SITRONIX ST7732

ST
Sitronix
ST7732
262K Color Single-Chip TFT Controller/Driver
1. Introduction
The ST7732 is a single-chip controller/driver for 262K-color, graphic type TFT-LCD. It consists of 396 source line and
162 gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial
Peripheral Interface (SPI), 8-bits/9-bits/16-bits/18-bits parallel interface. Display data can be stored in the on-chip display
data RAM of 132 x 162 x 18 bits. It can perform display data RAM read/write operation with no external operation clock to
minimize power consumption. In addition, because of the integrated power supply circuits necessary to drive liquid crystal,
it is possible to make a display system with fewer components.
2. Features
Single chip TFT-LCD controller/driver with display data RAM
Display resolution: 132 (H) x RGB x 162 (V)
Display data RAM (frame memory): 132 x 162 x 18-bits = 384,912 bits
Output:
- 396 ch source outputs (132RGB)
- 162 ch gate outputs
- Common electrode output
Display mode (color mode)
- Full color mode (idle mode off): 262K-colors
- Reduce color mode (idle mode on): 8-colors (1-bit for individual R, G, B color depth)
Display resolution option
- 128 x 160 display with 128 x 18-bits x 160 display RAM
- 120 x 160 display with 120 x 18-bits x 160 display RAM
- 132 x 162 display with 132 x 18-bits x 162 display RAM
Supported LC type option
- Transflective (TR) LC type (When LCM1,LCM0 = “00”)
- Transmissive (TM) LC type (When LCM1,LCM0 = “01”)
- Low voltage (LV) LC type (When LCM1,LCM0 = “10”)
- MVA LC type (When LCM1, LCM0 = “11”)
Supported data format on display host interface
- 12-bits/pixel: RGB= (444) using the 384k-bits frame memory and LUT
- 16-bits/pixel: RGB= (565) using the 384k-bits frame memory and LUT
- 18-bits/pixel: RGB= (666) using the 384k-bits frame memory
Supported MCU Interface
- 3-line serial interface
- 4-line serial interface
- 8-bits, 9-bits, 16-bits, 18-bits interface with 8080-series MCU
- 8-bits, 9-bits, 16-bits, 18-bits interface with 6800-series MCU
- 6-bits, 16-bits, 18-bits RGB interface with graphic controller
Display features
- Area scrolling
- Partial display mode
- Software programmable color depth mode
Build-in circuit
- DC/DC converter
- Adjustable VCOM generation
- Non-volatile (NV) memory to store initial register setting
- Oscillator for display clock generation
- Timing controller
- supporting transflective, transmissive, low voltage, MVA type LC
- Factory default value (module ID, module version, etc) are stored in NV memory
- Line inversion, frame inversion
NV Memory
- 7-bits for ID2
- 8-bits for ID3
- 7-bits for VCOM adjustment
Sitronix Technology Corp. reserves the right to change
1 the contents in this document without prior notice.
ST7732
Supply voltage range
- Analog supply voltage range for VDD to AGND: 2.5V to 3.3V
- I/O supply voltage range for VDDI to DGND: 1.6V to 3.3V
Output voltage level
- Source output voltage range (GVDD to AGND): 3.0V to 5.0V
- Power supply range for driver circuit (AVDD to AGND): 4.55V to 6.0V
- Output range of HIGH level of VCOM (VCOMH to AGND): 2.5V to 5.0V
- Output range of LOW level of VCOM (VCOML to AGND): -2.5V to 0.0V
- Output range of HIGH level of gate driver (VGH to AGND): +9.4V to 16.2V
- Output range of LOW level of gate driver (VGL to AGND): -13.5V to –7.0V
Lower power consumption, suitable for battery operated systems
- CMOS compatible inputs
- Optimized layout for COG assembly
- Operate temperature range: -30℃ to +70℃
Ver 1.5.2
2
2007-12
ST7732
3. Pad arrangement
View point: bump view
Chip size (um): 13500 x 700
PAD coordinate: pad center
Coordinate origin: chip center
Chip thickness (um): 300±15
Bump height (um): 15±3
Bump hardness (HV): 75±25
Pad arrangement (Unit: um):
Output: pad No. 1 ~ 585 = 21 x 96
21
23
96
22
35
96
Input: pad No. 586 ~ 760 = 55 x 96
Alignment mark (unit: um):
(-6627.5, -195.5)
Ver 1.5.2
3
(6627.5, -195.5)
2007-12
ST7732
4. Pad Center Coordinates
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
1
PADA3
6424
239
41
G92
5544
239
2
DUMMY
6402
108
42
G90
5522
108
3
PADB3
6380
239
43
G88
5500
239
4
DUMMY
6358
108
44
G86
5478
108
5
DUMMY
6336
239
45
G84
5456
239
6
G162
6314
108
46
G82
5434
108
7
G160
6292
239
47
G80
5412
239
8
G158
6270
108
48
G78
5390
108
9
G156
6248
239
49
G76
5368
239
10
G154
6226
108
50
G74
5346
108
11
G152
6204
239
51
G72
5324
239
12
G150
6182
108
52
G70
5302
108
13
G148
6160
239
53
G68
5280
239
14
G146
6138
108
54
G66
5258
108
15
G144
6116
239
55
G64
5236
239
16
G142
6094
108
56
G62
5214
108
17
G140
6072
239
57
G60
5192
239
18
G138
6050
108
58
G58
5170
108
19
G136
6028
239
59
G56
5148
239
20
G134
6006
108
60
G54
5126
108
21
G132
5984
239
61
G52
5104
239
22
G130
5962
108
62
G50
5082
108
23
G128
5940
239
63
G48
5060
239
24
G126
5918
108
64
G46
5038
108
25
G124
5896
239
65
G44
5016
239
26
G122
5874
108
66
G42
4994
108
27
G120
5852
239
67
G40
4972
239
28
G118
5830
108
68
G38
4950
108
29
G116
5808
239
69
G36
4928
239
30
G114
5786
108
70
G34
4906
108
31
G112
5764
239
71
G32
4884
239
32
G110
5742
108
72
G30
4862
108
33
G108
5720
239
73
G28
4840
239
34
G106
5698
108
74
G26
4818
108
35
G104
5676
239
75
G24
4796
239
36
G102
5654
108
76
G22
4774
108
37
G100
5632
239
77
G20
4752
239
38
G98
5610
108
78
G18
4730
108
39
G96
5588
239
79
G16
4708
239
40
G94
5566
108
80
G14
4686
108
Ver 1.5.2
4
2007-12
ST7732
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
81
G12
4664
239
121
S368
3784
239
82
G10
4642
108
122
S367
3762
108
83
G8
4620
239
123
S366
3740
239
84
G6
4598
108
124
S365
3718
108
85
G4
4576
239
125
S364
3696
239
86
G2
4554
108
126
S363
3674
108
87
DUMMY
4532
239
127
S362
3652
239
88
DUMMY
4510
108
128
S361
3630
108
89
DUMMY
4488
239
129
S360
3608
239
90
DUMMY
4466
108
130
S359
3586
108
91
DUMMY
4444
239
131
S358
3564
239
92
DUMMY
4422
108
132
S357
3542
108
93
S396
4400
239
133
S356
3520
239
94
S395
4378
108
134
S355
3498
108
95
S394
4356
239
135
S354
3476
239
96
S393
4334
108
136
S353
3454
108
97
S392
4312
239
137
S352
3432
239
98
S391
4290
108
138
S351
3410
108
99
S390
4268
239
139
S350
3388
239
100
S389
4246
108
140
S349
3366
108
101
S388
4224
239
141
S348
3344
239
102
S387
4202
108
142
S347
3322
108
103
S386
4180
239
143
S346
3300
239
104
S385
4158
108
144
S345
3278
108
105
S384
4136
239
145
S344
3256
239
106
S383
4114
108
146
S343
3234
108
107
S382
4092
239
147
S342
3212
239
108
S381
4070
108
148
S341
3190
108
109
S380
4048
239
149
S340
3168
239
110
S379
4026
108
150
S339
3146
108
111
S378
4004
239
151
S338
3124
239
112
S377
3982
108
152
S337
3102
108
113
S376
3960
239
153
S336
3080
239
114
S375
3938
108
154
S335
3058
108
115
S374
3916
239
155
S334
3036
239
116
S373
3894
108
156
S333
3014
108
117
S372
3872
239
157
S332
2992
239
118
S371
3850
108
158
S331
2970
108
119
S370
3828
239
159
S330
2948
239
120
S369
3806
108
160
S329
2926
108
Ver 1.5.2
5
2007-12
ST7732
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
161
S328
2904
239
201
S288
2024
239
162
S327
2882
108
202
S287
2002
108
163
S326
2860
239
203
S286
1980
239
164
S325
2838
108
204
S285
1958
108
165
S324
2816
239
205
S284
1936
239
166
S323
2794
108
206
S283
1914
108
167
S322
2772
239
207
S282
1892
239
168
S321
2750
108
208
S281
1870
108
169
S320
2728
239
209
S280
1848
239
170
S319
2706
108
210
S279
1826
108
171
S318
2684
239
211
S278
1804
239
172
S317
2662
108
212
S277
1782
108
173
S316
2640
239
213
S276
1760
239
174
S315
2618
108
214
S275
1738
108
175
S314
2596
239
215
S274
1716
239
176
S313
2574
108
216
S273
1694
108
177
S312
2552
239
217
S272
1672
239
178
S311
2530
108
218
S271
1650
108
179
S310
2508
239
219
S270
1628
239
180
S309
2486
108
220
S269
1606
108
181
S308
2464
239
221
S268
1584
239
182
S307
2442
108
222
S267
1562
108
183
S306
2420
239
223
S266
1540
239
184
S305
2398
108
224
S265
1518
108
185
S304
2376
239
225
S264
1496
239
186
S303
2354
108
226
S263
1474
108
187
S302
2332
239
227
S262
1452
239
188
S301
2310
108
228
S261
1430
108
189
S300
2288
239
229
S260
1408
239
190
S299
2266
108
230
S259
1386
108
191
S298
2244
239
231
S258
1364
239
192
S297
2222
108
232
S257
1342
108
193
S296
2200
239
233
S256
1320
239
194
S295
2178
108
234
S255
1298
108
195
S294
2156
239
235
S254
1276
239
196
S293
2134
108
236
S253
1254
108
197
S292
2112
239
237
S252
1232
239
198
S291
2090
108
238
S251
1210
108
199
S290
2068
239
239
S250
1188
239
200
S289
2046
108
240
S249
1166
108
Ver 1.5.2
6
2007-12
ST7732
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
241
S248
1144
239
281
S208
264
239
242
S247
1122
108
282
S207
242
108
243
S246
1100
239
283
S206
220
239
244
S245
1078
108
284
S205
198
108
245
S244
1056
239
285
S204
176
239
246
S243
1034
108
286
S203
154
108
247
S242
1012
239
287
S202
132
239
248
S241
990
108
288
S201
110
108
249
S240
968
239
289
S200
88
239
250
S239
946
108
290
S199
66
108
251
S238
924
239
291
DUMMY
44
239
252
S237
902
108
292
DUMMY
22
108
253
S236
880
239
293
DUMMY
0
239
254
S235
858
108
294
DUMMY
-22
108
255
S234
836
239
295
DUMMY
-44
239
256
S233
814
108
296
S198
-66
108
257
S232
792
239
297
S197
-88
239
258
S231
770
108
298
S196
-110
108
259
S230
748
239
299
S195
-132
239
260
S229
726
108
300
S194
-154
108
261
S228
704
239
301
S193
-176
239
262
S227
682
108
302
S192
-198
108
263
S226
660
239
303
S191
-220
239
264
S225
638
108
304
S190
-242
108
265
S224
616
239
305
S189
-264
239
266
S223
594
108
306
S188
-286
108
267
S222
572
239
307
S187
-308
239
268
S221
550
108
308
S186
-330
108
269
S220
528
239
309
S185
-352
239
270
S219
506
108
310
S184
-374
108
271
S218
484
239
311
S183
-396
239
272
S217
462
108
312
S182
-418
108
273
S216
440
239
313
S181
-440
239
274
S215
418
108
314
S180
-462
108
275
S214
396
239
315
S179
-484
239
276
S213
374
108
316
S178
-506
108
277
S212
352
239
317
S177
-528
239
278
S211
330
108
318
S176
-550
108
279
S210
308
239
319
S175
-572
239
280
S209
286
108
320
S174
-594
108
Ver 1.5.2
7
2007-12
ST7732
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
321
S173
-616
239
361
S133
-1496
239
322
S172
-638
108
362
S132
-1518
108
323
S171
-660
239
363
S131
-1540
239
324
S170
-682
108
364
S130
-1562
108
325
S169
-704
239
365
S129
-1584
239
326
S168
-726
108
366
S128
-1606
108
327
S167
-748
239
367
S127
-1628
239
328
S166
-770
108
368
S126
-1650
108
329
S165
-792
239
369
S125
-1672
239
330
S164
-814
108
370
S124
-1694
108
331
S163
-836
239
371
S123
-1716
239
332
S162
-858
108
372
S122
-1738
108
333
S161
-880
239
373
S121
-1760
239
334
S160
-902
108
374
S120
-1782
108
335
S159
-924
239
375
S119
-1804
239
336
S158
-946
108
376
S118
-1826
108
337
S157
-968
239
377
S117
-1848
239
338
S156
-990
108
378
S116
-1870
108
339
S155
-1012
239
379
S115
-1892
239
340
S154
-1034
108
380
S114
-1914
108
341
S153
-1056
239
381
S113
-1936
239
342
S152
-1078
108
382
S112
-1958
108
343
S151
-1100
239
383
S111
-1980
239
344
S150
-1122
108
384
S110
-2002
108
345
S149
-1144
239
385
S109
-2024
239
346
S148
-1166
108
386
S108
-2046
108
347
S147
-1188
239
387
S107
-2068
239
348
S146
-1210
108
388
S106
-2090
108
349
S145
-1232
239
389
S105
-2112
239
350
S144
-1254
108
390
S104
-2134
108
351
S143
-1276
239
391
S103
-2156
239
352
S142
-1298
108
392
S102
-2178
108
353
S141
-1320
239
393
S101
-2200
239
354
S140
-1342
108
394
S100
-2222
108
355
S139
-1364
239
395
S99
-2244
239
356
S138
-1386
108
396
S98
-2266
108
357
S137
-1408
239
397
S97
-2288
239
358
S136
-1430
108
398
S96
-2310
108
359
S135
-1452
239
399
S95
-2332
239
360
S134
-1474
108
400
S94
-2354
108
Ver 1.5.2
8
2007-12
ST7732
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
401
S93
-2376
239
441
S53
-3256
239
402
S92
-2398
108
442
S52
-3278
108
403
S91
-2420
239
443
S51
-3300
239
404
S90
-2442
108
444
S50
-3322
108
405
S89
-2464
239
445
S49
-3344
239
406
S88
-2486
108
446
S48
-3366
108
407
S87
-2508
239
447
S47
-3388
239
408
S86
-2530
108
448
S46
-3410
108
409
S85
-2552
239
449
S45
-3432
239
410
S84
-2574
108
450
S44
-3454
108
411
S83
-2596
239
451
S43
-3476
239
412
S82
-2618
108
452
S42
-3498
108
413
S81
-2640
239
453
S41
-3520
239
414
S80
-2662
108
454
S40
-3542
108
415
S79
-2684
239
455
S39
-3564
239
416
S78
-2706
108
456
S38
-3586
108
417
S77
-2728
239
457
S37
-3608
239
418
S76
-2750
108
458
S36
-3630
108
419
S75
-2772
239
459
S35
-3652
239
420
S74
-2794
108
460
S34
-3674
108
421
S73
-2816
239
461
S33
-3696
239
422
S72
-2838
108
462
S32
-3718
108
423
S71
-2860
239
463
S31
-3740
239
424
S70
-2882
108
464
S30
-3762
108
425
S69
-2904
239
465
S29
-3784
239
426
S68
-2926
108
466
S28
-3806
108
427
S67
-2948
239
467
S27
-3828
239
428
S66
-2970
108
468
S26
-3850
108
429
S65
-2992
239
469
S25
-3872
239
430
S64
-3014
108
470
S24
-3894
108
431
S63
-3036
239
471
S23
-3916
239
432
S62
-3058
108
472
S22
-3938
108
433
S61
-3080
239
473
S21
-3960
239
434
S60
-3102
108
474
S20
-3982
108
435
S59
-3124
239
475
S19
-4004
239
436
S58
-3146
108
476
S18
-4026
108
437
S57
-3168
239
477
S17
-4048
239
438
S56
-3190
108
478
S16
-4070
108
439
S55
-3212
239
479
S15
-4092
239
440
S54
-3234
108
480
S14
-4114
108
Ver 1.5.2
9
2007-12
ST7732
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
481
S13
-4136
239
521
G43
-5016
239
482
S12
-4158
108
522
G45
-5038
108
483
S11
-4180
239
523
G47
-5060
239
484
S10
-4202
108
524
G49
-5082
108
485
S9
-4224
239
525
G51
-5104
239
486
S8
-4246
108
526
G53
-5126
108
487
S7
-4268
239
527
G55
-5148
239
488
S6
-4290
108
528
G57
-5170
108
489
S5
-4312
239
529
G59
-5192
239
490
S4
-4334
108
530
G61
-5214
108
491
S3
-4356
239
531
G63
-5236
239
492
S2
-4378
108
532
G65
-5258
108
493
S1
-4400
239
533
G67
-5280
239
494
DUMMY
-4422
108
534
G69
-5302
108
495
DUMMY
-4444
239
535
G71
-5324
239
496
DUMMY
-4466
108
536
G73
-5346
108
497
DUMMY
-4488
239
537
G75
-5368
239
498
DUMMY
-4510
108
538
G77
-5390
108
499
DUMMY
-4532
239
539
G79
-5412
239
500
G1
-4554
108
540
G81
-5434
108
501
G3
-4576
239
541
G83
-5456
239
502
G5
-4598
108
542
G85
-5478
108
503
G7
-4620
239
543
G87
-5500
239
504
G9
-4642
108
544
G89
-5522
108
505
G11
-4664
239
545
G91
-5544
239
506
G13
-4686
108
546
G93
-5566
108
507
G15
-4708
239
547
G95
-5588
239
508
G17
-4730
108
548
G97
-5610
108
509
G19
-4752
239
549
G99
-5632
239
510
G21
-4774
108
550
G101
-5654
108
511
G23
-4796
239
551
G103
-5676
239
512
G25
-4818
108
552
G105
-5698
108
513
G27
-4840
239
553
G107
-5720
239
514
G29
-4862
108
554
G109
-5742
108
515
G31
-4884
239
555
G111
-5764
239
516
G33
-4906
108
556
G113
-5786
108
517
G35
-4928
239
557
G115
-5808
239
518
G37
-4950
108
558
G117
-5830
108
519
G39
-4972
239
559
G119
-5852
239
520
G41
-4994
108
560
G121
-5874
108
Ver 1.5.2
10
2007-12
ST7732
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
561
G123
-5896
239
601
RCM[1]
-5280
-239
562
G125
-5918
108
602
DGNDO
-5200
-239
563
G127
-5940
239
603
SRGB
-5120
-239
564
G129
-5962
108
604
VDDIO
-5040
-239
565
G131
-5984
239
605
SMX
-4960
-239
566
G133
-6006
108
606
DGNDO
-4880
-239
567
G135
-6028
239
607
SMY
-4800
-239
568
G137
-6050
108
608
VDDIO
-4720
-239
569
G139
-6072
239
609
IDM
-4640
-239
570
G141
-6094
108
610
DGNDO
-4560
-239
571
G143
-6116
239
611
REV
-4480
-239
572
G145
-6138
108
612
VDDIO
-4400
-239
573
G147
-6160
239
613
RL
-4320
-239
574
G149
-6182
108
614
DGNDO
-4240
-239
575
G151
-6204
239
615
TB
-4160
-239
576
G153
-6226
108
616
VDDIO
-4080
-239
577
G155
-6248
239
617
SHUT
-4000
-239
578
G157
-6270
108
618
DGNDO
-3920
-239
579
G159
-6292
239
619
GM[1]
-3840
-239
580
G161
-6314
108
620
GM[0]
-3760
-239
581
DUMMY
-6336
239
621
LCM[0]
-3680
-239
582
DUMMY
-6358
108
622
VDDIO
-3600
-239
583
PADA4
-6380
239
623
LCM[1]
-3520
-239
584
DUMMY
-6402
108
624
DGNDO
-3440
-239
585
PADB4
-6424
239
625
D[17]
-3360
-239
586
PADA1
-6464
-239
626
D[16]
-3280
-239
587
PADB1
-6400
-239
627
D[15]
-3200
-239
588
PADA0
-6320
-239
628
D[14]
-3120
-239
589
EXTC
-6240
-239
629
D[13]
-3040
-239
590
DGNDO
-6160
-239
630
D[12]
-2960
-239
591
IM[0]
-6080
-239
631
D[11]
-2880
-239
592
VDDIO
-6000
-239
632
D[10]
-2800
-239
593
IM[1]
-5920
-239
633
D[9]
-2720
-239
594
DGNDO
-5840
-239
634
D[8]
-2640
-239
595
IM[2]
-5760
-239
635
DGNDO
-2560
-239
596
VDDIO
-5680
-239
636
TESEL
-2480
-239
597
P68
-5600
-239
637
D[7]
-2400
-239
598
DGNDO
-5520
-239
638
D[6]
-2320
-239
599
RCM[0]
-5440
-239
639
D[5]
-2240
-239
600
VDDIO
-5360
-239
640
D[4]
-2160
-239
Ver 1.5.2
11
2007-12
ST7732
PAD No.
PIN Name
X
Y
PAD No.
PIN Name
X
Y
641
D[3]
-2080
-239
681
VDDI
960
-239
642
D[2]
-2000
-239
682
VDDI
1024
-239
643
D[1]
-1920
-239
683
VCC
1104
-239
644
D[0] (SDA)
-1840
-239
684
VCC
1168
-239
645
TPO[8]
-1760
-239
685
VCC
1232
-239
646
TPO[7]
-1680
-239
686
VCI1
1312
-239
647
TPO[6]
-1600
-239
687
VCI1
1376
-239
648
TPO[5]
-1520
-239
688
VCI1
1440
-239
649
TPO[4]
-1440
-239
689
AGND
1520
-239
650
OSC
-1360
-239
690
AGND
1584
-239
651
TE
-1280
-239
691
AGND
1648
-239
652
CSX
-1200
-239
692
AGND
1712
-239
653
RDX (E)
-1120
-239
693
AGND
1776
-239
654
WRX (D/CX)
-1040
-239
694
AGND
1840
-239
655
SDA
-960
-239
695
VDD
1920
-239
656
GS
-880
-239
696
VDD
1984
-239
657
4WSPI
-800
-239
697
VDD
2048
-239
658
RESX
-720
-239
698
VDD
2112
-239
659
DGND
-640
-239
699
VDD
2176
-239
660
D/CX(SCL)
-560
-239
700
VREF
2256
-239
661
DGND
-480
-239
701
VREF
2320
-239
662
PCLK
-400
-239
702
VREF
2384
-239
663
DGND
-320
-239
703
TPI[1]
2464
-239
664
DE
-240
-239
704
TPI[2]
2544
-239
665
HS
-160
-239
705
AVDD
2624
-239
666
VS
-80
-239
706
AVDD
2688
-239
667
TPO[3]
0
-239
707
AVDD
2752
-239
668
TPO[2]
80
-239
708
AVDD_O
2816
-239
669
TPO[1]
160
-239
709
AVDD_O
2880
-239
670
DGND
240
-239
710
GVDD
2960
-239
671
DGND
304
-239
711
GVDD
3024
-239
672
DGND
368
-239
712
GVDD
3088
-239
673
DGND
432
-239
713
C11P
3168
-239
674
DGND
496
-239
714
C11P
3232
-239
675
DGND
560
-239
715
C11P
3296
-239
676
DGND
624
-239
716
C11N
3376
-239
677
VDDI
704
-239
717
C11N
3440
-239
678
VDDI
768
-239
718
C11N
3504
-239
679
VDDI
832
-239
719
C12P
3584
-239
680
VDDI
896
-239
720
C12P
3648
-239
Ver 1.5.2
12
2007-12
ST7732
PAD No.
PIN Name
X
Y
721
C12P
3712
-239
722
C12N
3792
-239
723
C12N
3856
-239
724
C12N
3920
-239
725
AGND
4000
-239
726
AGND
4064
-239
727
AGND
4128
-239
728
VCL
4208
-239
729
VCL
4272
-239
730
VCL_O
4336
-239
731
C21P
4416
-239
732
C21P
4480
-239
733
C21N
4560
-239
734
C21N
4624
-239
735
C22P
4704
-239
736
C22P
4768
-239
737
C22N
4848
-239
738
C22N
4912
-239
739
C23P
4992
-239
740
C23P
5056
-239
741
C23N
5136
-239
742
C23N
5200
-239
743
VGL
5280
-239
744
VGL
5344
-239
745
VGL
5408
-239
746
VGH_O
5488
-239
747
VGH
5552
-239
748
VGH
5616
-239
749
VCOMH
5696
-239
750
VCOMH
5760
-239
751
VCOMH
5824
-239
752
VCOML
5904
-239
753
VCOML
5968
-239
754
VCOML
6032
-239
755
PADB0
6112
-239
756
VCOM
6192
-239
757
VCOM
6256
-239
758
VCOM
6320
-239
759
PADA2
6400
-239
760
PADB2
6464
-239
Ver 1.5.2
PAD No.
13
PIN Name
X
Y
2007-12
ST7732
5 Block diagram
Ver 1.5.2
14
2007-12
ST7732
6 Pin Description
6.1 Power supply pin
Name
VDD
VDDI
AGND
DGND
I/O
I
I
I
I
Description
Power supply for analog, digital system and booster circuit.
Power supply for I/O system.
System ground for analog system and booster circuit.
System ground for I/O system and digital system.
Count
5
6
9
10
Connect pin
VDD
VDDI
GND
GND
Count
Connect pin
1
DGND/VDDI
3
DGND/VDDI
1
DGND/VDDI
1
MCU
1
MCU
1
MCU
1
MCU
1
MCU
1
MCU
DGND/VDDI
1
-
18
MCU
1
MCU
1
RGB interface
1
RGB interface
1
RGB interface
1
RGB interface
6.2 Interface logic pin
Name
Description
-8080/6800 MCU interface mode select.
-P68=’1’, select 6800 MCU parallel interface.
P68
I
-P68=’0’, select 8080 MCU parallel interface.
-If not used, please connect this pin to VDDI or DGND level.
-Selection for MCU parallel interface or serial interface.
IM0~IM2
I
-If not used, please connect this pin to VDDI or DGND.
- 4-line SPI enable.
4WSPI
I
-If not used, please fix this pin to DGND.
-This signal will reset the device and it must be applied to properly
RESX
I
initialize the chip.
-Signal is active low.
-Chip selection pin
CSX
I
-Low enable.
-Display data/command selection pin in MCU interface.
-D/CX=’1’: display data or parameter.
D/CX
I
-D/CX=’0’: command data.
(SCL)
-In serial interface, this is used as SCL.
-If not used, please connect this pin to VDDI or DGND.
-Read enable in 8080 MCU parallel interface.
RDX
I
-Read/write operation enable pin in 6800 MCU parallel interface.
(E)
-If not used, please connect this pin to VDDI or DGND.
-Write enable in MCU parallel interface.
WRX
I
-In 4-line SPI, this pin is used as D/CX (data/ command selection).
(D/CX)
-If not used, please connect this pin to VDDI or DGND.
-When RCM1, RCM0=’1X’ (RGB interface), this pin is used as serial
input/output pin.
SDA
I
-When RCM1, RCM0=’0X’ (MCU interface), this pin is not used and
please connect to VDDI or DGND level. The serial input/output pin in
MCU interface mode is D0.
-Monitoring pin of internal oscillator clock and is turned ON/OFF by S/W
command.
OSC
O
-When this pin is inactive (function OFF), this pin is DGND level.
-If not used, please open this pin.
-When RCM=”1” (RGB interface), D[17:0] are used as RGB interface
data bus.
-When RCM=”0” (MCU interface), D[17:0] are used as MCU parallel
interface data bus.
D[17:0]
I/O
-D0 is the serial input/output signal in serial interface mode.
-In serial interface, D[17:1] are not used and should be connected to
VDDI or DGND.
-Tearing effect output pin to synchronies MCU to frame rate, activated
TE
I/O
by S/W command.
-If not used, please open this pin.
-Pixel clock signal in RGB interface mode.
PCLK
I
-If not used, please fix this pin at VDDI or DGND.
-Vertical sync. signal in RGB interface mode.
VS
I
-If not used, please fix this pin at VDDI or DGND.
-Horizontal sync. signal in RGB interface mode.
HS
I
-If not used, please fix this pin at VDDI or DGND.
-Data enable signal in RGB interface mode.
DE
I
-If not used, please fix this pin at VDDI or DGND.
Note1. When in parallel mode, no use data pin must be connected to “1” or “0”.
Note2. When CSX=”1”, there is no influence to the parallel and serial interface.
Ver 1.5.2
I/O
15
2007-12
ST7732
6.3 Mode selection pin
Name
I/O
EXTC
I
Count
Connect pin
1
VDDI/DGND
1
VDDI/DGND
1
VDDI/DGND
I
-Panel resolution selection pins.
GM[1:0]
Selection of panel resolution
00
128RGB x 160
01
120RGB x 160
11
132RGB x 162
2
VDDI/DGND
I
-Liquid crystal (LC) type selection pins.
LCM[1:0]
Selection of LC type
00
0
TR (transflective) type LC
01
1
TM (transmissive) type LC
10
2
LV (low voltage) type LC
11
3
MVA (multi-domain vertical alignment) type LC
2
VDDI/DGND
I
-RGB or MCU interface mode selection pins.
RCM[1:0]
Selection of MCU or RGB interface
00
0
MCU Interface
01
1
MCU Interface
10
2
RGB Interface (1)
11
3
RGB Interface (2)
2
VDDI/DGND
I
-RGB arrangement selection pin for color filter design.
SRGB
RGB arrangement
S1, S2, S3 filter order = ’R’, ’G’, ’B’
0
S1, S2, S3 filter order = ‘B’, ‘G’, ‘R’
1
1
VDDI/DGND
I
-Scanning direction of source output selection pin.
Scanning direction of source output
SMX
GM=”00”
GM=”01”
GM=”11”
0
S7 -> S390
S7 -> S366
S1 -> S396
1
S390 -> S7
S366 -> S7
S396 -> S1
1
VDDI/DGND
I
-Scanning direction of gate output selection pin.
Scanning direction of gate output
SMY
GM=”00”
GM=”01”
GM=”11”
0
G2 -> G161
G2 -> G161
G1 -> G162
1
G161 -> G2
G161 -> G2
G162 -> G1
1
VDDI/DGND
I
-Polarity of source output selection pin.
REV
Command
Polarity of source output
INVON(21h)
Data reverse
0
INVOFF(20h)
Data not reverse
INVON(21h)
Data not reverse
1
INVOFF(20h)
Data reverse
1
VDDI/DGND
I
-Display On/Off control pin In RGB interface.
-Only used in RGB2 mode. If not used, please fix this pin at VDDI or
DGND.
SHUT
Display On/Off
0
Display On
1
Display Off
1
VDDI/DGND
GS
I
IDM
I
GM1,
GM0
LCM1,
LCM0
RCM1,
RCM0
SRGB
SMX
SMY
REV
SHUT
Ver 1.5.2
Description
-To use extended command set, please connect this pin to VDDI.
-During normal operation, please open this pin (internal Rpull-down=2MΩ).
EXTC
Enable/disable modification of extend command
0
Only use default command set
1
Use extended command set
-Gamma curve selection pin.
GS
Selection of gamma curve
0
GC0=1.0, GC1=2.5, GC2=2.2, GC3=1.8
1
GC0=2.2, GC1=1.8, GC2=2.5, GC3=1.0
-Normal mode and idle mode selection pin.
IDM
Enable/disable idle mode
0
Normal display (can be changed to Idle mode by
S/W)
1
Idle mode enable
16
2007-12
ST7732
-Scanning direction of source output selection pin in RGB interface.
Scanning direction of source output
RL
SMX
GM=”00”
GM=”01”
GM=”11”
0
0
S7 -> S390
S7 -> S366
S1 -> S396
0
1
S390 -> S7
S366 -> S7
S396 -> S1
1
0
S390 -> S7
S366 -> S7
S396 -> S1
1
1
S7 -> S390
S7 -> S366
S1 -> S396
-Scanning direction of gate output selection pin in RGB interface.
Scanning direction of gate output
TB
SMY
GM=”00”
GM=”01”
GM=”11”
G2 -> G161
G2 -> G161
G1 -> G162
0
0
G161 -> G2
G161 -> G2
G162 -> G1
0
1
G161 -> G2
G161 -> G2
G162 -> G1
1
0
G2 -> G161
G2 -> G161
G1 -> G162
1
1
RL
I
TB
I
TESEL
I/O
-Input mode: Please fix this pin at VDDI or DGND level.
