
130
129
128
127
126
125
124
124
125
126
127
128
129
130
131
7
6
5
4
3
2
1
0
Ver 2.3
S0
S1
R
D17
D16
D15
D14
D13
1
131
S2
S3
S4
S5
G
D12
D11
D10
D17
D16
D15
131
B
D14
D13
D12
D11
D10
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D17
D16
D15
130
B
D14
D13
D12
D11
D10
S395
S394
S393
S392
S391
S390
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D17
D16
D15
B
D14
D13
D12
D11
D10
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D17
D16
D15
B
D14
D13
D12
D11
D10
25/113
S393
S394
S395
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D17
D16
D15
0
B
D14
D13
D12
D11
D10
S2
S1
S0
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D17
D16
D15
B
D14
D13
D12
D11
D10
2007/07/19
ST7712
Memory Map (When using the 65Kcolor. 16-bit mode)
Pixels
SS=0
Color
0
Data
Pixels
SS=1
Color
Data
GS=0
GS=1
0
1
2
3
4
5
6
7
131
130
129
128
127
126
125
124
124
125
126
127
128
129
130
131
7
6
5
4
3
2
1
0
Ver 2.3
RGB alignment
Column
1
S0
S1
S2
S3
S4
S5
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D8
D7
D6
131
B
D5
D4
D3
D2
D1
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D8
D7
D6
130
B
D5
D4
D3
D2
D1
S395
S394
S393
S392
S391
S390
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D8
D7
D6
B
D5
D4
D3
D2
D1
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D8
D7
D6
B
D5
D4
D3
D2
D1
26/113
131
S393
S394
S395
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D8
D7
D6
0
B
D5
D4
D3
D2
D1
S2
S1
S0
R
D17
D16
D15
D14
D13
G
D12
D11
D10
D8
D7
D6
B
D5
D4
D3
D2
D1
2007/07/19
ST7712
Memory Map (When using the 262K color. 9-bit mode)
Pixels
SS=0
Color
0
Data
S0
S1
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D17
D16
D15
131
S395
S394
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D17
D16
D15
Pixels
SS=1
Color
Data
GS=0
GS=1
0
1
2
3
4
5
6
7
131
130
129
128
127
126
125
124
124
125
126
127
128
129
130
131
7
6
5
4
3
2
1
0
Ver 2.3
RGB alignment
Column
1
131
S2
S3
S4
S5
S393
S394
S395
B
D14
D13
D12
D11
D10
D9
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D17
D16
D15
130
B
D14
D13
D12
D11
D10
D9
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D17
D16
D15
0
B
D14
D13
D12
D11
D10
D9
S392
S391
S390
S2
S1
S0
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D17
D16
D15
B
D14
D13
D12
D11
D10
D9
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D17
D16
D15
B
D14
D13
D12
D11
D10
D9
S393
B
D14
D13
D12
D11
D10
D9
27/113
2007/07/19
ST7712
Memory Map (When using the 262K color. 18-bit mode)
Pixels
SS=0
Color
0
Data
Pixels
SS=1
Color
Data
GS=0
GS=1
0
1
2
3
4
5
6
7
131
130
129
128
127
126
125
124
124
125
126
127
128
129
130
131
7
6
5
4
3
2
1
0
Ver 2.3
RGB alignment
Column
1
S0
S1
S2
S3
S4
R
D17
D16
D15
D14
D13
D12
S5
G
D11
D10
D9
D8
D7
D6
131
B
D5
D4
D3
D2
D1
D0
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D8
D7
D6
130
B
D5
D4
D3
D2
D1
D0
S395
S394
S393
S392
S391
S390
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D8
D7
D6
B
D5
D4
D3
D2
D1
D0
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D8
D7
D6
B
D5
D4
D3
D2
D1
D0
28/113
131
S393
S394
S395
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D8
D7
D6
0
B
D5
D4
D3
D2
D1
D0
S2
S1
S0
R
D17
D16
D15
D14
D13
D12
G
D11
D10
D9
D8
D7
D6
B
D5
D4
D3
D2
D1
D0
2007/07/19
ST7712
7.3.2 Gate Address Control Circuit
This circuit is used to control the address in the gate direction when MPU accesses the DDRAM or when reading the
DDRAM to display image on the LCD.
When the gate -direction scan is specified with RAM address command (21H) and the address are incremented from
the start up to the end gate, the source address is incremented by 1 and the gate address returns to start page.
The DDRAM supports up to 132 lines, and thus the total gate becomes 132.
In the read operation, as the end gate is reached, the source address is automatically incremented by 1 and the gate
address is returned to start gate.
Using the address normal/inverse parameter of Driver output set(01H) command allows you to inverse the
correspondence between the DDRAM address and command output.
7.3.3 Source Address Control Circuit
This circuit is used to control the address in the source direction when MPU accesses the DDRAM. You can specify a
scope of the source address using source address set command. When the source -direction scan is specified with
RAM address command (21H) and the address are incremented from the start up to the end gate, the gate address is
incremented by 1 and the column address returns to start source.
In the read operation, too, the gate address is automatically incremented by 1 and returned to start gate as the end
source is reached.
Just like the gate address control circuit, using the source address normal/inverse parameter of Driver output set(01H)
command enables to inverse the correspondence between the DDRAM source address and segment output. This
arrangement relaxes restrictions in the chip layout on the LCD module.
7.3.4 I/O Buffer Circuit
It is the bi-directional buffer used when MCU reads or writes the DDRAM. Since MCU’s read or write of DDRAM is
performed independently from data output to the display data latch circuit, asynchronous access to the DDRAM white
the LCD is turned on does not cause troubles such as flicking of the display images.
7.3.5 Display data Latch Circuit
This circuit is used to temporarily hold display data to be output from the DDRAM to the source line decoder circuit.
Since display normal/inverse and display on/off commands are used to control data in the latch circuit alone, they do not
modify data in the DDRAM.
Ver 2.3
29/113
2007/07/19
ST7712
7.4 Partial Display
Using partial in command allows you turn on two separated partial display (division by line) of the screen. This mode
requires less current consumption than the whole screen display, making it suitable for the equipment in the standby
state.
Screen 1
: Display area (partial display area)
Screen 2
: Non-display area
If the partial display region is out of the Max. Display range, it would be no operation.
7.5 Area Scroll Display
Using the scroll volume set commands (VLE) allows you to scroll the display screen.
You can select screen1 or screen2 to be scrolled with screen scroll enable set commands (VLE). Notice that you can
not scroll two screens (screen1 and screen 2) at the same time. Please referred to command “Display control 1 (07H)”
and Vertical Scroll Set (41H) for further description.
VLE=00
Stationary
Ver 2.3
VLE=01
VLE=10
Scrolled
30/113
2007/07/19
ST7712
7-6 γ-Correction Function
The ST7712 incorporates γ-correction function to display 262K colors simultaneously by 8-level grayscale. The 8-level
grayscale is determined by the by the gradient adjustment register and the micro-adjustment register. Select
either positive or negative polarity of the registers according to the characteristics of a liquid crystal panel.
DDRAM
Display Data
R5
R4
R3
R2
R1
R0
6
G5
G4
G3
G2
G1
G0
6
B5
B4
B3
B2
B1
B0
6
Positive Polarity Resigter
VRP14
VRP03
VRP13
PKP02
PKP12
PKP22
PKP32
PKP42
PKP52
PRP02
PRP12
VRP02
VRP12
PKP01
PKP11
PKP21
PKP31
PKP41
PKP51
PRP01
PRP11
VRP01
VRP11
PKP00
PKP10
PKP20
PKP30
PKP40
PKP50
PRP00
PRP10
VRP00
VRP10
V0
8
64 grayscale
Control <R>
Grayscale 64 levels
Amplifier
Negative Polarity Resigter
VRN14
Ver 2.3
VRN03
VRN13
PKN02
PKN12
PKN22
PKN32
PKN42
PKN52
PRN02
PRN12
VRN02
VRN12
PKN01
PKN11
PKN21
PKN31
PKN41
PKN51
PRN01
PRN11
VRN01
VRN11
PKN00
PKN10
PKN20
PKN30
PKN40
PKN50
PRN00
PRN10
VRN00
vRN10
64 grayscale
Control <G>
64 grayscale
Control <B>
LCD Driver IC
V63
Display
31/113
2007/07/19
ST7712
7.6.1 Grayscale Amplifier
The eight levels (VIN0 t0 VIN7) of grayscale are determined by gradient adjustment register and the micro-adjustment
register. The 8 levels are then divided into 64 levels (V0-63) by the ladder resistors placed between each level. (The
structure of the grayscale amplifier is shown as below).
8 to 1
Selector
8 to 1
Selector
Grayscale Amplifier
8 to 1
Selector
8 to 1
Selector
8 to 1
Selector
8 to 1
Selector
Ver 2.3
32/113
2007/07/19
ST7712
Structure of Ladder / 8 to 1 selector
Ver 2.3
33/113
2007/07/19
ST7712
7.6.2 γ-Adjustment Register
The γ-adjustment registers set an appropriate grayscale voltage for the γ-characteristics of a liquid crystal display.
The register group is categorized into the 4-types of register groups to adjust gradient and amplitude on the number of
grayscale, the characteristics of the grayscale voltage. Each register can make an independent setting for the
positive/negative polarity (the reference value and RGB are common for all registers). The figure below shows the
operation of each adjusting register.
Grayscale Voltage
Grayscale Voltage
Grayscale Number
Grayscale Number
a. Gradient adjustment
b. Amplitude adjustment
Grayscale Voltage
Grayscale Voltage
Grayscale Number
Grayscale Number
c. Reference adjustment
d. Micro adjustment
The Operation of adjusting register
a) Gradient adjustment resistor
The gradient adjustment resistors are used to adjust the gradient in the middle of the grayscale characteristics for the
voltage without changing the dynamic range. It controls the variable resistor (VRHP (N) / VRLP (N)) of the ladder
resistor for the grayscale voltage generator to achieve the adjustment. Also, there is a separate resistor on the positive
and negative polarities in order for corresponding to asymmetry drive.
b) Amplitude adjustment resistor
The Amplitude-adjusting resistor is to adjust amplitude of the grayscale voltage. To accomplish the adjustment, it
controls the variable resistor (VRP(N)1) of the ladder resistor for the grayscale voltage generator located at lower side of
the ladder resistor.
Ver 2.3
34/113
2007/07/19
ST7712
c) Reference adjustment resistor
The Reference-adjusting resistor is to adjust reference of the grayscale voltage. To accomplish the adjustment, it
controls the variable resistor (VRP(N)0) of the ladder resistor for the grayscale voltage generator located at upper side
of the ladder resistor.
d) Micro adjustment resistor
The micro adjustment resistor is to make subtle adjustment of the grayscale voltage level. To accomplish the adjustment,
it controls the each reference voltage level by the 8 to 1 selector towards the 8-leveled reference voltage generated from
the ladder resistor. Also, there is an independent resistor on the positive/negative polarities as well as other adjusting
resistors.
γ-correction registers
Register
Gradient Adjustment
Amplitude Adjustment
Micro Adjustment
Ver 2.3
Positive Polarity
PRP0[2:0]
PRP1[2:0]
VRP0[3:0]
VRP1[4:0]
PKP0[2:0]
Negative Polarity
PRN0[2:0]
PRN1[2:0]
VRN0[3:0]
VRN1[4:0]
PKN0[2:0]
PKP1[2:0]
PKN1[2:0]
PKP3[2:0]
PKN3[2:0]
PKP4[2:0]
PKN4[2:0]
PKP5[2:0]
PKN5[2:0]
PKP6[2:0]
PKN6[2:0]
35/113
Set-up contents
Variable resistor VRHP(N)
Variable resistor VRLP(N)
Variable resistor VRP(N)0
Variable resistor VRP(N)1
The voltage of grayscale number 1 is
selected by the 8 to 1 selector
The voltage of grayscale number 8 is
selected by the 8 to 1 selector
The voltage of grayscale number 20
is selected by the 8 to 1 selector
The voltage of grayscale number 43
is selected by the 8 to 1 selector
The voltage of grayscale number 55
is selected by the 8 to 1 selector
The voltage of grayscale number 62
is selected by the 8 to 1 selector
2007/07/19
ST7712
7.6.3 Ladder resistors and 8 to 1 Selector
This block outputs the reference voltage of the grayscale voltage. There are two ladder resistors including the variable
resistor and the 8 to 1 selector selecting voltage generated by the ladder resistance voltage. The variable and 8 to 1
resistors are controlled by the gamma resistor. Also, there are pins that connect to the external volume resistor and can
compensate the variation among the panels.
Variable Resistors
There are 2 types of the variable resistors that is for the gradient adjustment (VRHP (N) / VRLP (N)) and for the
oscillation adjustment (VRP (N)0/VRP (N)1). The resistance value is set by the gradient adjusting resistor and the
oscillation adjustment resistor as below.
Gradient Adjustment (1)
Register Value PRP(N)0 [2:0]
000
001
010
011
100
101
110
111
Resistance Value VRHP(N)
0R
4R
8R
12R
16R
20R
24R
28R
Gradient Adjustment (2)
Register value PRP(N)1[2:0]
Resistance value VRLP(N)
000
001
010
011
100
101
110
111
0R
4R
8R
12R
16R
20R
24R
28R
Amplitude Adjustment (1)
Ver 2.3
Register value VRP(N)[3:0]
Resistance value VRP(N)0
0000
0001
0010
:
:
1101
1110
1111
0R
2R
4R
:
:
26R
28R
30R
36/113
2007/07/19
ST7712
Oscillation Adjustment (2)
Register value VRP(N)1[4:0]
Resistance value VRP(N)1
00000
00001
00010
:
:
11101
11110
11111
0R
1R
2R
:
:
29R
30R
31R
8-to-1 Selector
In the 8-to-1 selector, the voltage level must be selected given by the ladder resistance and the micro-adjusting register
and output the voltage the six types of the reference voltage, the VIN1 to VIN6. Following figure explains the relationship
between the micro-adjusting register and the selecting voltage.