-Output mode: If this pin neither fix on panel internally nor FPC, it must be
changed to output mode. (refer to the application note)
1
VDDI/DGND
1
VDDI/DGND
1
VDDI/DGND
6.4 Driver output pin
Name
S1 to
S396
G1 to
G162
I/O
O
O
Description
Count
Connect pin
- Source driver output pins.
396
-
- Gate driver output pins.
162
-
3
Capacitor
3
AVDDO
2
Capacitor
2
VCLO
1
Capacitor
2
VGHO
1
Capacitor
3
VGLO
3
Capacitor
3
Capacitor
3
Capacitor
3
Capacitor
- A reference voltage for step-up circuit 1.
- Connect a capacitor for stabilization.
- Power input pin for analog circuits.
- In normal usage, connect it to AVDDO.
- Output of step-up circuit 1
- Connect a capacitor for stabilization.
- Power input pin for VCOM circuit.
- In normal usage, connect it to VCLO.
- A power output pin of step-up circuit 4.
- When VCOML is higher than AGND, VCLO=AGND.
- Connect a capacitor for stabilization.
- Power input pin for gate driver circuit.
- In normal usage, connect it to VGHO.
- Positive output pin of the step-up circuit 2.
- Connect a capacitor for stabilization.
- Power input pin for gate driver circuit.
- Negative output of the step-up circuit 2 is connected inside the driver.
- Connect a capacitor for stabilization.
- A reference voltage for power system.
- Connect a capacitor for stabilization.
- A power output of grayscale voltage generator.
- Connect a capacitor for stabilization.
- When internal GVDD generator is not used, connect an external
power supply (AVDD-0.5V) to this pin.
- Positive voltage output of VCOM.
- Connect a capacitor for stabilization.
- Negative voltage output of VCOM.
- Connect a capacitor for stabilization.
VCI1
I/O
AVDD
I
AVDDO
O
VCL
I
VCLO
O
VGH
I
VGHO
O
VGL
I
VREF
O
GVDD
O
VCOMH
O
VCOML
O
VCOM
O
- A power supply for the TFT-LCD common electrode.
3
Common
electrode
O
- Capacitor connecting pins for step-up circuit 1 (for AVDDO)
12
Step-up
Capacitor
O
- Capacitor connecting pins for step-up circuit 2 and 4 (for VGHO,
VGLO, VCLO)
12
Step-up
Capacitor
O
-VDDI voltage output level for monitoring.
8
C11P,
C11N
C12P,
C12N
C21P,
C21N
C22P,
C22N
C23P,
C23N
VDDIO
Ver 1.5.2
17
-
2007-12
ST7732
DGNDO
O
VCC
O
-DGND voltage output level for monitoring.
-Monitoring pin of internal digital reference voltage.
-Connect a capacitor for stabilization.
10
-
3
Capacitor
6.5 Test ping
Name
PADA0
PADB0
PADA1
PADB1
PADA2
PADB2
PADA3
PADB3
PADA4
PADB4
TPI[2]~[1]
TPO[8]~[1]
I/O
Dummy
-
Ver 1.5.2
I
I
I
O
Description
-These test pins is for display glass break detection.
-If not used, please open these pins.
-These test pins is for chip attachment detection.
-If not used, please open these pins.
-Please open these pins.
-Please open these pins.
-These pins are dummy (have no function inside).
-Can allow signal traces pass through these pads on TFT glass.
18
Count
Connect pin
2
Open
8
Open
2
8
Open
Open
23
Open
2007-12
ST7732
7. Driver electrical characteristics
7.1 Absolute operation range
Item
Symbol
Rating
Unit
Supply voltage
VDD
- 0.3 ~ +4.6
V
Supply voltage (Logic)
VDDI
- 0.3 ~ +4.6
V
Supply voltage (Digital)
VCC
-0.3 ~ +4.6
V
Driver supply voltage
VGH-VGL
-0.3 ~ +30.0
V
Logic input voltage range
VIN
0.3 ~ VDDI + 0.3
V
Logic output voltage range
VO
0.3 ~ VDDI + 0.3
V
Operating temperature range
TOPR
-40 ~ +85
℃
Storage temperature range
TSTG
-55 ~ +125
℃
Note: If one of the above items is exceeded its maximum limitation momentarily, the quality of the product may be degraded.
Absolute maximum limitation, therefore, specify the values exceeding which the product may be physically damaged.
Be sure to use the product within the recommend range.
7.2 DC characteristic
Parameter
Specification
TYP
Max
Symbol
Condition
VDD
Operating voltage
2.5
2.8
3.3
V
VDDI
I/O supply voltage
1.6
1.8/2.8
3.3
V
Digital operating voltage
VCC
Digital supply
voltage
1.6
2.0
V
Gate driver high voltage
Gate driver low voltage
Gate driver supply
voltage
Input / Output
Logic-high input voltage
Logic-low input voltage
Logic-high output voltage
Logic-low output voltage
Logic-high input current
Logic-low input current
Input leakage current
VCOM voltage
VCOM high voltage
VCOM low voltage
VCOM amplitude
Source driver
Source output range
Gamma reference
voltage
Source output settling
time
VGH
VGL
9.41
-13.48
16.17
-7.06
V
V
16.47
29.65
V
0.7VDDI
VSS
0.8VDDI
VSS
VDDI
0.3VDDI
VDDI
0.2VDDI
1
Power & operation voltage
System voltage
Interface operation
voltage
Output deviation voltage
(Source output channel)
Output offset voltage
Step-up circuit
Internal reference
voltage
1st step-up (VDDx2)
voltage
1st step-up (VDDx2) drop
voltage
Linear range
Min
| VGH-VGL |
VIH
VIL
VOH
VOL
IIH
IIL
IIL
IOH = -1.0mA
IOL = +1.0mA
VIN = VDDI
VIN = VSS
IOH = -1.0mA
VCOMH
VCOML
VCOMAC
Ccom=12nF
Ccom=12nF
|VCOMH-VCOML|
Unit
Related
Pins
-1
-0.1
+0.1
V
V
V
V
uA
uA
uA
2.5
-2.5
4.0
5.0
0.0
6.0
V
V
V
Vsout
0.1
AVDD-0.1
V
GVDD
3.0
5.0
V
30
us
Note 2
20
mV
Note 2
15
35
mV
mV
Note 3
1
%
Tr
Vdev
Below with 99%
precision
Sout >=4.2V,
Sout<=0.8V
4.2V>Sout>0.8V
VOFFSET
VREF
0
AVDD
VDDx2,dorp
4.95
*4
I AVDD = 1.0mA
(include panel
loading)
VLinear
0.2
6.0
*5
Note 1
Note 1
Note 1
Note 1
Note 1
Note 1
Note 1
V
5%
%
AVDD-0.2
V
Note 1: VDDI=1.6 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, TA=-30 to 70 ℃
Note 2, Source channel loading= 10pF/channel, Gate channel loading=50pF/channel.
Note 3, The Max. value is between measured point of source output and gamma setting value.
Note 4, VDD=2.6V or VCI1=2.6V
Note 5, VDD=3.0V or VCI1=3.0V
Ver 1.5.2
19
2007-12
ST7732
7.3 Power consumption
Operation mode
Current consumption
Typical
Maximum
IDDI
IDD
IDDI
IDD
(uA)
(mA)
(mA)
(mA)
Inversion
mode
Image
One Line
Note 1
1
1.10
One Line
Note 2
1
1.10
One Line
Note 3
1
0.3
N/A
N/A
1
3uA
-Normal mode
-Partial + Idle mode (40 lines)
-Sleep-in mode
Notes:
1. All pixels black.
2. Grayscale from top to bottom.
3. Black & white checker board 4 by 4.
Ver 1.5.2
20
2007-12
ST7732
8. Timing chart
8.1 Parallel interface characteristics: 18, 16, 9 or 8-bits bus (8080-series MCU interface)
Fig. 8.1.1 Parallel interface timing characteristics (8080-series MCU interface)
Signal
Symbol
Parameter
Min
Max
TAST
Address setup time
5
D/CX
TAHT
Address hold time (Write/Read)
10
TCHW
Chip select “H” pulse width
0
TCS
Chip select setup time (Write)
20
TRCS
Chip select setup time (Read ID)
20
CSX
TRCSFM
Chip select setup time (Read FM)
20
TCSF
Chip select wait time (Write/Read)
10
TCSH
Chip select hold time
20
TWC
Write cycle
66
WRX
TWRH
Control pulse “H” duration
25
TWRL
Control pulse “L” duration
15
TRC
Read cycle (ID)
160
RDX (ID)
TRDH
Control pulse “H” duration (ID)
90
TRDL
Control pulse “L” duration (ID)
45
TRCFM
Read cycle (FM)
160
RDX (FM)
TRDHFM
Control pulse “H” duration (FM)
90
TRDLFM
Control pulse “L” duration (FM)
45
TDST
Data setup time
15
D[17:0]
TDHT
Data hold time
15
TODH
Output disable time
20
80
Note: VDDI=1.6 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=-30 to 70 ℃
Ver 1.5.2
21
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Description
-
-(3-transfer for one pixel)
When read ID data
When read from frame
memory
For maximum CL=30pF
For minimum CL=8pF
2007-12
ST7732
Fig. 8.1.2 Rising and falling timing for input and output signal
Fig.8.1.3 Chip selection (CSX) timing
Fig. 8.1.4 Write-to-read and read-to-write timing
Note: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are
specified as 30% and 70% of VDDI for Input signals.
8.2 Parallel interface characteristics: 18, 16, 9 or 8-bits bus (6800-series MCU interface)
Fig. 8.2.1 Parallel interface timing characteristics (6800-series MCU interface)
Ver 1.5.2
22
2007-12
ST7732
Signal
Symbol
Parameter
Min
Max
Unit
Description
TAST
Address setup time
5
ns
D/CX
TAHT
Address hold time (Write/Read)
10
ns
TCHW
Chip select “H” pulse width
0
ns
TCS
Chip select setup time (Write)
20
ns
TRCS
Chip select setup time (Read ID)
20
ns
CSX
TRCSFM
Chip select setup time (Read FM)
20
ns
TCSF
Chip select wait time (Write/Read)
10
ns
Chip select hold time
20
ns
TCSH
TWC
Write cycle
66
ns
WRX
TWRH
Control pulse “H” duration
25
ns
TWRL
Control pulse “L” duration
15
ns
TRC
Read cycle (ID)
160
ns
RDX (ID)
When read ID data
TRDH
Control pulse “H” duration (ID)
90
ns
TRDL
Control pulse “L” duration (ID)
45
ns
TRCFM
Read cycle (FM)
160
ns
When read from frame
RDX (FM)
TRDHFM
Control pulse “H” duration (FM)
90
ns
memory
TRDLFM
Control pulse “L” duration (FM)
45
ns
TDST
Data setup time
15
ns
For maximum CL=30pF
D[17:0]
TDHT
Data hold time
15
ns
For minimum CL=8pF
Output disable time
20
80
ns
TODH
Note 1: VDDI=1.6 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=-30 to 70℃
Note 2: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are
specified as 30% and 70% of VDDI for Input signals
8.3 Serial interface characteristics (3-line serial)
CSX
VIH
TCHW
VIL
TSCYCW/TSCYCR
TCSH
TCSS
TSLW/TSLR
SCL
TSHW/TSHR
TSDS
SDA
TSCC
VIH
VIL
TSDH
VIH
VIL
TACC
TOH
VIH
VIL
VIH
SDA
(DOUT)
VIL
Fig. 8.3.1 3-line serial interface timing
Parameter
Min
Max
Unit
Description
Chip select setup time (write)
45
ns
Chip select hold time (write)
45
ns
CSX
Chip select setup time (read)
12
ns
Chip select hold time (read)
20
ns
Chip select “H” pulse width
0
ns
Serial clock cycle (Write)
54
ns
SCL “H” pulse width (Write)
12
ns
SCL “L” pulse width (Write)
12
ns
SCL
Serial clock cycle (Read)
150
ns
SCL “H” pulse width (Read)
60
ns
SCL “L” pulse width (Read)
60
ns
Data setup time
10
ns
SDA
Data hold time
10
ns
For maximum CL=30pF
(DIN)
For minimum CL=8pF
Access time
10
40
ns
(DOUT)
Output disable time
40
ns
Table 8.3: 3-line Serial Interface Characteristics
Note 1: VDDI=1.6 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=-30 to 70℃
Note 2: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are
specified as 30% and 70% of VDDI for Input signals.
Signal
Ver 1.5.2
Symbol
TCSS
TCSH
TCSS
TSCC
TCHW
TSCYCW
TSHW
TSLW
TSCYCR
TSHR
TSLR
TSDS
TSDH
TACC
TOH
23
2007-12
ST7732
8.4 Serial interface characteristics (4-line serial)
Fig. 8.4.1 4-line serial interface timing
Signal
CSX
SCL
D/CX
SDA
(DIN)
(DOUT)
Symbol
TCSS
TCSH
TCSS
TSCC
TCHW
TSCYCW
TSHW
TSLW
TSCYCR
TSHR
TSLR
TDCS
TDCH
TSDS
TSDH
TACC
TOH
Parameter
MIN MAX
Chip select setup time (write)
45
Chip select hold time (write)
45
Chip select setup time (read)
12
Chip select hold time (read)
20
Chip select “H” pulse width
0
Serial clock cycle (Write)
54
SCL “H” pulse width (Write)
12
SCL “L” pulse width (Write)
12
Serial clock cycle (Read)
150
SCL “H” pulse width (Read)
60
SCL “L” pulse width (Read)
60
D/CX setup time
10
D/CX hold time
10
Data setup time
10
Data hold time
10
Access time
10
40
Output disable time
40
Table 8.4: 4-line Serial Interface Characteristics
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Ns
ns
ns
ns
ns
ns
Description
-write command & data ram
-read command & data ram
For maximum CL=30pF
For minimum CL=8pF
Note 1: VDDI=1.6 to 3.3V, VDD=2.5 to 3.3V, AGND=DGND=0V, Ta=-30 to 70 ℃
Note 2: The rising time and falling time (Tr, Tf) of input signal are specified at 15 ns or less. Logic high and low levels are
specified as 30% and 70% of VDDI for Input signals.
Ver 1.5.2
24
2007-12
ST7732
9. Function description
9.1 Interface type selection
The selection of given interfaces are done by setting P68, IM2, IM1, and IM0 pins as shown in following table.
Table 9.1.1 Selection of MCU interface
P68
IM2
IM1
IM0
Interface
0
3-line serial interface
0
1
0
0
8080 MCU 8-bit parallel
0
1
0
1
8080 MCU 16-bit parallel
0
1
1
0
8080 MCU 9-bit parallel
0
1
1
1
8080 MCU 18-bit parallel
0
3-line serial interface
1
1
0
0
6800 MCU 8-bit parallel
1
1
0
1
6800 MCU 16-bit parallel
1
1
1
0
6800 MCU 9-bit parallel
1
1
1
1
6800 MCU 18-bit parallel
Read back selection
Via the read instruction
RDX strobe (8-bit read data and 8-bit read parameter)
RDX strobe (16-bit read data and 8-bit read parameter)
RDX strobe (9-bit read data and 8-bit read parameter)
RDX strobe (18-bit read data and 8-bit read parameter)
Via the read instruction
E strobe (8-bit read data and 8-bit read parameter)
E strobe (16-bit read data and 8-bit read parameter)
E strobe (9-bit read data and 8-bit read parameter)
E strobe (18-bit read data and 8-bit read parameter)
Table 9.1.2 Pin connection according to various MCU interface
P68
IM2
IM1
IM0
Interface
RDX
0
3-line serial interface
Note1
0
1
0
0
8080 8-bit parallel
RDX
WRX
Note1
WRX
D/CX
SCL
D/CX
0
1
0
1
8080 16-bit parallel
RDX
WRX
D/CX
0
0
1
1
1
0
1
1
1
0
0
1
0
8080 9-bit parallel
8080 18-bit parallel
3-line serial interface
6800 8-bit parallel
RDX
RDX
Note1
E
WRX
WRX
D/CX
WRX
D/CX
D/CX
SCL
RS
1
1
0
1
6800 16-bit parallel
E
WRX
RS
1
1
1
0
6800 9-bit parallel
E
WRX
1
1
1
1
6800 18-bit parallel
E
WRX
Note 1. Unused pins can be open, or connected to DGND or VDDI.
RS
RS
Read back selection
D[17:1]: unused, D0: SDA
D[17:8]: unused, D7-D0: 8-bit data
D[17:16]: unused, D15-D0: 16-bit
data
D[17:9]: unused, D8-D0: 9-bit data
D17-D0: 18-bit data
D[17:1]: unused, D0: SDA
D[17:8]: unused, D7-D0: 8-bit data
D[17:16]: unused, D15-D0: 16-bit
data
D[17:9]: unused, D8-D0: 9-bit data
D17-D0: 18-bit data
9.2 8080-series MCU parallel interface (P68=’0’)
The MCU can use one of following interfaces: 11-lines with 8-data parallel interface, 12-lines with 9-data parallel interface,
19-line with 16-data parallel interface or 21-lines with 18-data parallel interface. The chip-select CSX (active low)
enables/disables the parallel interface. RESX (active low) is an external reset signal. WRX is the parallel data write
enable, RDX is the parallel data read enable and D[17:0] is parallel data bus.
The LCD driver reads the data at the rising edge of WRX signal. The D/CX is the data/command flag. When D/CX=’1’,
D[17:0] bits is either display data or command parameter. When D/C=’0’, D[17:0] bits is command.
The 6800-series bi-directional interface can be used for communication between the micro controller and LCD driver. The
selection of this interface is done when P68 pin is in low state (DGND). Interface bus width can be selected with IM2, IM1
and IM0.
The interface functions of 8080-series parallel interface are given in following table.
Table 9.2.1 The function of 8080-series parallel interface
P68 IM2 IM1 IM0
Interface
D/CX RDX WRX
Read back selection
0
1
↑
Write 8-bit command (D7 to D0)
8-bit
1
1
↑
Write 8-bit display data or 8-bit parameter (D7 to D0)
0
1
0
0
parallel
1
↑
1
Read 8-bit display data (D7 to D0)
1
↑
1
Read 8-bit parameter or status (D7 to D0)
0
1
↑
Write 8-bit command (D7 to D0)
16-bit
1
1
↑
Write 16-bit display data or 8-bit parameter (D15 to D0)
0
1
0
1
parallel
1
↑
1
Read 16-bit display data (D15 to D0)
1
↑
1
Read 8-bit parameter or status (D7 to D0)
0
1
↑
Write 8-bit command (D7 to D0)
9-bit
1
1
↑
Write 9-bit display data or 8-bit parameter (D8 to D0)
0
1
1
0
parallel
1
↑
1
Read 9-bit display data (D8 to D0)
1
↑
1
Read 8-bit parameter or status (D7 to D0)
0
1
↑
Write 8-bit command (D7 to D0)
18-bit
1
1
↑
Write 18-bit display data or 8-bit parameter (D17 to D0)
0
1
1
1
parallel
1
↑
1
Read 18-bit display data (D17 to D0)
1
↑
1
Read 8-bit parameter or status (D7 to D0)
Note: applied for command code: DAh, DBh, DCh, 04h, 09h, 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, 0Fh
Ver 1.5.2
25
2007-12
ST7732
9.2.1 Write cycle sequence
The write cycle means that the host writes information (command or/and data) to the display via the interface. Each write
cycle (WRX high-low-high sequence) consists of 3 control signals (D/CX, RDX, WRX) and data signals (D[17:0]). D/CX bit
is a control signal, which tells if the data is a command or a data. The data signals are the command if the control signal is
low (=’0’) and vice versa it is data (=’1’).
Fig. 9.2.1 8080-series WRX protocol
Note: WRX is an unsynchronized signal (It can be stopped).
Fig. 9.2.2 8080-series parallel bus protocol, write to register or display RAM
Ver 1.5.2
26
2007-12
ST7732
9.2.2 Read cycle sequence
The read cycle (RDX high-low-high sequence) means that the host reads information from LCD driver via interface. The
driver sends data (D[17:0]) to the host when there is a falling edge of RDX and the host reads data when there is a rising
edge of RDX.
Fig. 9.2.3 8080-series RDX protocol
Note: RDX is an unsynchronized signal (It can be stopped).
Fig. 9.2.4 8080-series parallel bus protocol, read data from register or display RAM
9.3 6800-Series Parallel Interface (P68=’1’)
The MCU uses one of following interface: 11-lines with 8-data parallel interface, 12-lines with 9-data parallel interface,
19-lines with 16-data parallel interface, or 21-lines with 18-data parallel interface. The chip-select CSX(active low) enables
and disables the parallel interface. RESX (active low) is an external reset signal. The R/WX is the Read/Write flag and
D[17:0] is parallel data bus.
The LCD driver reads the data at the falling edge of E signal when R/WX= ‘1’ and Writes the data at the falling of the E
signal when R/WX=’0’. The D/CX is the data/command flag. When D/CX=’1’, D[17:0] bits are display RAM data or
command parameters. When D/C= ‘0’, D[17:0] bits are commands.
The 6800-series bi-directional interface can be used for communication between the micro controller and LCD driver. The
selection of this interface is done when P68 pin is high state (VDDI). Interface bus width can be selected with IM2, IM1 and
IM0.
The interface functions of 6800-series parallel interface are given in Table 9.3.1.
Ver 1.5.2
27
2007-12
ST7732
Table 9.3.1 The function of 6800-series parallel interface
P68 IM2 IM1 IM0
Interface
D/CX R/WX
E
Function
0
0
↓ Write 8-bit command (D7 to D0)
1
0
↓ Write 8-bit display data or 8-bit parameter (D7 to D0)
1
1
0
0
8-bit Parallel
1
1
↓ Read 8-bit Display data (D7 to D0)
1
1
↓ Read 8-bit parameter or status (D7 to D0)
0
0
↓ Write 8-bit command (D7 to D0)
1
0
↓ Write 16-bit display data or 8-bit parameter (D15 to D0)
1
1
0
1
16-bit Parallel
1
1
↓ Read 16-bit Display data (D15 to D0)
1
1
↓ Read 8-bit parameter or status (D7 to D0)
0
0
↓ Write 8-bit command (D7 to D0)
1
0
↓ Write 9-bit display data or 8-bit parameter (D8 to D0)
1
1
1
0
9-bit Parallel
1
1
↓ Read 9-bit Display data (D8 to D0)
1
1
↓ Read 8-bit parameter or status (D7 to D0)
0
0
↓ Write 8-bit command (D7 to D0)
1
0
↓ Write 18-bit display data or 8-bit parameter (D17 to D0)
1
1
1
1
18-bit Parallel
1
1
↓ Read 18-bit Display data (D17 to D0)
1
1
↓ Read 8-bit parameter or status (D7 to D0)
Note: applied for command code: DAh, DBh, DCh, 04h, 09h, 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, 0Fh.
9.3.1 Write cycle sequence
The write cycle means that the host writes information (command or/and data) to the display via the interface. Each write
cycle (E low-high-low sequence) consists of 3 control signals (D/CX, E, R/WX) and data signals (D[17:0]). D/CX bit is a
control signal, which tells if the data is a command or a data. The data signals are the command if the control signal is low
(=’0’) and vice versa it is data (=’1’).
Fig. 9.3.1 6800-Series Write Protocol
Note: E is an unsynchronized signal (It can be stopped)
Fig. 9.3.2 6800-series parallel bus protocol, write to register or display RAM
Ver 1.5.2
28
2007-12
ST7732
9.3.2 Read cycle sequence
The read cycle (E low-high-low sequence) means that the host reads information from LCD driver via interface. The driver
sends data (D[17:0]) to the host when there is a rising edge of E and the host reads data when there is a falling edge of E.
Fig. 9.3.3 6800-series read protocol
Note: E is an unsynchronized signal (It can be stopped)
Fig. 9.3.4 6800-series parallel bus protocol, read data form register or display RAM
Ver 1.5.2
29
2007-12
ST7732
9.4 Serial interface
The selection of this interface is done by IM2. See the Table 9.4.1.
Table 9.4.1 Selection of serial interface
IM2
4WSPI
Interface
0
0
3-line serial interface
0
1
4-line serial interface
Read back selection
Via the read instruction (8-bit, 24-bit and 32-bit read parameter)
Via the read instruction (8-bit, 24-bit and 32-bit read parameter)
The serial interface is either 3-lines/9-bits or 4-lines/8-bts bi-directional interface for communication between the micro
controller and the LCD driver. The 3-lines serial interface use: CSX (chip enable), SCL (serial clock) and SDA (serial data
input/output), and the 4-lines serial interface use: CSX (chip enable), D/CX (data/ command flag), SCL (serial clock) and
SDA (serial data input/output). Serial clock (SCL) is used for interface with MCU only, so it can be stopped when no
communication is necessary.
9.4.1 Command Write Mode
The write mode of the interface means the micro controller writes commands and data to the LCD driver. 3-lines serial data
packet contains a control bit D/CX and a transmission byte. In 4-lines serial interface, data packet contains just
transmission byte and control bit D/CX is transferred by the D/CX pin. If D/CX is “low”, the transmission byte is interpreted
as a command byte. If D/CX is “high”, the transmission byte is stored in the display data RAM (memory write command), or
command register as parameter.
Any instruction can be sent in any order to the driver. The MSB is transmitted first. The serial interface is initialized when
CSX is high. In this state, SCL clock pulse or SDA data have no effect. A falling edge on CSX enables the serial interface
and indicates the start of data transmission.
Fig. 9.4.1 Serial interface data stream format
When CSX is “high”, SCL clock is ignored. During the high period of CSX the serial interface is initialized. At the falling edge
of CSX, SCL can be high or low (see Fig 9.4.2). SDA is sampled at the rising edge of SCL. D/CX indicates whether the byte
is command (D/CX=’0’) or parameter/RAM data (D/CX=’1’). D/CX is sampled when first rising edge of SCL (3-lines serial
interface) or 8th rising edge of SCL (4-lines serial interface). If CSX stays low after the last bit of command/data byte, the
serial interface expects the D/CX bit (3-lines serial interface) or D7 (4-lines serial interface) of the next byte at the next rising
edge of SCL.
Ver 1.5.2
30
2007-12
ST7732
Fig. 9.4.2 3-line serial interface write protocol (write to register with control bit in transmission)
Fig. 9.4.3 4-line serial interface write protocol (write to register with control bit in transmission)
9.4.2 Read Functions
The read mode of the interface means that the micro controller reads register value from the driver. To achieve read
function, the micro controller first has to send a command (read ID or register command) and then the following byte is
transmitted in the opposite direction. After that CSX is required to go to high before a new command is send (see the below
figure). The driver samples the SDA (input data) at rising edge of SCL, but shifts SDA (output data) at the falling edge of
SCL. Thus the micro controller is supported to read at the rising edge of SCL.
After the read status command has been sent, the SDA line must be set to tri-state no later than at the falling edge of SCL
of the last bit.
3-line serial protocol (for RDID1/RDID2/RDID3/0Ah/0Bh/0Ch/0Dh/0Eh/0Fh command: 8-bit read):
Ver 1.5.2
31
2007-12
ST7732
S
TB
TB
P
S
CSX
Host
SCL
Driver
SDA
D/C
SDA
(SDO)
Hi-Z
D7
D6
D5
D4
D3
D2
D1
D0
Hi-Z
D7
D/C
X
D6
D5
D4
D3
D2
D1
D0
3-line serial protocol (for RDDID command: 24-bit read)
3-line Serial Protocol (for RDDST command: 32-bit read)
Fig. 9.4.4 3-line serial interface read protocol
Ver 1.5.2
32
2007-12
ST7732
4-line serial protocol (for RDID1/RDID2/RDID3/0Ah/0Bh/0Ch/0Dh/0Eh/0Fh command: 8-bit read):
4-line serial protocol (for RDDID command: 24-bit read)
4-line Serial Protocol (for RDDST command: 32-bit read)
Fig. 9.4.5 4-line serial interface read protocol
Ver 1.5.2
33
2007-12
ST7732
9.5 Data Transfer Break and Recovery
If there is a break in data transmission by RESX pulse, while transferring a command or frame memory data or multiple
parameter command data, before Bit D0 of the byte has been completed, then driver will reject the previous bits and have
reset the interface such that it will be ready to receive command data again when the chip select line (CSX) is next
activated after RESX have been HIGH state. See the following example
Host
(MCU to driver)
Fig. 9.5.1 Serial bus protocol, write mode – interrupted by RESX
If there is a break in data transmission by CSX pulse, while transferring a command or frame memory data or multiple
parameter command data, before Bit D0 of the byte has been completed, then driver will reject the previous bits and have
reset the interface such that it will be ready to receive the same byte re-transmitted when the chip select line (CSX) is next
activated. See the following example
Fig. 9.5.2 Serial bus protocol, write mode – interrupted by CSX
If 1, 2 or more parameter commands are being sent and a break occurs while sending any parameter before the last one
and if the host then sends a new command rather than re-transmitting the parameter that was interrupted, then the
parameters that were successfully sent are stored and the parameter where the break occurred is rejected. The interface is
ready to receive next byte as shown below.
Fig.9.5.3 Write interrupts recovery (serial interface)
Ver 1.5.2
34
2007-12
ST7732
If a 2 or more parameter commands are being sent and a break occurs by the other command before the last one is sent,
then the parameters that were successfully sent are stored and the other parameter of that command remains previous
value.
Fig. 9.5.4 Write interrupts recovery (both serial and parallel Interface)
9.6 Data transfer pause
It will be possible when transferring a command, frame memory data or multiple parameter data to invoke a pause in the
data transmission. If the chip select line is released after a whole byte of a frame memory data or multiple parameter data
has been completed, then driver will wait and continue the frame memory data or parameter data transmission from the
point where it was paused. If the chip select Line is released after a whole byte of a command has been completed, then
the display module will receive either the command‘s parameters (if appropriate) or a new command when the chip select
line is next enabled as shown below.
This applies to the following 4 conditions:
1) Command-Pause-Command
2) Command-Pause-Parameter
3) Parameter-Pause-Command
4) Parameter-Pause-Parameter
9.6.1 Serial interface pause
Fig. 9.6.1 Serial interface pause protocol (pause by CSX)
9.6.2 Parallel interface pause
Fig. 9.6.2 Parallel bus pause protocol (paused by CSX)
Ver 1.5.2
35
2007-12
ST7732
9.7 Data Transfer Modes
The module has three kinds color modes for transferring data to the display RAM. These are 12-bits color per pixel, 16-bits
color per pixel and 18-bits color per pixel. The data format is described for each interface. Data can be downloaded to the
frame memory by 2 methods.
9.7.1 Method 1
The Image data is sent to the frame memory in successive frame writes, each time the frame memory is filled, the frame
memory pointer is reset to the start point and the next frame is written.
9.7.2 Method 2
Image data is sent and at the end of each frame memory download, a command is sent to stop frame memory write. Then
start memory write command is sent, and a new frame is downloaded.
Note:
1) These apply to all data transfer Color modes on both serial and parallel interfaces.
2) The frame memory can contain both odd and even number of pixels for both methods. Only complete pixel data will be
stored in the frame memory.
Ver 1.5.2
36
2007-12
ST7732
9.8 Data Color Coding
9.8.1 8-bit Parallel Interface (IM2, IM1, IM0= “100”)
Different display data formats are available for three Colors depth supported by listed below.
- 4k Colors, RGB 4,4,4-bit input,
- 65k Colors, RGB 5,6,5-bit input,.
- 262k Colors, RGB 6,6,6-bit input,
9.8.1.1 8-bit data bus for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH= “03h”
There are 2 pixels (6 sub-pixels) per 3-bytes.
Note1. The data order is as follows, MSB=D7, LSB=D0 and picture data is MSB=Bit 3, LSB=Bit 0 for Red, Green and Blue
data.
Note 2. 3-time transfer is used to transmit 1 pixel data with the 12-bit color depth information.
Note 3. ‘-‘ = Don't care - Can be set to '0' or '1'
Ver 1.5.2
37
2007-12
ST7732
9.8.1.2 8-bit data bus for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH= “05h”
There is 1 pixel (3 sub-pixels) per 2-bytes.
RESX
IM[2:0]
“1”
“100”
CSX
D/CX
WRX
RDX
R/WX
“1”
8080-series control pins
“0”
E
6800-series control pins
D7
0
R1, Bit 4
G1, Bit 2
R2, Bit 4
G2, Bit 2
D6
0
R1, Bit 3
G1, Bit 1
R2, Bit 3
G2, Bit 1
D5
1
R1, Bit 2
G1, Bit 0
R2, Bit 2
G2, Bit 0
D4
0
R1, Bit 1
B1, Bit 4
R2, Bit 1
B2, Bit 4
D3
1
R1, Bit 0
B1, Bit 3
R2, Bit 0
B2, Bit 3
D2
1
G1, Bit 5
B1, Bit 2
G2, Bit 5
B2, Bit 2
D1
0
G1, Bit 4
B1, Bit 1
G2, Bit 4
B2, Bit 1
D0
0
G1, Bit 3
B1, Bit 0
G2, Bit 3
B2, Bit 0
Pixel n
Pixel n+1
16 bits
16 bits
Look-up table for 65k color data mapping (16 bits to 18 bits)
18 bits
Frame memory
R1
G1
B1
R2
G2
B2
R3
G3
B3
Note1. The data order is as follows, MSB=D7, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Green and MSB=Bit 4,
LSB=Bit 0 for Red and Blue data.