Relationship between Micro-adjustment Register and Selected Voltage
Register value
PKP(N) [2:0]
000
001
010
011
100
101
110
111
Ver 2.3
VINP(N)1
KVP(N)1
KVP(N)2
KVP(N)3
KVP(N)4
KVP(N)5
KVP(N)6
KVP(N)7
KVP(N)8
VINP(N)2
KVP(N)9
KVP(N)10
KVP(N)11
KVP(N)12
KVP(N)13
KVP(N)14
KVP(N)15
KVP(N)16
Selected voltage
VINP(N)3
VINP(N)4
KVP(N)17
KVP(N)18
KVP(N)19
KVP(N)20
KVP(N)21
KVP(N)22
KVP(N)23
KVP(N)24
37/113
KVP(N)25
KVP(N)26
KVP(N)27
KVP(N)28
KVP(N)29
KVP(N)30
KVP(N)31
KVP(N)32
VINP(N)5
KVP(N)33
KVP(N)34
KVP(N)35
KVP(N)36
KVP(N)37
KVP(N)38
KVP(N)39
KVP(N)40
VINP(N)6
KVP(N)41
KVP(N)42
KVP(N)43
KVP(N)44
KVP(N)45
KVP(N)46
KVP(N)47
KVP(N)48
2007/07/19
ST7712
γ-Correction Voltage Formula (Positive polarity) --1
Pins
KVP0
KVP1
KVP2
KVP3
KVP4
KVP5
KVP6
KVP7
KVP8
KVP9
KVP10
KVP11
KVP12
KVP13
KVP14
KVP15
KVP16
KVP17
KVP18
KVP19
KVP20
KVP21
KVP22
KVP23
KVP24
KVP25
KVP26
KVP27
KVP28
KVP29
KVP30
KVP31
KVP32
KVP33
KVP34
KVP35
KVP36
KVP37
KVP38
KVP39
KVP40
KVP41
KVP42
KVP43
KVP44
KVP45
KVP46
KVP47
KVP48
KVP49
Formula
VREG1OUT-∆V*VRP0/SUMRP
VREG1OUT-∆V*(VRP0+5R)/SUMRP
VREG1OUT-∆V*(VRP0+9R)/SUMRP
VREG1OUT-∆V*(VRP0+13R)/SUMRP
VREG1OUT-∆V*(VRP0+17R)/SUMRP
VREG1OUT-∆V*(VRP0+21R)/SUMRP
VREG1OUT-∆V*(VRP0+25R)/SUMRP
VREG1OUT-∆V*(VRP0+29R)/SUMRP
VREG1OUT-∆V*(VRP0+33R)/SUMRP
VREG1OUT-∆V*(VRP0+33R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+34R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+35R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+36R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+37R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+38R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+39R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+40R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+45R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+46R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+47R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+48R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+49R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+50R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+51R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+52R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+68R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+69R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+70R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+71R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+72R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+73R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+74R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+75R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+80R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+81R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+82R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+83R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+84R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+85R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+86R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+87R+VRHP)/SUMRP
VREG1OUT-∆V*(VRP0+87R+VRHP+VRLP)/SUMRP
VREG1OUT-∆V*(VRP0+91R+VRHP+VRLP)/SUMRP
VREG1OUT-∆V*(VRP0+95R+VRHP+VRLP)/SUMRP
VREG1OUT-∆V*(VRP0+99R+VRHP+VRLP)/SUMRP
VREG1OUT-∆V*(VRP0+103R+VRHP+VRLP)/SUMRP
VREG1OUT-∆V*(VRP0+107R+VRHP+VRLP)/SUMRP
VREG1OUT-∆V*(VRP0+111R+VRHP+VRLP)/SUMRP
VREG1OUT-∆V*(VRP0+115R+VRHP+VRLP)/SUMRP
VREG1OUT-∆V*(VRP0+120R+VRHP+VRLP)/SUMRP
Micro-adjusting
register value
-PKP02-00 =“000”
PKP02-00=“001”
PKP02-00=“010”
PKP02-00=“011”
PKP02-00=“100”
PKP02-00=“101”
PKP02-00=“110”
PKP02-00=“111”
PKP12-10 =“000”
PKP12-10 =“001”
PKP12-10 =“010”
PKP12-10 =“011”
PKP12-10 =“100”
PKP12-10 =“101”
PKP12-10 =“110”
PKP12-10 =“111”
PKP22-10 =“000”
PKP22-10 =“001”
PKP22-20 =“010”
PKP22-20 =“011”
PKP22-20 =“100”
PKP22-20 =“101”
PKP22-20 =“110”
PKP22-20 =“111”
PKP32-30 =“000”
PKP32-30 =“001”
PKP32-30 =“010”
PKP32-30 =“011”
PKP32-30 =“100”
PKP32-30 =“101”
PKP32-30 =“110”
PKP32-30 =“111”
PKP42-40 =“000”
PKP42-40 =“001”
PKP42-40 =“010”
PKP42-40 =“011”
PKP42-40 =“100”
PKP42-40 =“101”
PKP42-40 =“110”
PKP42-40 =“111”
PKP52-50 =“000”
PKP52-50 =“001”
PKP52-50 =“010”
PKP52-50 =“011”
PKP52-50 =“100”
PKP52-50 =“101”
PKP52-50 =“110”
PKP52-50 =“111”
--
Reference
voltage
VINP0
VINP1
VINP2
VINP3
VINP4
VINP5
VINP6
VINP7
SUMRP: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRP
SUMRN: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN
∆V: Potential difference between KV0 and KV49 = VREG1OUT*SUMRP*SUMRN / [SUMRP*SUMRN+EXVR*(SUMRP+SUMRN)]
Ver 2.3
38/113
2007/07/19
ST7712
γ-Correction Voltage Formula (Positive polarity) --2
Ver 2.3
Voltage of
grayscale
Formula
Voltage of
grayscale
Formula
V0
VINP0
V32
V43+(V20-V43)*(11/23)
V1
VINP1
V33
V43+(V20-V43)*(10/23)
V2
V3+(V1-V3)*(8/24)
V34
V43+(V20-V43)*(9/23)
V3
V8+(V1-V8)*(450/800)
V35
V43+(V20-V43)*(8/23)
V4
V8+(V3-V8)*(16/24)
V36
V43+(V20-V43)*(7/23)
V5
V8+(V3-V8)*(12/24)
V37
V43+(V20-V43)*(6/23)
V6
V8+(V3-V8)*(8/24)
V38
V43+(V20-V43)*(5/23)
V7
V8+(V3-V8)*(4/24)
V39
V43+(V20-V43)*(4/23)
V8
VINP2
V40
V43+(V20-V43)*(3/23)
V9
V20+(V8-V20)*(22/24)
V41
V43+(V20-V43)*(2/23)
V10
V20+(V8-V20)*(20/24)
V42
V43+(V20-V43)*(1/23)
V11
V20+(V8-V20)*(18/24)
V43
VINP4
V12
V20+(V8-V20)*(16/24)
V44
V55+(V43-V55)*(22/24)
V13
V20+(V8-V20)*(14/24)
V45
V55+(V43-V55)*(20/24)
V14
V20+(V8-V20)*(12/24)
V46
V55+(V43-V55)*(18/24)
V15
V20+(V8-V20)*(10/24)
V47
V55+(V43-V55)*(16/24)
V16
V20+(V8-V20)*(8/24)
V48
V55+(V43-V55)*(14/24)
V17
V20+(V8-V20)*(6/24)
V49
V55+(V43-V55)*(12/24)
V18
V20+(V8-V20)*(4/24)
V50
V55+(V43-V55)*(10/24)
V19
V20+(V8-V20)*(2/24)
V51
V55+(V43-V55)*(8/24)
V20
VINP3
V52
V55+(V43-V55)*(6/24)
V21
V43+(V20-V43)*(22/23)
V53
V55+(V43-V55)*(4/24)
V22
V43+(V20-V43)*(21/23)
V54
V55+(V43-V55)*(2/24)
V23
V43+(V20-V43)*(20/23)
V55
VINP5
V24
V43+(V20-V43)*(19/23)
V56
V60+(V55-V60)*(20/24)
V25
V43+(V20-V43)*(18/23)
V57
V60+(V55-V60)*(16/24)
V26
V43+(V20-V43)*(17/23)
V58
V60+(V55-V60)*(12/24)
V27
V43+(V20-V43)*(16/23)
V59
V60+(V55-V60)*(8/24)
V28
V43+(V20-V43)*(15/23)
V60
V62+(V55-V62)*(350/800)
V29
V43+(V20-V43)*(14/23)
V61
V62+(V60-V62)*(16/24)
V30
V43+(V20-V43)*(13/23)
V62
VINP6
V31
V43+(V20-V43)*(12/23)
V63
VINP7
39/113
2007/07/19
ST7712
γ-Correction Voltage Formula (Negative Polarity)--1
Pins
KVP0
KVP1
KVP2
KVP3
KVP4
KVP5
KVP6
KVP7
KVP8
KVP9
KVP10
KVP11
KVP12
KVP13
KVP14
KVP15
KVP16
KVP17
KVP18
KVP19
KVP20
KVP21
KVP22
KVP23
KVP24
KVP25
KVP26
KVP27
KVP28
KVP29
KVP30
KVP31
KVP32
KVP33
KVP34
KVP35
KVP36
KVP37
KVP38
KVP39
KVP40
KVP41
KVP42
KVP43
KVP44
KVP45
KVP46
KVP47
KVP48
KVP49
Formula
VREG1OUT-∆V*VRN0/SUMRN
VREG1OUT-∆V*(VRN0+5R)/SUMRN
VREG1OUT-∆V*(VRN0+9R)/SUMRN
VREG1OUT-∆V*(VRN0+13R)/SUMRN
VREG1OUT-∆V*(VRN0+17R)/SUMRN
VREG1OUT-∆V*(VRN0+21R)/SUMRN
VREG1OUT-∆V*(VRN0+25R)/SUMRN
VREG1OUT-∆V*(VRN0+29R)/SUMRN
VREG1OUT-∆V*(VRN0+33R)/SUMRN
VREG1OUT-∆V*(VRN0+33R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+34R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+35R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+36R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+37R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+38R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+39R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+40R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+45R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+46R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+47R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+48R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+49R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+50R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+51R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+52R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+68R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+69R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+70R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+71R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+72R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+73R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+74R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+75R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+80R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+81R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+82R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+83R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+84R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+85R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+86R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+87R+VRHP)/SUMRN
VREG1OUT-∆V*(VRN0+87R+VRHP+VRLP)/SUMRN
VREG1OUT-∆V*(VRN0+91R+VRHP+VRLP)/SUMRN
VREG1OUT-∆V*(VRN0+95R+VRHP+VRLP)/SUMRN
VREG1OUT-∆V*(VRN0+99R+VRHP+VRLP)/SUMRN
VREG1OUT-∆V*(VRN0+103R+VRHP+VRLP)/SUMRN
VREG1OUT-∆V*(VRN0+107R+VRHP+VRLP)/SUMRN
VREG1OUT-∆V*(VRN0+111R+VRHP+VRLP)/SUMRN
VREG1OUT-∆V*(VRN0+115R+VRHP+VRLP)/SUMRN
VREG1OUT-∆V*(VRN0+120R+VRHP+VRLP)/SUMRN
Micro-adjusting
register value
-PKN02-00 =“000”
PKN02-00=“001”
PKN02-00=“010”
PKN02-00=“011”
PKN02-00=“100”
PKN02-00=“101”
PKN02-00=“110”
PKN02-00=“111”
PKN12-10 =“000”
PKN12-10 =“001”
PKN12-10 =“010”
PKN12-10 =“011”
PKN12-10 =“100”
PKN12-10 =“101”
PKN12-10 =“110”
PKN12-10 =“111”
PKN22-10 =“000”
PKN22-10 =“001”
PKN22-20 =“010”
PKN22-20 =“011”
PKN22-20 =“100”
PKN22-20 =“101”
PKN22-20 =“110”
PKN22-20 =“111”
PKN32-30 =“000”
PKN32-30 =“001”
PKN32-30 =“010”
PKN32-30 =“011”
PKN32-30 =“100”
PKN32-30 =“101”
PKN32-30 =“110”
PKN32-30 =“111”
PKN42-40 =“000”
PKN42-40 =“001”
PKN42-40 =“010”
PKN42-40 =“011”
PKN42-40 =“100”
PKN42-40 =“101”
PKN42-40 =“110”
PKN42-40 =“111”
PKN52-50 =“000”
PKN52-50 =“001”
PKN52-50 =“010”
PKN52-50 =“011”
PKN52-50 =“100”
PKN52-50 =“101”
PKN52-50 =“110”
PKN52-50 =“111”
--
Reference
voltage
VINN0
VINN1
VINN2
VINN3
VINN4
VINN5
VINN6
VINN7
SUMRN: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRN
SUMRN: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN
∆V: Potential difference between KV0 and KV49 = VREG1OUT*SUMRP*SUMRN / SUMRP*SUMRN+EXVR*(SUMRP+SUMRN)]
Ver 2.3
40/113
2007/07/19
ST7712
Gamma Voltage Formula (Negative Polarity) --2
Voltage of
grayscale
Formula
Voltage of
grayscale
Formula
V0
VINN0
V32
V43+(V20-V43)*(11/23)
V1
VINN1
V33
V43+(V20-V43)*(10/23)
V2
V3+(V1-V3)*(8/24)
V34
V43+(V20-V43)*(9/23)
V3
V8+(V1-V8)*(450/800)
V35
V43+(V20-V43)*(8/23)
V4
V8+(V3-V8)*(16/24)
V36
V43+(V20-V43)*(7/23)
V5
V8+(V3-V8)*(12/24)
V37
V43+(V20-V43)*(6/23)
V6
V8+(V3-V8)*(8/24)
V38
V43+(V20-V43)*(5/23)
V7
V8+(V3-V8)*(4/24)
V39
V43+(V20-V43)*(4/23)
V8
VINN2
V40
V43+(V20-V43)*(3/23)
V9
V20+(V8-V20)*(22/24)
V41
V43+(V20-V43)*(2/23)
V10
V20+(V8-V20)*(20/24)
V42
V43+(V20-V43)*(1/23)
V11
V20+(V8-V20)*(18/24)
V43
VINN4
V12
V20+(V8-V20)*(16/24)
V44
V55+(V43-V55)*(22/24)
V13
V20+(V8-V20)*(14/24)
V45
V55+(V43-V55)*(20/24)
V14
V20+(V8-V20)*(12/24)
V46
V55+(V43-V55)*(18/24)
V15
V20+(V8-V20)*(10/24)
V47
V55+(V43-V55)*(16/24)
V16
V20+(V8-V20)*(8/24)
V48
V55+(V43-V55)*(14/24)
V17
V20+(V8-V20)*(6/24)
V49
V55+(V43-V55)*(12/24)
V18
V20+(V8-V20)*(4/24)
V50
V55+(V43-V55)*(10/24)
V19
V20+(V8-V20)*(2/24)
V51
V55+(V43-V55)*(8/24)
V20
VINN3
V52
V55+(V43-V55)*(6/24)
V21
V43+(V20-V43)*(22/23)
V53
V55+(V43-V55)*(4/24)
V22
V43+(V20-V43)*(21/23)
V54
V55+(V43-V55)*(2/24)
V23
V43+(V20-V43)*(20/23)
V55
VINN5
V24
V43+(V20-V43)*(19/23)
V56
V60+(V55-V60)*(20/24)
V25
V43+(V20-V43)*(18/23)
V57
V60+(V55-V60)*(16/24)
V26
V43+(V20-V43)*(17/23)
V58
V60+(V55-V60)*(12/24)
V27
V43+(V20-V43)*(16/23)
V59
V60+(V55-V60)*(8/24)
V28
V43+(V20-V43)*(15/23)
V60
V62+(V55-V62)*(350/800)
V29
V43+(V20-V43)*(14/23)
V61
V62+(V60-V62)*(16/24)
V30
V43+(V20-V43)*(13/23)
V62
VINN6
V31
V43+(V20-V43)*(12/23)
V63
VINN7
V0
Negative Polarity
Output
Level
Positive Polarity
V63
RAM data
111111
Relationship between RAM data and output voltage
Ver 2.3
41/113
2007/07/19
ST7712
7.7 Oscillation circuit
The ST7712 can either use the internal resistor or external resistors to generate the oscillation.
7.7.1 Internal Resistor
The ST7712 can use the on-chip Oscillator without external resistor. When the internal oscillator is used, OSC1 and
OSC2 must left open. This oscillator signal is used in the voltage converter and display timing generation circuit.
7.7.2 External Resistor
The ST7712 can oscillate between the OSC1 and OSC2 pins using an internal R-C oscillator with an external oscillation
resistor. Note that in R-C oscillation, the oscillation frequency is changed according to the external resistance value,
wiring length, or operating power-supply voltage. If Rf is increased or power supply voltage is decrease, the oscillation
frequency decreases. For the relationship between Rf resistor value and oscillation frequency, see the Electric
Characteristics Notes section.
Notes:
The Rf resistor value should be based on the RC loading of panel and FPC to fine tune Rf value to apparoach the osc
frequency that customer need.
Ver 2.3
42/113
2007/07/19
ST7712
7.8 Frame-Frequency Adjustment Function
The ST7712 includes frame frequency adjustment function. While the oscillation frequency is fixed, the frame frequency
during the LC drive can be adjusted by the Frame cycle set instruction (0BH) setting (DIV, RTN). Setting the oscillation
frequency high in advance allows switching the frame frequency in accordance to the kind of picture to display (i.e.
moving/still picture). When displaying a still picture, set the frame frequency low to save power consumption, while
setting the frame frequency high for displaying a moving picture which requires high-speed switching of screens.
7.8.1 Relationship between Liquid Crystal Drive Duty and Frame Frequency
The relationship between the liquid crystal drive duty and the frame frequency is calculated by the following formula.
The frame frequency is adjusted through the Frame cycle set instruction (0BH) setting with the 1-H period adjustment bit
(RTN bit) and the operation clock division bit (DIV bit).
fOSC
Frame frequency =
[Hz]
Clock cycles per raster-row x division ratio x (Line+BP+FP)
fOSC: R-C oscillation frequency
Line: Number of raster-rows (NL bit)
Clock cycles per raster-row: RTN bit
Division ratio: DIV bit
The No. of raster-rows for the front porch: FP
The No. of raster-row for hte back porch: BP
Example calculation
Number of drive raster-rows: 132
1-H period: 16 clock cycles (RTN3-0 = 0000)
Operation clock division ratio: 1/1
fosc = 60 Hz × (0 + 16) clock × 1/1 × (132 + 16) lines = 142 (kHz)
In this case, the R-C oscillation frequency becomes 142 kHz. Adjust the external resistor to the R-C oscillator to 142
kHz.
Ver 2.3
43/113
2007/07/19
ST7712
7.9 Voltage Setting
VLOUT2
VGH(+9~16.5V)
BT
VLOUT1
DVDDH (4.5V~6.0V)
VREG1OUT
VREG1OUT(3.0V~DVDDH-0.5V)
VCI(2.5~3.3V)
VCI1
VCM/VCOMR
VRH
VcomH(3.0V~DVDDH-0.5V)
VCC(2.4~3.3V)
VDV
IOVCC(1.8~3.3V)
BT
GND(0V)
VCOMG
VcomL(VCL+0.5)~1V)
VLOUT4
VCL (0~-3.3V)
VLOUT3
VGL (-4V~-15V)
Note
1) the voltage will drop from the set voltage (an ideal voltage) with regard to each DDVDH, VGH, VGL, VCL output due
to current consumption. (DDVDH - VREG1OUT) > 0.5V and (VcomL – VCL) > 0.5V show the relationship in relation to
the actual voltage. When Vcom alternating frequency is high (e.g. alternation occurs by line), current consumption is
also large. In this case, check voltage before use.