Note 2.2-times transfer is used to transmit 1 pixel data with the 16-bit color depth information.
Note 3. ‘-‘ = Don't care - Can be set to '0' or '1'
Ver 1.5.2
38
2007-12
ST7732
9.8.1.3 8-bit data bus for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH= “06h”
There is 1 pixel (3 sub-pixels) per 3-bytes.
RESX
IM[2:0]
“1”
“100”
CSX
D/CX
WRX
RDX
R/WX
“1”
8080-series control pins
“0”
E
6800-series control pins
D7
0
R1, Bit 5
G1, Bit 5
B1, Bit 5
R2, Bit 5
D6
0
R1, Bit 4
G1, Bit 4
B1, Bit 4
R2, Bit 4
D5
1
R1, Bit 3
G1, Bit 3
B1, Bit 3
R2, Bit 3
D4
0
R1, Bit 2
G1, Bit 2
B1, Bit 2
R2, Bit 2
D3
1
R1, Bit 1
G1, Bit 1
B1, Bit 1
R2, Bit 1
D2
1
R1, Bit 0
G1, Bit 0
B1, Bit 0
R2, Bit 0
D1
0
-
-
-
-
D0
0
-
-
-
-
Pixel n
Pixel n+1
18 bits
18 bits
Frame memory
R1
G1
B1
R2
G2
B2
R3
G3
B3
Note1. The data order is as follows, MSB=D7, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Red, Green and Blue
data.
Note 2.3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information.
Note 3. ‘-‘ = Don't care - Can be set to '0' or '1'
Ver 1.5.2
39
2007-12
ST7732
9.8.2 16-Bit Parallel Interface (IM2,IM1, IM0= “101”)
Different display data formats are available for three colors depth supported by listed below.
- 4k colors, RGB 4,4,4-bit input
- 65k colors, RGB 5,6,5-bit input
- 262k colors, RGB 6,6,6-bit input
9.8.2.1 16-bit data bus for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH= “03h”
There is 1 pixel (3 sub-pixels) per 1 bytes, 12-bit/pixel.
Note1. The data order is as follows, MSB=D11, LSB=D0 and picture data is MSB=Bit 3, LSB=Bit 0 for Red, Green and Blue
data.
Note 2.1-times transfer (D11 to D0) is used to transmit 1 pixel data with the 12-bit color depth information.
Ver 1.5.2
40
2007-12
ST7732
9.8.2.2 16-bit data bus for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH= “05h”
There is 1 pixel (3 sub-pixels) per 1 bytes, 16-bit/pixel.
Note1. The data order is as follows, MSB=D15, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Green, and MSB=Bit
4, LSB=Bit 0 for Red and Blue data.
Note 2.1-times transfer (D15 to D0) is used to transmit 1 pixel data with the 16-bit color depth information.
Note 3. ‘-‘ = Don't care - Can be set to '0' or '1'
Ver 1.5.2
41
2007-12
ST7732
9.8.2.3 16-bit data bus for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH= “06h”
There are 2 pixel (6 sub-pixels) per 3 bytes, 18-bit/pixel.
Note1. The data order is as follows, MSB=D15, LSB=D0 and picture data is MSB=Bits 5, LSB=Bit 0 for Red, Green and
Blue data.
Note 2.3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information.
Note 3. ‘-‘ = Don't care - Can be set to '0' or '1'
Ver 1.5.2
42
2007-12
ST7732
9.8.3 9-Bit Parallel Interface (IM2, IM1, IM0=“110”)
Different display data formats are available for three colors depth supported by listed below.
- 262k colors, RGB 6,6,6-bit input
9.8.3.1 Write 9-bit data for RGB 6-6-6-bit input (262k-color)
There are 1 pixel (6 sub-pixels) per 3 bytes, 18-bit/pixel.
RESX
IM[2:0]
“1”
“110”
CSX
D/CX
WRX
RDX
R/WX
“1”
8080-series control pins
“0”
E
6800-series control pins
D8
-
R1, Bit 5
G1, Bit 2
R2, Bit 5
G2, Bit 2
D7
0
R1, Bit 4
G1, Bit 1
R2, Bit 4
G2, Bit 1
D6
0
R1, Bit 3
G1, Bit 0
R2, Bit 3
G2, Bit 0
D5
1
R1, Bit 2
B1, Bit 5
R2, Bit 2
B2, Bit 5
D4
0
R1, Bit 1
B1, Bit 4
R2, Bit 1
B2, Bit 4
D3
1
R1, Bit 0
B1, Bit 3
R2, Bit 0
B2, Bit 3
D2
1
G1, Bit 5
B1, Bit 2
G2, Bit 5
B2, Bit 2
D1
0
G1, Bit 4
B1, Bit 1
G2, Bit 4
B2, Bit 1
D0
0
G1, Bit 3
B1, Bit 0
G2, Bit 3
B2, Bit 0
Pixel n
Pixel n+1
18 bits
18 bits
Frame memory
R1
G1
B1
R2
G2
B2
R3
G3
B3
Note1. The data order is as follows, MSB=D8, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Red, Green and Blue
data.
Note 2.3-times transfer is used to transmit 1 pixel data with the 18-bit color depth information.
Note 3. ‘-‘ = Don't care - Can be set to '0' or '1'
Ver 1.5.2
43
2007-12
ST7732
9.8.4 18-Bit Parallel Interface (IM2, IM1, IM0=“111”)
Different display data formats are available for three colors depth supported by listed below.
- 4k colors, RGB 4,4,4-bit input
- 65k colors, RGB 5,6,5-bit input
- 262k colors, RGB 6,6,6-bit input.
9.8.4.1 18-bit data bus for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH=“03h”
There are 1 pixel (3 sub-pixels) per 1 byte, 12-bit/pixel.
Note1. The data order is as follows, MSB=D11, LSB=D0 and picture data is MSB=Bit 3, LSB=Bit 0 for Red, Green and Blue
data.
Note 2.1-times transfer is used to transmit 1 pixel data with the 12-bit color depth information.
Ver 1.5.2
44
2007-12
ST7732
9.8.4.2 18-bit data bus for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH=“05h”
There are 1 pixel (3 sub-pixels) per 1 byte, 16-bit/pixel.
Note1. The data order is as follows, MSB=D15, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Green, and MSB=Bit
4, LSB=Bit 0 for Red and Blue data.
Note 2.1-time transfer is used to transmit 1 pixel data with the 16-bit color depth information.
Ver 1.5.2
45
2007-12
ST7732
9.8.4.3 18-bit data bus for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH=“06h”
There are 1 pixel (3 sub-pixels) per 1 bytes, 18-bit/pixel.
RESX
IM[2:0]
“1”
“111”
CSX
D/CX
WRX
RDX
R/WX
“1”
8080-series control pins
“0”
E
6800-series control pins
D17
-
R1, Bit 5
R2, Bit 5
R3, Bit 5
R4, Bit 5
D16
-
R1, Bit 4
R2, Bit 4
R3, Bit 4
R4, Bit 4
D15
-
R1, Bit 3
R2, Bit 3
R3, Bit 3
R4, Bit 3
D14
-
R1, Bit 2
R2, Bit 2
R3, Bit 2
R4, Bit 2
D13
-
R1, Bit 1
R2, Bit 1
R3, Bit 1
R4, Bit 1
D12
-
R1, Bit 0
R2, Bit 0
R3, Bit 0
R4, Bit 0
D11
-
G1, Bit 5
G2, Bit 5
G3, Bit 5
G4, Bit 5
D10
-
G1, Bit 4
G2, Bit 4
G3, Bit 4
G4, Bit 4
D9
-
G1, Bit 3
G2, Bit 3
G3, Bit 3
G4, Bit 3
D8
-
G1, Bit 2
G2, Bit 2
G3, Bit 2
G4, Bit 2
D7
0
G1, Bit 1
G2, Bit 1
G3, Bit 1
G4, Bit 1
D6
0
G1, Bit 0
G2, Bit 0
G3, Bit 0
G4, Bit 0
D5
1
B1, Bit 5
B2, Bit 5
B3, Bit 5
B4, Bit 5
D4
0
B1, Bit 4
B2, Bit 4
B3, Bit 4
B4, Bit 4
D3
1
B1, Bit 3
B2, Bit 3
B3, Bit 3
B4, Bit 3
D2
1
B1, Bit 2
B2, Bit 2
B3, Bit 2
B4, Bit 2
D1
0
B1, Bit 1
B2, Bit 1
B3, Bit 1
B4, Bit 1
D0
0
B1, Bit 0
B2, Bit 0
B3, Bit 0
B4, Bit 0
Pixel n
Pixel n+1
Pixel n+2
Pixel n+3
18 bits
18 bits
Frame memory
R1
G1
B1
R2
G2
B2
R3
G3
B3
Note1. The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit 5, LSB=Bit 0 for Read, Green and
Blue data.
Note 2.1-times transfer (D17o D0) is used to transmit 1 pixel data with the 18-bit color depth information.
Ver 1.5.2
46
2007-12
ST7732
9.8.5 3-line serial Interface
Different display data formats are available for three colors depth supported by the LCM listed below.
4k colors, RGB 4-4-4-bit input
65k colors, RGB 5-6-5-bit input
262k colors, RGB 6-6-6-bit input
9.8.5.1 Write data for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH=“03h”
Note 1. pixel data with the 12-bit color depth information
Note 2. The most significant bits are: Rx3, Gx3 and Bx3
Note 3. The least significant bits are: Rx0, Gx0 and Bx0
9.8.5.2 Write data for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH=“05h”
Note 1. pixel data with the 16-bit color depth information
Note 2. The most significant bits are: Rx4, Gx5 and Bx4
Note 3. The least significant bits are: Rx0, Gx0 and Bx0
Ver 1.5.2
47
2007-12
ST7732
9.8.5.3 Write data for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH=“06h”
Note 1. pixel data with the 18-bit color depth information
Note 2. The most significant bits are: Rx5, Gx5 and Bx5
Note 3. The least significant bits are: Rx0, Gx0 and Bx0
9.8.6 4-line serial Interface
Different display data formats are available for three colors depth supported by the LCM listed below.
4k colors, RGB 4-4-4-bit input
65k colors, RGB 5-6-5-bit input
262k colors, RGB 6-6-6-bit input
9.8.6.1 Write data for 12-bit/pixel (RGB 4-4-4-bit input), 4K-Colors, 3AH=“03h”
Note 1. pixel data with the 12-bit color depth information
Note 2. The most significant bits are: Rx3, Gx3 and Bx3
Note 3. The least significant bits are: Rx0, Gx0 and Bx0
Ver 1.5.2
48
2007-12
ST7732
9.8.6.2 Write data for 16-bit/pixel (RGB 5-6-5-bit input), 65K-Colors, 3AH=“05h”
Note 1. pixel data with the 16-bit color depth information
Note 2. The most significant bits are: Rx4, Gx5 and Bx4
Note 3. The least significant bits are: Rx0, Gx0 and Bx0
9.8.6.3 Write data for 18-bit/pixel (RGB 6-6-6-bit input), 262K-Colors, 3AH=“06h”
Note 1. pixel data with the 18-bit color depth information
Note 2. The most significant bits are: Rx5, Gx5 and Bx5
Note 3. The least significant bits are: Rx0, Gx0 and Bx0
Ver 1.5.2
49
2007-12
ST7732
9.9 RGB interface
9.9.1 General Description
The module uses 6, 16 and 18-bit parallel RGB interface which includes: VS, HS, DE, PCLK, D[17:0]. The interface is
activated after Power-On sequence (See section Power-On/Off Sequence)
Pixel clock (PCLK) is running all the time without stopping and it is used to enter VS, HS, DE and D[17:0] states at the rising
edge of the PCLK. The PCLK cannot be used as continues internal clock for other functions of the display module e.g.
Sleep-In mode etc.
Vertical synchronization (VS) is used to tell the driver when a new frame of the display is beginning. This is negative (‘0’,
low) active and its state is read by the driver at the rising edge of he PCLK signal.
Horizontal synchronization (HS) is used to tell the driver when a new line of the frame is beginning. This is negative (‘0’, low)
active and its state is read by the driver at the rising edge of the PCLK signal.
Data Enable (DE) is used to tell the driver when the RGB information will be transferred ti the driver. This is a positive (‘1’,
high) active and its state is read by the driver at the rising edge of the PCLK signal.
D[17:0] (18-bit: R5-R0, G5-G0 and B5-B0; 16-bit: R4-R0, G5-G0 and B4-B0) are used to tell what is the information of the
image that is transferred on the display (When DE=’1’ and at the rising edge of PCLK). D[17:0] can be ‘0’ (low) or ‘1’ (high).
These lines are read by the driver at the rising edge of the PCLK signal.
The PCLK cycle is described in the following figure.
Fig. 9.9.1 PCLK cycle
Note: PCLK is an unsynchronized signal (It can be stopped).
Ver 1.5.2
50
2007-12
ST7732
9.9.2 General timing diagram
Fig. 9.9.2 RGB general timing diagram
The image information must be correct on the display, when the timings conforms the spec of the RGB interface.
However, the image information can be incorrect on the display temporarily when timing is out of spec. The correct image
information must be displayed automatically (by the display module) in the next frame period as the timing recovers from
out of spec to within spec.
Ver 1.5.2
51
2007-12
ST7732
9.9.3 Updating order on display active area (normal display on + sleep out)
There are different kinds of updating orders for the display. These updating orders are controlled by H/W (SMX, SMY) and
S/W (MX, MY, MV) bits.
Vertical active counter
(0 ~ 161)
Vertical active counter
(0 ~ 161)
Fig. 9.9.3 Updating order when MADCTL’s MX=”0” and MY=”0”
Vertical active counter
(0 ~ 161)
Vertical active counter
(0 ~ 161)
Fig. 9.9.5 Updating order when MADCTL’s MX=”0” and MY=”1”
Ver 1.5.2
Fig. 9.9.4 Updating order when MADCTL’s MX=”1” and
MY=”0”
52
Fig. 9.9.6 Updating order when MADCTL’s MX=”1” and
MY=”1”
2007-12
ST7732
Table 9.9.1 Rules for updating order
Horizontal
Counter
Return to 0
Increment by 1
Return to 0
Return to 0
Condition
An active VS signal is received
Signal pixel information of the active area is received
An active HS signal between two active area lines
The horizontal counter is larger than 239 and the vertical counter is larger than 319
Note 1. Pixel order is RGB on the display.
Note 2. Data streaming direction from the host to the display is described in the following figure.
Vertical
Counter
Return to 0
No change
Increment by 1
Return to 0
Fig. 9.9.3 Data streaming order for RGB interface
9.9.4 RGB Interface Bus Width set
All 4-kinds of bus width can be available in RGB interface mode (selected by COLMOD (3Ah) command for 6-bit, 16-bit and
18-bit data width)
VIPF[3:0]
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0101
R4
R3
R2
R1
R0
x
G5
G4
G3
G2
G1
G0
B4
B3
B2
B1
B0
x
0110
R5
R4
R3
R2
R1
R0
G5
G4
G3
G2
G1
G0
B5
B4
B3
B2
B1
B0
x
x
x
x
x
x
x
x
x
x
X
x
R5 R4 R3
x
x
x
x
x
x
x
x
x
x
X
X
G5 G4 G3
x
x
x
x
x
x
x
x
x
x
x
X
B5 B4 B3
Note 1: When VIPF[3:0]=”1110”, 6-bit data width of 3-times transfer is used to transmit 1 pixel data with
depth information.
Note 2: Only VIPF[3:0]= ”0101” , “0110” and “1110” are valid on RGB I/F, Others are invalid.
Note 3. ‘x’ Don’t care, but need to set VDDI or DGND level.
1110
R2 R1 R0
G2 G1 G0
B2 B1 B0
the 18-bit color
9.9.5 RGB Interface Mode Set
Table 9.9.5.1 RGB Interface Mode Setting
RGB I/F
PCLK
DE
VS
Mode
RGB Mode 1
Used
Used
Used
RGB Mode 2
Used
Used
Used
HS
Used
Used
Video Data
bus D[17:0]
Used
Used
Register for Blanking
Porch setting
Not Used
Used
Reference clock for
Display
Internal Oscillator
Internal Oscillator
There are 2-kinds of RGB mode which is selected by RCM1 & RCM0 hardware pins.
In RGB Mode 1 (RCM1, RCM0 = “10”), writing data to frame memory is done by PCLK and data bus (D[17:0]), when DE is
in high state. The external synchronization signals (PCLK, VS and HS) are used for internal display signals. So, controller
(host) must always transfer PCLK, VS, HS and DE signals to driver.
In RGB Mode 2 (RCM1, RCM0 = “11”), blanking porch setting of VS and HS signals are defined by RGBBPCTR (B5h)
command. DE pin is used for data making. When DE pin is high, valid data is directly stored to frame memory. In the
contrast, if DE pin is low the data of frame memory will keep same status.
Ver 1.5.2
53
2007-12
Bus
width
16-bit
data
18-bit
data
6-bit
data
ST7732
9.9.6 RGB Interface Timing Diagram
9.9.6.1 General Timings for RGB I/F
Fig. 9.9.6 General timing of RGB interface
Table 9.9.6.1 General Timing for RGB I/F
Item
Pixel low pulse width
Pixel high pulse width
Vertical Sync. set-up time
Vertical Sync. hold time
Horizontal Sync. set-up time
Horizontal Sync. hold time
Data Enable set-up time
Data Enable hold time
Data set-up time
Data hold time
Symbol
Condition
TPCLKLT
TPCLKHT
TVSST
TVSSHT
THSST
TVSSHT
TDEST
TDEHT
TDST
TDHT
Min
15
15
15
15
15
15
15
15
15
15
Specification
Type.
Max
Unit
ns
ns
ns
ns
Note 1: VDDI=1.6 to 3.3V, VDD=2.5V to 3.3V, AGND=DGND=0V, Ta=-30 to 70 ℃ (to +85℃ no damage)
Note 2: The input signal rise time and fall time (tr, tf) is specified at 15 ns or less.
Note 3: Data lines can be set to “High” or “Low” during blanking time – Don’t care.
Note 4: Logic high and low levels are specified as 30% and 70% of VDDI for Input signals.
Note 5: HP is multiples of eight PCLK.
Fig. 9.9.7 RAM access via SPI interface in RGB mode
Note: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command.
Ver 1.5.2
54
2007-12
ST7732
9.9.6.2 RGB Interface Mode 1 Timing Diagram
Fig. 9.9.8 RGB mode 1 timing diagram
Note: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command.
Fig. 9.9.9 Vertical and horizontal timing of RGB interface
Ver 1.5.2
55
2007-12
ST7732
Table 9.9.6.2 Vertical and Horizontal Timing for RGB I/F
Item
Vertical Timing
Vertical cycle period
Vertical low pulse width
Vertical front porch
Vertical back porch
Vertical data start line
Vertical blanking period
Vertical active area
Vertical refresh rate
Horizontal Timing
Horizontal cycle period
Horizontal low pulse width
Horizontal front porch
Horizontal back porch
Horizontal data start point
Horizontal blanking period
Horizontal active area
Symbol
Condition
TVP
TVS
TVFP
TVBP
GM=”00”&”01”
TVBL
TVDISP
TVRR
THP
THS
THFP
THBP
TVS + TVBP
TVS + TVBP + TVFP
GM=”00”&”01”
Frame rate
GM=”00”&”01”
Min
Specification
Type.
Max
166
2
2
2
4
6
172
4
4
4
8
12
61.75
160
2
2
2
30
32
THS + THBP
THBL
THDISP
GM=”00”&”01”
TPCLKCYC
100
GM=”00”
TVRR=65Hz
fPCLKCYC
1.7
Pixel clock cycle
TPCLKCYC
GM=”01”
100
TVRR=65Hz
fPCLKCYC
1.6
Note 1. VDDI=1.6 to 3.3V, VDD=2.5V to 3.3V, AGND=DGND=0V, Ta=-30 to 70℃
Note 2. Data lines can be set to “High” or “Low” during blanking time – Don’t care.
Note 3. HP is multiples of eight PCLK.
Ver 1.5.2
56
160
65
68.25
745
256
256
256
766
768
128
579
10
610
10
Unit
HS
HS
HS
HS
HS
HS
HS
Hz
PCLK
PCLK
PCLK
PCLK
PCLK
PCLK
PCLK
ns
MHz
ns
MHz
2007-12
ST7732
9.9.6.3 RGB Interface Mode 2 Timing Diagram
V back porch (TVS+TVBP)
VS
1 frame (TVP)
V front porch (TVFP)
HS
DE “1"
HS
1 line (THP)
H back porch (THS+THBP)
Valid data (THDISP)
H front porch (THFP)
PCLK
DE “1"
Data
bus
Invalid
Latch
data
Invalid
D1 D2 D3
Invalid
Dn
D1 D2 D3
Dn
Fig. 9.9.10 RGB mode 2 timing diagram
Fig. 9.9.11 RGB mode 2 vertical timing diagram
Note: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command.
Horizontal timing for RGB I/F
HS
THS+THBP=10 PCLK
D[17:0]
THDISP=130 PCLK
Invalid
THFP=10 PCLK
Invalid
THP= 150 PCLK
PCLK
Fig. 9.9.12 RGB mode 2
Ver 1.5.2
57
2007-12
ST7732
Fig. 9.9.13 RGB mode 2 idle mode timing diadram
Note: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command.
Vertical timingfor RGBI/F
1frame (TVP =164Hs)
VS
TVDISP =160Hs
TVS+TVBP =3Hs
TVFP=1Hs
HS
Line1
Line162
Horizontal timingfor RGBI/F
HS
THS+THBP=10PCLK
D[17:0]
THDISP=130PCLK
Invalid
THFP=10PCLK
Invalid
THP=150PCLK
PCLK
Fig. 9.9.14 Vertical and Horizontal in RGB interface
Ver 1.5.2
58
2007-12
ST7732
Table 9.9.6.3 Vertical and Horizontal Timing for RGB I/F
Item
Vertical Timing
Vertical cycle period
Vertical low pulse width
Vertical front porch
Vertical back porch
Vertical data start line
Vertical blanking period
Vertical active area
Vertical refresh rate
Horizontal Timing
Symbol
Condition
TVP
TVS
TVFP
TVBP
GM=”00”&”01”
TVBL
TVDISP
TVRR
Horizontal cycle period
THP
Horizontal low pulse width
Horizontal front porch
Horizontal back porch
Horizontal data start point
Horizontal blanking period
THS
THFP
THBP
Horizontal active area
TVS + TVBP
TVS + TVBP + TVFP
GM=”00”&”01”
Frame rate
GM=”00”
GM=”01”
THS + THBP
THBL
THDISP
Min
163
1
1
1
2
3
61.75
131
123
1
1
1
1
3
GM=”00”
GM=”01”
TPCLKCYC
100
fPCLKCYC
1.39
TPCLKCYC
100
Pixel clock cycle
fPCLKCYC
1.30
TPCLKCYC
100
fPCLKCYC
1.12
Note 1. VDDI=1.6 to 3.3V, VDD=2.5V to 3.3V, AGND=DGND=0V, Ta=-30 to 70℃
Note 2. Data lines can be set to “High” or “Low” during blanking time – Don’t care.
Note 3. HP is multiples of eight PCLK.
Ver 1.5.2
59
Specification
Type.
Max
164
1
3
4
160
65
10
20
128
120
634
1.58
670
1.49
788
1.27
4
512
512
512
512
68.25
511
511
63
63
63
63
256
720
10
767
10
896
10
Unit
HS
HS
HS
HS
HS
HS
HS
Hz
PCLK
PCLK
PCLK
PCLK
PCLK
PCLK
PCLK
PCLK
PCLK
ns
MHz
ns
MHz
ns
MHz
2007-12
ST7732
9.9.6.4 Power On Sequence on RGB Mode 2
The Driver operates power up and display ON by VDD, VDDI, SHUT, VS, HS, DE, PCLK on RGB mode 2 as show as
following figure.
VDD
TVDD-VDDI
VDDI
RESX
SHUT
PCLK
TRS-SH
TVDD-SH
TPCLK-SH
HS
DE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
VS
Display high
voltage
TSH-LCD
TSH-ON
Display
Blanking display(over 1 frame)
Source output
Vcom output
Display on
Normal display
Normal display
Normal display
Gate output
Internal counter
Internal
oscillator
Fig. 9.9.15 Power-ON sequence in RGB mode 2
Table 9.9.6.4 Power ON AC Characteristics
Characteristics
Symbol
Min
Typ
Max
Unit
VDD On to VDDI On
TVDD-VDDI
0
ns
VDDI/VDD on to falling edge of SHUT
TVDD-SH
1
ms
RESX to falling of SHUT
TRS-SH
10
us
Signals input to falling edge of SHUT *
TCLK-SH
1
PCLK
Falling edge of SHUT to LCD power ON
TSH-LCD
120
ms
Falling edge of SHUT to Display start
TSH-ON
10
VS
Note 1: TVDDI-VDD can be <=0ns, >0ns. In any case, VDDI and VDD power up sequence should not have any
the driver / display functionalities / performance.
Note 2: Signals mean VS, HS, DE and PCLK signal.
Note 3: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command.
Ver 1.5.2
60
Remark
Note1
Note2
impact on
2007-12
ST7732
9.9.6.5 Power OFF Sequence on RGB Mode 2
The Driver operates power off and display OFF by VDD, VDDI, SHUT, VS, HS and DE on RGB mode 2 as show as
following figure.
VDDI
TVDD-VDDI
VDD
RESX
SHUT
TOFF-VDD
PCLK
TSH-OFF
HS
DE
VS
Display high
voltage
Display on
Display off
Display
Normal display
Source output
Normal display
0V
Vcom output
Normal display
0V
Blanking display (over 1 frame)
Gate output
Internal counter
Internal
oscillator
Fig. 9.9.16 Power-OFF seqnence in RGB mode 2
Table 9.9.6.5 Power OFF AC Characteristics
Characteristics
Symbol
Min
Typ
Max
Unit
Remark
VDDI On to VDD On
TVDDI-VDD
0
ns
Note1
Signals input to VDDI/VDD off
TSH-OFF
1
us
Note2
Rising edge of SHUT to Display off
TSH-OFF
2
VS
Note 1: TVDDI-VDD can be <=0ns, >0ns. In any case, VDDI and VDD power up sequence should not have any impact on
the driver / display functionalities / performance.
Note 2: Signals mean VS, HS, DE and PCLK signal.
Note 3: DP=’0’, EP=’0’, HSP=’0’ and VSP=’0’ of RGBCTR (B0h) command.
Ver 1.5.2
61
2007-12
ST7732
9.9.7 RGB Data Color Coding
9.9.7.1 16-bit/pixel Color Order on the RGB Interface
Note 1: The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit5, LSB=Bit0 for Green data and
MSB=Bit4, LSB=Bit0 for Red and Blue data.
Note 2: ‘-’ Don’t care, but need set to VDDI or DGND level.
Ver 1.5.2
62
2007-12
ST7732
9.9.7.2 18-bit/pixel Color Order on the RGB Interface
Note 1: The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit5, LSB=Bit0 for Red, Green and Blue
data.
Note 2: ‘-’ Don’t care, but need set to VDDI or DGND level.
Ver 1.5.2
63
2007-12
ST7732
9.9.7.3 6-bit/pixel Color Order on the RGB Interface
Note 1: The data order is as follows, MSB=D17, LSB=D0 and picture data is MSB=Bit5, LSB=Bit0 for Red, Green and Blue
data.
Note 2: ‘-’ Don’t care, but need set to VDDI or DGND level.
Ver 1.5.2
64
2007-12
ST7732
9.10 Display Data RAM
9.10.1 Configuration (When GM=“11“)
The display module has an integrated 132x162x18-bit graphic type static RAM. This 384,912-bit memory allows to store
on-chip a 132xRGBx162image with an 18-bpp resolution (262K-color).
There will be no abnormal visible effect on the display when there is a simultaneous Panel Read and Interface Read or
Write to the same location of the Frame Memory.
Fig. 9.10.1 Display data RAM organization
Ver 1.5.2
65
2007-12
ST7732
9.10.2 Memory to Display Address Mapping
9.10.2.1 When using 128RGB x 160 resolution (GM1, GM0 = “00”, SMX=SMY=SRGB=’0’)
2
3
4
5
6
7
8
9
|
|
|
|
|
154
155
156
157
158
159
160
161
G0
B0
R1
G1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0
127
1
126
RGB
Order
RGB=1
S11 S12 -------- S385 S386 S387 S388 S389 S390
RGB=0
S10
Pixel 128
RGB=1
RA
MY=' 0 ' MY=' 1 '
0
159
R0
1
158
2
157
3
156
4
155
5
154
6
153
7
152
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152
7
153
6
154
5
155
4
156
3
157
2
158
1
159
0
MX=' 0 '
CA
MX=' 1 '
S9
Pixel 127
--------
RGB=0
S8
RGB=0
S7
RGB=1
Source Out
RGB=0
Gate Out
Pixel 2
RGB=1
Pixel 1
SA
ML=' 0 ' ML=' 1 '
B1 -------- R126 G126 B126 R127 G127 B127
0
159
-------1
158
-------2
157
-------3
156
-------4
155
-------5
154
-------6
153
-------7
152
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-------152
7
-------153
6
-------154
5
-------155
4
-------156
3
-------157
2
-------158
1
-------159
0
126
127
-------1
0
--------
Note
RA = Row Address,
CA = Column Address
SA = Scan Address
MX = Mirror X-axis (Column address direction parameter), D6 parameter of MADCTL command
MY = Mirror Y-axis (Row address direction parameter), D7 parameter of MADCTL command
MX =Scan direction parameter, D4 parameter of MADCTL command
RGB = Red, Green and Blue pixel position change, D3 parameter of MADCTL command
Ver 1.5.2
66
2007-12
ST7732
9.10.2.2 When using 120RGB x 160 resolution (GM1, GM0 = “01”, SMX=SMY=SRGB=’0’)
2
3
4
5
6
7
8
9
|
|
|
|
|
154
155
156
157
158
159
160
161
G0
B0
R1
G1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0
119
1
118
RGB
Order
RGB=1
S11 S12 -------- S361 S362 S363 S364 S365 S366
RGB=0
S10
Pixel 120
RGB=1
RA
MY=' 0 ' MY=' 1 '
0
159
R0
1
158
2
157
3
156
4
155
5
154
6
153
7
152
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152
7
153
6
154
5
155
4
156
3
157
2
158
1
159
0
MX=' 0 '
CA
MX=' 1 '
S9
Pixel 119
--------
RGB=0
S8
RGB=0
S7
RGB=1
Source Out
RGB=0
Gate Out
Pixel 2
RGB=1
Pixel 1
SA
ML=' 0 ' ML=' 1 '
B1 -------- R118 G118 B118 R119 G119 B119
0
159
-------1
158
-------2
157
-------3
156
-------4
155
-------5
154
-------6
153
-------7
152
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-------152
7
-------153
6
-------154
5
-------155
4
-------156
3
-------157
2
-------158
1
-------159
0
118
119
-------1
0
--------
Note
RA = Row Address,
CA = Column Address
SA = Scan Address
MX = Mirror X-axis (Column address direction parameter), D6 parameter of MADCTL command
MY = Mirror Y-axis (Row address direction parameter), D7 parameter of MADCTL command
MX =Scan direction parameter, D4 parameter of MADCTL command
RGB = Red, Green and Blue pixel position change, D3 parameter of MADCTL command
Ver 1.5.2
67
2007-12
ST7732
9.10.2.3 When using 132RGB x 162 resolution (GM1, GM0 = “11”, SMX=SMY=SRGB=’0’)
1
2
3
4
5
6
7
8
|
|
|
|
|
155
156
157
158
159
160
161
162
G0
B0
R1
G1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0
131
S6 -------- S391 S392 S393 S394 S395 S396
1
130
RGB
Order
RGB=1
S5
RGB=0
S4
Pixel 132
RGB=1
RA
MY=' 0 ' MY=' 1 '
0
161
R0
1
160
2
159
3
158
4
157
5
156
6
155
7
154
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154
7
155
6
156
5
157
4
158
3
159
2
160
1
161
0
MX=' 0 '
CA
MX=' 1 '
S3
Pixel 131
--------
RGB=0
S2
RGB=0
S1
RGB=1
Source Out
RGB=0
Gate Out
Pixel 2
RGB=1
Pixel 1
SA
ML=' 0 ' ML=' 1 '
B1 -------- R131 G131 B131 R132 G132 B132
0
161
-------1
160
-------2
159
-------3
158
-------4
157
-------5
156
-------6
155
-------7
154
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-------154
7
-------155
6
-------156
5
-------157
4
-------158
3
-------159
2
-------160
1
-------161
0
130
131
-------1
0
--------
Note
RA = Row Address,
CA = Column Address
SA = Scan Address
MX = Mirror X-axis (Column address direction parameter), D6 parameter of MADCTL command
MY = Mirror Y-axis (Row address direction parameter), D7 parameter of MADCTL command
MX =Scan direction parameter, D4 parameter of MADCTL command
RGB = Red, Green and Blue pixel position change, D3 parameter of MADCTL command
Ver 1.5.2
68
2007-12
ST7732
9.10.3 Normal Display On or Partial Mode On, Vertical Scroll Off
9.10.3.1 When using 128RGB x 160 resolution (GM1, GM0 = “00”)
In this mode, the content of the frame memory within an area where column pointer is 00h to 7Fh and page pointer is 00h to
9Fh is displayed.