VGH
VDH
VcomH
Vcom
VcomL
Source Driver Output
Gate Driver Output
VGL
Voltage output to TFT LCD
Ver 2.3
44/113
2007/07/19
ST7712
7.10 8-Color Display Mode
The ST7712 incorporates 8-color display mode. Using grayscale levels are V0 and V63 and all other level power
supplies are halt. So that it’s power consumption will be fewer. Also, during the 8-color mode, the Gamma micro
adjustment register, PKP00-PKP52 and PKN00-PKN52 are invalid. Rewrite the data of DDRAM R/G/B to 000000 or
111111 before set the mode. The level power supply (V1-V62) is in OFF condition during the 8-color mode in order to
select V0/V63.
DDRAM
Display Data
R5
R4
R3
R2
R1
R0
6
G5
G4
G3
G2
G1
G0
6
B5
B4
B3
B2
B1
B0
6
Positive Polarity Resigter
VRP14
VRP03
VRP13
PKP02
PKP12
PKP22
PKP32
PKP42
PKP52
PRP02
PRP12
VRP02
VRP12
PKP01
PKP11
PKP21
PKP31
PKP41
PKP51
PRP01
PRP11
VRP01
VRP11
PKP00
PKP10
PKP20
PKP30
PKP40
PKP50
PRP00
PRP10
VRP00
VRP10
V0
8
Grayscale
Amplifier
ON/OFF
Control<R>
2 levels
Negative Polarity Resigter
VRN14
Ver 2.3
VRN03
VRN13
PKN02
PKN12
PKN22
PKN32
PKN42
PKN52
PRN02
PRN12
VRN02
VRN12
PKN01
PKN11
PKN21
PKN31
PKN41
PKN51
PRN01
PRN11
VRN01
VRN11
PKN00
PKN10
PKN20
PKN30
PKN40
PKN50
PRN00
PRN10
VRN00
vRN10
ON/OFF
Control <G>
ON/OFF
Control <B>
LCD Driver IC
V63
Display
45/113
2007/07/19
ST7712
7.11 Power Supply Circuit
7.11.1 External Configuration of Power Supply Circuit
Capacitor
Capacity
Recommended voltage
Capacitor No.
1uF
6V
C1, C2, C3, C4, C7, CA, CB, CC, CD, CE
0.1µF~1.0uF
25V
C5, C6, C8, C9
Shot-Key Diode
Feature
Connect Pin.
VF<0.4V/20mA at 25 ℃, VR>=30V
GND-VGL
VCI-VGH
VCI-DVDDH
Variable resistor
Feature
Connect Pin.
>200KΩ
VcomR
Ver 2.3
46/113
2007/07/19
ST7712
8. Internal Instruction (Command) Data Bus and Register
MSB
D14
D13
D12
LSB
R/W
R/S
D15
D11
D10
D9
D8
D7
D6
D5
D4
D3
Command
W
0
-
-
-
-
-
-
-
-
-
read/write
R
0
*
*
*
*
*
*
*
*
0
*
*
*
*
Internal OSC
W
1
-
-
-
-
-
-
-
-
-
-
-
RAJ[2:0]
Resistor
R
1
0
1
1
1
0
0
0
1
0
0
1
0
Driver Output Set
W
1
-
-
-
-
-
SM
LCD Driving
W
1
-
-
-
-
FLD[1:0]
GS
SS
-
-
-
B/C
EOR
-
-
D2
D1
D0
Code
I[6:0]
*
0
0
*
*
OSCPWR
OSCON
*
*
00h
selection
NL[4:0]
01h
NW[5:0]
02h
Wave Form Set
Entry Mode
W
1
-
DFM[1:0]
Display Control 1
W
1
-
-
-
PT[1:0]
Display Control 2
W
1
-
-
-
-
Display Control 3
W
1
-
-
-
-
Frame Cycle Set
W
1
Power Control 1
W
1
Power Control 2
W
1
-
Power Control 3
W
1
-
-
-
Power Control 4
W
1
-
-
VCOMG
Fuse Set
W
1
-
-
R
1
0
0
W
1
NO[1:0]
-
BGR
-
-
-
VLE[1:0]
-
-
-
ID[1]
ID[0]
AM
ACGO
-
-
03h
SPT
-
-
GON
DTE
CL
REV
D[1]
D[0]
07h
-
-
-
-
BP[3:0]
-
-
PTG[1:0]
ISC[3:0]
09h
-
DIV[2:0]
RTN[3:0]
0Bh
-
AP[2:0]
FP[3:0]
-
-
SDT[1:0]
-
EQ[1:0]
SAP[2:0]
-
-
DC2[2:0]
-
-
-
-
0
0
0
-
BT[2:0]
-
-
DC1[2:0]
-
-
-
-
-
-
-
-
-
-
-
FSAEN
0
0
0
0
0
*
VDV[4:0]
-
DC0[2:0]
-
-
08h
DK
SLP
-
STB
VC[2:0]
PON
11h
VRH[3:0]
VCM[4:0]
10h
12h
VCMF[1:0]
13h
FSA[4:0]
15h
RAM Address
*
*
*
*
*
AD[15:0]
21h
Set
Write Data to
W
1
Write Data to DDRAM WD[17:0], depend on the selected interface
DDRAM
R
1
Read Data from DDRAM RD[17:0], depend on the selected interface
Gamma Control
W
1
-
-
-
-
-
PKP1[2:0]
-
-
-
-
-
PKP0[2:0]
30h
Set
W
1
-
-
-
-
-
PKP3[2:0]
-
-
-
-
-
PKP2[2:0]
31h
W
1
-
-
-
-
-
PKP5[2:0]
-
-
-
-
-
PKP4[2:0]
32h
W
1
-
-
-
-
-
PRP1[2:0]
-
-
-
-
-
PRP0[2:0]
33h
W
1
-
-
-
-
-
PKN1[2:0]
-
-
-
-
-
PKN0[2:0]
34h
W
1
-
-
-
-
-
PKN3[2:0]
-
-
-
-
-
PKN2[2:0]
35h
W
1
-
-
-
-
-
PKN5[2:0]
-
-
-
-
-
PKN4[2:0]
36h
W
1
-
-
-
-
-
PRN1[2:0]
-
-
-
-
-
PRN0[2:0]
37h
W
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
22h
VRP1[4:0]
W
1
0
0
0
Gate Scan Set
W
1
-
-
-
-
-
VRN1[4:0]
-
-
-
Vertical Scroll Set
W
1
-
-
-
-
-
-
-
-
1st Screen Drive
W
1
SE1[7:0]
VRP0[3:0]
38h
VRN0[3:0]
39h
SCN[4:0]
40h
VL[7:0]
41h
SS1[7:0]
42h
Set
2nd Screen Drive
W
1
SE2[7:0]
SS2[7:0]
43h
Set
Horizontal RAM
W
1
0
HEA[7:0]
HSA[7:0]
44h
Address Position
Vertical RAM
W
1
0
VEA[7:0]
VSA[7:0]
45h
Address Position
Ver 2.3
47/113
2007/07/19
ST7712
Note
Instruction Data Bus and External Data Bus mapping
EXT: External Data Bus
CMD: Internal Instruction Data Bus
18,16 Bits Interface
EXT
D17
16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
CMD
D15
D14
D13
D12
D11
D10
D9
D8
--
D7
D6
D5
D4
D3
D2
D1
D0
--
“--”: don’t care
9,8 Bits Interface
First Transfer
EXT
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
CMD
D15
D14
D13
D12
D11
D10
D9
D8
--
--
--
--
--
--
--
--
--
--
“--”: don’t care
Second Transfer
EXT
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
CMD
D7
D6
D5
D4
D3
D2
D1
D0
--
--
--
--
--
--
--
--
--
--
“--”: don’t care
Ver 2.3
48/113
2007/07/19
ST7712
Command read/write (IR)
R/W
RS
D15
D14
D13
D12
D11
D10
D9
D8
D7
W
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
INI
D6
D5
D4
D3
D2
D1
D0
0
0
0
I[6:0]
0
0
0
0
Write: The index instruction specifies the RAM control indexes (R00h to R45h). It sets the register number from 0000000 to
1111111 in binary form. Don’t use the register or instruction bits to which the index is not assigned.
Read: Read instruction reads the internal status of the ST7712.
(LADDER[7:0]: Indicate the position of raster-row driving liquid crystal; I[6:0]: Read value of the Instruction Register.)
INI: The internal state after resetting of ST7712
Internal Register selection (00h)
W/R
RS
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
W
1
-
-
-
-
-
-
-
-
-
-
-
R
1
0
1
1
1
0
0
0
1
0
0
1
0
0
-
-
-
-
-
-
-
-
-
-
-
1
0
INI
D4
D3
D2
D1
D0
OSCPWR
OSCON
0
*
*
0
0
0
RAJ[2:0]
Write
RAJ[2:0]: When OSCON=1 and OSCPWR=0, the internal resistor for OSC can be adjusted by setting RAJ[2:0].
RAJ1
0
0
0
0
1
1
1
1
RAJ2
0
0
1
1
0
0
1
1
RAJ3
0
1
0
1
0
1
0
1
internal resistor for OSC
350K
280K
250K
220K
190K (Default value)
170K
160K
120K
Unit(KHz)
OSCPWR: Select Internal or external OSC power and OSC.
When OSCPWR=0, use the internal OSC power and resistor
When OSCPWR=1, use the external OSC power and resistor
OSCON: Turn on or turn off the OSC.
When OSCON=0, OSC OFF
When OSCON=1, OSC ON
Read
D15-D4: Identify the ST7712. The data read from D15-D4 can tell ST7712 from the other ICs.
D15-D12 fixed to “0111” (07h)
D11-D8 fixed to “0001” (01h)
D7-D4 fixed to “0010” (02h)
D1 and D0 are read as the status of OSCPWR and OSCON.
Ver 2.3
49/113
2007/07/19
ST7712
Command Read flow chart
18bits and 16 bits interface mode read flow chart
Ver 2.3
9bit, 8bit and SPI interface mode read flow chart
50/113
2007/07/19
ST7712
Driver Output Set (01h)
W/R
RS
W
1
INI
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
-
-
-
-
-
SM
GS
SS
-
-
-
-
-
-
-
-
0
0
0
-
-
-
D4
D3
D2
D1
D0
0
1
NL[4:0]
1
1
1
SM: Set the scan order by the gate driver.
SM
0
1
Scan order
interlaced gate order
cascaded gate order
SM
0
GS
0
0
1
Scan direction
G0,G1,G2,G3…..
G129,G130,G131
G0
G2
G131,G130,G129….
G4,G3,G2,G1
G1
G3
TFT Panel
G129
G131
G128
G130
G0
G130
G131
G1
ST7712
Ver 2.3
51/113
2007/07/19
ST7712
1
0
G0,G2,G4,G6….
G128,G130
G1,G3,G5,G7….
G129,G131
1
1
G0,G2,G4,G6….
G128,G130
G1,G3,G5,G7….
G129,G131
Note: When the cascade function is used (SM=1) with 128X128 resolution, the even side layout of gate line must be
starting from G0,G2,…,G130 and the odd side layout of gate line must be starting from G1,G3,..G123.
Example: TFT-Panel layout with 128X128 resolution.
GS: Set the shift direction of outputs from the gate driver. When GS=0, G0 shift to G131; when GS=1, G131 shift to G0.
GS
Shift direction
0
Low to High Gate order (G0 to G131)
1
High to Low Gate order (G131 to G0)
Ver 2.3
52/113
2007/07/19
ST7712
SS: Set the shift direction of outputs from the source driver.
When SS=0, S0 shift t0 S395; when SS=1, S395 shift to S0.
SS
Shift direction
Note
0
Source shift from S0 to S395
SS=0, BGR=0
R G B
1
Source shift from S395 to S0
SS=0, BGR=1
B G R
SS=1. BGR=1
R G B
SS=1, BGR=0
B G R
Note1: When source output channels and Gate output channels of IC are not total occupied, some lines will no display
when GS or SS register is changed.
NL[4:0]: Set the number of LCD raster-rows. The DDRAM address mapping is not affected by this setting. Raster-rows
number= NL*4+16.
Note: The setting value should be larger than the panel size.
NL4
NL3
NL2
NL1
NL0
LCD
Display size
Gate line in
raster-rows
use
0
0
0
0
0
16
396x16 dots
G0~G15
0
0
0
0
1
20
396x20 dots
G0~G19
0
0
0
1
0
24
396x24 dots
G0~G23
0
0
0
1
1
28
396x28 dots
G0~G27
0
0
1
0
0
32
396x32 dots
G0~G31
0
0
1
0
1
36
396x36 dots
G0~G35
:
:
:
:
:
:
:
:
1
1
0
1
1
124
396x124 dots
G0~G123
1
1
1
0
0
128
396x128 dots
G0~G127
1
1
1
0
1
132
396x132 dots
G0~G131
1
1
1
1
0
Setting Disable
1
1
1
1
1
Note: A front porch (FP) and a back porch period (BP) will be inserted as a blank period area before/after driving all gate
lines.
LCD Driving Wave Form Set (02h)
W/R
RS
W
1
INI
D15
D14
D13
D12
-
-
-
-
-
-
-
-
D11
D10
D9
D8
FLD[1:0]
B/C
EOR
-
-
0
0
0
-
-
1
D7
D6
D5
D4
D3
D2
D1
D0
0
0
NW[5:0]
0
0
0
0
FLD [1:0]: Set the number of fields during n-field interlaced drive.
FLD[1:0]
Number of Fields
0
0
0
1
1
1
0
1
1 field VS when B/C=0 VCOMAC fix at VCOMH
B/C=1 VCOMAC fix at VCOML
1 field
2 field
3 field
B/C: When B/C =0, enter the VCOMAC frame inversion mode, means where alternations occur every frame while driving
liquid crystal. When B/C=1, enter the VCOMAC n-raster-rows inversion mode.
EOR: When BC=1 and EOR = 1, the odd/even frame-select signals and the n-raster-row reversed signals are EOR
(Exclusive-OR) for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the
number of the LCD drive raster-row and the n raster-row. When BP and FP setting value is even, set EOR=1 to gain better
display quality.
Ver 2.3
53/113
2007/07/19
ST7712
NW[5:0]: Set the number “n” of n-raster-rows VCOMAC inversion (when B/C=”1”)
The number of “n”= NW[5:0]+1 (NW[5:0] sets from 0 to 63)
Entry Mode (03h)
W/R
RS
W
1
INI
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
-
DFM[1:0]
BGR
-
-
-
-
-
-
ID[1]
ID[0]
AM
ACGO
-
-
-
1
0
-
-
-
-
-
-
1
1
0
0
-
-
0
DFM[1:0]: Decide the data format for the RAM write data transmission.
DFM1
DFM0
Number of Colors
0
0
Setting disable
0
1
Setting disable
1
0
262K color
1
1
65K color
BGR: When BGR=0, the data order write to DDRAM is R, G, B.
When BGR=1, the data write to DDRAM order reverse from R, G, B to B, G, R.
RGB SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 … SEG395
0
R
G
B
R
G
B
R
G
…
B
1
B
G
R
B
G
R
B
G
…
R
Note:
When BGR is used (BGR=1), the read out data of red-pixel and blue-pixel should be exchanged to gain the correct data or
the data of red-pixel and blue-pixel are not correct.
ID[1]: When ID[1]=1, the Address Counter incremented by 1 horizontally.
When ID[1]=0, Address Counter horizontal decremented by 1 horizontally.
ID[0]: When ID[0]=1, the Address Counter incremented by 1 vertically.
When ID[0]=0, Address Counter horizontal decremented by 1 vertically.
Note: The increment/decrement setting of the address counter by ID[1] and ID[0] is performed independently for the upper
(AD15-8) and lower (AD7-0) addresses. The AM bit sets the direction of moving through the addresses when the DDRAM
is written.
AM: When AM = “0”, the address counter is updated in the horizontal direction after data are written to DDRAM.
When AM = “1”, the address counter is updated in the vertical direction after data are written to DDRAM.
When the window address is specified, data are written to the DDRAM area specified by the window address in the
manner specified with ID[1] ,ID[0] ,and AM settings.
Ver 2.3
54/113
2007/07/19
ST7712
ID[1]=0; ID[0]=0
H: decrement
V: decrement
ID[1]=0; ID[0]=1
H: increment
V: increment
ID[1]=1; ID[0]=0
H: decrement
V: increment
ID[1]=1; ID[0]=1
H: increment
V: increment
(00h,00h)
(00h,00h)
(00h,00h)
AM=0
(00h,00h)
Horizontal
(83h,83h)
AM=1
(00h,00h)
(83h,83h)
(83h,83h)
(00h,00h)
(83h,83h)
(00h,00h)
(00h,00h)
Vertical
(83h,83h)
(83h,83h)
(83h,83h)
(83h,83h)
Note: When changing the setting of ID[1-0] value, please set the RAM address set command(21h) again.
Example:
Panel resolution is 132X132 AM=0, ID[1-0]=00, RAM address set command (21h) is 83h,83h
ACGO: Decide the Address Counter will update after data are written to the DDRAM automatically or not.
When ACGO=0, AC updates after data are written to the DDRAM area.