To display a dot on leftmost top corner, store the dot data at (column pointer, row pointer) = (0, 0).
1). Example for Normal Display On (MX=MY=ML=’0’ ,SMX=SMY=’0’)
Scan
128 Columns
128 Columns
Order
00h
00
10
20
30
40
50
60
01h ---- ---- 76h 77h ---- 7Fh 83h
01
0Y 0Z
11
1Y 1Z
21
2Y 2Z
31
3Y 3Z
41
4Y 4Z
51
5Y 5Z
6Z
128 x 160 x18bit
Fram e RAM
X0 X1 X2
XX XY XZ
Y0 Y1 Y2 Y3 YW YX YY YZ
Z0 Z1 Z2 Z3 ZW ZX ZY ZZ
00
10
20
30
40
50
60
1
2
3
|
|
|
|
|
|
|
|
|
|
158
159
160
01
11
21
31
41
51
02
12
22
32
42
03
13
0W 0X 0Y
1W 1X 1Y
2X 2Y
3X 3Y
4X 4Y
5Y
0Z
1Z
2Z
3Z
4Z
5Z
6Z
128RGB x 160
LCD Panel
S0
U0
V0
W0
X0
Y0
Z0
U1
V1
W1
X1
Y1
Z1
V2
W2
X2
Y2 Y3
Z2 Z3
VX
WX
XX
YW YX
ZW ZX
UY
VY
WY
XY
YY
ZY
SZ
UZ
VZ
WZ
XZ
YZ
ZZ
G2
G3
G4
|
|
|
|
|
|
|
|
|
|
|
|
G159
G160
G161
Display area =160 lines
160 Lines
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
|
9Eh
9Fh
A0h
A1h
2). Example for Partial Display On (PSL[7:0]=04h,PEL[7:0]=9Bh, MX=MV=ML=’0’ ,SMX=SMY=’0’)
Scan
128 Columns
128 Columns
Order
160 Lines
Ver 1.5.2
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
|
9Eh
9Fh
A0h
A1h
00h
00
10
20
30
40
50
60
01h ---- ---- 76h 77h ---- 7Fh 83h
01
0Y 0Z
11
1Y 1Z
21
2Y 2Z
31
3Y 3Z
41
4Y 4Z
51
5Y 5Z
6Z
U0
V0
W0
X0
Y0
Z0
128 x 160 x18bit
Fram e RAM
U1
V1
VX
W1 W2
WX
X1 X2
XX
Y1 Y2 Y3 YW YX
Z1 Z2 Z3 ZW ZX
UY
VY
WY
XY
YY
ZY
UZ
VZ
WZ
XZ
YZ
ZZ
00
10
20
30
40
50
60
1
2
3
|
|
|
|
|
|
|
|
|
|
158
159
160
01
11
21
31
41
51
02
12
22
32
42
03
13
0W 0X 0Y
1W 1X 1Y
2X 2Y
3X 3Y
4X 4Y
5Y
0Z
1Z
2Z
3Z
4Z
5Z
6Z
128RGB x 160
LCD Panel
S0
U0
V0
W0
X0
Y0
Z0
69
U1
V1
W1
X1
Y1
Z1
V2
W2
X2
Y2 Y3
Z2 Z3
VX
WX
XX
YW YX
ZW ZX
UY
VY
WY
XY
YY
ZY
SZ
UZ
VZ
WZ
XZ
YZ
ZZ
G2
G3
G4
|
|
|
|
|
|
|
|
|
|
|
|
G159
G160
G161
Non-Display
area =4 lines
Display area
=152 lines
Non-Display
area =4 lines
2007-12
ST7732
9.10.3.2 When using 120RGB x 160 resolution (GM1, GM0 = “01”)
In this mode, contents of the frame memory within an area where column pointer is 00h to 77h and page pointer is 00h to
9Fh is displayed.
To display a dot on leftmost top corner, store the dot data at (column pointer, row pointer) = (0, 0).
1). Example for Normal Display On (MX=MY=ML=’0’, SMX=SMY=’0’)
Scan
120 Columns
120 Columns
Order
00h
00
10
20
30
40
50
60
---- ---- 76h
02
0Y
12
1Y
22
2Y
32
3Y
42
4Y
5Y
77h ---- 81h 83h
0Z
1Z
2Z
3Z
4Z
5Z
6Z
120 x 160 x18 bit
Fram e RAM
|
|
|
|
|
9Eh
9Fh
A0h
A1h
01h
01
11
21
31
41
51
W0
X0
Y0
Z0
W1
X1 X2
Y1 Y2
Z1 Z2
00
10
20
30
40
50
60
1
2
3
|
|
|
|
|
|
01
11
21
31
41
51
WZ
XY XZ
YY YZ
ZY ZZ
0Y
1Y
2Y
3Y
4Y
5Y
0Z
1Z
2Z
3Z
4Z
5Z
6Z
120RGB x 160
LCD Panel
|
Unused
area
02
12
22
32
42
|
|
|
158
159
160
S0
U0
V0
W0
X0
Y0
Z0
U1
V1
W1
X1
Y1
Z1
V2
W2
X2
Y2
Z2
G2
G3
G4
|
|
|
|
|
|
|
UY
VY
WY
XY
YY
ZY
|
SZ
|
UZ
|
VZ
|
WZ |
XZ G159
YZ G160
ZZ G161
Display area =160 lines
160 Lines
00h
01h
02h
|
|
|
|
|
|
2). Example for Partial Display On (PSL[7:0]=04h,PEL[7:0]=9Bh, MX=MV=ML=’0’, SMX=SMY=’0’)
Scan
120 Columns
120 Columns
Order
160 Lines
00h
01h
02h
|
|
|
|
|
|
01h
01
11
21
31
41
51
---- ---- 76h
02
0Y
12
1Y
22
2Y
32
3Y
42
4Y
5Y
77h ---- 81h 83h
0Z
1Z
2Z
3Z
4Z
5Z
6Z
120 x 160 x18 bit
Fram e RAM
|
|
|
|
|
9Eh
9Fh
A0h
A1h
Ver 1.5.2
00h
00
10
20
30
40
50
60
U0
V0
W0
X0
Y0
Z0
U1
V1
W1
X1
Y1
Z1
V2
W2
X2
Y2
Z2
UY
VY
WY
XY
YY
ZY
00
10
20
30
40
50
60
1
2
3
|
|
|
|
|
|
Unused
area
02
12
22
32
42
0Y
1Y
2Y
3Y
4Y
5Y
120RGB x 160
LCD Panel
|
UZ
VZ
WZ
XZ
YZ
ZZ
01
11
21
31
41
51
|
|
|
158
159
160
S0
U0
V0
W0
X0
Y0
Z0
70
U1
V1
W1
X1
Y1
Z1
V2
W2
X2
Y2
Z2
UY
VY
WY
XY
YY
ZY
0Z
1Z
2Z
3Z
4Z
5Z
6Z
G2
G3
G4
|
|
|
|
|
|
|
|
SZ
|
UZ
|
VZ
|
WZ |
XZ G159
YZ G160
ZZ G161
Non-Display
area =4 lines
Display area
=152 lines
Non-Display
area =4 lines
2007-12
ST7732
9.10.3.3 When using 132RGB x 162 resolution (GM1, GM0 = “11”)
In this mode, contents of the frame memory within an area where column pointer is 00h to 83h and page pointer is 00h to
A1h is displayed.
To display a dot on leftmost top corner, store the dot data at (column pointer, row pointer) = (0, 0).
1). Example for Normal Display On (MX=MY=ML=’0’, SMX=SMY=’0’)
Scan
132 Columns
132 Columns
Order
00h
00
10
20
30
40
50
60
01h
01
11
21
31
41
51
---- ---- ---- ---- ---- 81h
02 03
0W 0X 0Y
12 13
1W 1X 1Y
22
2X 2Y
32
3X 3Y
42
4X 4Y
5Y
83h
0Z
1Z
2Z
3Z
4Z
5Z
6Z
132 x 162 x18 bit
Fram e RAM
S0
U0
V0
W0
X0
Y0
Z0
U1
V1
W1
X1
Y1
Z1
V2
W2
X2
Y2 Y3
Z2 Z3
VX
WX
XX
YW YX
ZW ZX
UY
VY
WY
XY
YY
ZY
SZ
UZ
VZ
WZ
XZ
YZ
ZZ
00
10
20
30
40
50
60
1
2
3
|
|
|
|
|
|
|
|
|
|
|
|
160
161
162
01
11
21
31
41
51
02 03
12 13
22
32
42
0W 0X 0Y
1W 1X 1Y
2X 2Y
3X 3Y
4X 4Y
5Y
0Z
1Z
2Z
3Z
4Z
5Z
6Z
132R G B x 162
LCD Panel
S0
U0
V0
W0
X0
Y0
Z0
U1
V1
W1
X1
Y1
Z1
V2
W2
X2
Y2 Y3
Z2 Z3
VX
WX
XX
YW YX
ZW ZX
UY
VY
WY
XY
YY
ZY
SZ
UZ
VZ
WZ
XZ
YZ
ZZ
G1
G2
G3
|
|
|
|
|
|
|
|
|
|
|
|
G160
G161
G162
Display area =162 lines
162 Lines
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
|
|
9Fh
A0h
A1h
2). Example for Partial Display On (PSL[7:0]=04h,PEL[7:0]=9Dh, MX=MV=ML=’0’ ,SMX=SMY=’0’)
Scan
132 Columns
132 Columns
Order
162 Lines
Ver 1.5.2
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
9Dh
9Eh
9Fh
A0h
A1h
00h
00
10
20
30
40
50
60
01h
01
11
21
31
41
51
---- ---- ---- ---- ---- 81h
02 03
0W 0X 0Y
12 13
1W 1X 1Y
22
2X 2Y
32
3X 3Y
42
4X 4Y
5Y
83h
0Z
1Z
2Z
3Z
4Z
5Z
6Z
132 x 162 x18 bit
Fram e RAM
S0
U0
V0
W0
X0
Y0
Z0
U1
V1
W1
X1
Y1
Z1
V2
W2
X2
Y2 Y3
Z2 Z3
VX
WX
XX
YW YX
ZW ZX
UY
VY
WY
XY
YY
ZY
SZ
UZ
VZ
WZ
XZ
YZ
ZZ
00
10
20
30
40
50
60
1
2
3
|
|
|
|
|
|
|
|
|
|
|
|
160
161
162
01
11
21
31
41
51
02
12
22
32
42
03
13
0W 0X 0Y
1W 1X 1Y
2X 2Y
3X 3Y
4X 4Y
5Y
0Z
1Z
2Z
3Z
4Z
5Z
6Z
132RGB x 162
LCD Panel
S0
U0
V0
W0
X0
Y0
Z0
71
U1
V1
W1
X1
Y1
Z1
V2
W2
X2
Y2 Y3
Z2 Z3
VX
WX
XX
YW YX
ZW ZX
UY
VY
WY
XY
YY
ZY
SZ
UZ
VZ
WZ
XZ
YZ
ZZ
G1
G2
G3
|
|
|
|
|
|
|
|
|
|
|
|
G160
G161
G162
Non-Display
area =4 lines
Display area
=155 lines
Non-Display
area =4lines
2007-12
ST7732
9.10.4 Vertical Scroll Mode
There is vertical scrolling, which are determined by the commands “Vertical Scrolling Definition” (33h) and Vertical Scrolling
Start Address” (37h).
Fig. 9.10.2 Difference between Scrolling and original
9.10.4.1 When using 128RGB x 160 resolution (GM1, GM0 = “00”)
When Vertical Scrolling Definition Parameters (TFA+VSA+BFA)=160. In this case, scrolling is applied as shown below.
1). Example for TFA =3, VSA=155, BFA=2, SSA=4, ML=0: Scrolling
128 Columns
Scan
128 Columns
Order
160 Lines
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
|
9Eh
9Fh
A0h
A1h
00h
00
10
20
30
40
50
60
S0
W0
X0
Y0
Z0
01h ---- ---- ---- ---- 7Eh 7Fh 83h
01
0Y 0Z
1
11
1Y 1Z
2
21
2Y 2Z
3
31
3Y 3Z
|
41
4Y 4Z
|
51
5Y 5Z
|
6Z
|
|
128 x 160 x18 bit
|
Fram e RAM
|
|
|
W1 W2
WY WZ
|
X1 X2
XY XZ
158
Y1 Y2 Y3 YW YX YY YZ
159
Z1 Z2 Z3 ZW XZ ZY ZZ
160
SSA
00
10
20
40
50
60
01
11
21
41
51
02
12
22
42
03
13
0W 0X 0Y
1W 1X 1Y
2X 2Y
4X 4Y
5Y
0Z
1Z
2Z
4Z
5Z
6Z
128 RGB x 160
LCD Panel
U0
V0
W0
X0
30
Y0
Z0
U1
V1
W1
X1
31
Y1
Z1
V2
W2
X2
32
Y2 Y3
Z2 Z3
VX
WX
XX
3X
YW YX
ZW ZX
UY
VY
WY
XY
3Y
YY
ZY
UZ
VZ
WZ
XZ
3Z
YZ
ZZ
G2
G3
G4
|
|
|
|
|
|
|
|
|
|
|
|
G159
G160
G161
TFA
2). Example for TFA =3, VSA=155 BFA=2, SSA=4, ML=1: Scrolling: TFA and BFT are exchanged
Ver 1.5.2
72
2007-12
VSA
BFA
ST7732
128 Columns
Scan
128 Columns
Order
160 Lines
Ver 1.5.2
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
|
9Eh
9Fh
A0h
A1h
00h
00
10
20
30
40
50
60
V0
W0
X0
Y0
Z0
01h ---- ---- ---- ---- 7Eh 7Fh 83h
01
0Y 0Z
160
11
1Y 1Z
159
21
2Y 2Z
158
31
3Y 3Z
|
41
4Y 4Z
|
51
5Y 5Z
|
6Z
|
|
128 x 160 x18 bit
|
Fram e RAM
|
|
VZ
|
W1 W2
WY WZ
|
X1 X2
XY XZ
3
Y1 Y2 Y3 YW YX YY YZ
2
Z1 Z2 Z3 ZW XZ ZY ZZ
1
00
10
W0
20
40
50
60
01
11
W1
21
41
51
02 03
12 13
W2
22
42
0W 0X 0Y
1W 1X 1Y
WX WY
2X 2Y
4X 4Y
5Y
0Z
1Z
WZ
2Z
4Z
5Z
6Z
128 RGB x 160
LCD Panel
SSA
S0
U0
V0
X0
Y0
Z0
73
U1
V1
X1
Y1
Z1
U2
V2
X2
Y2 Y3
Z2 Z3
UX
VX
XX
YW YX
ZW ZX
UY
VY
XY
YY
ZY
SZ
UZ
VZ
XZ
YZ
ZZ
G2
G3
G4
|
|
|
|
|
|
|
|
|
|
|
|
G159
G160
G161
2007-12
BFA
VSA
TFA
ST7732
9.10.4.2 When using 120RGB x 160 resolution (GM1, GM0 = “01”)
When Vertical Scrolling Definition Parameters (TFA+VSA+BFA)=160. In this case, scrolling is applied as shown below.
1). Example for TFA =3, VSA=155, BFA=2, SSA=4, ML=0: Scrolling
Scan
120 Columns
120 Columns
Order
160 Lines
00h
01h
02h
|
|
|
|
|
|
00h
00
10
20
30
40
50
60
---- ---- 76h
02
0Y
12
1Y
22
2Y
32
3Y
42
4Y
5Y
77h ---- 81h 83h
0Z
1Z
2Z
3Z
4Z
5Z
6Z
120 x 160 x18 bit
Fram e RAM
|
|
|
|
|
9Eh
9Fh
A0h
A1h
01h
01
11
21
31
41
51
W0
X0
Y0
Z0
W1
X1 X2
Y1 Y2
Z1 Z2
WZ
XY XZ
YY YZ
ZY ZZ
1
2
3
|
|
|
|
|
|
SSA
00
10
20
40
50
60
02
12
22
42
0Y
1Y
2Y
4Y
5Y
0Z
1Z
2Z
4Z
5Z
6Z
120RGB x 160
LCD Panel
|
Unused
area
01
11
21
41
51
|
|
|
158
159
160
U0
V0
W0
X0
30
Y0
Z0
U1
V1
W1
X1
31
Y1
Z1
V2
W2
X2
32
Y2
Z2
UY
VY
WY
XY
3Y
YY
ZY
G2
G3
G4
|
|
|
|
|
|
TFA
VSA
|
|
UZ
|
VZ
|
WZ |
XZ
|
3Z G159
YZ G160
ZZ G161
BFA
2). Example for TFA =2, VSA=155, BFA=3, SSA=4, ML=1: Scrolling: TFA and BFT are exchanged
Scan
120 Columns
120 Columns
Order
160 Lines
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
|
9Eh
9Fh
A0h
A1h
Ver 1.5.2
00h
00
10
20
30
40
50
60
V0
W0
X0
Y0
Z0
01h
01
11
21
31
41
51
---- ---- 76h
02
0Y
12
1Y
22
2Y
32
3Y
42
4Y
5Y
77h ---- 81h 83h
0Z
160
1Z
159
2Z
158
3Z
|
4Z
|
5Z
|
6Z
|
|
|
120 x 160 x18 bit
Fram e RAM
|
V1
W1
X1 X2
Y1 Y2
Z1 Z2
VY VZ
WZ
XY XZ
YY YZ
ZY ZZ
Unused
area
|
|
4
3
2
1
00
10
W0
20
30
40
50
60
01
11
W1
21
31
41
51
02
12
W2
22
32
42
0Y
1Y
WY
2Y
3Y
4Y
5Y
120RGB x 160
LCD Panel
0Z G2
1Z G3
WZ G4
2Z
|
3Z
|
4Z
|
5Z
|
6Z
|
|
74
U1
V1
X1
Y1
Z1
V2
X2
Y2
Z2
UY
VY
XY
YY
ZY
VSA
|
SSA
U0
V0
X0
Y0
Z0
TFA
UZ
VZ
XZ
YZ
ZZ
|
|
|
|
|
G159
G160
G161
BFA
2007-12
ST7732
9.10.4.3 When using 132RGB x 162 resolution (GM1, GM0 = “11”)
When Vertical Scrolling Definition Parameters (TFA+VSA+BFA)=162. In this case, scrolling is applied as shown below.
1). Example for TFA =3, VSA=157, BFA=2, SSA=4, ML=0: Scrolling
Scan
132 Columns
132 Columns
Order
162 Lines
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
|
|
9Fh
A0h
A1h
00h
00
10
20
30
40
50
60
01h
01
11
21
31
41
51
---- ---- ---- ---- ---- 81h 83h
02 03
0W 0X 0Y 0Z
12 13
1W 1X 1Y 1Z
22
2X 2Y 2Z
32
3X 3Y 3Z
42
4X 4Y 4Z
5Y 5Z
6Z
132 x 162 x18 bit
Fram e RAM
S0
U0
V0
W0
X0
Y0
Z0
U1
V1
W1
X1
Y1
Z1
V2
W2
X2
Y2 Y3
Z2 Z3
VX
WX
XX
YW YX
ZW ZX
UY
VY
WY
XY
YY
ZY
SZ
UZ
VZ
WZ
XZ
YZ
ZZ
1
2
3
|
|
|
|
|
|
|
|
|
|
|
|
160
161
162
SSA
00
10
20
40
50
60
01
11
21
41
51
02 03
12 13
22
42
0W 0X 0Y
1W 1X 1Y
2X 2Y
4X 4Y
5Y
0Z
1Z
2Z
4Z
5Z
6Z
132R G B x 162
LCD Panel
S0
U0
V0
W0
X0
30
Y0
Z0
U1
V1
W1
X1
31
Y1
Z1
V2
W2
X2
32
Y2 Y3
Z2 Z3
VX
WX
XX
3X
YW Y X
ZW Z X
UY
VY
WY
XY
3Y
YY
ZY
SZ
UZ
VZ
WZ
XZ
3Z
YZ
ZZ
G1
G2
G3
|
|
|
|
|
|
|
|
|
|
|
|
G160
G161
G162
TFA
VSA
BFA
2). Example for TFA =3, VSA=157, BFA=2, SSA=4, ML=1: Scrolling: TFA and BFT are exchanged
132 Columns
Scan
132 Columns
Order
162 Lines
Ver 1.5.2
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
|
|
9Fh
A0h
A1h
00h
00
10
20
30
40
50
60
S0
U0
V0
W0
X0
Y0
Z0
01h
01
11
21
31
41
51
U1
V1
W1
X1
Y1
Z1
---- ---- ---- ---- ---- 81h 83h
02 03
0W 0X 0Y 0Z 162
12 13
1W 1X 1Y 1Z 161
22
2X 2Y 2Z 160
32
3X 3Y 3Z |
42
4X 4Y 4Z |
5Y 5Z |
6Z |
|
SSA
|
132 x 162 x18 bit
Fram e RAM
|
|
SZ |
UY UZ |
V2
VX VY VZ |
W2
WX WY WZ |
X2
XX XY XZ 3
Y2 Y3
YW YX YY YZ 2
Z2 Z3
ZW ZX ZY ZZ 1
75
00
10
W0
20
30
40
50
60
01
11
W1
21
31
41
51
02 03
12 13
W2
22
32
42
0W 0X 0Y
1W 1X 1Y
W X WY
2X 2Y
3X 3Y
4X 4Y
5Y
132R G B x 162
LCD Panel
S0
U0
V0
X0
Y0
Z0
U1
V1
X1
Y1
Z1
V2
X2
Y 2 Y3
Z 2 Z3
VX
XX
YW YX
ZW ZX
UY
VY
XY
YY
ZY
0Z G1
1Z G2
WZ G3
2Z
|
3Z
|
4Z
|
5Z
|
6Z
|
|
|
|
|
SZ
|
UZ
|
VZ |
XZ G160
YZ G161
ZZ G162
2007-12
BFA
VSA
TFA
ST7732
9.10.5 Vertical Scroll Example
9.10.5.1 Vertical Scroll Example (GM1, GM0 = “00” & GM1, GM0=“01”)
There are 2 types of vertical scrolling, which are determined by the commands “Vertical Scrolling Definition” (33h) and
“Vertical Scrolling Start Address” (37h).
Case 1: TFA + VSA + BFA≠160
N/A. Do not set TFA + VSA + BFA≠160. In that case, unexpected picture will be shown.
Case 2: TFA + VSA + BFA=160 (Scrolling)
Example1) When MADCTL parameter ML=”0”, TFA=0, VSA=160, BFA=0 and VSCSAD=80.
Example2) When MADCTL parameter ML=”1”, TFA=30, VSA=130, BFA=0 and VSCSAD=80.
Ver 1.5.2
76
2007-12
ST7732
9.10.5.2 Vertical Scroll Example (GM1, GM0 = “11”)
There are 2 types of vertical scrolling, which are determined by the commands “Vertical Scrolling Definition” (33h) and
“Vertical Scrolling Start Address” (37h).
Case 1: TFA + VSA + BFA≠162
N/A. Do not set TFA + VSA + BFA≠162. In that case, unexpected picture will be shown.
Case 2: TFA + VSA + BFA=162 (Scrolling)
Example1) When MADCTL parameter ML=”0”, TFA=0, VSA=162, BFA=0 and VSCSAD=40.
Example2) When MADCTL parameter ML=”1”, TFA=30, VSA=132, BFA=0 and VSCSAD=40.
Ver 1.5.2
77
2007-12
ST7732
9.11 Address Counter
The address counter sets the addresses of the display data RAM for writing and reading.
Data is written pixel-wise into the RAM matrix of DRIVER. The data for one pixel or two pixels is collected (RGB 6-6-6-bit),
according to the data formats. As soon as this pixel-data information is complete the “Write access” is activated on the RAM.
The locations of RAM are addressed by the address pointers. The address ranges are X=0 to X=131 (83h) and Y=0 to
Y=161 (A1h). Addresses outside these ranges are not allowed. Before writing to the RAM, a window must be defined that
will be written. The window is programmable via the command registers XS, YS designating the start address and XE, YE
designating the end address.
For example the whole display contents will be written, the window is defined by the following values: XS=0 (0h) YS=0 (0h)
and XE=127 (83h), YE=161 (A1h).
In vertical addressing mode (MV=1), the Y-address increments after each byte, after the last Y-address (Y=YE), Y wraps
around to YS and X increments to address the next column. In horizontal addressing mode (V=0), the X-address
increments after each byte, after the last X-address (X=XE), X wraps around to XS and Y increments to address the next
row. After the every last address (X=XE and Y=YE) the address pointers wrap around to address (X=XS and Y=YS).
For flexibility in handling a wide variety of display architectures, the commands “CASET, RASET and MADCTL” (see
section 10 command list), define flags MX and MY, which allows mirroring of the X-address and Y-address. All
combinations of flags are allowed. Section 9.12 show the available combinations of writing to the display RAM. When MX,
MY and MV will be changed the data bust be rewritten to the display RAM.
For each image condition, the controls for the column and row counters apply as section 9.12 below:
Condition
Column Counter
Return to “Start
When RAMWR/RAMRD command is accepted
Column (XS)”
Complete Pixel Read / Write action
Increment by 1
Return to “Start
The Column counter value is larger than “End Column (XE)”
Column (XS)”
The Column counter value is larger than “End Column (XE)” and
Return to “Start
the Row counter value is larger than “End Row (YE)”
Column (XS)”
Row Counter
Return to “Start
Row (YS)”
No change
Increment by 1
Return to “Start
Row (YS)”
9.12. Memory Data Write/ Read Direction
The data is written in the order illustrated above. The Counter which dictates where in the physical memory the data is to be
written is controlled by “Memory Data Access Control” Command, bits B5 (MV), B6 (MX), B7 (MY) as described below.
Fig. 9.12.1 Data streaming order
Ver 1.5.2
78
2007-12
ST7732
9.12.1.1 When 128RGBx160 (GM=’00’)
MV
0
0
0
0
1
1
1
1
MX
0
0
1
1
0
0
1
1
MV
0
1
0
1
0
1
0
1
CASET
Direct to Physical Column Pointer
Direct to Physical Column Pointer
Direct to (127-Physical Column Pointer)
Direct to (127-Physical Column Pointer)
Direct to Physical Row Pointer
Direct to (159-Physical Row Pointer)
Direct to Physical Row Pointer
Direct to (159-Physical Row Pointer)
RASET
Direct to Physical Row Pointer
Direct to (159-Physical Row Pointer)
Direct to Physical Row Pointer
Direct to (159-Physical Row Pointer)
Direct to Physical Column Pointer
Direct to Physical Column Pointer
Direct to (127-Physical Column Pointer)
Direct to (127-Physical Column Pointer)
9.12.1.2 When 120RGBx160 (GM=’01’)
MV
0
0
0
0
1
1
1
1
MX
0
0
1
1
0
0
1
1
MV
0
1
0
1
0
1
0
1
CASET
Direct to Physical Column Pointer
Direct to Physical Column Pointer
Direct to (119-Physical Column Pointer)
Direct to (119-Physical Column Pointer)
Direct to Physical Row Pointer
Direct to (159-Physical Row Pointer)
Direct to Physical Row Pointer
Direct to (159-Physical Row Pointer)
RASET
Direct to Physical Row Pointer
Direct to (159-Physical Row Pointer)
Direct to Physical Row Pointer
Direct to (159-Physical Row Pointer)
Direct to Physical Column Pointer
Direct to Physical Column Pointer
Direct to (119-Physical Column Pointer)
Direct to (119-Physical Column Pointer)
9.12.1.3 When 132RGBx162 (GM=’11’)
MV
MX
MV
CASET
RASET
0
0
0
Direct to Physical Column Pointer
Direct to Physical Row Pointer
0
0
1
Direct to Physical Column Pointer
Direct to (161-Physical Row Pointer)
0
1
0
Direct to (131-Physical Column Pointer)
Direct to Physical Row Pointer
0
1
1
Direct to (131-Physical Column Pointer)
Direct to (161-Physical Row Pointer)
1
0
0
Direct to Physical Row Pointer
Direct to Physical Column Pointer
1
0
1
Direct to (161-Physical Row Pointer)
Direct to Physical Column Pointer
1
1
0
Direct to Physical Row Pointer
Direct to (131-Physical Column Pointer)
1
1
1
Direct to (161-Physical Row Pointer)
Direct to (131-Physical Column Pointer)
Note: Data is always written to the Frame Memory in the same order, regardless of the Memory Write Direction set by
MADCTL bits B7 (MY), B6 (MX), B5 (MV). The write order for each pixel unit is
One pixel unit represents 1 column and 1page counter value on the Frame Memory.
Ver 1.5.2
79
2007-12
ST7732
9.12.2 Frame Data Write Direction According to the MADCTL parameters (MV, MX and MY)
Display Data
Direction
Normal
MADCTL
Parameter
MV MX MY
0
0
0
Image in the Host
(MPU)
B
Image in the Driver
(DDRAM)
H/W position (0,0)
B
X-Y address (0,0)
X: CASET
F
Y-Mirror
0
0
1
B
Y: RASET
F
F
H/W position (0,0)
X-Y address (0,0)
X: CASET
F
X-Mirror
0
1
0
B
Y: RASET
B
B
H/W position (0,0)
X-Y address (0,0)
X: CASET
Y: RASET
F
X-Mirror
Y-Mirror
0
1
1
B
F
H/W position (0,0)
F
X-Y address (0,0)
X: CASET
Y: RASET
B
F
X-Y Exchange
1
0
0
B
H/W position (0,0)
B
X-Y address (0,0)
X: RASET
F
X-Y Exchange
Y-Mirror
1
0
1
B
Y: CASET
F
F
H/W position (0,0)
X-Y address (0,0)
X: RASET
F
X-Y Exchange
X-Mirror
1
1
0
B
Y: CASET
B
B
H/W position (0,0)
X-Y address (0,0)
X: RASET
Y: CASET
F
X-Y Exchange
X-Mirror
Y-Mirror
1
1
1
B
H/W position (0,0)
F
B
X-Y address (0,0)
X: RASET
F
Ver 1.5.2
F
80
Y: CASET
2007-12
ST7732
9.13 Tearing Effect Output Line
The Tearing Effect output line supplies to the MPU a Panel synchronization signal. This signal can be enabled or disabled
by the Tearing Effect Line Off & On commands. The mode of the Tearing Effect signal is defined by the parameter of the
Tearing Effect Line On command. The signal can be used by the MPU to synchronize Frame Memory Writing when
displaying video images.
9.13.1 Tearing Effect Line Modes
Mode 1, the Tearing Effect Output signal consists of V-Blanking Information only:
tvdh= The LCD display is not updated from the Frame Memory
tvdl= The LCD display is updated from the Frame Memory (except Invisible Line – see below)
Mode 2, the Tearing Effect Output signal consists of V-Blanking and H-Blanking Information, there is one V-sync and 162
H-sync pulses per field.
thdh= The LCD display is not updated from the Frame Memory
thdl= The LCD display is updated from the Frame Memory (except Invisible Line – see above)
Note: During Sleep In Mode, the Tearing Output Pin is active Low.
Ver 1.5.2
81
2007-12
ST7732
9.13.2 Tearing Effect Line Timings
The Tearing Effect signal is described below:
Table 9.13.1 AC characteristics of Tearing Effect Signal Idle Mode Off (Frame Rate = 58.9 Hz)
Symbol
Parameter
min
max
unit
tvdl
Vertical Timing Low Duration
13
ms
tvdh
Vertical Timing High Duration
1000
µs
thdl
Horizontal Timing Low Duration
33
µs
thdh
Horizontal Timing Low Duration
25
500
µs
NOTE: The timings in Table 9.3.1 apply when MADCTL ML=0 and ML=1
description
The signal’s rise and fall times (tf, tr) are stipulated to be equal to or less than 15ns.
The Tearing Effect Output Line is fed back to the MPU and should be used as shown below to avoid Tearing Effect:
9.13.3 Example 1: MPU Write is faster than panel read
Data write to Frame Memory is now synchronized to the Panel Scan. It should be written during the vertical sync pulse of
the Tearing Effect Output Line. This ensures that data is always written ahead of the panel scan and each Panel Frame
refresh has a complete new image:
B
Ver 1.5.2
82
2007-12
ST7732
9.13.4 Example 2: MPU write is slower than panel read.
The MPU to Frame Memory write begins just after Panel Read has commenced i.e. after one horizontal sync pulse of the
Tearing Effect Output Line. This allows time for the image to download behind the Panel Read pointer and finishing
download during the subsequent Frame before the Read Pointer “catches” the MPU to Frame memory write position.
B
Ver 1.5.2
83
2007-12
ST7732
9.14 Preset Values
ST7732 will set preset values on our production line for each display module. Any of these preset values do not need
customer’s SW support.
9.15 Power ON/OFF Sequence
The power on/off sequence is illustrated below:
9.15.1 Uncontrolled Power Off
The uncontrolled power-off means a situation which removed a battery without the controlled power off sequence. It will
neither damage the module or the host interface.
If uncontrolled power-off happened, the display will go blank and there will not any visible effect on the display (blank
display) and remains blank until “Power On Sequence” powers it up.
Ver 1.5.2
84
2007-12
ST7732
9.16 Power Level Definition
9.16.1 Power Level
6 level modes are defined they are in order of Maximum Power consumption to Minimum Power
Consumption:
1. Normal Mode On (full display), Idle Mode Off, Sleep Out.
In this mode, the display is able to show maximum 262,144 colors.
2. Partial Mode On, Idle Mode Off, Sleep Out.
In this mode part of the display is used with maximum 262,144 colors.
3. Normal Mode On (full display), Idle Mode On, Sleep Out.
In this mode, the full display area is used but with 8 colors.
4. Partial Mode On, Idle Mode On, Sleep Out.
In this mode, part of the display is used but with 8 colors.
5. Sleep In Mode
In this mode, the DC: DC converter, internal oscillator and panel driver circuit are stopped. Only the MCU interface and
memory works with VDDI power supply. Contents of the memory are safe.
6. Power Off Mode
In this mode, both VDD and VDDI are removed.
Note: Transition between modes 1-5 is controllable by MCU commands. Mode 6 is entered only when both Power supplies
are removed.
9.16.2 Power Flow Chart
Normal display mode on = NOR ON
Partial display mode on = PTL ON
Idle mode off = IDM OFF
Idle mode on = IDM ON
Sleep out = SLP OUT
Sleep in = SLP IN
NOR ON
PTL ON
Sleep out
Normal display mode on
Idle mode off
IDM ON
Power on sequence
HW reset
SW reset
SLP IN
SLP OUT
Sleep in
Normal display mode on
Idle mode off
Sleep out
Normal display mode on
Idle mode on
Sleep out
Partial display mode on
Idle mode off
PTL ON
NOR ON
Ver 1.5.2
PTL ON
IDM OFF
IDM ON
IDM ON
NOR ON
SLP IN
SLP OUT
SLP IN
SLP OUT
IDM OFF
Sleep out
Partial display mode on
Idle mode on
Sleep in
Normal display mode on
Idle mode on
Sleep in
Partial display mode on
Idle mode off
IDM ON
SLP IN
SLP OUT
85
IDM OFF
IDM OFF
Sleep in
Partial display mode on
Idle mode on
PTL ON
NOR ON
2007-12
ST7732
9.17 Reset Table
9.17.1 Reset Table (Default Value, GM=00, 128RGB x 160)
Item
Frame memory
Sleep In/Out
Display On/Off
Display mode (normal/partial)
Display Inversion On/Off
Display Idle Mode On/Off
Column: Start Address (XS)
After Power On
Random
In
Off
Normal
Off
Off
0000h
After Hardware Reset
No Change
In
Off
Normal
Off
Off
0000h
Column: End Address (XE)
007Fh
007Fh
Row: Start Address (YS)
0000h
0000h
Row: End Address (YE)
009Fh
009Fh
GC0
See Section 9.19
0000h
009Fh
Off
0000h
00A0h
0000h
0000h
Off
0 (Mode1)
GC0
See Section 9.19
0000h
009Fh
Off
0000h
00A0h
0000h
0000h
Off
0 (Mode1)
After Software Reset
No Change
In
Off
Normal
Off
Off
0000h
007Fh (127d) (when
MV=0)
009Fh (159d) (when
MV=1)
0000h
009Fh (159d) (when
MV=0)
007Fh (127d) (when
MV=1)
GC0
No Change
0000h
009Fh
Off
0000h
00A0h
0000h
0000h
Off
0 (Mode1)
0/0/0/0/0
0/0/0/0/0
No Change
Gamma setting
RGB for 256, 4k and 65k Color Mode
Partial: Start Address (PSL)
Partial: End Address (PEL)
Scroll: Vertical scrolling
Scroll: Top Fixed Area (TFA)
Scroll: Scroll Area (VSA)
Scroll: Bottom Fixed Area (BFA)
Scroll Start Address (SSA)
Tearing: On/Off
Tearing Effect Mode (*1)
Memory Data Access Control
(MY/MX/MV/ML/RGB)
Interface Pixel Color Format
6 (18-Bit/Pixel)
6 (18-Bit/Pixel)
RDDPM
08h
08h
RDDMADCTL
00h
00h
RDDCOLMOD
6 (18-Bit/Pixel)
6 (18-Bit/Pixel)
RDDIM
00h
00h
RDDSM
00h
00h
RDDSDR
00h
00h
ID2
NV value
NV value
ID3
NV value
NV value
Note1. TE Mode 1 means Tearing Effect Output Line consists of V-Blanking Information only.
Ver 1.5.2
86
No Change
08h
No Change
No Change
00h
00h
00h
NV value
NV value
2007-12
ST7732
9.17.2 Reset Table (GM=01, 120RGB x 160)
Item
Frame memory
Sleep In/Out
Display On/Off
Display mode (normal/partial)
Display Inversion On/Off
Display Idle Mode On/Off
Column: Start Address (XS)
After Power On
Random
In
Off
Normal
Off
Off
0000h
After Hardware Reset
No Change
In
Off
Normal
Off
Off
0000h
Column: End Address (XE)
0077h
0077h
Row: Start Address (YS)
0000h
0000h
Row: End Address (YE)
009Fh
009Fh
GC0
See Section 9.19
0000h
009Fh
Off
0000h
00A0h
0000h
0000h
Off
0 (Mode1)
GC0
See Section 9.19
0000h
009Fh
Off
0000h
00A0h
0000h
0000h
Off
0 (Mode1)
After Software Reset
No Change
In
Off
Normal
Off
Off
0000h
0077h (119d) (when
MV=0)
009Fh (159d) (when
MV=1)
0000h
009Fh (159d) (when
MV=0)
0077h (119d) (when
MV=1)
GC0
No Change
0000h
009Fh
Off
0000h
00A0h
0000h
0000h
Off
0 (Mode1)
0/0/0/0/0
0/0/0/0/0
No Change
Gamma setting
RGB for 256, 4k and 65k Color Mode
Partial: Start Address (PSL)
Partial: End Address (PEL)
Scroll: Vertical scrolling
Scroll: Top Fixed Area (TFA)
Scroll: Scroll Area (VSA)
Scroll: Bottom Fixed Area (BFA)
Scroll Start Address (SSA)
Tearing: On/Off
Tearing Effect Mode (*1)
Memory Data Access Control
(MY/MX/MV/ML/RGB)
Interface Pixel Color Format
6 (18-Bit/Pixel)
6 (18-Bit/Pixel)
RDDPM
08h
08h
RDDMADCTL
00h
00h
RDDCOLMOD
6 (18-Bit/Pixel)
6 (18-Bit/Pixel)
RDDIM
00h
00h
RDDSM
00h
00h
RDDSDR
00h
00h
ID2
NV value
NV value
ID3
NV value
NV value
Note1. TE Mode 1 means Tearing Effect Output Line consists of V-Blanking Information only.
Ver 1.5.2
87
No Change
08h
No Change
No Change
00h
00h
00h
NV value
NV value
2007-12
ST7732
9.17.3 Reset Table (GM=11, 132RGB x 162)
Item
Frame memory
Sleep In/Out
Display On/Off
Display mode (normal/partial)
Display Inversion On/Off
Display Idle Mode On/Off
Column: Start Address (XS)
After Power On
Random
In
Off
Normal
Off
Off
0000h
After Hardware Reset
No Change
In
Off
Normal
Off
Off
0000h
Column: End Address (XE)
0083h
0083h
Row: Start Address (YS)
0000h
0000h
Row: End Address (YE)
00A1h
00A1h
GC0
See Section 9.19
0000h
00A1h
Off
0000h
00A2h
0000h
0000h
Off
0 (Mode1)
GC0
See Section 9.19
0000h
00A1h
Off
0000h
00A2h
0000h
0000h
Off
0 (Mode1)
After Software Reset
No Change
In
Off
Normal
Off
Off
0000h
0083h (131d) (when
MV=0)
00A1h (161d) (when
MV=1)
0000h
00A1h (161d) (when
MV=0)
0083h (131d) (when
MV=1)
GC0
No Change
0000h
00A1h
Off
0000h
00A2h
0000h
0000h
Off
0 (Mode1)
0/0/0/0/0
0/0/0/0/0
No Change
Gamma setting
RGB for 256, 4k and 65k Color Mode
Partial: Start Address (PSL)
Partial: End Address (PEL)
Scroll: Vertical scrolling
Scroll: Top Fixed Area (TFA)
Scroll: Scroll Area (VSA)
Scroll: Bottom Fixed Area (BFA)
Scroll Start Address (SSA)
Tearing: On/Off
Tearing Effect Mode (*1)
Memory Data Access Control
(MY/MX/MV/ML/RGB)
Interface Pixel Color Format
6 (18-Bit/Pixel)
6 (18-Bit/Pixel)
RDDPM
08h
08h
RDDMADCTL
00h
00h
RDDCOLMOD
6 (18-Bit/Pixel)
6 (18-Bit/Pixel)
RDDIM
00h
00h
RDDSM
00h
00h
RDDSDR
00h
00h
ID2
NV value
NV value
ID3
NV value
NV value
Note 1. TE Mode 1 means Tearing Effect Output Line consists of V-Blanking Information only.
Ver 1.5.2
88
No Change
08h
No Change
No Change
00h
00h
00h
NV value
NV value
2007-12
ST7732
9.18 Module Input/Output Pins
9.18.1 Output or Bi-directional (I/O) Pins
Output or Bi-directional pins
After Power On
After Hardware Reset
After Software Reset
TE
Low
Low
Low
D7 to D0 (Output driver)
High-Z (Inactive)
High-Z (Inactive)
High-Z (Inactive)
Note: There will be no output from D7-D0 during Power On/Off sequence, Hardware Reset and Software Reset.
9.18.2 Input Pins
Input pins
RESX
CSX
D/CX
WRX
RDX
D7 to D0
Ver 1.5.2
During Power
On Process
See 9.15
Input invalid
Input invalid
Input invalid
Input invalid
Input invalid
After Power On
Input valid
Input valid
Input valid
Input valid
Input valid
Input valid
After Hardware
Reset
Input valid
Input valid
Input valid
Input valid
Input valid
Input valid
89
After Software
Reset
Input valid
Input valid
Input valid
Input valid
Input valid
Input valid
During Power
Off Process
See 9.15
Input invalid
Input invalid
Input invalid
Input invalid
Input invalid
2007-12
ST7732
9.18.3 Reset Timing
Table 9.18.2.1 Reset input timing
VSS=0V, VDDI=1.65V to 1.95V, VDD=2.5V to 2.9V, Ta = -30 to 70℃)
Symbol
Parameter
Related Pins
MIN
TYP MAX
tRESW
*1) Reset low pulse width
RESX
10
tREST
*2) Reset complete time
-
120
-
-
Note
-
Unit
us
-
ms
Note 1 Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table
below.
Note 2.It will be necessary to wait 120 msec before sending next command; this is allowing time for the supply voltages and
clock circuits to stabilize.
Note 3 During Reset Complete Time, ID2 and VCOMOF value in OTP will be latched to internal register during this
period.This loading is done every time when there is H/W reset complete time (tREST) within 120ms after a rising
edge of RESX.
Note 4 Spike Rejection also applies during a valid reset pulse as shown below:
Ver 1.5.2
90
2007-12
ST7732
9.19 Color Depth Conversion Look Up Tables
9.19.1 65536 Color to 262,144 Color
Color
Look Up Table Output
Frame Memory Data (6-bits)
Default value
after H/W Reset
RGBSET
Parameter
RED
R005 R004 R003 R002 R001 R000
R015 R014 R013 R012 R011 R010
R025 R024 R023 R022 R021 R020
R035 R034 R033 R032 R031 R030
R045 R044 R043 R042 R041 R040
R055 R054 R053 R052 R051 R050
R065 R064 R063 R062 R061 R060
R075 R074 R073 R072 R071 R070
R085 R084 R083 R082 R081 R080
R095 R094 R093 R092 R091 R090
R105 R104 R103 R102 R101 R100
R115 R114 R113 R112 R111 R110
R125 R124 R123 R122 R121 R120
R135 R134 R133 R132 R131 R130
R145 R144 R143 R142 R141 R140
R155 R154 R153 R152 R151 R150
R165 R164 R163 R162 R161 R160
R175 R174 R173 R172 R171 R170
R185 R184 R183 R182 R181 R180
R195 R194 R193 R192 R191 R190
R205 R204 R203 R202 R201 R200
R215 R214 R213 R212 R211 R210
R225 R224 R223 R222 R221 R220
R235 R234 R233 R232 R231 R230
R245 R244 R243 R242 R241 R240
R255 R254 R253 R252 R251 R250
R265 R264 R263 R262 R261 R260
R275 R274 R273 R272 R271 R270
R285 R284 R283 R282 R281 R280
R295 R294 R293 R292 R291 R290
R305 R304 R303 R302 R301 R300
R315 R314 R313 R312 R311 R310
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100001
100011
100101
100111
101001
101011
101101
101111
110001
110011
110101
110111
111001
111011
111101
111111
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Ver 1.5.2
91
Look Up Table Input Data
65k Color (5-bits)
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
2007-12
ST7732
Color
Look Up Table Output
Frame Memory Data (6-bits)
Default value
after H/W Reset
RGBSET
Parameter
GREEN
G005 G004 G003 G002 G001 G000
G015 G014 G013 G012 G011 G010
G025 G024 G023 G022 G021 G020
G035 G034 G033 G032 G031 G030
G045 G044 G043 G042 G041 G040
G055 G054 G053 G052 G051 G050
G065 G064 G063 G062 G061 G060
G075 G074 G073 G072 G071 G070
G085 G084 G083 G082 G081 G080
G095 G094 G093 G092 G091 G090
G105 G104 G103 G102 G101 G100
G115 G114 G113 G112 G111 G110
G125 G124 G123 G122 G121 G120
G135 G134 G133 G132 G131 G130
G145 G144 G143 G142 G141 G140
G155 G154 G153 G152 G151 G150
G165 G164 G163 G162 G161 G160
G175 G174 G173 G172 G171 G170
G185 G184 G183 G182 G181 G180
G195 G194 G193 G192 G191 G190
G205 G204 G203 G202 G201 G200
G215 G214 G213 G212 G211 G210
G225 G224 G223 G222 G221 G220
G235 G234 G233 G232 G231 G230
G245 G244 G243 G242 G241 G240
G255 G254 G253 G252 G251 G250
G265 G264 G263 G262 G261 G260
G275 G 274 G273 G272 G271 G270
G285 G 284 G283 G282 G281 G280
G295 G 294 G293 G292 G291 G290
G305 G 304 G303 G302 G301 G300
G315 G 314 G313 G312 G311 G310
000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Ver 1.5.2
92
Look Up Table Input Data
65k Color (5-bits)
000000
000001
000010
000011
000100
000101
000110
000111
001000
001001
001010
001011
001100
001101
001110
001111
010000
010001
010010
010011
010100
010101
010110
010111
011000
011001
011010
011011
011100
011101
011110
011111
2007-12
ST7732
Color
Look Up Table Output
Frame Memory Data (6-bits)
Default value
after H/W Reset
RGBSET
Parameter
GREEN
G325 G324 G323 G322 G321 G320
G335 G334 G333 G332 G331 G330
G345 G344 G343 G342 G341 G340
G355 G354 G353 G352 G351 G350
G365 G364 G363 G362 G361 G360
G375 G374 G373 G372 G371 G370
G385 G384 G383 G382 G381 G380
G395 G394 G393 G392 G391 G390
G405 G404 G403 G402 G401 G400
G415 G414 G413 G412 G411 G410
G425 G424 G423 G422 G421 G420
G435 G434 G433 G432 G431 G430
G445 G444 G443 G442 G441 G440
G455 G454 G453 G452 G451 G450
G465 G464 G463 G462 G461 G460
G475 G474 G473 G472 G471 G470
G485 G484 G483 G482 G481 G480
G495 G494 G493 G492 G491 G490
G505 G504 G503 G502 G501 G500
G515 G514 G513 G512 G511 G510
G525 G524 G523 G522 G521 G520
G535 G534 G533 G532 G531 G530
G545 G544 G543 G542 G541 G540
G555 G554 G553 G552 G551 G550
G565 G564 G563 G562 G561 G560
G575 G574 G573 G572 G571 G570
G585 G584 G583 G582 G581 G580
G595 G594 G593 G592 G591 G590
G605 G604 G603 G602 G601 G600
G615 G614 G613 G612 G611 G610
G625 G624 G623 G622 G621 G620
G635 G634 G633 G632 G631 G630
100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
Ver 1.5.2
93
Look Up Table Input Data
65k Color (5-bits)
100000
100001
100010
100011
100100
100101
100110
100111
101000
101001
101010
101011
101100
101101
101110
101111
110000
110001
110010
110011
110100
110101
110110
110111
111000
111001
111010
111011
111100
111101
111110
111111
2007-12
ST7732
Color
Look Up Table Output
Frame Memory Data (6-bits)
Default value
after H/W Reset
RGBSET
Parameter
BLUE
B005 B004 B003 B002 B001 B000
B015 B014 B013 B012 B011 B010
B025 B024 B023 B022 B021 B020
B035 B034 B033 B032 B031 B030
B045 B044 B043 B042 B041 B040
B055 B054 B053 B052 B051 B050
B065 B064 B063 B062 B061 B060
B075 B074 B073 B072 B071 B070
B085 B084 B083 B082 B081 B080
B095 B094 B093 B092 B091 B090
B105 B104 B103 B102 B101 B100
B115 B114 B113 B112 B111 B110
B125 B124 B123 B122 B121 B120
B135 B134 B133 B132 B131 B130
B145 B144 B143 B142 B141 B140
B155 B154 B153 B152 B151 B150
B165 B164 B163 B162 B161 B160
B175 B174 B173 B172 B171 B170
B185 B184 B183 B182 B181 B180
B195 B194 B193 B192 B191 B190
B205 B204 B203 B202 B201 B200
B215 B214 B213 B212 B211 B210
B225 B224 B223 B222 B221 B220
B235 B234 B233 B232 B231 B230
B245 B244 B243 B242 B241 B240
B255 B254 B253 B252 B251 B250
B265 B264 B263 B262 B261 B260
B275 B274 B273 B272 B271 B270
B285 B284 B283 B282 B281 B280
B295 B294 B293 B292 B291 B290
B305 B304 B303 B302 B301 B300
B315 B314 B313 B312 B311 B310
000000
000010
000100
000110
001000
001010
001100
001110
010000
010010
010100
010110
011000
011010
011100
011110
100001
100011
100101
100111
101001
101011
101101
101111
110001
110011
110101
110111
111001
111011
111101
111111
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
Ver 1.5.2
94
Look Up Table Input Data
65k Color (5-bits)
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
2007-12
ST7732
9.19.1 4096 Color to 262,144 Color
Color
Look Up Table Output
Frame Memory Data (6-bits)
Default value
after H/W Reset
RGBSET
Parameter
RED
R005 R004 R003 R002 R001 R000
R015 R014 R013 R012 R011 R010
R025 R024 R023 R022 R021 R020
R035 R034 R033 R032 R031 R030
R045 R044 R043 R042 R041 R040
R055 R054 R053 R052 R051 R050
R065 R064 R063 R062 R061 R060
R075 R074 R073 R072 R071 R070
R085 R084 R083 R082 R081 R080
R095 R094 R093 R092 R091 R090
R105 R104 R103 R102 R101 R100
R115 R114 R113 R112 R111 R110
R125 R124 R123 R122 R121 R120
R135 R134 R133 R132 R131 R130
R145 R144 R143 R142 R141 R140
R155 R154 R153 R152 R151 R150
R165 R164 R163 R162 R161 R160
|
R315 R314 R313 R312 R311 R310
000000
000100
001000
001100
010001
010101
011001
011101
100010
100110
101010
101110
110011
110111
111011
111111
-----|
------
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
32
Color
Look Up Table Output
Frame Memory Data (6-bits)
Default value
after H/W Reset
RGBSET
Parameter
GREEN
G005 G004 G003 G002 G001 G000
G015 G014 G013 G012 G011 G010
G025 G024 G023 G022 G021 G020
G035 G034 G033 G032 G031 G030
G045 G044 G043 G042 G041 G040
G055 G054 G053 G052 G051 G050
G065 G064 G063 G062 G061 G060
G075 G074 G073 G072 G071 G070
G085 G084 G083 G082 G081 G080
G095 G094 G093 G092 G091 G090
G105 G104 G103 G102 G101 G100
G115 G114 G113 G112 G111 G110
G125 G124 G123 G122 G121 G120
G135 G134 G133 G132 G131 G130
G145 G144 G143 G142 G141 G140
G155 G154 G153 G152 G151 G150
G165 G164 G163 G162 G161 G160
|
G635 G634 G633 G632 G631 G630
000000
000100
001000
001100
010001
010101
011001
011101
100010
100110
101010
101110
110011
110111
111011
111111
-----|
------
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
96
Ver 1.5.2
95
Look Up Table Input Data
4k Color (4-bits)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Not used
Look Up Table Input Data
4k Color (4-bits)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Not used
2007-12
ST7732
Color
Look Up Table Output
Frame Memory Data (6-bits)
Default value
after H/W Reset
RGBSET
Parameter
BLUE
B005 B004 B003 B002 B001 B000
B015 B014 B013 B012 B011 B010
B025 B024 B023 B022 B021 B020
B035 B034 B033 B032 B031 B030
B045 B044 B043 B042 B041 B040
B055 B054 B053 B052 B051 B050
B065 B064 B063 B062 B061 B060
B075 B074 B073 B072 B071 B070
B085 B084 B083 B082 B081 B080
B095 B094 B093 B092 B091 B090
B105 B104 B103 B102 B101 B100
B115 B114 B113 B112 B111 B110
B125 B124 B123 B122 B121 B120
B135 B134 B133 B132 B131 B130
B145 B144 B143 B142 B141 B140
B155 B154 B153 B152 B151 B150
B165 B164 B163 B162 B161 B160
|
B315 B314 B313 B312 B311 B310
000000
000100
001000
001100
010001
010101
011001
011101
100010
100110
101010
101110
110011
110111
111011
111111
-----|
------
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
128
Ver 1.5.2
96
Look Up Table Input Data
4k Color (4-bits)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Not used
2007-12
ST7732
9.20 Sleep Out-Command and Self-Diagnostic Functions of the Display Module
9.20.1 Register Loading Detection
Sleep Out-command (See section 10.1.12 “Sleep Out (11h)”) is a trigger for an internal function of the display module,
which indicates, if the display module loading function of factory default values from EEPROM (or similar device) to
registers of the display controller is working properly.
There are compared factory values of the EEPROM and register values of the display controller by the display controller. If
those both values (EEPROM and register values) are same, there is inverted (=increased by 1) a bit, which is defined in
command 10.1.10 “Read Display Self-Diagnostic Result (0Fh)” (=RDDSDR) (The used bit of this command is D7). If those
both values are not same, this bit (D7) is not inverted (= increased by 1).
The flow chart for this internal function is following:
Power on sequence
HW reset
SW reset
Sleep In (10h)
Sleep Out Mode
Sleep In Mode
RDDSDR’s D7=0
Sleep Out (11h)
Loads values from
EEPROM to registers
No
Compares EEPROM and
register values
Are EEPROM and
register values same ?
Yes
D7 inverted
Note: There is not compared and loaded register values, which can be changed by user (00h to AFh and DAh to DDh), by
the display module.
Ver 1.5.2
97
2007-12
ST7732
9.20.2 Functionality Detection
Sleep Out-command (See section 10.1.12 “Sleep Out (11h)”) is a trigger for an internal function of the display module,
which indicates, if the display module is still running and meets functionality requirements.
The internal function (= the display controller) is comparing, if the display module is still meeting functionality requirements
(only Booster voltage level). If functionality requirement is met, there is inverted (= increased by 1) a bit, which defined in
command 10.1.10 “Read Display Self- Diagnostic Result (0Fh)” (= RDDSDR) (The used bit of this command is D6). If
functionality requirement is not same, this bit (D6) is not inverted (= increased by 1).
The flow chart for this internal function is following:
Power on sequence
HW reset
SW reset
Sleep In (10h)
Sleep Out Mode
Sleep In Mode
RDDSDR’s D6=0
Sleep Out (11h)
Checks Booster voltage levels
and other functionalities
No
Is functionality
requirement met?
Yes
D6 inverted
Note: There is needed 120msec after Sleep Out -command, when there is changing from Sleep In –mode to Sleep Out
-mode, before there is possible to check if functionality requirements are met and a value of RDDSDR’s D6 is valid.
Otherwise, there is 120msec delay for D6’s value, when Sleep Out –command is sent in Sleep Out -mode.
Ver 1.5.2
98
2007-12
ST7732
9.20.3 Chip Attachment Detection
Sleep Out-command (See section 10.1.12 “Sleep Out (11h)”) is a trigger for an internal function of the display module,
which indicates, if a chip or chips (e.g. driver, etc.) of the display module is/are attached to the circuit route of a flex foil or
display glass ITO.
There is inverted (= increased by 1) a bit, which is defined in command 10.1.10 “Read Display Self- Diagnostic Result
(0Fh)” (= RDDSDR) (The used bit of this command is D5), if the chip or chips is/are attached to the circuit route of the flex
or display glass. If this chip is or those chips are not attached to the circuit route of the flex or display glass, this bit (D5) is
not inverted (= increased by 1).
The following figure is for reference purposes; how this chip attachment can be implemented e.g. there are connected
together 2 bumps via route of ITO or the flex foil on 4 corners of the driver (chip).
Bump
Routing
Between
bumps
Through view of driver to bumps
Routing
Between
bumps
Substrate of display glass
The flow chart for this internal function is following:
Power on sequence
HW reset
SW reset
Sleep In (10h)
Sleep Out Mode
Sleep In Mode
RDDSDR’s D5=0
Sleep Out (11h)
Checks, if chip is attached to route
No
Is chip attached to routes?
Yes
D5 inverted
Ver 1.5.2
99
2007-12
ST7732
9.20.4 Display Glass Break Detection
Sleep Out-command (See section 10.1.12 “Sleep Out (11h)”) is a trigger for an internal function of the display module,
which indicates, if the display glass of the display module is broken or not.
There is inverted (= increased by 1) a bit, which is defined in command 10.1.10 “Read Display Self-Diagnostic Result (0Fh)”
(= RDDSDR) (The used bit of this command is D4), if the display glass is not broken. If this display glass is broken, this bit
(D4) is not inverted (= increased by 1).
The following figure is a reference, how this glass break detection can be implemented e.g. there is connected together 2
bumps via route of ITO. This route of ITO is the nearest route of the edge of the display glass.
Active area of the display glass
Through view of driver to Bump
Substrate of display glass
The flow chart for this internal function is following:
Power on sequence
HW reset
SW reset
Sleep In (10h)
Sleep Out Mode
Sleep In Mode
RDDSDR’s D4=0
Sleep Out (11h)
Checks, if display glass broken
No
Is the display glass broken?
Yes
D4 inverted
Ver 1.5.2
100
2007-12
ST7732
9.21 External Light Source
The operation of the module can meet customer’s Environmental reliability requirements.
9.22 Oscillator
The chip has on-chip oscillator that does not require external components. This oscillator output signal is used for system
clock generation for internal display operation.
9.23 System Clock Generator
The timing generator produces the various signals to driver the internal circuitty. Internal chip operation is not affected by
operations on the data bus.
9.24 Instruction Decoder and Register
The instruction decoder indentifies command words arriving at the interface and routes the following data bytes to their
destination. The command set can be found in “Command” section.
9.25 Source Driver
The source driver block includes 132x3 source outputs (S1 to S396), which should be connected directly to the TFT-LCD.
The source output signals are generated in the data processing block after the data is read out of the RAM and latched,
which represent the simulatance selected rows.
9.26 Gate Driver
The gate driver block includes 162 channel gate output (G1 to G162) which should be connected directly to the TFT-LCD.
9.27 VSYNC Interface
The ST7732 incorporates a VSYNC I/F, which enables to display a moving picture which only system interface and
frame-synchronizing signal. The interface enables to display moving pictures with minimum modification to a conventional
systern.
The VSYNC-I/F is turned ON by VSYNC-I/F ON(ADH) command and turned OFF by VSYNC-I/F(ACH) command. In
VSYNC-I/F mode, internal display operations are synchronized with VS. The VSYNC-I/F enables to display a moving
picture through a system interface in higher speed than the internal display operations by some degree.
The VSYNC-I/F executes display operations only with internal clocks generated by internal oscillators and VS input. All
display data are stored in RAM so that only the data relevant to updating a screen are transferred to minimize data
transmission while displaying a moving picture.
Ver 1.5.2
101
2007-12
ST7732
-Leading Mode
-Lagging Mode
1. In RCM[1:0]=”01” mode, writing data to RAM on rising edge of VS signal.
2. If high pulse of VS signal should large than 1-lines.
3. The BP and FP should follow conditions: BP≧2-lines, FP≧2-lines and BP+FP =16-lines
4. The signals (CSX, WRX, D/CX and VS) of VSYNC I/F should follow MCU Parallel Interface AC timing.
The VSYNC-I/F has limits on the minimum RAM write speed through the system interface and the frequency of
the internal clocks. It requires a RAM write speed more than the calculated result from the following formula.
-Internal clock frequency (fosc)[Hz] =
Frame Frequency x (DisplayLines+FrontPorch(VSFP)+BackPorch(VSBP)) x 16(clocks) x fluctuation
Example of RAMs writes speed and the frequency of the internal clocks in VSYNC-I/F mode is as follows.
Example: Display size= 132 RGB x 162 lines, Raster rows= 162 lines, Back/Front porch: 14/2 lines(VSBP = 1110, VSFP
= 0010 of AFH), Frame frequency = 60 Hz
Internal clock frequency (fosc)[Hz] = 60Hz x (162+2+14) x 16 clocks x 1.1/0.9 = 209 kHz
When calculating an internal clock frequency, possible causes of fluctuations must also be taken into
consideration. In this example, the allowance for the fluctuation is x10% from the center value and the
frequency must be within a VS cycle.
Ver 1.5.2
102
2007-12
ST7732
Also in this example, variations attributed to LSI fabrication and room temperature are taken into consideration
as causes of fluctuations. Other possible causes of fluctuations, such as variations in external resistors or
voltage changes are not considered in this example. It is necessary to make a setting with enough margins to
accommodate
-When Frame frequency is 60Hz
Minimum speed for RAM writing[Hz]>
132x162/{((14+162+2)lines x 16 clock)/300kHz}=1.6MHz
Note 1, When RAM write does not start right affer the falling edge of VS, the time from the falling edge of VS until RAM write
starts must also be taken into account.
Note 2, The above calculation is premised on the case of writing data to RAM on the falling edge of VS.
Note 3, There must atleast be a margin of 2 processing lines when all one-frame data are written to RAM before the
ST7732 starts processing display llines
By writing data to RAM on rising edge of VS signal at speed of 1.6MHz(Frame rate =60Hz) or more, it is possible to
overwrite an entire screen without flicker by completing dta write operatipon of a line before it starts display
operation of that line
Notes:
1. The aforementioned example of calculation is just a result of calculation. In actual settings, possible causes of
fluctuations should be taken into comsideration. It is necessary to give enough margins when setting a RAM writing
speed.
2. The aforementioned example of calculation is the value in case of overwriting full screen. If a moving picture display
area is limited, it will result in more margins between RAMs write and display operations.
3. A front porch period continues after completion of 1 frame and until the next input of VS. The partial display and vertical
scroll functions are not available with then VSYNC-I/F.