When ACGO=1, AC doesn’t change (keep on the AD value which be set) after data are written to or read from
DDRAM area.
ACGO
0
1
AC status
AC update
AC keep AD value
Power up (04h)
W/R
RS
W
1
INI
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
-
-
-
-
-
-
-
-
0
0
0
0
0
0
UP
0
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
UP: Help analog circuit stability of IC when IC turn on moment to avoid abnormal display. After analog voltage stable,
must turn off this function.
UP
0
1
Ver 2.3
UP status
Turn OFF
Turn ON
55/113
2007/07/19
ST7712
Display Control 1 (07h)
W/R
RS
D15
D14
D13
D12
W
1
-
-
-
PT[1:0]
-
-
-
0
INI
D11
0
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
VLE[1:0]
SPT
-
-
GON
DTE
CL
REV
D[1]
D[0]
0
0
-
-
0
0
0
1
0
0
0
PT[1:0]: Decide the source output voltage in the non-display area when entry the partial display mode.
PT[1:0]
Positive Polarity Negative Polarity
0
0
V63
V0
0
1
V63
V0
1
0
GND
GND
1
1
Hi-Z
Hi-Z
VLE[1:0]: When VLE[0] = 1, the first screen is scrolled in the vertical direction; when VLE[1] = 1, the second screen is
scrolled in the vertical direction. Note: The first and second screens can’t be scrolled at the same time.
VLE[1]
VLE[0]
Scree2
Screen1
0
0
Stationary
Stationary
0
1
Stationary
Scrolled
1
0
Scrolled
Stationary
1
1
Setting disabled
SPT: When SPT=0, liquid crystal is one screen.
When SPT = 1, liquid crystal is driven with 2 split screens.
GON: When GON = 0, the gate-on level is VGH, and the gate-off level is GND.
When GOC=1, the gate-on level is VGH, and the gate-off level is VGL.
DTE: When DTE=0, the DISPTMG is fixed to GND, and when DTE=1, the DISPTMG is output operation.
CL: When CL = 1, entry the 8-color display mode. RAM data format have to redefine before writing into IC RAM to avoid
abnormal display. CL=0: 262K color; CL=1: 8 color
8 color mode data format:
Pattern
REV=1
REV=0
Black
000000,000000,000000 111111,111111,111111
White
111111,111111,111111
000000,000000,000000
Red
111111,000000,000000
000000,111111,111111
Green
000000,111111,000000
111111,000000,111111
Blue
000000,000000,111111
111111,111111,000000
Yellow
111111,111111,000000
000000,000000,111111
Magenta
111111,000000,111111
000000,1111111,000000
Cyan
000000,111111,111111
111111,000000,000000
REV: When REV=0, the display is normal in display area; when REV = 1, the display entries reverse mode in display area.
Normally white or normally black panels can be controlled by the grayscale level inversion without changing the data.
REV
DDRAM
Positive Polarity
Negative Polarity
Data
0
1
Ver 2.3
000000
:
111111
000000
:
111111
V63
:
V0
V0
:
V63
56/113
V0
:
V63
V63
:
V0
2007/07/19
ST7712
D[1]/ D[0]: Display is on when D[1] = 1 and off when D[1] = 0. When off, the display data remains in the DDRAM, and can
be displayed instantly by setting D[1] = 1. When D[1]= 0, the display is off with the entire source outputs set to the GND
level. By this function, ST7712 can control the charging current for the LCD with AC driving. Control the display on/off while
control GON and DTE. When D[1]=0 and D[0]=1, the internal display of ST7712 performed although the display is off.
When D[1]=0 and D[0]=0, the internal display operation halts and the display is off.
D[1]
D[0]
Source Output
Internal operation
Gate-Driver Control Signals
0
0
GND
Halt
Halt
0
1
GND
Operate
Operate
1
0
Non-lit display
Operate
Operate
1
1
Display
Operate
Operate
Note: 1. Write from the microcomputer to the DDRAM is independent from D[1] and D[0].
2. In sleep and standby mode, D[1]=0 D[0]=0. However, the register contents of D[1] and D[0] are not modified.
Display Control 2 (08h)
W/R
RS
D15
D14
D13
D12
D11
W
1
-
-
-
-
FP[3:0]
-
-
-
-
1
INI
D10
0
D9
1
D8
0
D7
D6
D5
D4
D3
D2
-
-
-
-
BP[3:0]
-
-
-
-
0
0
D1
D0
1
0
FP[3:0]/ BP[3:0]: Setting the blank display area (the front porch and the back porch). The front porch is placed at the
beginning of the display and the back porch is placed at the end of the display.
FP[3:0] and BP[3:0] bits specify the number of raster-rows for the front and back porches respectively.
When making this setting, make sure that BP + FP ≤ 16 raster-rows, FP ≥ 1 raster-rows, and BP ≥ 0 raster-rows.
FP3
FP2
FP1
FP0
Number of lines for the Front
Porch
0
0
0
0
Setting disable
0
0
0
1
1
0
0
1
0
2
0
0
1
1
3
0
1
0
0
4
0
1
0
1
5
0
1
1
0
6
0
1
1
1
7
1
0
0
0
8
1
0
0
1
9
1
0
1
0
10
1
0
1
1
11
1
1
0
0
12
1
1
0
1
13
1
1
1
0
14
1
1
1
1
Setting disable
BP3
BP2
BP1
BP0
Number of lines for the Back
Porch
0
0
0
0
0
0
0
0
1
1
0
0
1
0
2
0
0
1
1
3
0
1
0
0
4
0
1
0
1
5
0
1
1
0
6
0
1
1
1
7
1
0
0
0
8
1
0
0
1
9
1
0
1
0
10
Ver 2.3
57/113
2007/07/19
ST7712
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
11
12
13
14
Setting disable
Display Control 3 (09h)
W/R
RS
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
W
1
-
-
-
-
-
-
-
-
-
-
PTG[1:0]
-
-
-
-
-
-
-
-
-
-
0
INI
D4
0
D3
D2
D1
D0
ISC[3:0]
0
0
0
0
PTG[1:0]: Set the mode of scanning gate lines when non-display area is driven.
PTG[1]
PTG[0]
Gate output in non display
area
0
0
Normal scan
0
1
Fixed VGL
1
0
Interval scan
1
1
Setting disable
ISC[3:0]: Set the cycle to scan gate lines. When PTG bits set the scan mode in the non-display area to the interval scan
mode, the scan cycle is always odd number of frames, and polarity inversion is applied each timing when gate lines are
scanned.
Note:
1. When PTG is set to "Normal Scan", the source output in non-display area should be set to "V63-V0" (PT=0 or 1) to
avoid flicker effect.
2. When PTG is set to "Fixed VGL" and "Interval Scan", the source output in non-display area should be set to "GND"
(PT=2) to avoid data leakage.
Ver 2.3
58/113
2007/07/19
ST7712
ISC3
ISC2
ISC1
ISC0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Scan cycle
(Scan cycle=ISC*2+1)
0
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
Example:
Interval scan: Scan cycle=3.
Ver 2.3
59/113
2007/07/19
ST7712
Frame Cycle Set (0Bh)
W/R
RS
D15
W
1
NO[1:0]
SDT[1:0]
EQ[1:0]
0
0
0
INI
D14
0
D13
D12
0
D11
D10
0
D9
D8
D7
D6
EQPW[1:0]
-
DIV[2:0]
0
-
0
0
D5
0
D4
D3
D2
D1
D0
0
0
RTN[3:0]
0
0
0
NO[1:0]: Set the non-overlap width of gate output
NO1
0
0
1
1
NO0
0
1
0
1
Non-overlap width
0 clocks
4 clocks
6 clocks
8 clocks
Note: The amount of non-overlap width is defined from the falling edge of the CL1.
1 H period
CL1
1 H period
Gn
Non-overlap
period
Gn+1
SDT[1:0]: Specify the delay time for the source output from the falling edge of the gate output.
SDT1
0
0
1
1
SDT0
0
1
0
1
Delay time for source output
disable
2 clocks
3 clocks
4 clocks
Note: The delay time for the source output is measured from the falling edge of the CL1.
1 H period
1 H period
CL1
M
Gn
Sn
Source output delay
EQ[1:0]: EQ period is sustained for the number of clock cycle which is set on EQ[1:0].
EQ1
EQ0
0
0
No EQ
0
1
1 clocks
1
0
2 clocks
1
1
3 clocks
Ver 2.3
60/113
2007/07/19
ST7712
EQPW[1:0]: Decide the source output voltage in the equalized area.
EQPW[1:0]
Positive Polarity Negative Polarity
0
0
V0
V63
0
1
V63
V0
1
0
GND
GND
1
1
Hi-Z
Hi-Z
DIV[2:0]: Set the division ratio of clocks for internal operations. Internal operations are in synchronization with the clock,
the frequency of which is divided according to the DIV[2:0] setting. Frame frequency can be adjusted in combination with
the adjustment of 1H period (RTN [3:0]). When changing the number of drive raster-rows, adjust the frame frequency too.
For details, see “Frame Frequency Adjustment Function”.
DIV2
DIV1
DIV0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Division
Ratio
1
2
4
8
3
5
6
7
Internal Operating Clock Frequency
fosc/1
fosc/2
fosc/4
fosc/8
fosc/3
fosc/5
fosc/6
fosc/7
RTN[3:0]: Set the clock cycles per raster-row
RTN3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Ver 2.3
RTN2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
RTN1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
RTN0
0
1
0
1
0
1
0
1
0
1
0
1
0:
1
0
1
clock cycles per raster-row
16 clocks
17 clocks
18 clocks
19 clocks
20 clocks
21 clocks
22 clocks
23 clocks
24 clocks
25 clocks
26 clocks
27 clocks
28 clocks
29 clocks
30 clocks
31 clocks
61/113
2007/07/19
ST7712
Power Control 1 (10h)
W/R
RS
D15
D14
W
1
-
SAP[2:0]
-
1
INI
D13
0
D12
0
D11
D10
D9
-
BT[2:0]
-
0
0
D8
0
D7
D6
D5
-
AP[2:0]
-
1
0
D4
0
D3
D2
D1
D0
-
DK
SLP
STB
-
1
0
0
SAP[2:0]: The amount of fixed current from the fixed current source in the operational amplifier for the source driver is
adjusted. When the amount of fixed current is large, LCD driving ability and the display quality become high, but the current
consumption is increased. Adjust the fixed current considering the display quality and the current consumption. During
non-display operation, set SAP[2:0]=“000” to halt the operational amplifier to reduce the current consumption.
SAP2
0
0
0
0
1
1
1
1
SAP1
0
0
1
1
0
0
1
1
SAP0
0
1
0
1
0
1
0
1
OP current
Halt
Setting Disabled
0.63
0.73
1
1.25
1.42
Setting Disabled
BT[2:0]: Change the step-up scale of the step-up circuit by VCI1. Adjust the scale according to the voltage in use.
Smaller scale consumes lesser current. Adjust the frequency considering the display quality and the current consumption.
BT2
BT1
BT0
VLOUT1
output
(DDVDH)
VLOUT4
output
(VCL)
VLOUT2 output
(VGH)
VLOUT3 output
(VGL)
Capacitor
connection pins
0
0
0
Vci x 2
Vci x -1
Vci1 x 6
Vci1x-5
DDVDH, VGH, VGL,
VCL, C11±, C12±,
C21±, C22±,
0
0
1
↑
↑
Vci1 x 6
Vci1x –4
DDVDH, VGH, VGL,
VCL, C11±, C12±,
C21±, C22±,
0
1
0
↑
↑
Vci1 x 6
Vci1x-3
DDVDH, VGH, VGL,
VCL, C11±, C12±,
C21±, C22±,
0
1
1
↑
↑
Vci1x5
Vci1x–5
DDVDH, VGH, VGL,
VCL, C11±, C12±,
C21±, C22±,
1
0
0
↑
↑
Vci1x5
Vci1x-4
DDVDH, VGH, VGL,
VCL, C11±, C12±,
C21±, C22±,
1
0
1
↑
↑
Vci1x5
Vci1x –3
DDVDH, VGH, VGL,
VCL, C11±, C12±,
C21±, C22±,
1
1
0
↑
↑
Vci1x4
Vci1x –4
DDVDH, VGH, VGL,
VCL, C11±, C12±,
C21±, C22±,
1
1
1
↑
↑
Vci1x4
Vci1x-3
DDVDH, VGH, VGL,
VCL, C11±, C12±,
C21±, C22±,
Note 1) The capacitor connection pins are step-up capacitors which are necessary for DDVDH, VCL, VGH, VGL voltages.
Note 2) Each of following voltages should be within the following range: DDVDH = 6.0 V (Max.), VCL = - 3.3V (Min.), VGH = 16.5 V (Max.),
VGL = -15V (Min.)
Ver 2.3
62/113
2007/07/19
ST7712
AP[2:0]: Adjust the amount of constant current from the constant current source of operational amplifier for the liquid
crystal drive power supply. When the amount of constant current is set large, the liquid crystal drive capacity will be
enhanced and the display quality will improve, while the current consumption will increase. Select an optimum amount of
current taking both the display quality and the current consumption into account. During non-display operation, set
AP[2:0]= “000” to halt the operational amplifier and step-up circuits to reduce current consumption.
AP2
0
0
0
0
1
1
1
1
AP1
0
0
1
1
0
0
1
1
AP0
0
1
0
1
0
1
0
1
Output OP Driver current adjustment
Setting Disabled
Setting Disabled
0.54
0.75
1
1.26
1.53
1.74
DK: Control the operation of the step-up circuit 1. When turning on the power supply, stop the startup of VLOUT1 for a
moment, and wait for an enough time until VLOUT2 is stabilized before starting up VLOUT1.
DK
0
1
Operation of step-up circuit 1
Operation
Halt
SLP: When SLP = 1, the sleep mode is entered.
SLP
0
Status
Operation
1
Sleep only OSC is working
In the sleep mode, internal display operation is halted except the R-C oscillator to reduce current consumption. Only power
control instructions (BT[2:0], DC[2:0], AP[2:0], SLP, STB, VC[2:0], VRH[4:0], VCOMG, VDV[4:0], and VCM[4:0] bits) are
executed during the sleep mode. No change is made to the DDRAM data or instructions during the sleep mode, and the
DDRAM data and the instructions are retained.
STB: When STB = 1, the standby mode is entered.
STB
Status
0
Operation
1
Stand-by OSC is halted
In the standby mode, display operation is completely halted, and all internal operations including the internal R-C oscillator
and reception of external clock pulse, are halted. For details, see the “Standby Mode” section. Only instructions to release
from the standby mode (STB = 0) and to start oscillation are accepted during the standby mode. DDRAM data and
instructions are susceptible to destruction during the standby mode and require resetting after release from the standby
mode.
Ver 2.3
63/113
2007/07/19
ST7712
Power Control 2 (11h)
W/R
RS
D15
D14
W
1
-
DC2[2:0]
-
1
INI
D13
0
D12
0
D11
D10
D9
-
DC1[2:0]
-
1
0
D8
0
D7
D6
D5
-
DC0[2:0]
-
1
0
D4
0
D3
D2
D1
-
VC[2:0]
-
1
0
D0
0
DC2[2:0]: Set the frequency of the step-up circuit 4.
Note: The higher frequency causes the better drive capacity of step-up circuit as well as the display quality, but it causes
the higher current consumption, too.
DC22
0
0
0
0
1
1
1
1
DC21
0
0
1
1
0
0
1
1
DC20
0
1
0
1
0
1
0
1
frequency of the step-up circuit 4
fosc/4
fosc/8
fosc/16
fosc/32
fosc/64
fosc/128
Setting disable
Setting disable
DC1[2:0]:
: Set the frequency of the step-up circuit 2.
Note: The higher frequency causes the better drive capacity of step-up circuit as well as the display quality, but it causes
the higher current consumption, too.
DC12
DC11
DC10
frequency of the step-up circuit 2
0
0
0
fosc/4
0
0
1
fosc/8
0
1
0
fosc/16
0
1
1
fosc/32
1
0
0
fosc/64
1
0
1
fosc/128
1
1
0
Setting disable
1
1
1
Setting disable
DC0[2:0]:
: Set the frequency of the step-up circuit 1.
Note: The higher frequency causes the better drive capacity of step-up circuit as well as the display quality, but it causes
the higher current consumption, too.
DC02
0
0
0
0
1
DC01
0
0
1
1
0
DC00
0
1
0
1
0
1
0
1
1
1
0
1
1
1
Ver 2.3
frequency of the step-up circuit 1
fosc/2
fosc/4
fosc/8
fosc/16
fosc/32
fosc/64
Setting disable
Setting disable
64/113
2007/07/19
ST7712
VC[2:0]: Adjust the reference voltage for VREG1OUT, VciOUT voltages to the optimum ratio of VCI.