Ver 1.5.2
103
2007-12
ST7732
10. Command
10.1 System function Command List and Description
Table 10.1.1 System Function command List (1)
Instruction
D7
D6
D5
D4
D3
D2
D1
D0
NOP
10.1.1
0
↑
1
-
0
0
0
0
0
0
0
0
(00h) No Operation
SWRESET
10.1.2
0
↑
1
-
0
0
0
0
0
0
0
1
(01h) Software reset
0
↑
1
-
0
0
0
0
0
1
0
0
(04h) Read Display ID
1
1
↑
-
-
-
-
-
-
-
-
-
1
1
↑
-
ID17
ID16
ID15
ID14
ID13
ID12
ID11
ID10
ID1 read
1
1
↑
-
1
ID26
ID25
ID24
ID23
ID22
ID21
ID20
ID2 read
1
1
↑
-
ID37
ID36
ID35
ID34
ID33
ID32
ID31
ID30
0
↑
1
-
0
0
0
0
1
0
0
1
1
1
↑
-
-
-
-
-
-
-
-
-
1
1
↑
-
BSTON
MY
MX
MV
ML
RGB
-
ST24
1
1
↑
-
ST23 IFPF2 IFPF1
IFPF0
IDMON PTLON SLOUT NORON
-
1
1
↑
-
VSSON ST14 INVON
ST21
ST11 DISON TEON GCS2
-
1
1
↑
-
0
↑
1
-
1
1
↑
-
1
1
↑
-
0
↑
1
-
0
0
0
0
1
1
1
↑
-
-
-
-
-
-
1
1
↑
-
MY
MX
MV
ML
0
↑
1
-
0
0
0
1
1
↑
-
-
-
-
1
1
↑
-
0
↑
1
-
0
0
1
1
↑
-
-
-
1
1
↑
-
VSSON
0
↑
1
-
1
1
↑
-
1
1
↑
-
0
↑
1
-
0
0
0
0
1
1
1
↑
-
-
-
-
-
-
1
1
↑
-
BRD
-
RDDID
RDDST
RDDPM
Refer D/CX WRX RDX D17-8
10.1.3
10.1.4
10.1.5
RDD MADCTL 10.1.6
RDD COLMOD 10.1.7
RDDIM
RDDSM
RDDSDR
10.1.8
10.1.9
10.1.10
GCS1 GCS0 TELON HSON
VSON PCKON DEON
0
0
0
0
1
0
-
-
-
-
-
-
1
ST0
0
(Hex)
Function
Dummy read
ID3 read
(09h) Read Display Status
Dummy read
-
(0Ah) Read Display Power Mode
-
-
Dummy read
-
-
-
0
1
1
-
-
-
Dummy read
RGB
-
-
-
-
0
1
1
0
0
-
-
-
-
-
VIP0
-
0
0
1
1
0
1
-
-
-
-
-
-
D6
INVON
-
-
0
0
0
0
1
1
1
0
-
-
-
-
-
-
-
-
Dummy read
-
-
-
1
1
1
-
-
-
Dummy read
-
-
-
-
BSTON IDMON PTLON SLPOUT NORON DISON
VIPF3 VIPF2 VIPF1
IFPF2 IFPF1 IFPF0
GCS2 GCS1 GCS0
TEON TELON HSON VSON PCKON DEON
RELD FUND ATTD
(0Bh) Read Display MADCTL
(0Ch) Read Display Pixel Format
Dummy read
(0Dh) Read Display Image Mode
Dummy read
(0Eh) Read Display Signal Mode
(0Fh) Read Display Self-diagnostic result
“-“: Don’t care
Ver 1.5.2
104
2007-12
ST7732
Table 10.1.2 System Function command List (2)
Instruction Refer
D/C
X
WR
D17RDX
X
8
D7
D6
D5
D4
D3
D2
D1
D0
(Hex) Function
SLPIN
10.1.11
0
↑
1
-
0
0
0
1
0
0
0
0
(10h) Sleep in & booster off
SLPOUT
10.1.12
0
↑
1
-
0
0
0
1
0
0
0
1
(11h) Sleep out & booster on
PTLON
10.1.13
0
↑
1
-
0
0
0
1
0
0
1
0
(12h) Partial mode on
NORON
10.1.14
0
↑
1
-
0
0
0
1
0
0
1
1
(13h) Partial off (Normal)
INVOFF
10.1.15
0
↑
1
-
0
0
1
0
0
0
0
0
(20h)
INVON
10.1.16
0
↑
1
-
0
0
1
0
0
0
0
1
Display inversion off
(normal)
(21h) Display inversion on
0
↑
1
-
0
0
1
0
0
1
1
0
(26h) Gamma curve select
1
↑
1
-
-
-
-
-
GAMSET
10.1.17
DISPOFF
10.1.18
0
↑
1
-
0
0
1
0
1
0
0
0
DISPON
10.1.19
0
↑
1
-
0
0
1
0
1
0
0
1
(29h) Display on
0
↑
1
-
0
0
1
0
1
0
1
0
(2Ah) Column address set
1
↑
1
-
-
-
-
-
-
-
-
-
1
↑
1
-
XS7
XS6
XS5
XS4
XS3
XS2
XS1
XS0
1
↑
1
-
-
-
-
-
-
-
-
1
0
1
↑
↑
↑
1
1
1
-
XE7
0
-
XE6
0
-
XE5
1
-
XE4
0
-
XE3
1
-
XE2
0
-
XE1
1
-
1
↑
1
-
YS7
YS6
YS5
YS4
YS3
YS2
YS1
1
↑
1
-
-
-
-
-
-
-
-
-
1
↑
1
-
YE7
YE6
YE5
YE4
YE3
YE2
YE1
YE0
0
↑
1
-
0
0
1
0
1
1
0
0
1
↑
1
-
D7
D6
D5
D4
D3
D2
D1
D0
0
↑
1
-
0
0
1
0
1
1
1
0
(2Eh) Memory read
1
1
↑
-
-
-
-
-
-
-
-
-
Dummy read
1
1
↑
-
D7
D6
D5
D4
D3
D2
D1
D0
CASET
RASET
10.1.20
GC3 GC2 GC1 GC0
(28h) Display off
X address start: 0≦S≦X
X address end:
XS≦XE≦X
XE0
1
(2Bh) Row address set
Y address start: 0≦YS≦Y
YS0
10.1.21
Y address end:S≦YE≦Y
RAMWR
RAMRD
10.1.22
10.1.23
(2Ch) Memory write
Write data
Read data
“-“: Don’t care
Ver 1.5.2
105
2007-12
ST7732
Table 10.1.3 System Function command List (3)
Instruction Refer D/CXWRXRDX D17-8 D7
PTLAR
10.1.25
SCRLAR 10.1.26
TEOFF
10.1.27
TEON
10.1.28
MADCTL 10.1.29
VSCSAD 10.1.30
IDMOFF 10.1.31
IDMON 10.1.32
COLMOD 10.1.33
0
1
1
1
1
0
1
1
1
1
1
1
0
0
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-
1
↑
1
-
0
1
0
1
1
0
0
0
1
↑
↑
↑
↑
↑
↑
↑
↑
↑
1
1
1
1
1
1
1
1
1
-
D6
D5
D4
D3
D2
D1
0
0
1
1
0
0
0
PSL7 PSL6 PSL5 PSL4 PSL3 PSL2 PSL1
PEL7 PEL6 PEL5 PEL4 PEL3 PEL2 PEL1
0
0
1
1
0
0
1
TFA7 TFA6 TFA5 TFA4 TFA3 TFA2 TFA1
VSA7 VSA6 VSA5 VSA4 VSA3 VSA2 VSA1
BFA7 BFA6 BFA5 BFA4 BFA3 BFA2 BFA1
0
0
1
1
0
1
0
0
0
1
1
0
1
0
D0
0
PSL0
PEL0
1
TFA0
VSA0
BFA0
0
1
Function
(30h) Partial start/end address set
Partial start address (0,1,2, ..P)
Partial end address (0,1,2, .., P)
(33h) Scroll area set
Top fixed area (0,1,2, .., S)
Vertical scroll area (0,1,2, .., S)
Bottom fixed area (0,1,2, .., S)
(34h) Tearing effect line off
(35h) Tearing effect mode set & on
Mode1: TELOM=”0”
- TELOM
Mode2: TELOM=”1”
0
0
1
1
0
1
1
0
(36h) Memory data access control
MY MX MV ML RGB 0
0
1
1
0
1
1
1
(37h) Scroll start address of RAM
SSA = 0, 1, 2, …, 131
SSA7 SSA6 SSA5 SSA4 SSA3 SSA2 SSA1 SSA0
0
0
1
1
1
0
0
0
(38h) Idle mode off
0
0
1
1
1
0
0
1
(39h) Idle mode on
0
0
1
1
1
0
1
0
(3Ah) Interface pixel format
VIPF3 VIPF2VIPF1 VIPF0 - IFPF2IFPF1 IFPF0
Interface format
0
↑
1
-
1
1
0
1
1
0
1
0
10.1.34
1
1
↑
-
-
-
-
-
-
-
-
-
RDID2
10.1.35
1
0
1
1
0
1
↑
1
1
↑
↑
1
↑
↑
1
-
RDID3
10.1.36
1
1
↑
-
1
1
↑
-
RDID1
(Hex)
ID17 ID16 ID15 ID14 ID13 ID12 ID11
1
1
0
1
1
0
1
1
ID26 ID25 ID24 ID23 ID22 ID21
1
1
0
1
1
1
0
-
-
-
-
-
-
-
ID37 ID36 ID35 ID34 ID33 ID32 ID31
(DAh) Read ID1
Dummy read
ID10
Read parameter
1
(DBh) Read ID2
Dummy read
ID20
Read parameter
0
(DCh) Read ID3
ID30
Dummy read
Read parameter
“-“: Don’t care
Note 1: After the H/W reset by RESX pin or S/W reset by SWRESET command, each internal register becomes default state (Refer
“RESET TABLE” section)
Note 2: Undefined commands are treated as NOP (00 h) command.
Note 3: B0 to D9 and DA to F are for factory use of driver supplier.
Note 4: Commands 10h, 12h, 13h, 20h, 21h, 26h, 28h, 29h, 30h, 33h, 36h (ML parameter only), 37h, 38h and 39h are updated during
V-sync when Module is in Sleep Out Mode to avoid abnormal visual effects. During Sleep In mode, these commands are updated
immediately. Read status (09h), Read Display Power Mode (0Ah), Read Display MADCTL (0Bh), Read Display Pixel Format (0Ch),
Read Display Image Mode (0Dh), Read Display Signal Mode (0Eh) and Read Display Self Diagnostic Result (0Fh) of these
commands are updated immediately both in Sleep In mode and Sleep Out mode.
Ver 1.5.2
106
2007-12
ST7732
10.2 Panel Function Command List and Description
Table 10.2.1 Panel Function Command List (1)
Instruction Refer D/CX WRX RDX D23-8
D7
D6
D5
D4
D3
D2
D1
D0
0
↑
1
-
1
0
1
1
0
0
0
0
1
↑
1
-
0
0
DP
EP
HSP
VSP
0
↑
1
-
1
0
0
0
0
1
1
↑
1
-
1
↑
1
-
FPA3
FPA2
FPA1
FPA0
1
↑
1
-
BPA3
BPA2
BPA1
BPA0
0
↑
1
-
0
0
1
0
1
1
↑
↑
1
1
-
1
↑
1
-
0
↑
1
-
1
↑
1
-
RTNC3 RTNC2 RTNC1 RTNC0
1
1
1
1
1
↑
↑
↑
↑
↑
1
1
1
1
1
-
FPC3
BPC3
RTND3
FPD3
BPD3
FPC2
BPC2
RTND2
FPD2
BPD2
FPC1
BPC1
RTND1
FPD1
BPD1
FPC0
BPC0
RTND0
FPD0
BPD0
0
↑
1
-
1
0
1
1
0
1
0
0
1
↑
1
-
0
0
0
0
0
NLA
NLB
NLC
0
↑
1
-
1
0
1
1
0
1
0
1
1
1
1
1
↑
↑
↑
↑
1
1
1
1
-
VBP2
HBP2
VBP1
HBP1
VBP0
HBP8
HBP0
0
↑
1
-
1
0
1
1
0
1
1
0
1
↑
1
-
0
0
NO1
NO0
SDT1
SDT0
EQ1
EQ0
1
↑
1
0
0
0
0
PTG1
PTG0
PT1
PT0
RGBCTR
(Hex) Function
(B0h)
10.2.1
FRMCTR1 10.2.2
DISSW ICM
1
1
(B1h)
RTNA3 RTNA2 RTNA1 RTNA0
Set RGB signal
control
ICM: RGB data
ascess select DW
RGB interface bus
width set DP, HSP,
VSP: PCLK, HS, VS
polarity set
In normal mode (Full
colors)
RTNA set 1-line
period
FPA: front porch
FRMCTR2 10.2.3
FRMCTR3 10.2.4
INVCTR
RGB
BPCTR
DISSET5
Ver 1.5.2
1
0
1
1
BPA: back porch
(B2h)
RTNB3 RTNB2 RTNB1 RTNB0
FPB3 FPB2 FPB1 FPB0
1
0
1
1
BPB3
BPB2
BPB1
BPB0
0
0
1
1
10.2.6
10.2.7
107
(8-colors)
RTNB: set 1-line
period
FPB: front porch
BPB: back porch
(B3h)
In partial mode + Full
colors
RTNC,RTND: set
1-line period
FPC,FPD: front porch
BPC,BPD: back porch
(B4h)
10.2.5
VBP7 VBP6 VBP5 VBP4 VBP3
HBP7 HBP6 HBP5 HBP4 HBP3
In Idle mode
Display inversion
control
NLA,NLB,NLC set
inversion
(B5h)
(B6h)
RGB I/F Blanking
porch setting
Display function
setting
NO: the amount of
non-overlap
SDT: set amount of
source delay
EQ: set EQ period
PT: No display area
source/VCOM/Gate
output control
2007-12
ST7732
Table 10.2.2 Panel Function Command List (2)
Instruction Refer D/CX WRX RDX D17-8
0
↑
1
1
↑
1
PWCTR1 10.2.8
D7
1
0
D6
1
0
D5
0
0
1
↑
1
-
0
0
0
0
0
VC2
VC1
VC0
0
↑
1
-
1
1
0
0
0
0
0
1
1
↑
1
-
0
0
0
0
0
BT2
BT1
BT0
0
↑
1
-
1
1
0
0
0
0
1
0
1
↑
1
1
↑
1
0
↑
1
1
↑
1
1
↑
1
0
↑
1
-
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
APA2
0
DCA2
0
0
APB2
0
DCB2
0
1
APA1
0
DCA1
0
1
APB1
0
DCB1
0
0
1
↑
1
-
0
0
0
0
0
APC2 APC1 APC0
1
↑
1
-
0
0
0
0
0
DCC2 DCC1 DCC0
0
↑
1
-
1
1
0
0
0
1
↑
1
-
-
VMH6 VMH 5 VMH4 VMH3 VMH2 VMH1 VMH0
1
↑
1
-
-
VML6 VML5 VM 4 VML3 VML2 VML1 VML0
0
↑
1
-
1
1
0
0
1
↑
1
-
-
VMF6
-
-
PWCTR2 10.2.9
PWCTR3 10.2.10
PWCTR4 10.2.11
PWCTR5 10.2.12
VMCTR1 10.2.13
VMOFCTR 10.2.14
D4
D3
D2
D1
D0 (Hex) Function
0
0
0
0
0
(C0h) Power control setting
VRH: Set the GVDD
VRH4 VRH3 VRH2 VRH1 VRH0
0
1
1
0
1
voltage
VC: Set the VCI1 voltage
(C1h) Power control setting
BT: set AVDD/VCL/VGH/
VGL voltage
(C2h)
In normal mode (Full
colors)
APA0
APA: adjust the operational
0
amplifier
DCA: adjust the booster
DCA0
circuit for Idle mode
0
1
(C3h) In Idle mode (8-colors)
APB0
APB: adjust the operational
0
amplifier
DCB: adjust the booster
DCB0
circuit for Idle mode
0
0
(C4h) In partial mode + Full colors
1
1
APC: adjust the operational
amplifier
DCC: adjust the booster
circuit for Idle mode
(C5h) VCOM control 1
VMH: VCOMH voltage
control
VML: VCOML voltage
control
(C7h) VCOM offset control
VMF3 VMF2 VMF1 VMF0
“-“: Don’t care
Note 1: C0h to C7h are fixed for about power controller.
Table 10.2.3 Panel Function Command List (3)
Instruction Refer D/CX WRX RDX D17-8
0
↑
1
WRID2 10.2.15
1
↑
1
-
D7
D6
D5
D4
D3
D2
D1
D0
1
1
0
1
0
0
0
1
0
ID26
ID25
ID24
ID23
ID22
ID21
ID20
0
↑
1
-
1
1
0
1
0
0
1
0
1
↑
1
-
ID37
ID36
ID35
ID34
ID33
ID32
ID31
ID30
0
1
1
1
1
1
0
1
0
1
1
1
0
1
1
1
↑
1
1
1
1
1
↑
1
↑
↑
↑
↑
↑
↑
↑
↑
1
↑
↑
↑
↑
↑
1
↑
1
1
1
1
1
1
1
1
-
1
ID417
ID427
ID437
ID447
1
1
1
0
1
1
0
1
0
1
ID416
ID426
ID436
ID446
1
1
0
0
0
1
1
1
1
0
ID415
ID425
ID435
ID445
0
0
1
0
1
0
0
1
0
1
ID414
ID424
ID434
ID444
1
EXTC
1
0
0
0
1
1
1
1
0
ID413
ID423
ID433
ID443
1
1
1
1
0
1
0
0
1
0
ID412
ID422
ID432
ID442
0
1
0
1
1
1
1
0
0
1
ID411
ID421
ID431
ID441
0
1
1
1
0
1
0
0
1
1
ID410
ID420
ID430
ID440
1
RDY
0
0
1
1
1
1
0
0
WRID3
RDID4
10.2.16
10.2.17
NVCTR1 10.2.18
NVCTR2 10.2.19
NVCTR3 10.2.20
(Hex) Function
(D1h) LCM version code
(D2h)
(D3h)
Write ID2 value to NV
memory Set the LCM
version code at ID2
Customer Project code
Write ID3 value to NV
memory Set the project
code at ID3
IC Vender Coder
Dummy read
ID41:IC Vender Code
ID42: IC Part Number Code
ID43 & ID44: Chip version
coder
(D9h) NVM control status
(DEh) NVM read command
AA
0F
A5
(DFh) NVM write command
55
F0
5A
“-“: Don’t care
Note 1: The D1h to D3h registers are fixed for about ID code setting.
Note 2: The D9h, DEh and DFh registers are used for NV Memory function controller. (Ex: write, clear, etc.)
Ver 1.5.2
108
2007-12
ST7732
Table 10.2.4 Panel Function Command List (4)
Instruction Refer D/CX WRXRDX D17-8 D7
D6
D5
D4
D3
D2
D1
D0
0
↑
1
-
1
1
1
0
0
0
0
0
1
↑
1
-
-
-
-
-
RFP3
RFP2
RFP1
RFP0
1
↑
1
-
-
-
- PKP04 PKP03 PKP02 PKP01 PKP00
1
↑
1
-
-
-
- PKP14 PKP13 PKP12 PKP11 PKP10
1
↑
1
-
-
-
- PKP24 PKP23 PKP22 PKP21 PKP20
1
↑
1
-
-
-
- PKP34 PKP33 PKP32 PKP31 PKP30
1
↑
1
-
-
-
- PKP44 PKP43 PKP42 PKP41 PKP40
1
↑
1
-
-
-
-
-
PKP53 PKP52 PKP51 PKP50
1
↑
1
-
-
-
-
-
PKP63 PKP62 PKP61 PKP60
1
↑
1
-
-
-
-
-
PKP73 PKP72 PKP71 PKP70
1
↑
1
-
-
-
-
-
PKP83 PKP82 PKP81 PKP80
1
↑
1
-
-
-
- RFP14 RFP13 RFP12 RFP11 RFP10
1
↑
1
-
-
- OSP14 OSP13 OSP12 OSP11 OSP10
1
↑
1
-
-
-
-
-
0
↑
1
-
1
1
1
0
0
0
1
↑
1
-
-
-
-
-
RFN3
RFN2
1
↑
1
-
-
-
- PKN04 PKN03 PKN02 PKN01 PKN00
1
↑
1
-
-
-
- PKN14 PKN13 PKN12 PKN11 PKN10
1
↑
1
-
-
-
- PKN24 PKN23 PKN22 PKN21 PKN20
1
↑
1
-
-
-
- PKN34 PKN33 PKN32 PKN31 PKN30
1
↑
1
-
-
-
- PKN44 PKN43 PKN42 PKN41 PKN40
1
↑
1
-
-
-
-
-
PKN53 PKN52 PKN51 PKN50
1
↑
1
-
-
-
-
-
PKN63 PKN62 PKN61 PKN60
1
↑
1
-
-
-
-
-
PKN73 PKN72 PKN71 PKN70
1
↑
1
-
-
-
-
-
PKN83 PKN82 PKN81 PKN80
1
↑
1
-
-
-
- RFN14 RFN13 RFN12 RFN11 RFN10
1
↑
1
-
-
-
- OSN14 OSN13 OSN12 OSN11 OSN10
1
↑
1
-
-
-
-
-
0
↑
1
-
1
1
1
0
0
0
1
1
↑
1
-
0
0
0
1
0
0
0
0
↑
1
-
1
NVM
PROG
1
1
1
1
0
1
↑
1
-
0
0
0
0
0
0
↑
1
-
1
1
1
1
0
0
OSC
SEL2
1
1
OSC
SEL1
0
1
↑
1
-
0
↑
1
-
1
1
1
1
0
1
1
1
↑
1
-
0
1
0
0
0
1
0
(Hex) Function
(E0h) Set Gamma correction
Gamma adjustment (+ polarity)
GAMCTRP1 10.2.21
OSP3 OSP2 OSP1 OSP0
0
0
RFN1 RFN0
(E1h) Set Gamma correction
Gamma adjustment (- polarity)
GAMCTRN1 10.2.22
AUTO
CTRL
10.2.23
OSCADJ 10.2.24
DISPCTRL 10.2.25
DEFADJ 10.2.26
OSN3 OSN2 OSN1 OSN0
(F1h) NVM write function ON/OFF
0
(F2h) Oscillator frequency setting
OSC
SEL0
1
(F5h) Display function control
PDM1 PDM0 FLM C8ON EQPW1EQPW0EQVDD ENGS
0
(F6h) Default mode setting
TESEL
OE
“-“: Don’t care
Note 1: E0-E1 registers are fixed for about Gamma adjusting.
Ver 1.5.2
109
2007-12
ST7732
10.1.1 NOP (00h)
00H
Inst / Para
NOP
Parameter
D/CX WRX RDX
0
1
↑
D17-8
-
D7
0
NOP (No Operation)
D6
D5
D4
D3
0
0
0
0
No Parameter
D7
0
SWRESET (Software Reset)
D6
D5
D4
D3
0
0
0
0
No Parameter
D2
0
D1
0
D0
0
(Code)
(00h)
-
NOTE: “-“ Don’t care
Description -This command is empty command.
10.1.2 SWRESET (01h): Software Reset
01H
Inst / Para
SWRESET
Parameter
D/CX WRX RDX
0
1
↑
D17-8
-
D2
0
D1
0
D0
1
(Code)
(01h)
-
NOTE: “-“ Don’t care
-If Software Reset is applied during Sleep In mode, it will be necessary to wait 120msec before sending
next command.
Description -The display module loads all default values to the registers during 120msec.
-If Software Reset is applied during Sleep Out or Display On Mode, it will be necessary to wait 120msec
before sending next command.
10.1.3 RDDID (04h): Read Display ID
RDDID (Read Display ID)
04H
Inst / Para
RDDID
1st Parameter
2nd Parameter
3rt Parameter
4th Parameter
D/CX WRX RDX
0
↑
1
1
1
↑
1
1
↑
1
1
↑
1
1
↑
D17-8
-
D7
0
ID17
1
ID37
D6
0
ID16
ID26
ID36
D5
0
ID15
ID25
ID35
D4
0
ID14
ID24
ID34
D3
0
ID13
ID23
ID33
D2
1
ID12
ID22
ID32
D1
0
ID11
ID21
ID31
D0
0
ID10
ID20
ID30
(Code)
(04h)
-
NOTE: “-“ Don’t care
-This read byte returns 24-bit display identification information.
-The 1st parameter is dummy data
-The 2nd parameter (ID17 to ID10): LCD module’s manufacturer ID.
Description -The 3rd parameter (ID26 to ID20): LCD module/driver version ID
-The 4th parameter (ID37 to UD30): LCD module/driver ID.
NOTE: Commands RDID1/2/3(DAh, DBh, DCh) read data correspond to the parameters 2,3,4 of the command 04h,
respectively.
Default Value
Status
Default
Ver 1.5.2
ID1
ID2
ID3
Power On Sequence
-
8xh
00h
S/W Reset
-
8xh
00h
H/W Reset
-
8xh
00h
110
2007-12
ST7732
10.1.4 RDDST (09h): Read Display Status
09H
Inst / Para
RDDST
D/CX WRX RDX
0
↑
1
1st Parameter
2nd Parameter
3rd Parameter
4th Parameter
5th Parameter
1
1
1
1
1
1
1
1
1
1
↑
↑
↑
↑
↑
D17-8
-
-
D7
0
RDDST (Read Display Status)
D6
D5
D4
D3
0
0
0
1
-
-
-
-
BSTON
ST23
VSSON
GCS1
MY
IFPF2
ST14
GCS0
MX
IFPF1
INVON
TELOM
MV
IFPF0
ST12
HSON
D2
0
D1
0
-
-
-
ML
RGB
IDMON PTLON SLOUT
ST11
DISON TEON
VSON PCKON DEON
D0
1
(Code)
(09h)
-
-
ST24
NORON
GCS2
ST0
NOTE: “-“ Don’t care
This command indicates the current status of the display as described in the table below:
Description
Bit
BSTON
Description
Booster Voltage Status
MY
Row Address Order (MY)
MX
Column Address Order (MX)
MV
Row/Column Exchange (MV)
ML
Scan Address Order (ML)
RGB
RGB/ BGR Order (RGB)
ST24
ST23
IFPF2
IFPF1
IFPF0
IDMON
PTLON
SLPOUT
NORON
For Future Use
For Future Use
VSSON
ST14
INVON
ST12
ST11
DISON
TEON
GCSEL2
GCSEL1
Interface Color Pixel Format
Definition
Idle Mode On/Off
Partial Mode On/Off
Sleep In/Out
Display Normal Mode On/Off
Vertical Scrolling Status
Horizontal Scroll Status
Inversion Status
All Pixels On (Not Used)
All Pixels Off (Not Used)
Display On/Off
Tearing effect line on/off
Gamma Curve Selection
GCSEL0
TELOM
HSON
Value
‘1’ =Booster on,
‘0’ =Booster off
‘1’ =Decrement, (Bottom to Top, when MADCTL (36h) D7=’1’)
‘0’ =Increment, (Top to Bottom, when MADCTL (36h) D7=’0’)
‘1’ =Decrement, (Right to Left, when MADCTL (36h) D6=’1’)
‘0’ =Increment, (Left to Right, when MADCTL (36h) D6=’1’)
‘1’ = Row/column exchange, (when MADCTL (36h) D5=’1’)
‘0’ = Normal, (when MADCTL (36h) D5=’0’)
‘1’ =Decrement,
(LCD refresh Top to Bottom, when MADCTL (36h) D4=’1’)
‘0’=Increment,
(LCD refresh Bottom to Top, when MADCTL (36h) D4=’0’)
‘1’ =BGR, (When MADCTL (36h) D3=’1’)
‘0’ =RGB, (When MADCTL (36h) D3=’0’)
‘0’
‘0’
“011” = 12-bit / pixel,
“101” = 16-bit / pixel,
“110” = 18-bit / pixel, others are no define
‘1’ = On, “0” = Off
‘1’ = On, “0” = Off
‘1’ = Out, “0” = In
‘1’ = Normal Display,
‘0’ = Partial Display
‘1’ = Scroll on,“0” = Scroll off
‘0’
‘1’ = On, “0” = Off
‘0’
‘0’
‘1’ = On, “0” = Off
‘1’ = On, “0” = Off
“000” = GC0
“001” = GC1
“010” = GC2
“011” = GC3
”100” to “111” = Not defined
‘0’ = mode1, ‘1’ = mode2
‘1’ = On, ‘0’ = Off
Tearing effect line mode
Horizontal Sync. (HS, RGB
I/F)
VSON
Vertical Sync, (VS, RGB I/F)
‘1’ = On, ‘0’ = Off
PCLKON Pixel Clock (PCLK, RGB I/F)
‘1’ = On, ‘0’ = Off
DEON
Data Enable (DE, RGB I/F)
‘1’ = On, ‘0’ = Off
ST0
For Future Use
‘0’
Note: ST0, ST5, ST9, ST11-ST15, ST19, ST23, ST24 are set to ‘0’, when RGB I/F.
Status
Default
Ver 1.5.2
Power On Sequence
S/W Reset
H/W Reset
ST[31-24]
0000-0000
0xxx0xx00
0000-0000
111
Default Value (ST31 to ST0)
ST[23-16]
ST[15-8]
0110-0001
0000-0000
0xxx-0001
0000-0000
0110-0001
0000-0000
ST[7-0]
0000-0000
0000-0000
0000-0000
2007-12
ST7732
10.1.5 RDDPM (0Ah): Read Display Power Mode
0AH
Inst / Para
RDDPM
D/CX WRX RDX
0
↑
1
1st Parameter
2nd Parameter
1
1
1
1
RDDPM (Read Display Power Mode)
D7
D6
D5
D4
D3
0
0
0
0
1
D17-8
-
↑
↑
-
-
-
-
D2
0
-
D1
1
-
BSTON IDMON PTLON SLPOUT NORON DISON
D0
0
(Code)
(0Ah)
-
-
-
D1
D0
NOTE: “-” Don’t care, can be set to VDDI or DGND level
This command indicates the current status of the display as described in the table below:
Bit
Description
Description
Value
BSTON
Booster Voltage Status
IDMON
Idle Mode On/Off
PTLON
Partial Mode On/Off
SLPON
Sleep In/Out
NORON
Display Normal Mode
On/Off
DISON
Display On/Off
D1
D0
Not Used
Not Used
‘1’ =Booster on,
‘0’ =Booster off
‘1’ = Idle Mode On,
‘0’ = Idle Mode Off
‘1’ = Partial Mode On,
‘0’ = Partial Mode Off
‘1’ = Sleep Out,
‘0’ = Sleep In
‘1’ = Normal Display,
‘0’ = Partial Display
‘1’ = Display On,
‘0’ = Display Off
‘0’
‘0’
Status
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value (D7 to D0)
0000_1000(08h)
0000_1000(08h)
0000_1000(08h)
10.1.6 RDDMADCTL (0Bh): Read Display MADCTL
0BH
Inst / Para
RDDMADCTL
D/CX
0
WRX
↑
RDX
1
1st Parameter
2nd Parameter
1
1
1
1
↑
↑
RDDMADCTL (Read Display MADCTL)
D17-8
D7
D6
D5
D4
D3
0
0
0
0
1
-
MY
MX
MV
ML
RGB
D2
0
D1
1
D0
1
(Code)
(0Bh)
-
D1
D0
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
This command indicates the current status of the display as described in the table below:
Bit
Description
MX
Row Address Order
MY
Column Address Order
MV
Row/Column Order (MV)
ML
Vertical Refresh Order
RGB
D1
D0
RGB/BGR Order
Not Used
Not Used
Description
Default
Ver 1.5.2
Value
‘1’ = Bottom to Top (When MADCTL B7=’1’)
‘0’ = Top to Bottom (When MADCTL B7=’0’)
‘1’ = Right to Left (When MADCTL B6=’1’)
‘0’ = Left to Right (When MADCTL B6=’0’)
‘1’ = Row/column exchange (MV=1)
‘0’ = Normal (MV=0)
‘1’ =LCD Refresh Bottom to Top
‘0’ =LCD Refresh Top to Bottom
‘1’ =BGR, “0”=RGB
‘0’
‘0’
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value (D7 to D0)
0000_0000 (00h)
No change
0000_0000 (00h)
112
2007-12
ST7732
10.1.7 RDDCOLMOD (0Ch): Read Display Pixel Format
0CH
Inst / Para
RDDCOLMOD
D/CX
0
WRX
1st Parameter
2nd Parameter
1
1
↑
RDX
1
D17-8
-
1
1
↑
↑
-
RDDCOLMOD (Read Display Pixel Format)
D7
D6
D5
D4
D3
D2
0
0
0
0
1
1
VIPF3
VIPF2
VIPF1
VIPF0
-
IFPF2
D1
0
D0
0
(Code)
(0Ch)
IFPF1
IFPF0
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
This command indicates the current status of the display as described in the table below:
IFPF[2:0]
011
101
110
111
MCU Interface Color Format
12-bit/pixel
16-bit/pixel
18-bit/pixel
No used
3
5
6
7
Description Others are no define and invalid
VIFPF[2:0]
0101
0110
0111
1110
RGB Interface Color Format
16-bit/pixel (1-times data transfer)
18-bit/pixel (1-times data transfer)
No used
18-bit/pixel (3-times data transfer)
5
6
7
14
Others are no define and invalid
Status
Default
Default Value
IFPF[2:0]
0110 (18 bits/pixel)
No Change
0110 (18 bits/pixel)
Power On Sequence
S/W Reset
H/W Reset
VIPF[3:0]
0110 (18 bits/pixel)
No Change
0110 (18 bits/pixel)
10.1.8 RDDIM (0Dh): Read Display Image Mode
0DH
Inst / Para
RDDIM
D/CX WRX RDX
0
↑
1
1st Parameter
2nd Parameter
1
1
1
1
D17-8
-
RDDIM (0Dh): Read Display Image Mode
D7
D6
D5
D4
D3
D2
0
0
0
0
1
1
-
↑
↑
D1
0
D0
1
(Code)
(0Dh)
-
-
-
-
-
-
-
-
-
VSSON
D6
INVON
D4
D3
GCS2
GCS1
GCS0
NOTE: “-” Don’t care, can be set to VDDI or DGND level
This command indicates the current status of the display as described in the table below:
Bit
VSSON
D6
Description
Description
Value
“1” = Vertical scrolling is On,
“0” = Vertical scrolling is Off
“0” (Not used)
“1” = Inversion is On,
“0” = Inversion is Off
“0” (Not used)
“0” (Not used)
“000” = GC0,
“001” = GC1,
“010” = GC2,
“011” = GC3, ”100” to “111” = Not defined
Vertical Scrolling On/Off
Horizontal Scrolling On/Off
INVON
Inversion On/Off
D4
D3
GCS2
GCS1
All Pixels On
All Pixels Off
Gamma Curve Selection
GCS0
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value(D7 to D0)
0000_0000 (00h)
0000_0000 (00h)
0000_0000 (00h)
113
2007-12
ST7732
10.1.9 RDDSM (0Eh): Read Display Signal Mode
0EH
RDDSM (0Eh): Read Display Signal Mode
Inst / Para
RDDSM
D/CX WRX
0
↑
1st Parameter
nd
2
Parameter
RDX
1
D17-8
-
D7
0
D6
0
D5
0
D4
0
D3
1
D2
1
D1
1
D0
0
(Code)
(0Eh)
-
1
1
↑
-
-
-
-
-
-
-
-
-
1
1
↑
-
TEON
TELOM
HSON
VSON
PCKON
DEON
D1
D0
NOTE: “-” Don’t care, can be set to VDDI or DGND level
This command indicates the current status of the display as described in the table below:
Bit
TEON
Description
Description
Tearing Effect Line On/Off
TELOM
Tearing effect line mode
HSON
Horizontal Sync. (RGB I/F) On/Off
VSON
Vertical Sync. (RGB I/F) On/Off
PCKON
DEON
Value
Pixel Clock (PCLK, RGB I/F) On/Off
Data Enable (DE, RGB I/F) On/Off
D1
Not Used
D0
Not Used
“1” = On,
“0” = Off
“1” = mode1,
“0” = mode2
“1” = On,
“0” = Off
“1” = On,
“0” = Off
“1” = On,
“0” = Off
“1” = On,
“0” = Off
“1” = On,
“0” = Off
“1” = On,
“0” = Off
Status
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value(D7~D0)
0000_0000 (00h)
0000_0000 (00h)
0000_0000 (00h)
10.1.10 RDDSDR (0Fh): Read Display Self-Diagnostic Result
0FH
Inst / Para
RDDSDR
D/CX
0
WRX
↑
RDX
1
1st Parameter
2nd Parameter
1
1
1
1
↑
↑
RDDSDR (0Fh): Read Display Self-Diagnostic Result
D17-8
D7
D6
D5
D4
D3
D2
0
0
0
0
1
1
-
RELD
FUND
ATTD
BRD
D3
D2
D1
1
D0
1
(Code)
(0Fh)
D1
D0
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
This command indicates the current status of the display as described in the table below:
Description
Default
Ver 1.5.2
Bit
RELD
FUND
ATTD
BRD
D3
D2
D1
D0
Description
Register Loading Detection
Functionality Detection
Chip Attachment Detection
Display Glass Break Detection
Not Used
Not Used
Not Used
Not Used
Value
See section 9.20
See section 9.20
See section 9.20
See section 9.20
“0”
“0”
“0”
“0”
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value(D7~D0)
0000_0000 (00h)
0000_0000 (00h)
0000_0000 (00h)
114
2007-12
ST7732
10.1.11 SLPIN (10h): Sleep In
10H
Inst / Para
SLPIN
st
1 Parameter
D/CX
0
WRX
↑
RDX
1
SLPIN (Sleep In)
D7
D6
D5
D4
0
0
0
1
No parameter
D17-8
-
D3
0
D2
0
D1
0
D0
0
(Code)
(10h)
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command causes the LCD module to enter the minimum power consumption mode.