VC2
0
0
0
0
1
1
1
1
VC1
0
0
1
1
0
0
1
1
VC0
0
1
0
1
0
1
0
1
REGP reference voltage
VCI
0.92xVCI
0.87xVCI
0.83xVCI
0.76xVCI
0.73xVCI
Hi-Z
VCIRIN (2.4V regulated)
Power Control 3 (12h)
W/R
RS
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
W
1
-
-
-
-
-
-
-
-
-
-
-
PON
-
-
-
-
-
-
-
-
-
-
INI
0
D3
D2
D1
D0
VRH[3:0]
0
0
0
0
PON: Start operation of Step 2 and Step 4 circuit.
PON = “0”: stop operation of Step 2 and Step 4 circuit; PON =”1”: start operation the operation of Step 2 and Step 4circuit.
VRH[3:0]: Set the ratio of VREG1OUT voltage (the reference voltage for VCOM and grayscale voltage). REGP voltage is
amplified by 1.33 ~ 2.79 times.
VRH3 VRH2 VRH1 VRH0 VREG1OUT ratio by REGP
`
0
0
0
0
1.33
0
0
0
1
1.45
0
0
1
0
1.55
0
0
1
1
1.66
0
1
0
0
1.76
0
1
0
1
1.81
0
1
1
0
1.86
0
1
1
1
Halt
1
0
0
0
1.91
1
0
0
1
1.96
1
0
1
0
2.01
1
0
1
1
2.07
1
1
0
0
2.13
1
1
0
1
2.17
1
1
1
0
2.22
1
1
1
1
Halt
Ver 2.3
65/113
2007/07/19
ST7712
Power Control 4 (13h)
W/R
RS
D15
D14
D13
D12
W
1
-
-
VCOMG
VDV[4:0]
-
-
0
0
INI
D11
0
D10
0
D9
0
D8
0
D7
D6
D5
-
VCM[4:0]
-
0
0
D4
D3
D2
D1
D0
VCMF[1:0]
0
0
0
0
0
VCOMG: When VCOMG = 1, VCOML can output the negative voltage. VCOMG = 1 is valid when PON = 1.
When VCOMG = 0, VCOML will fixed to GND.
VDV[4:0]: Set the Vcom alternating amplitude during Vcom alternating drive. The amplitude can be selected among
VREG1OUT x discrete times from 0.6 to 1.2. When VCOMG = 0, this setting is invalid.
VDV4
VDV3
VDV2
VDV1
VDV0
0
0
0
0
0
VREG1OUTx0.6
0
0
0
0
1
VREG1OUTx0.61
0
0
0
1
0
VREG1OUTx0.62
0
0
0
1
1
VREG1OUTx0.63
0
0
1
0
0
VREG1OUTx0.64
0
0
1
0
1
VREG1OUTx0.65
0
0
1
1
0
VREG1OUTx0.66
0
0
1
1
1
VREG1OUTx0.67
0
1
0
0
0
VREG1OUTx0.68
0
1
0
0
1
VREG1OUTx0.70
0
1
0
1
0
VREG1OUTx0.71
0
1
0
1
1
VREG1OUTx0.72
0
1
1
0
0
VREG1OUTx0.74
0
1
1
0
1
VREG1OUTx0.75
0
1
1
1
0
VREG1OUTx0.77
1
0
0
0
0
VREG1OUT x0.78
1
0
0
0
1
VREG1OUT x0.8
1
0
0
1
0
VREG1OUT x0.81
1
0
0
1
1
VREG1OUT x0.83
1
0
1
0
0
VREG1OUT x0.85
1
0
1
0
1
VREG1OUT x0.87
1
0
1
1
0
VREG1OUT x0.89
1
0
1
1
1
VREG1OUT x0.91
1
1
0
0
0
VREG1OUT x0.93
1
1
0
0
1
VREG1OUT x0.96
1
1
0
1
0
VREG1OUT x0.98
1
1
0
1
1
VREG1OUT x1.04
1
1
1
0
0
VREG1OUT x1.07
Ver 2.3
66/113
Vcom amplitude
2007/07/19
ST7712
1
1
1
0
1
VREG1OUT x1.10
1
1
1
1
0
VREG1OUT x 1.13
1
1
1
1
1
VREG1OUTx1.16
VCM[4:0]: Set the VcomH voltage (a high-level voltage at the Vcom alternating drive). These bits amplify the VcomH
voltage 0.4 to 0.98 times the VREG1 voltage. When VCM[4:0] = “11111” and VCMF[1:0] = “11”, the adjustment of the
internal volume stops, and VcomH can be adjusted from VcomR by an external resistor.
VCM4
VCM3
VCM2
VCM1
VCM0
0
0
0
0
0
VREG1OUTx0.98
0
0
0
0
1
VREG1OUTx0.96
0
0
0
1
0
VREG1OUTx0.94
0
0
0
1
1
VREG1OUTx0.92
0
0
1
0
0
VREG1OUTx0.90
0
0
1
0
1
VREG1OUTx0.88
0
0
1
1
0
VREG1OUTx0.86
0
0
1
1
1
VREG1OUTx0.84
0
1
0
0
0
VREG1OUTx0.82
0
1
0
0
1
VREG1OUTx0.80
0
1
0
1
0
VREG1OUTx0.78
0
1
0
1
1
VREG1OUTx0.76
0
1
1
0
0
VREG1OUTx0.74
0
1
1
0
1
VREG1OUTx0.72
0
1
1
1
0
VREG1OUTx0.70
0
1
1
1
1
VREG1OUTx0.68
1
0
0
0
0
VREG1OUT x0.66
1
0
0
0
1
VREG1OUT x0.64
1
0
0
1
0
VREG1OUT x0.62
1
0
0
1
1
VREG1OUT x0.60
1
0
1
0
0
VREG1OUT x0.58
1
0
1
0
1
VREG1OUT x0.56
1
0
1
1
0
VREG1OUT x0.54
1
0
1
1
1
VREG1OUT x0.52
1
1
0
0
0
VREG1OUT x0.50
1
1
0
0
1
VREG1OUT x0.48
1
1
0
1
0
VREG1OUT x0.46
1
1
0
1
1
VREG1OUT x0.44
1
1
1
0
0
VREG1OUT x0.42
1
1
1
0
1
VREG1OUT x0.40
Ver 2.3
67/113
VcomH
2007/07/19
ST7712
1
1
1
1
0
VREG1OUT x 0.38
1
1
1
1
1
Halt internal volume. Adjust with
a variable external resistor from
VcomR. (Note: VCMF[1:0]=”11”)
VCMF[1:0]: To fine tune the VCOM value. After adjust the VCOM by setting VCM[4:0], the fine tuning of each scale of
VCM[4:0] can be achieved by setting VCMF[1:0]. Each scale of VCM[4:0] can be divided into 4 . When use VcomR as
VcomH reference voltage VCMF[1:0], should be “11”
Fuse Set (15h)
W/R
RS
D15
D14
W
1
-
-
R
1
0
-
INI
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
-
-
-
-
-
-
-
-
FSAEN
0
0
0
0
0
0
0
0
0
*
*
*
-
-
-
-
-
-
-
-
-
0
1
0
D2
D1
D0
*
*
*
0
0
0
FSA[4:0]
Write
FSAEN: When FSAEN=0, the VcomH Reference voltage is shifted by setting up the fuse pins of FUSA[4:0].
When FSAEN=1, the VcomH Reference voltage is shifted by setting up the registers of FSA[4:0].
FSA[4:0]: FSA[4:0] are the fuse registers for VcomH reference voltage offset. The more accurate VcomH voltage can be
adjusted by setting FSA[4:0].
Read
D[5]: Read the stats of FSAEN
D[4:0]: Read the status of FUSA[4:0] or FSA[4:0].
When FSAEN=0, the read-out value of D[4:0] is the setting value of FUSA[4:0]
When FSAEN=1, the read-out value of D[4:0] is the setting value of FSA[4:0]
Ver 2.3
68/113
2007/07/19
ST7712
Fuse set flow chart
Trim Fuse:
1. Connect ground to pin VSSF of ST7712,
2. Vci pad should be connected with FUSA4 to FUSA0 sequentially with a voltage pulse. The width of pulse
should be longer than 100ms, the voltage level should be higher than 10V (Current limitation of power
supply should be smaller 200mA to avoid damaging fuse circuit) and current level should be higher than
50mA.
3. Each fuse pins within FUSA0 to FUSA3 corresponding to the registers FSA0 to FSA3 won't be trimmed
when each register value is 0. THe fuse pin FUSA4 won't be trimmed as the logic value of corresponding
register FSA4 is 1.
4. Set register FSAN to 0 in command 15H to enable the VCOM adjustment controlled by fuse pins
FUSA[4:0].
Example:
FSA4
FSA3
FSA2
FSA1
FSA0
Initial
1
0
0
0
0
Adjusted by Register
0
0
1
1
0
Yes
No
Yes
Yes
No
Need to Trim
Ver 2.3
69/113
2007/07/19
ST7712
Connect diagram
RAM Address Set (21h)
W/R
RS
W
1
INI
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
AD[15:0]
0
0
0
0
0
0
0
0
AD[15:0]: Set DDRAM addresses to the address counter (AC). The AC is automatically updated according to the AM and
ID bit settings after the DDRAM data is written. This allows consecutive accesses without resetting address. Once the
DDRAM data is read, the AC is not automatically updated. DDRAM address setting is not allowed in the standby mode.
Make sure that the address is set within the specified window address.
Bitmap data for Gate
Ver 2.3
DDRAM Setting
G0
G1
G2
:
G128
G129
G130
G131
Bitmap data for Source
S0
SS1
..
S130
“0000”H
“0001”H
..
“0082”H
“0100”H
“0101”H
..
“0182”H
“0200”H
“0201”H
..
“0282”H
:
:
..
:
“8000”H
“8001”H
..
“8082”H
“8100”H
“8101”H
..
“8182”H
“8200”H
“8201”H
..
“8282”H
“8300”H
“8301”H
..
“8382”H
70/113
S131
“0083”H
“0183”H
“0283”H
:
“8083”H
“8183”H
“8283”H
“8383”H
2007/07/19
ST7712
Write Data to DDRAM (22h)
W/R
RS
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
W
1
WD[17:0]
R
1
RD[17:0]
D7
D6
D5
D4
D3
D2
D1
D0
Write
WD[17:0]: Write 18-bit data to the DDRAM (depend on the selected interface). This data selects the grayscale level. After a
write, the address is automatically updated according to AM and ID bit settings. During the standby mode, the DDRAM
cannot be accessed.
Write Data Flow chart
Ver 2.3
71/113
2007/07/19
ST7712
Read
RD[17:0]: Read 18-bit data from the DDRAM (depend on the selected interface). When the data is read to the MCU, the
first-word read immediately after the DDRAM address setting is latched from the DDRAM to the internal read-data latch.
The data on the data bus (DB17–DB0) becomes invalid and the second-word read is normal.
18bit and 16bit interface mode Read flow chart
Ver 2.3
9bit, 8bit and SPI interface mode Read flow chart
72/113
2007/07/19
ST7712
Gamma Control Set (30h~39h)
W/R
RS
D15
D14
D13
D12
D11
W
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
INI
W
1
INI
W
1
INI
W
1
INI
W
1
INI
W
1
INI
W
1
INI
W
1
INI
W
1
INI
W
1
INI
D10
D9
D8
PKP1[2:0]
0
0
0
PKP3[2:0]
0
0
0
PKP5[2:0]
0
0
0
PRP1[2:0]
0
0
0
PKN1[2:0]
0
0
0
PKN3[2:0]
0
0
0
PKN5[2:0]
0
0
0
PRN1[2:0]
0
0
0
VRP1[4:0]
0
0
0
0
0
VRN1[4:0]
0
0
0
0
0
D7
D6
D5
D4
D3
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
D2
D1
D0
PKP0[2:0]
0
0
0
PKP2[2:0]
0
0
0
PKP4[2:0]
0
0
0
PRP0[2:0]
0
0
0
PKN0[2:0]
0
0
0
PKN2[2:0]
0
0
0
PKN4[2:0]
0
0
0
PRN0[2:0]
0
0
0
VRP0[3:0]
0
0
0
0
VRN0[3:0]
0
0
0
0
PKP5[2:0]~ PKP0[2:0]: The γ fine adjustment registers for positive polarity.
PRP1[2:0]~ PRP0[2:0]: The γ gradient adjustment registers for positive polarity.
PKN5[2:0]~ PKN0[2:0]: The γ fine adjustment registers for negative polarity.
PRN1[2:0] ~PRN0[2:0]: The γ gradient adjustment registers for negative polarity.
VRP1[4:0]~ VRP0[3:0]: The amplitude adjustment registers for positive polarity.
VRN1[4:0]~ VRN0[3:0]: The amplitude adjustment registers for negative polarity.
For details, see the “Gamma Control” section.
Ver 2.3
73/113
2007/07/19
ST7712
Gate Scan Set (40h)
W/R
RS
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
W
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
INI
D4
D3
D2
D1
D0
SCN[4:0]
0
0
0
0
0
SCN[4:0]: Set the scanning starting position of the gate driver.
SCN4
SCN3
SCN2
SCN1
SCN0
0
0
0
0
:
1
1
:
1
0
0
0
0
:
0
0
:
1
0
0
0
0
:
0
0
:
1
0
0
1
1
:
0
0
:
1
0
1
0
1
:
0
1
:
1
Scan start line
(Start line=SCN*8)
0
G7
G15
G23
:
127
Setting disable
Note: When setting the Gate scan set instruction SCN[4:0] value, it will not output data .
Vertical Scroll Set (41h)
W/R
RS
D15
D14
D13
D12
D11
D10
D9
D8
W
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
INI
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
VL[7:0]
0
0
0
0
0
VL[7:0]: Specify scroll length at the scroll display for vertical smooth scrolling. The number of raster-rows is specified from
0 to 131. The raster-rows of the specified number are scrolled during display. When the 132nd raster-row is displayed, the
scrolling display starts to fresh from the 1st raster-row. The display-start raster-row VL[7:0] is valid when VLE[0] = 1 or
VLE[1] = 1.
VL7
VL6
VL5
VL4
VL3
VL2
VL1
VL0
Display-start Raster-row
0
0
0
0
0
0
0
0
0 raster-row
0
0
0
0
0
0
0
1
1 raster-row
0
0
0
0
0
0
1
0
2 raster-row
0
0
0
0
0
0
1
1
3 raster-row
:
:
:
:
:
:
:
:
:
1
0
0
0
0
0
1
0
130 raster-row
1
0
0
0
0
0
1
1
131 raster-row
1
0
0
0
0
1
0
0
Setting disable
:
:
:
:
:
:
:
:
1
1
1
1
1
1
1
1
Note: The scroll range of screen can’t not over partial display screen size or it will happen abnormal display.
Ver 2.3
74/113
2007/07/19
ST7712
1st Screen Drive Set (42h)
W/R
RS
D15
W
1
SE1[7:0]
INI
0
D14
0
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
SS1[7:0]
0
0
0
0
0
0
0
0
st
SE1[7:0]: Setting the end line of 1 screen. The liquid crystal is driven by to the gate driver of the set value. For instance,
when SS1[7:0]= “03”H and SE1[7:0] = “09”H, the liquid crystal is driven from G3 to G9, and G0 to G2, and G10 thereafter
are non-display drive. Ensure that 00h≦SS1[7:0]≦SE1[7:0]≦83h.
st
SS1[7:0]: Setting the start line of 1 screen. The liquid crystal is driven by from the gate driver of the set value .
2nd Screen Drive Set (43h)
W/R
RS
W
1
INI
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
SE2[7:0]
0
0
0
0
0
D4
D3
D2
D1
D0
0
0
0
SS2[7:0]
0
0
0
0
0
0
0
0
nd
SE2[7:0]: Setting the end line of 2 screen. The liquid crystal is driven by from the gate driver of the set value .
nd
SS2[7:0]: Setting the start line of 2 screen. The liquid crystal is driven by from the gate driver of the set value .
Note1: The second screen is driven when SPT = 1.
Note2: Ensure that 00h≦SS1[7:0]≦ SE1[7:0]≦SS2[7:0]≦SE2[7:0]≦83h.
Horizontal RAM Address Position (44h)
W/R
RS
W
1
INI
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
HEA[7:0]
0
0
0
0
0
D4
D3
D2
D1
D0
0
0
0
HSA[7:0]
0
0
0
0
0
0
0
0
HEA[7:0]: Setting the end line of the window-address range in the horizontal direction by address.
HSA[7:0]: Setting the Start line of the window-address range in the horizontal direction by address.
These addresses must be set before RAM write and data are written to DDRAM within the area limited by the addresses
set by HSA[7:0] and HEA[7:0].
Note: Ensure that “00h”≦ HSA[7:0]≦HEA[7:0]≦“83h
Ver 2.3
75/113
2007/07/19
ST7712
Vertical RAM Address Position (45h)
W/R
RS
W
1
INI
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
VEA[7:0]
0
0
0
0
0
D4
D3
D2
D1
D0
0
0
0
VSA[7:0]
0
0
0
0
0
0
0
0
VEA[7:0]: Setting the end line of the window-address range in the vertical direction by address.
VSA[7:0]: Setting the start line of the window-address range in the vertical direction by address.
These addresses must be set before RAM write and data are written to DDRAM within the area limited by the addresses
set by VSA[7:0] and VEA[7:0].
Note: Ensure that “00h”≦ VEA[7:0]≦VSA[7:0]≦“83h”
“00h”≦ HSA[7:0]≦HEA[7:0]≦“83h”
“00h”≦ VSA[7:0]≦VEA[7:0]≦“83h”
Ver 2.3
76/113
2007/07/19
ST7712
9 Instruction Setting Flow
Make the setting for each instruction according to the following sequence.
9.1 Display OFF & Display ON
Ver 2.3
77/113
2007/07/19
ST7712
9.2 Initial Code Setting Flow chart
When turning on the power supply, follow the sequence below.
The stabilization time for the oscillation circuits, step-up circuits, and operation amplifiers may vary depending on the
external resistors and capacitors.
Ver 2.3
78/113
2007/07/19
ST7712
9.3 Power Supply Setting Flow
Ver 2.3
79/113
2007/07/19
ST7712
9.4 Sleep and Standby Sequence
Ver 2.3
80/113
2007/07/19
ST7712
9.5 Partial Display Setting Flow
Ver 2.3
81/113
2007/07/19
ST7712
9.6 Switch Between 262,144-color mode and 8-color mode setting flow chart
Ver 2.3
262,144 color to 8 color
8 color to 262,144 color
Display off
GON=0,
DTE=0,D[1:0]=0,0
Display off
GON=0,
DTE=0,D[1:0]=0,0
RAM setting
RAM setting
LCD Driving Wave
Form set
B/C=0
LCD Driving Wave
Form set
B/C=1
Power Control 1
SAP=000,BT[2:0],
AP=000
Power Control 1
SAP=[2:0],BT[2:0],
AP=[2:0]
CL=1
CL=0
Display on
GON=1,
DTE=1,D[1:0]=1,1
Display on
GON=1,
DTE=1,D[1:0]=1,1
Display
in 8 color mode
Display
in 262,144 color mode
82/113
2007/07/19
ST7712
10. Absolute Maximum Values
Item
Symbol
Unit
Value
Notes
Power supply voltage (1)
Vcc
V
-0.3 ~ + 4.6
1, 2
Power supply voltage (2)
Vci - GND
V
-0.3 ~ + 4.6
1, 2
Power supply voltage (3)
DDVDH - GND
V
-0.3 ~ + 7.0
1, 2
Power supply voltage (4)
GND -VCL
V
-0.3 ~ -4.0
1, 2
Power supply voltage (5)
DDVDH- VCL
V
-0.3 ~ + 8.0
1
Power supply voltage (6)
VGH - GND
V
-0.3 ~ + 16.5
1, 2
Power supply voltage (7)
GND - VGL
V
-0.3 ~ - 15
1, 2
Input voltage
Vt
V
-0.3 ~ Vcc + 0.3
1
Operating temperature
Topr
°C
-40 ~ + 85
1, 3
Storage temperature
Tstg
°C
-55 ~ + 110
1
Note 1) The LSI may be permanently damaged if it is used under the condition exceeding the above absolute maximum
values. It is also recommended to use the LSI within the electric characteristic conditions during normal operation.
Exceeding the conditions may lead to malfunction of LSI and affect its credibility.
Note 2) The voltage from GND.
Note 3) The DC and AC characteristics of chip and wafer products are guaranteed at 85 °C.
Ver 2.3
83/113
2007/07/19
ST7712
10. Electric Characteristics
DC Characteristics
(VDD = 1.8 to 3.3 V, Ta = –40 to +85°C
Item
Note 1
Symb
Uni
ol
t
Input high value
VIH
Input low voltage (1)
)
Test Condition
Min
Typ
Max
Notes
V
VCC = 1.8 to 3.3 V
0.8 VCC
--
VCC
1
VIL1
V
VCC = 1.8 to 3.3 V
0
--
0.2 VCC
1
VIL2
V
Vcc=1.8V to 2.4V
0
--
0.2 VCC
1
Vcc=2.4V to 3.3V
0
--
0.2 VCC
1
VCC = 1.8 to 3.3 V,
0.8VCC
--
Vcc
1
0
--
0.2 VCC
1
0
--
1
1
(OSC1 pin)
Input low voltage (2)
(Except OSC1 pin)
Output high voltage (1)
VOH
V
(DB0~17 pins)
Output low voltage (1)
IOH = 0.1 mA
VOL
V
(DB0~17 pins)
I/O leakage current
VCC = 1.8 to 3.3 V,
IOL = 0.1 mA
ILi
µA
Vin = 0 to VCC
IOP1
mA
R-C oscillation=190KHZ; VCC = 2.8 V,
(IIOVCC+IVCC+IVCI)
Current consumption during
normal operation 262K
DVDDH=5.4V, REV=1, Ta = 25°C,
mode
SAP=”010”,AP=”010”,FLD=”01”,
(IIOVCC-GND+IVCC-GND+IVCI-
BC=1, NW=”00000” RAM data
GND)
0000h
Current consumption
Iop2
µA
R-C oscillation=190KHZ; VCC = 2.8 V,
8-color mode, 30-line partial
DVDDH=5.4V, REV=1, Ta = 25°C,
(IIOVCC-GND+IVCC-GND+IVCI-
SAP=”010”,AP=”010”,FLD=”01”,
GND)
BC=1, NW=”00000” RAM data
1.3
1
350
1
0000h
Current consumption during
IVCC
µA
normal operation (Vcc-GND)
R-C oscillation=190KHZ; VCC = 2.8 V,
--
60
80
1
DVDDH=5.4V, REV=0, Ta = 25°C,
SAP=”010”,AP=”010”,FLD=”01”,
BC=1, NW=”00000” RAM data
0000h
LCD power supply current
IVci1
mA
R-C oscillation=190KHZ; VCC = 2.8 V,
(Vci-GND) 262,144 color
DVDDH=5.4V, REV=1, Ta = 25°C,
display mode
SAP=”010”,AP=”010”,FLD=”01”,
1.2
1
250
1
BC=1, NW=”00000” RAM data
0000h
LCD power supply current
(Vci-GND) 8-color mode,
Ver 2.3
IVci2
µA
R-C oscillation=190KHZ; VCC = 2.8 V,
DVDDH=5.4V, REV=1, Ta = 25°C,
84/113
2007/07/19
ST7712
30-line partial
SAP=”010”,AP=”010”,FLD=”01”,
BC=1, NW=”00000” RAM data
0000h
Current consumption during
IST
µA
Vcc = 2.8V, Ta<=50°C
--
40
100
1
ILCD
µA
Vcc=2.8V, VDH=5.243V, CR
--
450
550
1
standby & sleep operation
(VDD-GND)
Liquid Crystal Power
Current (DDVDH-GND)
Oscillation=190KHz; Ta=25°C,
RAMdata:0000h, REV=”0”,
SAP=”010”,AP=”010”, VRN[4:0]=”0”,
PKP[52:00]=”0”, PRP[52:00]=”0”,
VRN[4:0]=VRP[4:0]=”0”
PKP[52:00]=”0”, PRP[52:00]=”0”
Liquid Crystal Drive Voltage
VLCD
V
--
4.5
--
6.0
1
∠Vo
mV
Source>4.2V, Source<0.8V
--
20
--
1
35
1
(DDVDH-GND)
Output Voltage deviation
0.8V<Source<4.2
Variation of average output
mV
--
12
--
--
voltage
Gate Ron resistor
Ron
Ω
360
1
Notes to Electrical Characteristics
1.
The TEST1 and TEST2 pins must be grounded (GND). The IM3/2/1/0 must be fixed at either GND or Iovcc level
2.
The output voltage difference is the difference in voltage levels output from adjacent source pins for a same grayscale.
This value is for reference.
3.
The average output voltage variance is the difference in the average source output voltages of the same product. The
average voltage source output voltage is measured when all output pins output the voltage for a same grayscale.
Ver 2.3
85/113
2007/07/19
ST7712
AC Characteristics
(VDD = 1.8 to 3.3 V, Ta = –40 to +85°C )
Clock Characteristics (VDD = 1.8 to 3.3 V)
Item
Symbol
Unit
Test Condition
Min
Typ
Max
External clock
Fcp
kHz
VDD = 1.8 t0 3.3V
100
270
600
External clock duty ratio
Duty
%
VDD = 1.8 t0 3.3V
45
50
55
External clock rise time
Trcp
µs
VDD = 1.8 t0 3.3V
--
--
0.2
External clock fall time
Tfcp
µs
VDD = 1.8 t0 3.3V
--
--
0.2
R-C oscillation clock
FOSC
kHz
Rf=240KΩ VCC=3V
192
240
288
Notes
Frequency
Liquid crystal driver output characteristics
Item
Symbol
Unit
Test Condition
Min
Typ
Max
Driver output
tdd
µs
VDD =2.8V, VDH=5.4V,
--
30
--
delay time
CR oscillation ;fosc=190kHz(132 lines),
Ta=25℃、REV="0", SAP="010", AP=”010”,
VRN[4:0]="0",VRP[4:0]="0"
PKP[52:00]="0",PRP[12:00]="0"
PKP[52:00]="0",PRP[12:00]="0"
All pins changes at the same time from same
grayscale. The time till output level reaches
―35mV when VCOM polarity changes.
Load resistance R=10kΩ、Load capacity C=20pF
Ver 2.3
86/113
2007/07/19
ST7712
Electrical Characteristics
1. Applies to the internal oscillator operations using external oscillation resistor Rf
OSC1
Rf
The oscillation frequency may vary
depending on the capacitors for OSC1, OSC2 pins.
Place OSC1 and OSC2 close to each other.
OSC2
Notes:
The Rf resistor value should be based on the RC loading of panel and FPC to fine tune Rf value to apparoach the osc
frequency that customer need.
Ver 2.3
87/113
2007/07/19
ST7712
11. TIMING CHARACTERISISTICS
condition:
:Bare Die
System Bus Read/Write Characteristics 1(For the 8080 Series MPU)
RS
VIH
VIH
VIL
VIL
tAW8
tAH8
VIH
XCS
VIH
VIL
VIL
tCYC8
tCCLR,tCCLW
VIH
WR,RD
VIH
VIL
VIL
tCCHR,tCCHW
tDH8
tDS8
DB17 to DB0
(Write)
VIH
VIH
VIL
VIL
tACC8
tOH8
DB17 to DB0
(Read)
VOH
VOH
VOL
VOL
Figure 11-1
(VDD =3.3V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Symbol
Units
Min
Address hold time
Max
tAH8
10
ns
Address setup time
tAW8
30
ns
System cycle time
tCYC8
120
ns
tCCLW
50
ns
tCCHW
70
ns
tDS8
50
ns
tDH8
10
ns
tCCLR
80
ns
tCCHR
80
ns
RS
Enable L pulse width (WRITE)
WR
Enable H pulse width (WRITE)
WRITE Data setup time
DB0~DB17
WRITE Data hold time
Enable L pulse width (READ)
RD
Enable H pulse width (READ)
Ver 2.3
88/113
2007/07/19
ST7712
(VDD =2.8V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Symbol
Units
Min
Address hold time
Max
tAH8
10
ns
Address setup time
tAW8
30
ns
System cycle time
tCYC8
120
ns
tCCLW
50
ns
tCCHW
70
ns
tDS8
50
ns
tDH8
10
ns
tCCLR
80
ns
tCCHR
80
ns
RS
Enable L pulse width (WRITE)
WR
Enable H pulse width (WRITE)
WRITE Data setup time
DB0~DB17
WRITE Data hold time
Enable L pulse width (READ)
RD
Enable H pulse width (READ)
(VDD =1.8V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Symbol
Units
Min
Address hold time
Max
tAH8
10
ns
Address setup time
tAW8
30
ns
System cycle time
tCYC8
120
ns
tCCLW
50
ns
tCCHW
70
ns
tDS8
50
ns
tDH8
10
ns
tCCLR
80
ns
tCCHR
80
ns
RS
Enable L pulse width (WRITE)
WR
Enable H pulse width (WRITE)
WRITE Data setup time
DB0~DB17
WRITE Data hold time
Enable L pulse width (READ)
RD
Enable H pulse width (READ)
Ver 2.3
89/113
2007/07/19
ST7712
System Bus Read/Write Characteristics 1(For the 6800 Series MPU)
Figure 11-2
(VDD =3.3V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Symbol
Units
Min
Address hold time
Max
tAH8
10
ns
Address setup time
tAW8
20
ns
System cycle time
tCYC8
80
ns
tEWLW
40
ns
tEWHW
40
ns
tDS8
40
ns
tDH8
10
ns
tACC6
70
ns
tOH6
70
ns
RS
Enable H pulse width (WRITE)
E
Enable L pulse width (WRITE)
WRITE Data setup time
DB0~DB17
WRITE Data hold time
Enable L pulse width (READ)
RW
Enable H pulse width (READ)
Ver 2.3
90/113
2007/07/19
ST7712
(VDD =2.8V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Symbol
Units
Min
Address hold time
Max
tAH8
10
ns
Address setup time
tAW8
20
ns
System cycle time
tCYC8
80
ns
tCCLW
40
ns
tCCHW
40
ns
tDS8
40
ns
tDH8
10
ns
tCCLR
70
ns
tCCHR
70
ns
RS
Enable L pulse width (WRITE)
E
Enable H pulse width (WRITE)
WRITE Data setup time
DB0~DB17
WRITE Data hold time
Enable L pulse width (READ)
RW
Enable H pulse width (READ)
(VDD =1.8V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Symbol
Units
Min
Address hold time
Max
tAH8
10
ns
Address setup time
tAW8
20
ns
System cycle time
tCYC8
80
ns
tCCLW
40
ns
tCCHW
40
ns
tDS8
40
ns
tDH8
10
ns
tCCLR
70
ns
tCCHR
70
ns
RS
Enable L pulse width (WRITE)
E
Enable H pulse width (WRITE)
WRITE Data setup time
DB0~DB17
WRITE Data hold time
Enable L pulse width (READ)
RW
Enable H pulse width (READ)
Ver 2.3
91/113
2007/07/19
ST7712
Serial Interface (4-Line Interface)
Figure 11-3
(VDD =3.3V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Units
Symbol
Min
Serial Clock Period
tSCYC
50
tSHW
20
tSLW
30
tSAS
20
tSAH
10
tSDS
10
tSDH
20
tCSS
20
tCSH
30
SCL L pulse width (READ)
tSDOS
110
ns
SCL H pulse width (READ)
tSDOH
110
ns
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
RS
Address hold time
Data setup time
Data hold time
XCS-SCL time
ns
ns
SDI
Ver 2.3
Max
ns
XCS
ns
92/113
2007/07/19
ST7712
(VDD =2.8V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Symbol
Units
Min
Serial Clock Period
Max
tSCYC
50
tSHW
20
tSLW
30
tSAS
20
tSAH
10
tSDS
10
tSDH
20
tCSS
20
tCSH
30
SCL L pulse width (READ)
tSDOS
110
ns
SCL H pulse width (READ)
tSDOH
110
ns
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
ns
RS
Address hold time
Data setup time
ns
SI
Data hold time
CS-SCL time
ns
XCS
ns
(VDD =1.8V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Symbol
Units
Min
Serial Clock Period
tSCYC
50
tSHW
20
tSLW
30
tSAS
20
tSAH
10
tSDS
10
tSDH
20
tCSS
20
tCSH
30
SCL L pulse width (READ)
tSDOS
110
ns
SCL H pulse width (READ)
tSDOH
110
ns
SCL “H” pulse width
SCL
SCL “L” pulse width
Address setup time
RS
Address hold time
Data setup time
Data hold time
XCS-SCL time
ns
ns
SDI
Ver 2.3
Max
ns
XCS
ns
93/113
2007/07/19
ST7712
Serial Interface(3-Line Interface)
Figure 11-4
(VDD =3.3V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Units
Symbol
Min
Serial Clock Period
Max
tSCYC
50
tSHW
20
tSLW
30
tSDS
10
tSDH
20
tCSS
20
tCSH
30
SCL L pulse width (READ)
tSDOS
110
ns
SCL H pulse width (READ)
tSDOH
110
ns
SCL “H” pulse width
SCL
SCL “L” pulse width
Data setup time
ns
SDI
Data hold time
XCS-SCL time
ns
XCS
ns
(VDD =2.8V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Symbol
Units
Min
Serial Clock Period
SCL “H” pulse width
SCL
SCL “L” pulse width
Data setup time
tSCYC
50
tSHW
20
tSLW
30
tSDS
10
tSDH
20
tCSS
20
tCSH
30
tSDOS
110
SDI
Data hold time
XCS-SCL time
SCL L pulse width (READ)
Ver 2.3
Max
ns
ns
XCS
ns
94/113
ns
2007/07/19
ST7712
SCL H pulse width (READ)
tSDOH
110
ns
(VDD =1.8V, Ta=-40℃
℃~85℃
℃)
Rating
Item
Signal
Symbol
Units
Min
Serial Clock Period
tSCYC
50
tSHW
20
tSLW
30
tSDS
10
tSDH
20
tCSS
20
tCSH
30
SCL L pulse width (READ)
tSDOS
110
ns
SCL H pulse width (READ)
tSDOH
110
ns
SCL “H” pulse width
SCL
SCL “L” pulse width
Data setup time
SDI
Data hold time
XCS-SCL time
Ver 2.3
Max
ns
ns
ns
XCS
95/113
2007/07/19
ST7712
Reset Timing Characteristics (Vdd = 1.8 to 3.3V)
tRW
RES
tR
Internal
status
During reset
Reset complete
(VDD =3.3V, Ta=-40℃
℃~85℃
℃)
Item
Rating
Symbol
Min
Reset low-level width
tRW
Reset high-level width
tR
1
Typ
--
Max
-1
Units
us
(VDD =2.7V, Ta=-40℃
℃~85℃
℃)
Item
Rating
Symbol
Min
Reset low-level width
tRW
Reset high-level width
tR
1
Typ
--
Max
-1
Units
us
(VDD =1.8V, Ta=-40℃
℃~85℃
℃)
Item
Rating
Symbol
Min
Reset low-level width
tRW
Reset high-level width
tR
Ver 2.3
1
Typ
--
Max
-1
96/113
Units
us
2007/07/19
ST7712
12. THE MPU INTERFACE (REFERENCE EXAMPLES)
The ST7712 Series can be connected to either 8080 Series MPUs or to 6800 Series MPUs. Moreover, using the serial
interface it is possible to operate the ST7712 series chips with fewer signal lines.