-In this mode the DC/DC converter is stopped, Internal display oscillator is stopped, and panel
scanning is stopped.
Sleep In
1.6V-3.0V
VDDI
VDD
2.6V-3.0V
Gate Output
Description
STOP
Source Output
0V
VCOM Output
0V
Blanking display (over 1frame display) *
0V
Internal counter
STOP
Internal Oscillator
STOP
DC charge in capacitors
DISCHARGE
0V or VDD
VGH
0V or VDD
VGL
0V
AVDD
0V or VDD
IC Internal reset
0V
* Note: complete 1 frame display (ex: continue 2-falling edges of VS)
-This command has no effect when module is already in sleep in mode. Sleep In Mode can only
be exit by the Sleep Out Command (11h).
Restriction
-When IC is in Sleep Out or Display On mode, it is necessary to wait 120msec before sending
next command because of the stabilization timing for the supply voltages and clock circuits.
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
Sleep in mode
Sleep in mode
Sleep in mode
115
2007-12
ST7732
10.1.12 SLPOUT (11h): Sleep Out
11H
Inst / Para
SLPOUT
1st Parameter
D/CX
0
WRX
↑
RDX
1
SLPOUT (Sleep Out)
D7
D6
D5
D4
0
0
0
1
No Parameter
D17-8
-
D3
0
D2
0
D1
0
D0
1
(Code)
(11h)
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command turns off sleep mode.
-In this mode the DC/DC converter is enabled, Internal display oscillator is started, and panel scanning is
started.
Sleep Out
Description
VDDI
1.6V-3.0V
VDD
2.6V-3.0V
Internal Oscillator
STOP
AVDD
0V or VDD
Start
VGL
0V
VGH
0V or VDD
Internal counter
STOP
IC Internal reset
0V
Gate Output
STOP
Source Output
0V
0V
Memory Contents
VCOM Output
0V
0V
Memory Contents
Start
STOP
Blanking display (over 1fram e display) *
If DISPON 29h is set
* Note: complete 1 frame display (ex: continue 2-falling edges of VS)
-This command has no effect when module is already in sleep out mode. Sleep Out Mode can
only be exit by the Sleep In Command (10h).
-When IC is in Sleep In mode, it is necessary to wait 120msec before sending next command
Restriction because of the stabilization timing for the supply voltages and clock circuits.
-When IC is in Sleep Out or Display On mode, it is necessary to wait 120msec before sending
next command due to the download of default value of registers and the execution of
self-diagnostic function.
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
Sleep in mode
Sleep in mode
Sleep in mode
116
2007-12
ST7732
10.1.13 PTLON (12h): Partial Display Mode On
12H
Inst / Para
PTLON
st
1 Parameter
D/CX
0
WRX
↑
PTLON (12h): Partial Display Mode On
D17-8
D7
D6
D5
D4
D3
D2
0
0
0
1
0
0
No Parameter
RDX
1
D1
1
D0
0
(Code)
(12h)
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command turns on Partial mode. The partial mode window is described by the Partial Area command
Description (30h)
-To leave Partial mode, the Normal Display Mode On command (13H) should be written.
Status
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value
Normal Mode On
Normal Mode On
Normal Mode On
10.1.14 NORON (13h): Normal Display Mode On
13H
Inst / Para
NORON
st
1 Parameter
D/CX
0
WRX
↑
RDX
1
NORON (Normal Display Mode On)
D17-8
D7
D6
D5
D4
D3
0
0
0
1
0
No Parameter
D2
0
D1
1
D0
1
(Code)
(13h)
-
D1
0
D0
0
(Code)
(20h)
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command returns the display to normal mode.
Description -Normal display mode on means Partial mode off, Scroll mode Off.
-Exit from NORON by the Partial mode On command (12h)
Status
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value
Normal Mode On
Normal Mode On
Normal Mode On
10.1.15 INVOFF (20h): Display Inversion Off
20H
Inst / Para
INVOFF
st
1 Parameter
D/CX
0
WRX
↑
IVNOFF (Normal Display Mode Off)
D17-8
D7
D6
D5
D4
D3
0
0
1
0
0
No Parameter
RDX
1
D2
0
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command is used to recover from display inversion mode.
(Example)
Top-Left (0,0)
Memory
Display
Description
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
Display Inversion off
Display Inversion off
Display Inversion off
117
2007-12
ST7732
10.1.16 INVON (21h): Display Inversion On
21H
Inst / Para
INVON
st
1 Parameter
D/CX
0
WRX
IVNOFF (Display Inversion On)
D17-8
D7
D6
D5
D4
D3
0
0
1
0
0
No Parameter
RDX
1
↑
D2
0
D1
0
D0
1
(Code)
(21h)
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command is used to enter into display inversion mode
-To exit from Display Inversion On, the Display Inversion Off command (20h) should be written.
(Example)
Top-Left (0,0)
Description
Memory
Display
Status
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value
Display Inversion off
Display Inversion off
Display Inversion off
10.1.17 GAMSET (26h): Gamma Set
26H
Inst / Para
GAMSET
D/CX
0
1st Parameter
1
WRX
↑
↑
RDX
1
1
D17-8
-
D7
0
-
GAMSET (Gamma Set)
D6
D5
D4
D3
0
1
0
0
GC3
D2
1
D1
1
D0
0
GC2
GC1
GC0
(Code)
(26h)
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command is used to select the desired Gamma curve for the current display. A maximum of 4 curves
can be selected. The curves are defined in section 9.17 The curve is selected by setting the appropriate bit
in the parameter as described in the Table.
Description
GC [7:0]
Parameter
01h
02h
04h
08h
GC0
GC1
GC2
GC3
Curve Selected
GS=1
GS=0
Gamma Curve 1 (G2.2)
Gamma Curve 1 (G1.0)
Gamma Curve 2 (G1.8)
Gamma Curve 2 (G2.5)
Gamma Curve 3 (G2.5)
Gamma Curve 3 (G2.2)
Gamma Curve 4 (G1.0)
Gamma Curve 4 (G1.8)
Note: All other values are undefined.
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
01h
01h
01h
118
2007-12
ST7732
10.1.18 DISPOFF (28h): Display Off
28H
Inst / Para
DISPOFF
st
1 Parameter
D/CX
0
WRX
↑
RDX
1
D17-8
-
DISPOFF (Display Off)
D7
D6
D5
D4
0
0
1
0
No Parameter
D3
1
D2
0
D1
0
D0
0
(Code)
(28h)
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command is used to enter into DISPLAY OFF mode. In this mode, the output from Frame
Memory is disables and blank page inserted.
-Exit from this command by Display On (29h)
-When IC is in Display On mode, it is necessary to wait 50msec before sending next command.
(Example)
Top-Left (0,0)
Memory
Display
Display OFF
Description
VDDI
1.6V-3.0V
VDD
2.6V-3.0V
Gate Output
VGH
Source Output
0V
VCOM Output
0V
Blanking display (over 1 frame display) *
Internal counter
STOP
Internal Oscillator
VGH
VGL
AVDD
IC Internal reset
Note1: Complete 1 frame display (ex: continue 2-falling edges of VS)
Note2: Please use command 28h (display off) combined with command 10h (sleep in) to
make module into display off status. Please check the application note of ST7732
when using display off function.
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
Display off
Display off
Display off
119
2007-12
ST7732
10.1.19 DISPON (29h): Display On
29H
Inst / Para
DISPON
st
1 Parameter
D/CX
0
WRX
↑
RDX
1
D17-8
-
DISPON (Display On)
D7
D6
D5
D4
0
0
1
0
No Parameter
D3
1
D2
0
D1
0
D0
1
(Code)
(29h)
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command is used to recover from DISPLAY OFF mode. Output from the Frame Memory is enabled.
(Example)
Top-Left (0,0)
Memory
Display
Display ON
1.6V-3.0V
VDDI
Description
VDD
2.6V-3.0V
Blanking display (over 1 frame display) *
Gate Output
STOP
Source Output
0V
Memory Contents
VCOM Output
0V
Memory Contents
Internal counter
STOP
Start
Internal Oscillator
VGH
VGL
AVDD
IC Internal reset
* Note: complete 1 frame display (ex: continue 2-falling edges of VS)
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
Display off
Display off
Display off
120
2007-12
ST7732
10.1.20 CASET (2Ah): Column Address Set
2AH
Inst / Para
GAMSET
D/CX
0
1st Parameter
2nd Parameter
3rd Parameter
4th Parameter
1
1
1
1
WRX
↑
↑
↑
↑
↑
RDX
1
D17-8
-
1
1
1
1
-
CASET(Colume Address Set)_
D7
D6
D5
D4
D3
0
0
1
0
0
D2
1
D1
1
D0
0
-
-
-
-
-
-
-
-
XS7
XS6
XS5
XS4
XS3
XS2
XS1
XS0
-
-
-
-
-
-
-
-
XE7
XE6
XE5
XE4
XE3
XE2
XE1
XE0
(Code)
(2Ah)
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-The value of XS [7:0] and XE [7:0] are referred when RAMWR command comes.
-Each value represents one column line in the Frame Memory.
(Example)
XS[7:0]
XE[7:0]
Description
XS [7:0] always must be equal to or less than XE [7:0]
When XS [7:0] or XE [7:0] is greater than maximum address like below, data of out of range will be ignored.
1. 128X160 memory base (GM = ’00’)
(Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦127 (007Fh)): MV=”0”
(Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦159 (009Fh)): MV=”1”
Restriction 2. 120x160 memory base (GM = ‘01’)
(Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦119 (0077h)): MV=”0”
(Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦159 (009Fh)): MV=”1”
3. 132x162 memory base (GM = ‘11’)
(Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦131 (0083h)): MV=”0”
(Parameter range: 0 ≦ XS [7:0] ≦ XE [7:0] ≦161 (00A1h)): MV=”1”
GM Status
Status
GM=’00’
(128x160
memory base)
Power On Sequence
S/W Reset
H/W Reset
Power On Sequence
S/W Reset
H/W Reset
Power On Sequence
S/W Reset
H/W Reset
GM=’01’
(120x160
memory base)
Default
Ver 1.5.2
GM=’11’
(132x162
memory base)
Default Value
XS [7:0]
0000h
0000h
0000h
0000h
0000h
0000h
0000h
0000h
0000h
121
XE [7:0] (MV=’0 ’)
XE [7:0] (MV=’1’)
007Fh (127)
007Fh (127)
009Fh (159)
007Fh (127)
0077h (119)
0077h (119)
009Fh (159)
0077h (119)
0083h (131)
0083h (131)
00A1h (161)
0083h (131)
2007-12
ST7732
10.1.21 RASET (2Bh): Row Address Set
2BH
Inst / Para
RASET (2Bh)
D/CX
0
1st Parameter
2nd Parameter
3rd Parameter
4th Parameter
1
1
1
1
WRX
↑
↑
↑
↑
↑
RDX
1
D17-8
-
1
1
1
1
-
D7
0
RASET (Row Address Set)
D6
D5
D4
D3
0
1
0
1
D2
0
D1
1
D0
1
-
-
-
-
-
-
-
-
YS7
YS6
YS5
YS4
YS3
YS2
YS1
YS0
-
-
-
-
-
-
-
-
YE7
YE6
YE5
YE4
YE3
YE2
YE1
YE0
(Code)
(2Bh)
NOTE: “-” Don’t care, can be set to VDDI or DGND level
The value of YS [7:0] and YE [7:0] are referred when RAMWR command comes.
Each value represents one column line in the Frame Memory.
Example
YS[7:0]
Description
YE[7:0]
YS [7:0] always must be equal to or less than YE [7:0]
When YS [7:0] or YE [7:0] are greater than maximum row address like below, data of out of range will
be ignored.
1. 128X160 memory base (GM = ’00’)
(Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦159 (009Fh)): MV=”0”
(Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦127 (007Fh)): MV=”1”
Restriction
2. 120x160 memory base (GM = ‘01’)
(Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦159 (009Fh)): MV=”0”
(Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦119 (0077h)): MV=”1”
3. 132X162 memory base (GM = ’11’)
(Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦161 (00A1h)): MV=”0”
(Parameter range: 0 ≦YS [7:0] ≦YE [7:0] ≦131 (0083h)): MV=”1”
Default
GM status
Status
GM=’00’
(128x160
memory base)
Power On Sequence
S/W Reset
H/W Reset
Power On Sequence
S/W Reset
H/W Reset
Power On Sequence
S/W Reset
H/W Reset
GM=’01’
(120x160
memory base)
GM=’11’
(132x162
memory base)
Ver 1.5.2
Default Value
YS [7:0]
0000h
0000h
0000h
0000h
0000h
0000h
0000h
0000h
0000h
122
YE [7:0] (MV=’0 ’)
YE [7:0] (MV=’1’)
009Fh (159)
009Fh (159)
007Fh (127)
009Fh (159)
009Fh (159)
009Fh (159)
0077h (119)
009Fh (159)
00A1h (161)
00A1h (161)
0083h (131)
00A1h (161)
2007-12
ST7732
10.1.22 RAMWR (2Ch): Memory Write
2CH
Inst / Para
RAMWR
1st Parameter
∣
Nth Parameter
D/CX
0
1
1
1
WRX
↑
↑
↑
↑
RDX
1
1
1
1
D17-8
D17-8
RAMWR (Memory Write)
D7
D6
D5
D4
0
0
1
0
D7
D6
D5
D4
D3
1
D3
D2
1
D2
D1
0
D1
D0
0
D0
(Code)
(2Ch)
-
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
D17-8
D7
D6
D5
D4
D3
D2
D1
D0
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-When this command is accepted, the column register and the row register are reset to the Start
Column/Start Row positions.
-The Start Column/Start Row positions are different in accordance with MADCTL setting. (See section 9.12)
-Sending any other command can stop Frame Write.
In all color modes, there is no restriction on length of parameters.
-1. 128X160 memory base (GM = ‘00’)
Description 128x160x18-bit memory can be written by this command
Memory range: (0000h,0000h) -> (007Fh, 09Fh)
-2. 120x160 memory base (GM = ‘01’)
120x160x18-bit memory can be written on this command.
Memory range: (0000h,0000h) -> (0077h,09Fh)
-3. 132x162 memory base (GM = ‘11’)
132x162x18-bit memory can be written on this command.
Memory range: (0000h,0000h) -> (0083h,00A1h)
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
Contents of memory is set randomly
Contents of memory is not cleared
Contents of memory is not cleared
123
2007-12
ST7732
10.1.23 RAMHD (2Eh): Memory Read
2EH
Inst / Para
RAMHD
1st Parameter
2nd Parameter
∣
(N+1)th Parameter
D/CX
0
WRX
↑
RDX
1
D17-8
-
1
1
1
1
1
1
1
1
↑
↑
↑
↑
D17-8
RAMHD (Memory Read)
D7
D6
D5
D4
D3
0
0
1
0
1
D7
D6
D5
D4
D3
D2
1
D1
1
D0
0
(Code)
(2Eh)
D2
D1
D0
-
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
D17-8
D7
D6
D5
D4
D3
D2
D1
D0
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command is used to transfer data from frame memory to MCU.
-When this command is accepted, the column register and the row register are reset to the Start
Column/Start Row positions.
-The Start Column/Start Row positions are different in accordance with MADCTL setting. (See section 9.12)
-Then D[17:0] is read back from the frame memory and the column register and the row register
incremented as section 9.10.2.
Description
-Frame Read can be cancelled by sending any other command.
-The data color coding is fixed to 18-bit in reading function. Please see section 9.8 “Data color coding” for
color coding (18-bit cases), when there is used 8, 9, 16 and 18-bit data lines for image data.
Note1: The Command 3Ah should be set to 66h when reading pixel data from frame memory.Please check the LUT in
chapter 9.19 when using memory read function.
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
Contents of memory is set randomly
Contents of memory is not cleared
Contents of memory is not cleared
124
2007-12
ST7732
10.1.25 PTLAR (30h): Partial Area
30H
Inst / Para
PTLAR
D/CX WRX
0
↑
1st Parameter
2nd Parameter
3rd Parameter
4th Parameter
1
1
1
1
RDX D17-8
1
1
1
1
1
↑
↑
↑
↑
-
D7
0
PSL7
PEL7
PTLAR (Partial Area)
D6
D5
D4
D3
0
1
1
0
PSL6
PEL6
PSL5
PEL5
PSL4
PEL4
PSL3
PEL3
D2
0
D1
0
D0
0
PSL2
PEL2
PSL1
PEL1
PSL0
PEL0
(Code)
(30h)
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command defines the partial mode’s display area.
-There are 4 parameters associated with this command, the first defines the Start Row (PSL) and the
second the End Row (PEL), as illustrated in the figures below. PSL and PEL refer to the Frame Memory
row address counter.
-If End Row > Start Row, when MADCTL ML=’0’
Start Row
Non-displaying Area
PSL [7:0]
Partial Display Area
PEL [7:0]
Non-displaying Area
End Row
-If End Row > Start Row, when MADCTL ML=’1’
End Row
Description
Non-displaying Area
PEL [7:0]
Partial Display Area
PSL [7:0]
Start Row
Non-displaying Area
-If End Row < Start Row, when MADCTL ML=’0’
End Row
PEL [7:0]
Partial Display Area
Non-displaying Area
PSL [7:0]
Partial Display Area
Start Row
-If End Row = Start Row then the Partial Area will be one row deep.
Status
Default
Ver 1.5.2
Power On Sequence
S/W Reset
H/W Reset
Default Value
PEL [7:0]
GM=”00”,”01”
009Fh
009Fh
009Fh
PSL [7:0]
0000h
0000h
0000h
125
GM=”11”
00A1h
00A1h
00A1h
2007-12
ST7732
10.1.26 SCRLAR (33h): Scroll Area
33H
Inst / Para
PTLAR
1st Parameter
2nd Parameter
3rd Parameter
4th Parameter
5th Parameter
6th Parameter
D/CX WRX RDX D17-8
0
↑
1
1
1
1
1
1
1
↑
↑
↑
↑
↑
↑
1
1
1
1
1
1
-
SCRLAR (Scrolll Area)
D6
D5
D4
D3
0
1
1
0
D7
0
TFA 7
VSA 7
BFA 7
TFA 6
VSA 6
BFA 6
TFA 5
VSA 5
BFA 5
TFA 4
VSA 4
BFA 4
TFA 3
VSA 3
BFA 3
D2
0
TFA 2
VSA 2
BFA 2
D1
1
D0
1
(Code)
(33h)
TFA 1 TFA 0
VSA 1 VSA 0
BFA 1 BFA 0
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command defines the Vertical Scrolling Area of the display.
When MADCTL ML=0
st
nd
-The 1 & 2 parameter TFA [7:0] describes the Top Fixed Area (in No. of lines from Top of the Frame
Memory and Display).
rd
th
-The 3 & 4 parameter VSA [7:0] describes the height of the Vertical Scrolling Area (in No. of lines of
the Frame Memory [not the display] from the Vertical Scrolling Start Address)
-The first line appears immediately after the bottom most line of the Top Fixed Area.
th
th
-The 5 & 6 parameter BFA [7:0] describes the Bottom Fixed Area (in No. of lines from Bottom of the
Frame Memory and Display).
-TFA, VSA and BFA refer to the Frame Memory row address.
Top-Left (0,0)
Top Fixed Area
TFA [7:0]
First line read from
Scroll Fixed Area
VSFA [7:0]
Bottom Fixed Area
BFA [7:0]
When MADCTL ML=1
st
nd
-The 1 & 2 parameter TFA [7:0] describes the Top Fixed Area (in No. of lines from Bottom
Description of the Frame Memory and Display).
rd
th
-The 3 & 4 parameter VSA [7:0] describes the height of the Vertical Scrolling Area (in No.
of lines of the Frame Memory [not the display] from the Vertical Scrolling Start Address)
-The first line appears immediately after the top most line of the Top Fixed Area.
th
th
-The 5 & 6 parameter BFA [7:0] describes the Bottom Fixed Area (in No. of lines from Top
of the Frame Memory and Display).
Top-Left (0,0)
Bottom Fixed Area
BFA [7:0]
Scroll Fixed Area
VSFA [7:0]
First line read from
Top Fixed Area
frame memory
TFA [7:0]
See Section 9.10.4 for details of the Memory to Display Mapping.
-The condition is 0≦(TFA+VSA+BFA) ≦162, otherwise Scrolling mode is undefined.
-In Vertical Scroll Mode, MADCTL parameter MV should be set to ‘0’-this only affects the Frame Memory
Write.
Status
Default
Ver 1.5.2
Power On Sequence
S/W Reset
H/W Reset
Default Value
VSA [7:0]
GM=”00”,”01”
GM=”11”
00A0h
00A2h
00A0h
00A2h
00A0h
00A2h
TFA [7:0]
0000h
0000h
0000h
126
BFA [7:0]
0000h
0000h
0000h
2007-12
ST7732
1. To Enter Vertical Scroll Mode
Normal Mode
Legend
Command
Parameter
SCRLAR (33h)
Display
1st & 2nd Parameter: TFA[7:0]
Action
3rd & 4th Parameter VSA[7:0]
Mode
5th & 6th Parameter BFA[7:0]
Sequential
transfer
CASET (2Ah)
1st & 2nd Parameter XS[7:0]
3rd & 4th Parameter XE[7:0]
RASET (2
Redefines the Frame
memory Window that
the scroll data will be
define
1st & 2nd Parameter YS[7:0]
Flow Chart
Only required
for non-rolling
scrolling
3rd & 4th Parameter YE[7:0]
MADCTL (36h)
Parameter: MY,MX,MV,ML,RGB
Optional –
It may be necessary
to redefine the Frame
Memory Write
Direction.
RAMRW (2Ch)
Scroll Image
Data
VSCSAD (37h)
1st & 2nd Parameter SS A[7:0]1
Scroll Mode
NOTE: The Frame Memory Window size must be defined correctly otherwise undesirable image will be displayed.
Ver 1.5.2
127
2007-12
ST7732
Legend
2. Continuous Scroll
Command
1st
Normal Mode
Parameter
CASET (2Ah)
Display
Action
&2nd Parameter XS[7:0]
Mode
rd
3
th
& 4 Parameter XE[7:0]
Sequential
transfer
RASET (2Bh)
1st & 2nd Parameter YS[7:0]
3rd & 4th Parameter YE[7:0]
RAMRW (2Ch)
Only required
for non-rolling
scrolling
Scroll Image
Data
VSCSAD (37h)
1st & 2nd Parameter SSA[7:0]1
3. To Exit Vertical Scroll Mode
Scroll Mode
DISOFF (28h)
OptionTo prevent
Tearing Effect
Image Display
NORON (13h) / PTLON (12h)
Scroll Mode OFF
RAMRW (2Ch)
Image Data
D1[17:0],D2[17:0]…
Dn[17:0]
DISON (29h)
NOTE: Scroll Mode can be exit by both the Normal Display Mode On (13h) and Partial Mode On (12h)
commands.
Ver 1.5.2
128
2007-12
ST7732
10.1.27 TEOFF (34h): Tearing Effect Line OFF
34H
Inst / Para
TEOFF
1st Parameter
D/CX
0
WRX
↑
TEOFF (Tearing Effect Line OFF)
D17-8
D7
D6
D5
D4
D3
0
0
1
1
0
No Parameter
RDX
1
D2
1
D1
0
D0
0
(Code)
(34h)
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
Description -This command is used to turn OFF (Active Low) the Tearing Effect output signal from the TE signal line.
Status
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value
OFF
OFF
OFF
10.1.28 TEON (35h): Tearing Effect Line ON
35H
Inst / Para
TEON
1st Parameter
D/CX
0
1
WRX
↑
↑
RDX
1
1
D17-8
-
TEON (Tearing Effect Line ON)
D7
D6
D5
D4
D3
0
0
1
1
0
0
0
0
0
0
D2
1
D1
0
D0
1
(Code)
(35h)
0
0
TELOM
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command is used to turn ON the Tearing Effect output signal from the TE signal line.
-This output is not affected by changing MADCTL bit ML.
-The Tearing Effect Line On has one parameter, which describes the mode of the Tearing
Effect Output Line. (“-“=Don’t Care).
-When TELOM=’0’:
The Tearing Effect Output line consists of V-Blanking information only.
tvdl
Description
tvdh
Vertical
time scale
-When TELOM=’1’:
The Tearing Effect Output line consists of both V-Blanking and H-Blinking information.
tvdl
tvdh
Vertical
time scale
Note: During Sleep In Mode with Tearing Effect Line On, Tearing Effect Output pin will be active Low.
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
Tearing effect off & TELOM=0
Tearing effect off & TELOM=0
Tearing effect off & TELOM=0
129
2007-12
ST7732
10.1.29 MADCTL (36h): Memory Data Access Control
MADCTL (Memory Data Access Control)
36H
Inst / Para
MADCTL
1st Parameter
D/CX
0
1
WRX
RDX
1
1
↑
↑
D17-8
-
D7
0
D6
0
D5
1
D4
1
D3
0
D2
1
D1
1
D0
0
MY
MX
MV
ML
RGB
-
-
-
(Code)
(36h)
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command defines read/ write scanning direction of frame memory.
-Bit Assignment
Bit
MY
MX
MV
NAME
Row Address Order
Column Address Order
Row/Column Exchange
ML
Vertical Refresh Order
RGB
DESCRIPTION
These 3bits controls MCU to memory
write/read direction. (See Section 9.12)
LCD vertical refresh direction control
‘0’ = LCD vertical refresh Top to Bottom
‘1’ = LCD vertical refresh Bottom to Top
Color selector switch control
‘0’ =RGB color filter panel,
‘1’ =BGR color filter panel)
RGB-BGR ORDER
ML: Vertical Refresh Order
Top-Left (0,0)
Memory
Display
Sent First
Sent 2nd
Sent 3rd
ML=’0’
Sent Last
Description
Top-Left (0,0)
Memory
Display
Sent Last
ML=’1’
Sent 3rd
Sent 2nd
Sent First
RGB: RGB-BGR Order
RGB=”0”
Driver IC
RG
R
GB
B
SIG1
RG
GB
R
B
SIG2
RG
R
GB
B
SIG132
SIG1
SIG2
SIG132
RGB
B
RGB
RGB
B
RGB
B
RGB
B
RGB
B
RG
Ver 1.5.2
RGB=”1”
Driver IC
LCD Panel
R
RG
GBB
RG
R
GB
B
SIG2
RG
R
G BB
SIG132
SIG1
SIG2
SIG132
B
GR
BG
B
RGR
BGR
B GR
B G RR
B
BG
GR
SIG1
B G RR
LCD Panel
130
2007-12
ST7732
MH: Horizontal refresh Order
Top-Left (0,0)
Top-Left (0,0)
Memory
ML=’0’
Sent First
Sent 2nd
Status
Power On Sequence
S/W Reset
H/W Reset
Top-Left (0,0)
Sent 3rd
Display
Sent Last
Ver 1.5.2
Sent Last
Top-Left (0,0)
Default
ML=’1’
Sent 3rd
Sent 2nd
Sent First
Description
Memory
Display
Default Value
MY=0,MX=0,MV=0,ML=0,RGB=0
No Change
MY=0,MX=0,MV=0,ML=0,RGB=0
131
2007-12
ST7732
10.1.30 VSCSAD (37h): Vertical Scroll Start Address of RAM
37H
Inst / Para
VSCSAD
1st Parameter
2nd Parameter
VSCSAD (Vertical Scroll Start Address of RAM)
D/CX
0
1
1
WRX
↑
↑
↑
RDX
1
1
1
D17-8
-
D7
0
D6
0
D5
1
D4
1
D3
0
D2
1
D1
1
D0
1
-
-
-
-
-
-
-
-
SSA7
SSA6
SSA5
SSA4
SSA3
SSA2
SSA1
SSA0
(Code)
(37h)
Note: “-” Don’t care, can be set to VDDI or DGND level
-This command is used together with Vertical Scrolling Definition (33h). These two commands describe the
scrolling area and the scrolling mode.
-The Vertical Scrolling Start Address command has one parameter which describes which line in the Frame
Memory will be written as the first line after the last line of the Top Fixed Area on the display as illustrated
below:
-This command Start the scrolling.
-Exit from V-scrolling mode by commands Partial mode On (12h) or Normal mode On (13h).
When MADCTL ML= ‘0’
Example:
-When Top Fixed Area=Bottom Fixed Area=00, Vertical Scrolling Area=160 and Vertical Scrolling
Pointer SSA= ’3’.
(Example)
Top-Left (0,0)
Description
Scan address
Memory
Display
0
1
2
3
∣
∣
158
159
SSA[7:0]
Scroll start address
G1
G2
G3
G4
|
|
G159
G160
When MADCTL ML = ‘1’
Example:
-When Top Fixed Area= Bottom Fixed Area=00, Vertical Scrolling Area=160 and SSA= ’3’
(Example)
Top-Left (0,0)
Scan address
Memory
Display
159
158
∣
∣
3
2
1
0
SSA[7:0]
Scroll start address
G1
G2
G3
G4
|
|
G159
G160
NOTE: -When new Pointer position and Picture Data are sent, the result on the display will happen at the next
Panel Scan to avoid tearing effect.
-SSA refers to the Frame Memory scan address.
Register
Availability
Default
Ver 1.5.2
Status
Availability
Normal Mode On, Idle Mode Off, Sleep Out
Yes
Normal Mode On, Idle Mode On, Sleep Out
Yes
Partial Mode On, Idle Mode Off, Sleep Out
No
Partial Mode On, Idle Mode On, Sleep Out
No
Sleep In
Yes
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
0000h
0000h
0000h
132
2007-12
ST7732
10.1.31 IDMOFF (38h): Idle Mode Off
38H
IDMOFF (Idle Mode Off)
Inst / Para
IDMOFF
1st Parameter
D/CX
0
WRX
↑
RDX
1
D17-8
-
D7
D6
D5
0
0
1
No Parameter
D4
1
D3
1
D2
0
D1
0
D0
0
(Code)
(38h)
-
D1
0
D0
1
(Code)
(39h)
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This command is used to recover from Idle mode on.
-In the idle off mode,
Description
1. LCD can display 4096, 65k or 262k colors.
2. Normal frame frequency is applied.
Status
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value
Idle Mode Off
Idle Mode Off
Idle Mode Off
10.1.32 IDMON (39h): Idle Mode On
39H
Inst / Para
IDMOFF
1st Parameter
D/CX
0
WRX
↑
RDX
1
D17-8
-
IDMON (Idle Mode On)
D7
D6
D5
D4
0
0
1
1
No Parameter
D3
1
D2
0
NOTE: “-” Don’t care, can be set to VDDI or DGND level
Description
-This command is used to enter into Idle mode on.