The display area can be enlarged by using multiple ST7712 Series chips. When this is done, the chip select signal can be
used to select the individual Ics to access.
(1)
8080 Series 18bits MPUs
(2)
8080 Series 16bits MPUs
(3) 8080 Series 9 bits MPUs
Ver 2.3
97/113
2007/07/19
ST7712
(4) 8080 Series 8 bits MPUs
(5) 6800 Series 18 bits MPUs
(6) 6800 Series 16 bits MPUs
Ver 2.3
98/113
2007/07/19
ST7712
(7) 6800 Series 9 bits MPUs
(8) 6800 Series 8 bits MPUs
(9) Using the Serial Interface (4-line interface)
Ver 2.3
99/113
2007/07/19
ST7712
Using the Serial Interface (3-line interface)
Ver 2.3
ST7712
MPU
(9)
100/113
2007/07/19
ST7712
13. Application circuit
Ver 2.3
101/113
2007/07/19
ST7712
TFT Subtrate
FPC
Odd lines
DUMMYA
G3
G7
Interface: 8080 series-18bits
DUMMY9 open
DUMMY8 open
DUMMY7 open
VCOM2
VCOM2
G1
G5
Vcc=2.4V~3.3V
Vci=2.5V~3.3V
IOVCC=1.8V~3.3V
1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE
G131
VCMDUMMY1
DUMMYB
S394
S392
0.1uF(20V):C5,C6,C8,C9
G129
S395
S393
Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V)
VR>200KΩ
DISPLAY
S198
S199
S196
S197
S0
S1
DUMMYC
VCMDUMMY2
G128
G0
DUMMYD
G130
G2
X
Y
(0,0)
DUMMY6 open
VCL
VCL
VLOUT4
VCOML
VCOML
VCOML
VCOMH
VCOMH
VCOMH
DUMMY5 open
VERG1OUT
VCOMR
VLPWR
C11+
C11+
C11+
C11+
C11C11C11C11VLOUT1
VLOUT1
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCIOUT
VCIOUT
VCIOUT
VCIOUT
VCI1
VCI1
VCI1
VCI1
VCI1
VCI1
VMON
VGS
VGS
REGP
open
FUS4
open
FUS3
open
FUS2
open
FUS1
open
FUS0
VSSF
FUSA4
FUSA3
FUSA2
FUSA1
FUSA0
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
GND
OSC2
OSC1
VCILVL
VDDO
VDDO
VCI
VCI
VCI
VCI
VCI
VCI
VCC
VCC
VCC
VCC
VCC
VCC
IOVCC
IOVCC
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB09
IOGNDDUM2 open
IOGNDDUM2 open
DB08
DB07
DB06
DB05
DB04
DB03
DB02
DB01
DB00
E_RD
RW_WR
RS
SDO
SDI
SCL
XCS
FLM
IOGNDDUM1
IOGNDDUM1
IM3
IM2
IM1
IM0
IOVCCDUM1
IOVCCDUM1
VGL
VGL
VGL
VGL
VLOUT3
C12C12C12C12C12+
C12+
C12+
C12+
C21C21C21+
C21+
C22C22C22+
C22+
VLOUT2
VGH
VGH
DUMMY4
VCOM1
VCOM1
DUMMY3
DUMMY2
DUMMY1
10Ω
CA
10Ω
CC
10Ω
CB
10Ω
C1
30Ω
VR
50Ω
Option
30Ω
CD
3Ω
C2
3Ω
C4
3Ω
D1
3Ω
3Ω
C3
3Ω
30Ω
30Ω
30Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
GND
Option
30Ω
30Ω
30Ω
10Ω
CE
Option
3Ω
VCC
30Ω
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB9
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
E_RD
RW_WR
RS
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
XCS
30Ω
30Ω
3Ω
50Ω
50Ω
50Ω
50Ω
3Ω
3Ω
D3
C9
3Ω
10Ω
C5
10Ω
10Ω
C6
10Ω
5Ω
5Ω
C7
C8
10Ω
10Ω
D2
10Ω
Even lines
Ver 2.3
102/113
2007/07/19
ST7712
TFT Subtrate
FPC
Odd lines
DUMMYA
G3
G7
DUMMY9 open
DUMMY8 open
DUMMY7 open
VCOM2
VCOM2
G1
G5
Interface: 8080 series-16bits
Vcc=2.4V~3.3V
Vci=2.5V~3.3V
IOVCC=1.8V~3.3V
G131
VCMDUMMY1
DUMMYB
S394
S392
1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE
G129
S395
S393
0.1uF(20V):C5,C6,C8,C9
Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V)
VR>200KΩ
DISPLAY
S198
S199
S196
S197
S0
S1
DUMMYC
VCMDUMMY2
G128
G0
DUMMYD
G130
G2
X
Y
(0,0)
DUMMY6 open
VCL
VCL
VLOUT4
VCOML
VCOML
VCOML
VCOMH
VCOMH
VCOMH
DUMMY5 open
VERG1OUT
VCOMR
VLPWR
C11+
C11+
C11+
C11+
C11C11C11C11VLOUT1
VLOUT1
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCIOUT
VCIOUT
VCIOUT
VCIOUT
VCI1
VCI1
VCI1
VCI1
VCI1
VCI1
VMON
VGS
VGS
REGP
open
FUS4
open
FUS3
open
FUS2
open
FUS1
open
FUS0
VSSF
FUSA4
FUSA3
FUSA2
FUSA1
FUSA0
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
GND
OSC2
OSC1
VCILVL
VDDO
VDDO
VCI
VCI
VCI
VCI
VCI
VCI
VCC
VCC
VCC
VCC
VCC
VCC
IOVCC
IOVCC
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB09
IOGNDDUM2 open
IOGNDDUM2 open
DB08
DB07
DB06
DB05
DB04
DB03
DB02
DB01
DB00
E_RD
RW_WR
RS
SDO
SDI
SCL
XCS
FLM
IOGNDDUM1
IOGNDDUM1
IM3
IM2
IM1
IM0
IOVCCDUM1
IOVCCDUM1
VGL
VGL
VGL
VGL
VLOUT3
C12C12C12C12C12+
C12+
C12+
C12+
C21C21C21+
C21+
C22C22C22+
C22+
VLOUT2
VGH
VGH
DUMMY4
VCOM1
VCOM1
DUMMY3
DUMMY2
DUMMY1
10Ω
CA
10Ω
CC
10Ω
CB
10Ω
C1
30Ω
VR
50Ω
Option
30Ω
CD
3Ω
C2
3Ω
C4
3Ω
D1
3Ω
3Ω
C3
3Ω
30Ω
30Ω
30Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
GND
Option
30Ω
30Ω
30Ω
10Ω
CE
Option
3Ω
VCC
30Ω
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
E_RD
RW_WR
RS
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
XCS
30Ω
30Ω
3Ω
50Ω
50Ω
50Ω
50Ω
3Ω
3Ω
D3
C9
3Ω
10Ω
C5
10Ω
10Ω
C6
10Ω
5Ω
5Ω
C7
C8
10Ω
10Ω
D2
10Ω
Even lines
Ver 2.3
103/113
2007/07/19
ST7712
TFT Subtrate
FPC
Odd lines
DUMMYA
G3
G7
DUMMY9 open
DUMMY8 open
DUMMY7 open
VCOM2
VCOM2
G1
G5
Interface: 8080 series-9bits
Vcc=2.4V~3.3V
Vci=2.5V~3.3V
IOVCC=1.8V~3.3V
G131
VCMDUMMY1
DUMMYB
S394
S392
1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE
G129
S395
S393
0.1uF(20V):C5,C6,C8,C9
Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V)
DISPLAY
VR>200KΩ
S198
S199
S196
S197
S0
S1
DUMMYC
VCMDUMMY2
G128
G0
DUMMYD
G130
G2
X
Y
(0,0)
DUMMY6 open
VCL
VCL
VLOUT4
VCOML
VCOML
VCOML
VCOMH
VCOMH
VCOMH
DUMMY5 open
VERG1OUT
VCOMR
VLPWR
C11+
C11+
C11+
C11+
C11C11C11C11VLOUT1
VLOUT1
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCIOUT
VCIOUT
VCIOUT
VCIOUT
VCI1
VCI1
VCI1
VCI1
VCI1
VCI1
VMON
VGS
VGS
REGP
open
FUS4
open
FUS3
open
FUS2
open
FUS1
open
FUS0
VSSF
FUSA4
FUSA3
FUSA2
FUSA1
FUSA0
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
GND
OSC2
OSC1
VCILVL
VDDO
VDDO
VCI
VCI
VCI
VCI
VCI
VCI
VCC
VCC
VCC
VCC
VCC
VCC
IOVCC
IOVCC
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB09
IOGNDDUM2 open
IOGNDDUM2 open
DB08
DB07
DB06
DB05
DB04
DB03
DB02
DB01
DB00
E_RD
RW_WR
RS
SDO
SDI
SCL
XCS
FLM
IOGNDDUM1
IOGNDDUM1
IM3
IM2
IM1
IM0
IOVCCDUM1
IOVCCDUM1
VGL
VGL
VGL
VGL
VLOUT3
C12C12C12C12C12+
C12+
C12+
C12+
C21C21C21+
C21+
C22C22C22+
C22+
VLOUT2
VGH
VGH
DUMMY4
VCOM1
VCOM1
DUMMY3
DUMMY2
DUMMY1
10Ω
CA
10Ω
CC
10Ω
CB
10Ω
C1
30Ω
VR
50Ω
Option
30Ω
CD
3Ω
C2
3Ω
C4
3Ω
D1
3Ω
3Ω
C3
3Ω
30Ω
30Ω
30Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
GND
Option
30Ω
30Ω
30Ω
10Ω
CE
Option
3Ω
VCC
30Ω
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB9
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
E_RD
RW_WR
RS
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
XCS
30Ω
30Ω
3Ω
50Ω
50Ω
50Ω
50Ω
3Ω
3Ω
D3
C9
3Ω
10Ω
C5
10Ω
10Ω
C6
10Ω
5Ω
5Ω
C7
C8
10Ω
10Ω
D2
10Ω
Even lines
Ver 2.3
104/113
2007/07/19
ST7712
TFT Subtrate
FPC
Odd lines
DUMMYA
G3
G7
DUMMY9 open
DUMMY8 open
DUMMY7 open
VCOM2
VCOM2
G1
G5
Interface: 8080 series-8bits
Vcc=2.4V~3.3V
Vci=2.5V~3.3V
IOVCC=1.8V~3.3V
G131
VCMDUMMY1
DUMMYB
S394
S392
1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE
G129
S395
S393
0.1uF(20V):C5,C6,C8,C9
Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V)
DISPLAY
VR>200KΩ
S198
S199
S196
S197
S0
S1
DUMMYC
VCMDUMMY2
G128
G0
DUMMYD
G130
G2
X
Y
(0,0)
DUMMY6 open
VCL
VCL
VLOUT4
VCOML
VCOML
VCOML
VCOMH
VCOMH
VCOMH
DUMMY5 open
VERG1OUT
VCOMR
VLPWR
C11+
C11+
C11+
C11+
C11C11C11C11VLOUT1
VLOUT1
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCIOUT
VCIOUT
VCIOUT
VCIOUT
VCI1
VCI1
VCI1
VCI1
VCI1
VCI1
VMON
VGS
VGS
REGP
open
FUS4
open
FUS3
open
FUS2
open
FUS1
open
FUS0
VSSF
FUSA4
FUSA3
FUSA2
FUSA1
FUSA0
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
GND
OSC2
OSC1
VCILVL
VDDO
VDDO
VCI
VCI
VCI
VCI
VCI
VCI
VCC
VCC
VCC
VCC
VCC
VCC
IOVCC
IOVCC
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB09
IOGNDDUM2 open
IOGNDDUM2 open
DB08
DB07
DB06
DB05
DB04
DB03
DB02
DB01
DB00
E_RD
RW_WR
RS
SDO
SDI
SCL
XCS
FLM
IOGNDDUM1
IOGNDDUM1
IM3
IM2
IM1
IM0
IOVCCDUM1
IOVCCDUM1
VGL
VGL
VGL
VGL
VLOUT3
C12C12C12C12C12+
C12+
C12+
C12+
C21C21C21+
C21+
C22C22C22+
C22+
VLOUT2
VGH
VGH
DUMMY4
VCOM1
VCOM1
DUMMY3
DUMMY2
DUMMY1
10Ω
CA
10Ω
CC
10Ω
CB
10Ω
C1
30Ω
VR
50Ω
Option
30Ω
CD
3Ω
C2
3Ω
C4
3Ω
D1
3Ω
3Ω
C3
3Ω
30Ω
30Ω
30Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
GND
Option
30Ω
30Ω
30Ω
10Ω
CE
Option
3Ω
VCC
30Ω
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
E_RD
RW_WR
RS
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
XCS
30Ω
3Ω
50Ω
50Ω
50Ω
50Ω
3Ω
3Ω
3Ω
D3
C9
10Ω
C5
10Ω
10Ω
10Ω
C6
5Ω
5Ω
10Ω
C7
C8
10Ω
D2
10Ω
Even lines
Ver 2.3
105/113
2007/07/19
ST7712
TFT Subtrate
FPC
Odd lines
DUMMYA
G3
G7
Interface: 6800 series-18bits
DUMMY9 open
DUMMY8 open
DUMMY7 open
VCOM2
VCOM2
G1
G5
Vcc=2.4V~3.3V
Vci=2.5V~3.3V
IOVCC=1.8V~3.3V
1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE
G131
VCMDUMMY1
DUMMYB
S394
S392
0.1uF(20V):C5,C6,C8,C9
G129
S395
S393
Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V)
VR>200KΩ
DISPLAY
S198
S199
S196
S197
S0
S1
DUMMYC
VCMDUMMY2
G128
G0
DUMMYD
G130
G2
X
Y
(0,0)
DUMMY6 open
VCL
VCL
VLOUT4
VCOML
VCOML
VCOML
VCOMH
VCOMH
VCOMH
DUMMY5 open
VERG1OUT
VCOMR
VLPWR
C11+
C11+
C11+
C11+
C11C11C11C11VLOUT1
VLOUT1
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCIOUT
VCIOUT
VCIOUT
VCIOUT
VCI1
VCI1
VCI1
VCI1
VCI1
VCI1
VMON
VGS
VGS
REGP
open
FUS4
open
FUS3
open
FUS2
open
FUS1
open
FUS0
VSSF
FUSA4
FUSA3
FUSA2
FUSA1
FUSA0
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
GND
OSC2
OSC1
VCILVL
VDDO
VDDO
VCI
VCI
VCI
VCI
VCI
VCI
VCC
VCC
VCC
VCC
VCC
VCC
IOVCC
IOVCC
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB09
IOGNDDUM2 open
IOGNDDUM2 open
DB08
DB07
DB06
DB05
DB04
DB03
DB02
DB01
DB00
E_RD
RW_WR
RS
SDO
SDI
SCL
XCS
FLM
IOGNDDUM1
IOGNDDUM1
IM3
IM2
IM1
IM0
IOVCCDUM1
IOVCCDUM1
VGL
VGL
VGL
VGL
VLOUT3
C12C12C12C12C12+
C12+
C12+
C12+
C21C21C21+
C21+
C22C22C22+
C22+
VLOUT2
VGH
VGH
DUMMY4
VCOM1
VCOM1
DUMMY3
DUMMY2
DUMMY1
10Ω
CA
10Ω
CC
10Ω
CB
10Ω
C1
30Ω
VR
50Ω
Option
30Ω
CD
3Ω
C2
3Ω
C4
3Ω
D1
3Ω
3Ω
C3
3Ω
30Ω
30Ω
30Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
GND
Option
30Ω
30Ω
30Ω
10Ω
CE
Option
3Ω
VCC
30Ω
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB9
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
E_RD
RW_WR
RS
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
XCS
30Ω
30Ω
3Ω
50Ω
50Ω
50Ω
50Ω
3Ω
3Ω
D3
C9
3Ω
10Ω
C5
10Ω
10Ω
C6
10Ω
5Ω
5Ω
C7
C8
10Ω
10Ω
D2
10Ω
Even lines
Ver 2.3
106/113
2007/07/19
ST7712
TFT Subtrate
FPC
Odd lines
DUMMYA
G3
G7
DUMMY9 open
DUMMY8 open
DUMMY7 open
VCOM2
VCOM2
G1
G5
Interface: 6800 series-16bits
Vcc=2.4V~3.3V
Vci=2.5V~3.3V
G131
VCMDUMMY1
DUMMYB
S394
S392
IOVCC=1.8V~3.3V
G129
S395
S393
1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE
0.1uF(20V):C5,C6,C8,C9
Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V)
DISPLAY
VR>200KΩ
S198
S199
S196
S197
S0
S1
DUMMYC
VCMDUMMY2
G128
G0
DUMMYD
G130
G2
X
Y
(0,0)
DUMMY6 open
VCL
VCL
VLOUT4
VCOML
VCOML
VCOML
VCOMH
VCOMH
VCOMH
DUMMY5 open
VERG1OUT
VCOMR
VLPWR
C11+
C11+
C11+
C11+
C11C11C11C11VLOUT1
VLOUT1
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCIOUT
VCIOUT
VCIOUT
VCIOUT
VCI1
VCI1
VCI1
VCI1
VCI1
VCI1
VMON
VGS
VGS
REGP
open
FUS4
open
FUS3
open
FUS2
open
FUS1
open
FUS0
VSSF
FUSA4
FUSA3
FUSA2
FUSA1
FUSA0
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
GND
OSC2
OSC1
VCILVL
VDDO
VDDO
VCI
VCI
VCI
VCI
VCI
VCI
VCC
VCC
VCC
VCC
VCC
VCC
IOVCC
IOVCC
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB09
IOGNDDUM2 open
IOGNDDUM2 open
DB08
DB07
DB06
DB05
DB04
DB03
DB02
DB01
DB00
E_RD
RW_WR
RS
SDO
SDI
SCL
XCS
FLM
IOGNDDUM1
IOGNDDUM1
IM3
IM2
IM1
IM0
IOVCCDUM1
IOVCCDUM1
VGL
VGL
VGL
VGL
VLOUT3
C12C12C12C12C12+
C12+
C12+
C12+
C21C21C21+
C21+
C22C22C22+
C22+
VLOUT2
VGH
VGH
DUMMY4
VCOM1
VCOM1
DUMMY3
DUMMY2
DUMMY1
10Ω
CA
10Ω
CC
10Ω
CB
10Ω
C1
30Ω
VR
50Ω
Option
30Ω
CD
3Ω
C2
3Ω
C4
3Ω
D1
3Ω
3Ω
C3
3Ω
30Ω
30Ω
30Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
GND
Option
30Ω
30Ω
30Ω
10Ω
CE
Option
3Ω
VCC
30Ω
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
E_RD
RW_WR
RS
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
XCS
30Ω
30Ω
3Ω
50Ω
50Ω
50Ω
50Ω
3Ω
3Ω
D3
C9
3Ω
10Ω
C5
10Ω
10Ω
C6
10Ω
5Ω
5Ω
C7
C8
10Ω
10Ω
D2
10Ω
Even lines
Ver 2.3
107/113
2007/07/19
ST7712
TFT Subtrate
FPC
Odd lines
DUMMYA
G3
G7
DUMMY9 open
DUMMY8 open
DUMMY7 open
VCOM2
VCOM2
G1
G5
Interface: 6800 series-9bits
Vcc=2.4V~3.3V
Vci=2.5V~3.3V
G131
VCMDUMMY1
DUMMYB
S394
S392
IOVCC=1.8V~3.3V
G129
S395
S393
1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE
0.1uF(20V):C5,C6,C8,C9
Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V)
DISPLAY
VR>200KΩ
S198
S199
S196
S197
S0
S1
DUMMYC
VCMDUMMY2
G128
G0
DUMMYD
G130
G2
X
Y
(0,0)
DUMMY6 open
VCL
VCL
VLOUT4
VCOML
VCOML
VCOML
VCOMH
VCOMH
VCOMH
DUMMY5 open
VERG1OUT
VCOMR
VLPWR
C11+
C11+
C11+
C11+
C11C11C11C11VLOUT1
VLOUT1
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCIOUT
VCIOUT
VCIOUT
VCIOUT
VCI1
VCI1
VCI1
VCI1
VCI1
VCI1
VMON
VGS
VGS
REGP
open
FUS4
open
FUS3
open
FUS2
open
FUS1
open
FUS0
VSSF
FUSA4
FUSA3
FUSA2
FUSA1
FUSA0
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
GND
OSC2
OSC1
VCILVL
VDDO
VDDO
VCI
VCI
VCI
VCI
VCI
VCI
VCC
VCC
VCC
VCC
VCC
VCC
IOVCC
IOVCC
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB09
IOGNDDUM2 open
IOGNDDUM2 open
DB08
DB07
DB06
DB05
DB04
DB03
DB02
DB01
DB00
E_RD
RW_WR
RS
SDO
SDI
SCL
XCS
FLM
IOGNDDUM1
IOGNDDUM1
IM3
IM2
IM1
IM0
IOVCCDUM1
IOVCCDUM1
VGL
VGL
VGL
VGL
VLOUT3
C12C12C12C12C12+
C12+
C12+
C12+
C21C21C21+
C21+
C22C22C22+
C22+
VLOUT2
VGH
VGH
DUMMY4
VCOM1
VCOM1
DUMMY3
DUMMY2
DUMMY1
10Ω
CA
10Ω
CC
10Ω
CB
10Ω
C1
30Ω
VR
50Ω
Option
30Ω
CD
3Ω
C2
3Ω
C4
3Ω
D1
3Ω
3Ω
C3
3Ω
30Ω
30Ω
30Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
GND
Option
30Ω
30Ω
30Ω
10Ω
CE
Option
3Ω
VCC
30Ω
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB9
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
DB1
30Ω
30Ω
E_RD
RW_WR
RS
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
XCS
30Ω
30Ω
3Ω
50Ω
50Ω
50Ω
50Ω
3Ω
3Ω
D3
C9
3Ω
10Ω
C5
10Ω
10Ω
C6
10Ω
5Ω
5Ω
C7
C8
10Ω
10Ω
D2
10Ω
Even lines
Ver 2.3
108/113
2007/07/19
ST7712
TFT Subtrate
FPC
Odd lines
DUMMYA
G3
G7
DUMMY9 open
DUMMY8 open
DUMMY7 open
VCOM2
VCOM2
G1
G5
Interface: 6800 series-8bits
Vcc=2.4V~3.3V
Vci=2.5V~3.3V
IOVCC=1.8V~3.3V
G131
VCMDUMMY1
DUMMYB
S394
S392
1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE
G129
S395
S393
0.1uF(20V):C5,C6,C8,C9
Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V)
DISPLAY
VR>200KΩ
S198
S199
S196
S197
S0
S1
DUMMYC
VCMDUMMY2
G128
G0
DUMMYD
G130
G2
X
Y
(0,0)
DUMMY6 open
VCL
VCL
VLOUT4
VCOML
VCOML
VCOML
VCOMH
VCOMH
VCOMH
DUMMY5 open
VERG1OUT
VCOMR
VLPWR
C11+
C11+
C11+
C11+
C11C11C11C11VLOUT1
VLOUT1
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCIOUT
VCIOUT
VCIOUT
VCIOUT
VCI1
VCI1
VCI1
VCI1
VCI1
VCI1
VMON
VGS
VGS
REGP
open
FUS4
open
FUS3
open
FUS2
open
FUS1
open
FUS0
VSSF
FUSA4
FUSA3
FUSA2
FUSA1
FUSA0
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
GND
OSC2
OSC1
VCILVL
VDDO
VDDO
VCI
VCI
VCI
VCI
VCI
VCI
VCC
VCC
VCC
VCC
VCC
VCC
IOVCC
IOVCC
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB09
IOGNDDUM2 open
IOGNDDUM2 open
DB08
DB07
DB06
DB05
DB04
DB03
DB02
DB01
DB00
E_RD
RW_WR
RS
SDO
SDI
SCL
XCS
FLM
IOGNDDUM1
IOGNDDUM1
IM3
IM2
IM1
IM0
IOVCCDUM1
IOVCCDUM1
VGL
VGL
VGL
VGL
VLOUT3
C12C12C12C12C12+
C12+
C12+
C12+
C21C21C21+
C21+
C22C22C22+
C22+
VLOUT2
VGH
VGH
DUMMY4
VCOM1
VCOM1
DUMMY3
DUMMY2
DUMMY1
10Ω
CA
10Ω
CC
10Ω
CB
10Ω
C1
30Ω
VR
50Ω
Option
30Ω
CD
3Ω
C2
3Ω
C4
3Ω
D1
3Ω
3Ω
C3
3Ω
30Ω
30Ω
30Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
GND
Option
30Ω
30Ω
30Ω
10Ω
CE
Option
3Ω
VCC
30Ω
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
E_RD
RW_WR
RS
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
XCS
30Ω
30Ω
3Ω
50Ω
50Ω
50Ω
50Ω
3Ω
3Ω
D3
C9
3Ω
10Ω
C5
10Ω
10Ω
C6
10Ω
5Ω
5Ω
C7
C8
10Ω
10Ω
D2
10Ω
Even lines
Ver 2.3
109/113
2007/07/19
ST7712
TFT Subtrate
FPC
Odd lines
DUMMYA
G3
G7
DUMMY9 open
DUMMY8 open
DUMMY7 open
VCOM2
VCOM2
G1
G5
Interface: SPI 4-Lines
Vcc=2.4V~3.3V
Vci=2.5V~3.3V
G131
VCMDUMMY1
DUMMYB
S394
S392
IOVCC=1.8V~3.3V
G129
S395
S393
1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE
0.1uF(20V):C5,C6,C8,C9
Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V)
DISPLAY
VR>200KΩ
S198
S199
S196
S197
S0
DUMMYC
VCMDUMMY2
G128
S1
G130
X
Y
(0,0)
DUMMY6 open
VCL
VCL
VLOUT4
VCOML
VCOML
VCOML
VCOMH
VCOMH
VCOMH
DUMMY5 open
VERG1OUT
VCOMR
VLPWR
C11+
C11+
C11+
C11+
C11C11C11C11VLOUT1
VLOUT1
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
DDVDH
VCIOUT
VCIOUT
VCIOUT
VCIOUT
VCI1
VCI1
VCI1
VCI1
VCI1
VCI1
VMON
VGS
VGS
REGP
open
FUS4
open
FUS3
open
FUS2
open
FUS1
open
FUS0
VSSF
FUSA4
FUSA3
FUSA2
FUSA1
FUSA0
AGND
AGND
AGND
AGND
AGND
AGND
GND
GND
GND
GND
GND
GND
OSC2
OSC1
VCILVL
VDDO
VDDO
VCI
VCI
VCI
VCI
VCI
VCI
VCC
VCC
VCC
VCC
VCC
VCC
IOVCC
IOVCC
XRESET
DB17
DB16
DB15
DB14
DB13
DB12
DB11
DB10
DB09
IOGNDDUM2 open
IOGNDDUM2 open
DB08
DB07
DB06
DB05
DB04
DB03
DB02
DB01
DB00
E_RD
RW_WR
RS
SDO
SDI
SCL
XCS
FLM
IOGNDDUM1
IOGNDDUM1
IM3
IM2
IM1
IM0
IOVCCDUM1
IOVCCDUM1
VGL
VGL
VGL
VGL
VLOUT3
C12C12C12C12C12+
C12+
C12+
C12+
C21C21C21+
C21+
C22C22C22+
C22+
VLOUT2
VGH
VGH
10Ω
CA
10Ω
CC
10Ω
CB
10Ω
C1
30Ω
VR
50Ω
Option
30Ω
CD
3Ω
C2
3Ω
C4
3Ω
D1
3Ω
3Ω
C3
3Ω
30Ω
30Ω
30Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
3Ω
GND
Option
30Ω
30Ω
30Ω
10Ω
CE
Option
VCC
3Ω
XRESET
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
RW_WR
RS
SDO
SDI
SCL
XCS
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
30Ω
3Ω
50Ω
50Ω
50Ω
50Ω
3Ω
3Ω
D3
C9
3Ω
10Ω
C5
10Ω
10Ω
C6
10Ω
5Ω
C7
5Ω
C8
10Ω
10Ω
D2
G0
DUMMYD
G2
DUMMY4
VCOM1
VCOM1
DUMMY3
DUMMY2
DUMMY1
10Ω
Even lines
Ver 2.3
110/113
2007/07/19
ST7712
Interface: SPI 3-Lines
Vcc=2.4V~3.3V
Vci=2.5V~3.3V
IOVCC=1.8V~3.3V
1uF(6V):C2,C3,C4,C7,CA,CB,CC,CD,CE
0.1uF(20V):C5,C6,C8,C9
Shot key diode (VF<0.4V/20mA at 25 ℃ VR>=30V)
VR>200KΩ
Ver 2.3
111/113
2007/07/19
ST7712
ST7712 Serial Specification Revision History
Ver 2.3
Version
Date
Description
0.0
2004/7/26
Preliminary spec.
0.2f
2005/6/8
Add application notes and timing
0.2f
2005/6/8
Add Alignment mark coordinate
0.2f
2005/6/8
Add instruction flow chart and demo code
0.3a
2005/7/7
Change GVDD to VREG1OUT
0.3a
2005/7/7
Modify partial_display flow chart code
0.3a
2005/7/7
Modify STB and SLP operation code form 0x0010 to 0x0001
0.3a
2005/7/7
Modify VCM and VDV register ratio table
0.3a
2005/7/7
Delete EQ description when Vcom<0 abnormal display
0.3a
2005/7/7
Modify application circuit and add recommend OBL resistor
0.3a
2005/7/7
0.4a
2005/9/5
Add VCMDUMMY1,VCMDUMMY2/DUMMY1~DUMMY9
/DUMMYA~DUMMYD description
Add switch 8-color mode to 262,144-color mode flow chart and
code
0.4a
2005/9/5
Add partial-display note
0.4a
2005/9/5
Modify partial-display flow chart
0.4a
2005/9/5
Modify DC1[2:0] and DC0[2:0] frequency
0.4a
2005/9/5
Modify Trim fuse note
0.4b
2005/9/26
Add 8 color mode data format table
0.4b
2005/9/26
Add power up command (04H)
0.4b
2005/9/26
Modify command 42H,43H set value of gate driver
0.4b
2005/9/26
Modify external capacitor(C5,C6.C8,C9) of power supply
circuit range 0.1uF~1.0uF
0.4b
2005/9/26
Correct Partial_display flow chart
0.5
2005/10/3
Specification modify
0.6
2005/11/24 Modify VCM table
0.6
2005/11/24 Modify timing table and add SPI read timing
0.6
2005/11/24 Add cascade application note
0.6
2005/11/24 Modify power up command table(04H)
0.6
2005/11/24 Add BGR=1 application note
0.6
2005/11/24 Modify VOH/VOL specification table
0.6
2005/11/24 Add option test capacitance notes in Application circuit
0.6
2005/11/24 Modify internal signals of read mode
112/113
2007/07/19
ST7712
Ver 2.3
1.0
2006/01/04 VRH table modify
1.0
2006/01/04 Modify Trim fuse current limitation specification
1.0
2006/01/04 Modify 8 color display flow chart
1.0
2006/01/04 Modify 8 color mode and partial display current specification
1.0
2006/01/04 Modify SLP and STB example code setting value
1.1
2006/1/19
Modify SLP and STB flow chart
1.1
2006/1/19
Modify Initial Code Setting Flow Chart remark
1.1
2006/1/19
Add Power Supply Setting Flow
1.1
2006/1/19
Modify SLP and STB current maximum value
1.2
2006/5/10
Delete external resistor table and add application notes
1.2
2006/5/10
Disable SDT=1 colocks register value
1.2
2006/5/10
Add trim fuse connect diagram
2.0
2006/6/16
2.0
2006/6/16
Delet example initial code setting. Please refer to application
notes
Modify Chip thickness 381±25um400±25um and Bump heigh
17±3um15±3um
2.1
2006/7/4
Modify Figure 7.2.1 timing chart
2.1
2006/7/4
Modify 12.The MCU interface(reference sample) Data pin
defind of IC side
2.1
2006/7/4
Modify 13. Application circuit the node of C1
2.2
2006/7/7
Modify SDO direction of Block diagram
2.3
2007/7/19
Correct I/O pad size
113/113
2007/07/19