-There will be no abnormal visible effect on the display mode change transition.
-In the idle on mode,
1. Color expression is
(Example)
Top-Left (0,0)
reduced. The primary and
Mem ory
the secondary colors using
MSB of each R,G and B in
the Frame Memory, 8 color
depth data is displayed.
2. 8-Color mode frame
frequency is applied.
3. Exit from IDMON by Idle Mode Off (38h) command
Color
Black
Blue
Red
Magenta
Green
Cyan
Yellow
White
Register
Availability
Default
Ver 1.5.2
R5 R4 R3 R2 R1
R0
0xxxxx
0xxxxx
1xxxxx
1xxxxx
0xxxxx
0xxxxx
1xxxxx
1xxxxx
G5 G4 G3 G2 G1
G0
0xxxxx
0xxxxx
0xxxxx
0xxxxx
1xxxxx
1xxxxx
1xxxxx
1xxxxx
Display
B5 B4 B3 B4 B1
B0
0xxxxx
1xxxxx
0xxxxx
1xxxxx
0xxxxx
1xxxxx
0xxxxx
1xxxxx
Status
Availability
Normal Mode On, Idle Mode Off, Sleep Out
Yes
Normal Mode On, Idle Mode On, Sleep Out
Yes
Partial Mode On, Idle Mode Off, Sleep Out
No
Partial Mode On, Idle Mode On, Sleep Out
No
Sleep In
Yes
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
Idle Mode Off
Idle Mode Off
Idle Mode Off
133
2007-12
ST7732
10.1.33 COLMOD (3Ah): Interface Pixel Format
3AH
COLMOD (3Ah): Interface Pixel Format
Inst / Para
D/CX WRX
↑
COLMOD
0
↑
1st Parameter
1
RDX
1
1
D17-8
-
D7
0
D6
0
D5
1
D4
1
D3
1
D2
0
D1
1
D0
0
VIPF3
VIPF2
VIPF1
VIPF0
-
IFPF2
IFPF1
IFPF0
(Code)
(3Ah)
NOTE: “-” Don’t care, can be set to VDDI or DGND level
This command is used to define the format of RGB picture data, which is to be transferred via the
MCU interface and RGB interface. The formats are shown in the table:
IFPF[2:0]
011
101
110
111
MCU Interface Color Format
12-bit/pixel
16-bit/pixel
18-bit/pixel
No used
3
5
6
7
Others are no define and invalid
Description
VIFPF[2:0]
0101
0110
0111
1110
RGB Interface Color Format
16-bit/pixel (1-times data transfer)
18-bit/pixel (1-times data transfer)
No used
18-bit/pixel (3-times data transfer)
5
6
7
14
Others are no define and invalid
Note1: In 12-bit/Pixel, 16-bit/Pixel or 18-bit/Pixel mode, the LUT is applied to transfer data into the Frame Memory.
Note2: When RGB I/F the 12-bit/pixel don’t care
Note3: When VIPF[3:0]=”1110”,6-bit data width of 3-times transfer is used to transmit 1 pixel data with the 18-bit color
depth information.
Note4: The Command 3Ah should be set at 55h when writing 16-bit/pixel data into frame memory, but 3Ah should be
re-set to 66h when reading pixel data from frame memory. Please check the LUT in chapter 9.19 when using
memory read function.
Register
Availability
Status
Availability
Normal Mode On, Idle Mode Off, Sleep Out
Yes
Normal Mode On, Idle Mode On, Sleep Out
Yes
Partial Mode On, Idle Mode Off, Sleep Out
No
Partial Mode On, Idle Mode On, Sleep Out
No
Sleep In
Yes
Status
Default
Ver 1.5.2
Power On Sequence
Default Value
IFPF[2:0]
VIPF[3:0]
0110(18-bit/Pixel)
0110(18-bit/Pixel)
S/W Reset
No Change
No Change
H/W Reset
0110(18-bit/Pixel)
0110(18-bit/Pixel)
134
2007-12
ST7732
10.1.34 RDID1 (DAh): Read ID1 Value
DAH
RDID1 (Read ID1 Value)
Inst / Para
RDID1
D/CX
0
WRX
↑
RDX
1
D17-8
-
D7
1
D6
1
D5
0
D4
1
D3
1
D2
0
D1
1
D0
0
(Code)
(DAh)
1st Parameter
1
1
↑
-
-
-
-
-
-
-
-
-
-
1
1
↑
2nd Parameter
-
ID17
ID16
ID15
ID14
ID13
ID12
ID11
ID10
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This read byte returns 8-bit LCD module’s manufacturer ID
st
-The 1 parameter is dummy data
Description
nd
-The 2 parameter (ID17 to ID10): LCD module’s manufacturer ID.
nd
NOTE: See command RDDID (04h), 2 parameter.
Register
Availability
Status
Availability
Normal Mode On, Idle Mode Off, Sleep Out
Yes
Normal Mode On, Idle Mode On, Sleep Out
Yes
Partial Mode On, Idle Mode Off, Sleep Out
No
Partial Mode On, Idle Mode On, Sleep Out
No
Sleep In
Yes
Status
Power On Sequence
Default
Default Value
-
S/W Reset
-
H/W Reset
-
10.1.35 RDID2 (DBh): Read ID2 Value
DBH
Inst / Para
RDID2
D/CX
0
WRX
1st Parameter
2nd Parameter
1
1
1
1
↑
RDX
1
D17-8
-
↑
-
↑
RDID2 (Read ID2 Value)
D7
D6
D5
D4
D3
1
1
0
1
1
1
ID26
ID25
ID24
ID23
D2
0
D1
1
D0
1
(Code)
(DBh)
ID22
ID21
ID20
-
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This read byte returns 8-bit LCD module/driver version ID
st
-The 1 parameter is dummy data
nd
-The 2 parameter (ID26 to ID20): LCD module/driver version ID
-Parameter Range: ID=80h to FFh
Description
ID26 to ID20
80h
81h
82h
83h
Version
Changes
rd
NOTE: See command RDDID (04h), 3 parameter.
Register
Availability
Default
Ver 1.5.2
Status
Availability
Normal Mode On, Idle Mode Off, Sleep Out
Yes
Normal Mode On, Idle Mode On, Sleep Out
Yes
Partial Mode On, Idle Mode Off, Sleep Out
No
Partial Mode On, Idle Mode On, Sleep Out
No
Sleep In
Yes
Status
Power On Sequence
Default Value
80h
S/W Reset
80h
H/W Reset
80h
135
2007-12
ST7732
10.1.36 RDID3 (DCh): Read ID3 Value
DCH
RDID3 (Read ID2 Value)
Inst / Para
RDID3
D/CX
0
WRX
↑
RDX
1
D17-8
-
D7
1
D6
1
D5
0
D4
1
D3
1
D2
1
D1
0
D0
0
(Code)
(DCh)
1st Parameter
1
1
↑
-
-
-
-
-
-
-
-
-
-
1
1
↑
2nd Parameter
-
ID37
ID36
ID35
ID34
ID33
ID32
ID31
ID30
NOTE: “-” Don’t care, can be set to VDDI or DGND level
-This read byte returns 8-bit LCD module/driver ID.
st
-The 1 parameter is dummy data
Description -The 2nd parameter (ID37 to ID30): LCD module/driver ID.
NOTE: See command RDDID (04h), 4th parameter.
Register
Availability
Status
Availability
Normal Mode On, Idle Mode Off, Sleep Out
Yes
Normal Mode On, Idle Mode On, Sleep Out
Yes
Partial Mode On, Idle Mode Off, Sleep Out
No
Partial Mode On, Idle Mode On, Sleep Out
No
Sleep In
Yes
Status
Power On Sequence
Default
Default Value
00h
S/W Reset
00h
H/W Reset
00h
10.2.1 RGBCTR (B0h): RGB signal control
RGBCTR (RGB signal control)
B0H
Inst / Para
RGBCTR
1st Parameter
D/CX
0
1
WRX
↑
↑
RDX
1
1
D17-8
-
D7
1
D6
0
D5
1
D4
1
D3
0
D2
0
D1
0
D0
0
-
0
0
DISSW
ICM
DP
EP
HSP
VSP
(Code)
(B0h)
NOTE: “-“ Don’t care
-Set the operation status on the RGB interface. The setting becomes effective as soon as the
command is received.
-ICM: GRAM Write/Read frequency and data input select on the RGB interface
ICM
Description
Write/ Read frequency and input data select
Read cycle
PCLK
Internal oscillator
0
1
Write cycle
PCLK
SCL
Symbol
Name
DP
PCLK polarity set
EP
Enable polarity set
HSP
Hsync polarity set
VSP
Vsync polarity set
DISSW
Disable S/W
Status
Default
Ver 1.5.2
Power On Sequence
S/W Reset
H/W Reset
ICM
0d
0d
0d
136
Data input
D[17:0]
SDA
Clock polarity set for RGB Interface
‘1’ = data fetched at the falling edge
‘0’ = data fetched at the rising edge
‘1’ = Low enable for RGB interface
‘0’ = High enable for RGB interface
‘1’ = High level sync clock
‘0’ = Low level sync clock
‘1’ = High level sync clock
‘0’ = Low level sync clock
‘1’ = Disable S/W control
‘0’ = Enable S/W control
Default Value
DP/EP/HSP/VSP
0d/0d/0d/0d
0d/0d/0d/0d
0d/0d/0d/0d
2007-12
ST7732
10.2.2 FRMCTR1 (B1h): Frame Rate Control (In normal mode/ Full colors)
B1H
Inst / Para
FRMCTR1
D/CX
0
1st Parameter
2nd Parameter
3rd Parameter
1
1
1
WRX
↑
↑
↑
↑
RDX
1
1
1
1
D17-8
-
FRMCTR1 (Frame Rate Control)
D7 D6 D5 D4
D3
D2
1
0
1
1
0
0
RTNA3
FPA3
BPA3
-
RTNA2
FPA2
BPA2
D1
0
D0
1
(Code)
(B1h)
RTNA1
FPA1
BPA1
RTNA0
FPA0
BPA0
-
D1
1
D0
0
(Code)
(B2h)
RTNB1
FPB1
BPB1
RTNB0
FPB0
BPB0
-
D1
1
D0
1
(Code)
(B3h)
RTNC1
FPC1
BPC1
RTND1
FPD1
BPD1
RTNC0
FPC0
BPC0
RTND0
FPD0
BPD0
-
NOTE: “-“ Don’t care
Description
-Set the frame frequency of the full colors normal mode.
- Frame rate=fosc/((RTNA + 18) x (LINE + FPA + BPA))
- 1 < FPA(front porch) + BPA(back porch)<=22
Status
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value
06h/03h/02h
06h/03h/02h
06h/03h/02h
10.2.3 FRMCTR2 (B2h): Frame Rate Control (In Idle mode/ 8-colors)
B2H
Inst / Para
FRMCTR2
D/CX
0
1st Parameter
2nd Parameter
3rd Parameter
1
1
1
WRX
↑
↑
↑
↑
RDX
1
1
1
1
D17-8
-
FRMCTR2 (Frame Rate Control)
D7 D6 D5 D4
D3
D2
1
0
1
1
0
0
RTNB3
FPB3
BPB3
-
RTNB2
FPB2
BPB2
NOTE: “-“ Don’t care
-Set the frame frequency of the Idle mode.
- Frame rate=fosc/((RTNB + 18) x (LINE + FPB + BPB))
Description
- 1 < FPB(front porch) + BPB(back porch)<=22
Status
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value
06h/03h/02h
06h/03h/02h
06h/03h/02h
10.2.4 FRMCTR3 (B3h): Frame Rate Control (In Partial mode/ full colors)
B3H
Inst / Para
FRMCTR3
D/CX
0
1st Parameter
2nd Parameter
3rd Parameter
4th Parameter
5th Parameter
6th Parameter
1
1
1
1
1
1
WRX
↑
↑
↑
↑
↑
↑
↑
RDX
1
1
1
1
1
1
1
D17-8
-
FRMCTR3 (Frame Rate Control)
D7 D6 D5 D4
D3
D2
1
0
1
1
0
0
RTNC3
FPC3
BPC3
RTND3
FPD3
BPD3
-
-
RTNC2
FPC2
BPC2
RTND2
FPD2
BPD2
-
NOTE: “-“ Don’t care
-Set the frame frequency of the Partial mode/ full colors.
- 1st parameter to 3rd parameter are used in line inversion mode.
Description - 4th parameter to 6th parameter are used in frame inversion mode.
- Frame rate=fosc/((RTNC + 18) x (LINE + FPC + BPC))
- 1 < FPC(front porch) + BPC(back porch)<=22
Default
Ver 1.5.2
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value
06h/03h/02h
06h/03h/02h
06h/03h/02h
137
2007-12
ST7732
10.2.5 INVCTR (B4h): Display Inversion Control
B4H
Inst / Para
INVCTR
D/CX
0
1st Parameter
1
WRX
INVCTR (Display Inversion Control)
D17-8
D7
D6
D5
D4
D3
D2
1
0
1
1
0
1
-
RDX
1
↑
↑
1
-
0
0
0
0
0
NLA
D1
0
D0
0
(Code)
(B4h)
NLB
NLC
02h
NOTE: “-“ Don’t care
-Display Inversion mode control
-NLA: Inversion setting in full colors normal mode (Normal mode on)
NLA
0
1
Inversion setting in full Colors normal mode
Line Inversion
Frame Inversion
-NLB: Inversion setting in Idle mode (Idle mode on)
Description
NLB
0
1
Inversion setting in Idle mode
Line Inversion
Frame Inversion
-NLC: Inversion setting in full colors partial mode (Partial mode on / Idle mode off)
NLC
0
1
Inversion setting in full Colors partial mode
Line Inversion
Frame Inversion
Status
NLA
0d
0d
0d
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value
NLC
0d
0d
0d
NLB
1d
1d
1d
B4h
02h
02h
02h
10.2.6 RGBBPCTR (B5h): RGB Interface Blanking Porch setting
B5H
Inst / Para
D/CX
WRX
RDX
RGBPSET (RGB Interface Blanking Porch setting)
D17-8
D7
D6
D5
D4
D3
D2
D1
D0
(Code)
RGBBPCTR
0
↑
1
-
1
0
1
1
0
1
0
1
(B5h)
1st Parameter
1
↑
1
-
-
-
-
-
-
-
-
-
-
2nd Parameter
1
↑
1
-
VBP7
VBP6
VBP5
VBP4
VBP3
VBP2
VBP1
VBP0
-
3rd Parameter
1
↑
1
-
-
-
-
-
-
-
-
HBP8
-
4th Parameter
1
↑
1
-
HBP7
HBP6
HBP5
HBP4
HBP3
HBP2
HBP1
HBP0
-
NOTE: “-“ Don’t care
Description
Ver 1.5.2
-Set the blanking porch in the RGB interface
-VBP:Vertical back porch
-HBP:Horizontal back porch
138
2007-12
ST7732
10.2.7 DISSET5 (B6h): Display Function set 5
DISSET (Display Function set 5)
B6H
Inst / Para
DISSET5
D/CX
0
1st Parameter
2nd Parameter
1
1
WRX
↑
↑
↑
RDX
1
D17-8
-
1
1
-
D7
1
0
0
D6
0
0
0
D5
1
NO1
0
D4
1
NO0
0
D3
0
SDT1
PTG1
D2
1
SDT0
PTG0
D1
1
EQ1
PT1
D0
0
EQ0
PT0
(Code)
(B6h)
16h
02h
NOTE: “-“ Don’t care
-1st parameter: Set output waveform relation.
-NO[1:0]: Set the amount of non-overlap of the gate output
NO[1:0]
00
01
10
11
0
1
2
3
Amount of non-overlap of the gate output
Refer the Internal oscillator
Refer the PCLK
1 clock cycle
4 clock cycle
4 clock cycle
16 clock cycle
6 clock cycle
24 clock cycle
8 clock cycle
32 clock cycle
-SDT[1:0]: Set delay amount from gate signal falling edge of the source output.
SDT[1:0]
00
01
10
11
0
1
2
3
Amount of non-overlap of the gate output
Refer the Internal oscillator
Refer the PCLK
1 clock cycle
4 clock cycle
4 clock cycle
16 clock cycle
6 clock cycle
24 clock cycle
8 clock cycle
32 clock cycle
-EQ[1:0]: Set the Equalizing period
EQ[1:0]
00
01
10
11
0
1
2
3
Amount of non-overlap of the gate output
Refer the Internal oscillator
Refer the PCLK
No EQ
No EQ
2 clock cycle
4 clock cycle
4 clock cycle
16 clock cycle
6 clock cycle
24 clock cycle
Description
Gate Non-overlap period
Gn
Gn+1
Sn
VCOM
Delay time for
source output
EQ period
-2nd parameter: Set the output waveform in non-display area.
-PTG[1:0]: Determine gate output in a non-display area in the partial mode
PTG[1:0]
00
01
10
11
Gate output in a non-display area
Normal scan
Fix on VGL
Fix on VGL
Fix on VGL
0
1
2
3
-PT[1:0]: Determine Source /VCOM output in a non-display area in the partial mode
PT[1:0]
00
01
10
11
Ver 1.5.2
0
1
2
3
Source output on non-display area
Positive
Negative
V63
V0
V0
V63
AGND
AGND
Hi-z
Hi-z
139
VCOM output on non-display area
Positive
Negative
VCOML
VCOMH
VCOML
VCOMH
AGND
AGND
AGND
AGND
2007-12
ST7732
10.2.8 PWCTR1 (C0h): Power Control 1
C0H
Inst / Para
PWCTR1
D/CX
0
1st Parameter
2nd Parameter
1
1
WRX
↑
↑
↑
RDX
1
D17-8
-
D7
1
1
1
-
0
0
PWCTR1 (Power Control 1)
D6
D5
D4
D3
1
0
0
0
0
0
0
0
VRH4
0
VRH3
0
D2
0
D1
0
D0
0
VRH2
VC2
VRH1
VC1
VRH0
VC0
(Code)
(C0h)
NOTE: “-“ Don’t care
-Set the GVDD and VCI1 voltage
Description
Ver 1.5.2
VRH[4:0]
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
GVDD
5.00
4.75
4.70
4.65
4.60
4.55
4.50
4.45
4.40
4.35
4.30
4.25
4.20
4.15
4.10
4.05
4.00
3.95
3.90
3.85
3.80
3.75
3.70
3.65
3.60
3.55
3.50
3.45
3.40
3.35
3.25
3.00
VC[2:0]
000
001
010
011
100
101
0
1
2
3
4
5
VCI1
2.75
2.70
2.65
2.60
2.55
2.50
140
2007-12
ST7732
10.2.9 PWCTR2 (C1h): Power Control 2
C1H
Inst / Para
PWCTR2
D/CX
0
1st Parameter
1
WRX
RDX
1
↑
↑
D17-8
-
D7
1
1
PWCTR2 (Power Control 2)
D6
D5
D4
D3
1
0
0
0
0
0
0
0
0
D2
0
D1
0
D0
1
BT2
BT1
BT0
(Code)
(C1h)
NOTE: “-“ Don’t care
-Set the AVDD, VCL, VGH and VGL supply power level
BT[2:0]
000
001
010
011
100
101
110
111
Description
0
1
2
3
4
5
6
7
AVDD
5.49
5.49
5.49
5.49
5.49
5.49
5.49
5.49
VCL
2xVDD
2xVDD
2xVDD
2xVDD
2xVDD
2xVDD
2xVDD
2xVDD
-1xVDD
-1xVDD
-1xVDD
-1xVDD
-1xVDD
-1xVDD
-1xVDD
-1xVDD
-2.74
-2.74
-2.74
-2.74
-2.74
-2.74
-2.74
-2.74
VGHH
9.80
9.80
12.25
12.25
12.25
14.70
14.70
14.70
VGLL
-7.35
-9.80
-7.35
-9.80
-12.25
-7.35
-9.80
-12.25
4*VCI1
4* VCI1
5* VCI1
5* VCI1
5* VCI1
6* VCI1
6* VCI1
6* VCI1
-3* VCI1
-4* VCI1
-3* VCI1
-4* VCI1
-5* VCI1
-3* VCI1
-4* VCI1
-5* VCI1
Note: When VCI1=2.5V, VDD=2.8V,Set-up cycle 1 effective=98%, Set-up cycle 2 effective=98%,
10.2.10 PWCTR3 (C2h): Power Control 3 (in Normal mode/ Full colors)
C2H
Inst / Para
PWCTR3
D/CX
0
1st Parameter
2nd Parameter
1
1
WRX
↑
↑
↑
RDX
1
D17-8
-
1
1
-
PWCTR3 (Power Control 3)
D7
D6
D5
D4
D3
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
D2
0
D1
1
D0
0
APA2
DCA2
APA1
DCA1
APA0
DCA0
(Code)
(C2h)
NOTE: “-“ Don’t care
-Set the amount of current in Operational amplifier in normal mode/full colors.
-Adjust the amount of fixed current from the fixed current source in the operational amplifier for the
source driver.
Description
AP[2:0]
000
001
010
011
100
101
110
111
Amount of Current in Operational Amplifier
Operation of the operational amplifier stops
Small
Medium Low
Medium
Medium High
Large
Reserved
Reserved
0
1
2
3
4
5
6
7
-Set the Booster circuit Step-up cycle in Normal mode/ full colors.
DC[2:0]
000
001
010
011
100
101
110
111
0
1
2
3
4
5
6
7
Step-up cycle in Booster circuit 1
BCLK / 1
BCLK / 1
BCLK / 1
BCLK / 2
BCLK / 2
BCLK / 4
BCLK / 4
BCLK / 4
Step-up cycle in Booster circuit 2,3
BCLK / 1
BCLK / 2
BCLK / 4
BCLK / 2
BCLK / 4
BCLK / 4
BCLK / 8
BCLK / 16
Note: BCLK is Clock frequency for Booster circuit
Ver 1.5.2
141
2007-12
ST7732
10.2.11 PWCTR4 (C3h): Power Control 4 (in Idle mode/ 8-colors)
C3H
Inst / Para
PWCTR4
D/CX
0
1st Parameter
2nd Parameter
1
1
WRX
↑
↑
↑
RDX
1
D17-8
-
1
1
-
PWCTR4 (Power Control 4)
D7
D6
D5
D4
D3
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
D2
0
D1
1
D0
1
APB2
DCB2
APB1
DCB1
APB0
DCB0
(Code)
(C3h)
NOTE: “-“ Don’t care
-Set the amount of current in Operational amplifier in Idle mode/8 colors.
-Adjust the amount of fixed current from the fixed current source in the operational amplifier for the
source driver.
Description
AP[2:0]
000
001
010
011
100
101
110
111
Amount of Current in Operational Amplifier
Operation of the operational amplifier stops
Small
Medium Low
Medium
Medium High
Large
Reserved
Reserved
0
1
2
3
4
5
6
7
-Set the Booster circuit Step-up cycle in Idle mode/8 colors.
DC[2:0]
000
001
010
011
100
101
110
111
0
1
2
3
4
5
6
7
Step-up cycle in Booster circuit 1
BCLK / 1
BCLK / 1
BCLK / 1
BCLK / 2
BCLK / 2
BCLK / 4
BCLK / 4
BCLK / 4
Step-up cycle in Booster circuit 2,3
BCLK / 1
BCLK / 2
BCLK / 4
BCLK / 2
BCLK / 4
BCLK / 4
BCLK / 8
BCLK / 16
Note: BCLK is Clock frequency for Booster circuit
Ver 1.5.2
142
2007-12
ST7732
10.2.12 PWCTR5 (C4h): Power Control 5 (in Partial mode/ full-colors)
C4H
Inst / Para
PWCTR5
D/CX
0
1st Parameter
2nd Parameter
1
1
WRX
↑
↑
↑
RDX
1
D17-8
-
1
1
-
PWCTR5 (Power Control 5)
D7
D6
D5
D4
D3
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
D2
1
D1
0
D0
0
APC2
DCC2
APC1
DCC1
APC0
DCC0
(Code)
(C4h)
NOTE: “-“ Don’t care
-Set the amount of current in Operational amplifier in Partial mode/ full-colors.
-Adjust the amount of fixed current from the fixed current source in the operational amplifier for the
source driver.
Description
AP[2:0]
000
001
010
011
100
101
110
111
0
1
2
3
4
5
6
7
Amount of Current in Operational Amplifier
Operation of the operational amplifier stops
Small
Medium Low
Medium
Medium High
Large
Reserved
Reserved
-Set the Booster circuit Step-up cycle in Partial mode/ full-colors.
DC[2:0]
000
001
010
011
100
101
110
111
0
1
2
3
4
5
6
7
Step-up cycle in Booster circuit 1
BCLK / 1
BCLK / 1
BCLK / 1
BCLK / 2
BCLK / 2
BCLK / 4
BCLK / 4
BCLK / 4
Step-up cycle in Booster circuit 2,3
BCLK / 1
BCLK / 2
BCLK / 4
BCLK / 2
BCLK / 4
BCLK / 4
BCLK / 8
BCLK / 16
Note: BCLK is Clock frequency for Booster circuit
Ver 1.5.2
143
2007-12
ST7732
10.2.13 VMCTR1 (C5h): VCOM Control 1
C5H
Inst / Para
VMCTR1
D/CX
0
1st Parameter
2nd Parameter
WRX
1
1
↑
↑
↑
RDX
1
D17-8
-
D7
1
1
-
-
1
VMCTR1 (VCOM Control 1)
D6
D5
D4
D3
1
0
0
0
VMH6
VML6
D2
1
D1
0
D0
1
(Code)
(C5h)
VMH5 VMH 4 VMH 3 VMH 2 VMH 1 VMH 0
VML5 VML4 VML3 VML2 VML1 VML0
NOTE: “-“ Don’t care
-Set VCOMH Voltage
Description
VMH[6:0]
0000000
0
0000001
1
0000010
2
0000011
3
0000100
4
0000101
5
0000110
6
0000111
7
0001000
8
0001001
9
0001010
10
0001011
11
0001100
12
0001101
13
0001110
14
0001111
15
0010000
16
0010001
17
0010010
18
0010011
19
0010100
20
0010101
21
0010110
22
0010111
23
0011000
24
0011001
25
0011010
26
2.500
2.525
2.550
2.575
2.600
2.625
2.650
2.675
2.700
2.725
2.750
2.775
2.800
2.825
2.850
2.875
2.900
2.925
2.950
2.975
3.000
3.025
3.050
3.075
3.100
3.125
3.150
VMH[6:0]
0011011
0011100
0011101
0011110
0011111
0100000
0100001
0100010
0100011
0100100
0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010
0110011
0110100
0110101
VCOMH
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
3.175
3.200
3.225
3.250
3.275
3.300
3.325
3.350
3.375
3.400
3.425
3.450
3.475
3.500
3.525
3.550
3.575
3.600
3.625
3.650
3.675
3.700
3.725
3.750
3.775
3.800
3.825
VMH[6:0]
0110110
54
0110111
55
0111000
56
0111001
57
0111010
58
0111011
59
0111100
60
0111101
61
0111110
62
0111111
63
1000000
64
1000001
65
1000010
66
1000011
67
1000100
68
1000101
69
1000110
70
1000111
71
1001000
72
1001001
73
1001010
74
1001011
75
1001100
76
1001101
77
1001110
78
1001111
79
1010000
80
VCOMH
VML[6:0]
0110110
54
0110111
55
0111000
56
0111001
57
0111010
58
0111011
59
0111100
60
0111101
61
0111110
62
0111111
63
1000000
64
1000001
65
1000010
66
1000011
67
1000100
68
1000101
69
1000110
70
1000111
71
1001000
72
1001001
73
1001010
74
1001011
75
1001100
76
1001101
77
1001110
78
1001111
79
1010000
80
VCOML
3.850
3.875
3.900
3.925
3.950
3.975
4.000
4.025
4.050
4.075
4.100
4.125
4.150
4.175
4.200
4.225
4.250
4.275
4.300
4.325
4.350
4.375
4.400
4.425
4.450
4.475
4.500
VMH[6:0]
1010001
81
1010010
82
1010011
83
1010100
84
1010101
85
1010110
86
1010111
87
1011000
88
1011001
89
1011010
90
1011011
91
1011100
92
1011101
93
1011110
94
1011111
95
1100000
96
1100001
97
1100010
98
1100011
99
1100100
100
1100101
101
|
1111111
127
VCOMH
4.525
4.550
4.575
4.600
4.625
4.650
4.675
4.700
4.725
4.750
4.775
4.800
4.825
4.850
4.875
4.900
4.925
4.950
4.975
5.000
Not
Permitted
-Set VCOML Voltage
VML[6:0]
0000000
0
0000001
1
0000010
2
0000011
3
0000100
4
0000101
5
0000110
6
0000111
7
0001000
8
0001001
9
0001010
10
0001011
11
0001100
12
0001101
13
0001110
14
0001111
15
0010000
16
0010001
17
0010010
18
0010011
19
0010100
20
0010101
21
0010110
22
0010111
23
0011000
24
0011001
25
0011010
26
Ver 1.5.2
VCOMH
VCOML
-2.500
-2.475
-2.450
-2.425
-2.400
-2.375
-2.350
-2.325
-2.300
-2.275
-2.250
-2.225
-2.200
-2.175
-2.150
-2.125
-2.100
-2.075
-2.050
-2.025
-2.000
-1.975
-1.950
-1.925
-1.900
-1.875
-1.850
VML[6:0]
0011011
0011100
0011101
0011110
0011111
0100000
0100001
0100010
0100011
0100100
0100101
0100110
0100111
0101000
0101001
0101010
0101011
0101100
0101101
0101110
0101111
0110000
0110001
0110010
0110011
0110100
0110101
VCOML
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
-1.825
-1.800
-1.775
-1.750
-1.725
-1.700
-1.675
-1.650
-1.625
-1.600
-1.575
-1.550
-1.525
-1.500
-1.475
-1.450
-1.425
-1.400
-1.375
-1.350
-1.325
-1.300
-1.275
-1.250
-1.225
-1.200
-1.175
144
-1.150
-1.125
-1.100
-1.075
-1.050
-1.025
-1.000
-0.975
-0.950
-0.925
-0.900
-0.875
-0.850
-0.825
-0.800
-0.775
-0.750
-0.725
-0.700
-0.675
-0.650
-0.625
-0.600
-0.575
-0.550
-0.525
-0.500
VML[6:0]
1010001
81
1010010
82
1010011
83
1010100
84
1010101
85
1010110
86
1010111
87
1011000
88
1011001
89
1011010
90
1011011
91
1011100
92
1011101
93
1011110
94
1011111
95
1100000
96
1100001
97
1100010
98
1100011
99
1100100
100
1100101
101
|
1111111
127
VCOML
-0.475
-0.450
-0.425
-0.400
-0.375
-0.350
-0.325
-0.300
-0.275
-0.250
-0.225
-0.200
-0.175
-0.150
-0.125
-0.100
-0.075
-0.050
-0.025
0.000
Not
Permitted
2007-12
ST7732
10.2.14 VMOFCTR (C7h): VCOM Offset Control
C7H
Inst / Para
VMOFCTR
D/CX
0
WRX
1st Parameter
1
↑
RDX
1
D17-8
-
↑
1
-
VMOFCTR (VCOM Offset Control)
D7
D6
D5
D4
D3
1
1
0
0
0
-
VMF6
-
-
VMF3
D2
1
D1
1
D0
1
VMF2
VMF1
VMF0
(Code)
(C7h)
NOTE: “-“ Don’t care, can be set to VDDI or DGND level
-Set VCOM Voltage level for reduce the flicker issue
Description
VMF[6]
0
0
0
0
0
0
1
1
1
1
1
1
VMF[3:0]
0000
0001
0010
1110
1111
0000
0001
0010
1110
1111
VCOMH Output Level
“VMH”-16d
“VMH”-15d
“VMH”-14d
|
“VMH”-2d
“VMH”-1d
“VMH”
“VMH”+1d
“VMH”+2d
|
“VMH”+14d
“VMH”+15d
VCOML Output Level
“VML”-16d
“VML”-15d
“VML”-14d
|
“VML”-2d
“VML”-1d
“VML”
“VML”+1d
“VML”+2d
|
“VML”+14d
“VML”+15d
- 1d=25mV, 2d=50mV 3d=75mv....
- 2.5V <= VMH ± nd <= 5.0V; -2. 5V <= VML ± nd<= 0V (n=0~15,16)
- VMF[6] & VMF[3:0] are stored in NV memory to contrast.
Ver 1.5.2
145
2007-12
ST7732
10.2.15 WRID2 (D1h): Write ID2 Value
D1H
Inst / Para
WRID2
D/CX
0
1st Parameter
1
WRX
↑
↑
RDX
1
D17-8
-
D7
1
1
-
-
WRID2 (Write ID2 Value)
D6
D5
D4
D3
1
0
1
0
D2
0
D1
0
D0
1
(Code)
(D1h)
ID23
ID22
ID21
ID20
-
WRID3 (Write ID3 Value)
D6
D5
D4
D3
1
0
1
0
D2
0
D1
1
D0
0
(Code)
(D2h)
ID32
ID31
ID30
-
ID26
ID25
ID24
NOTE: “-“ Don’t care
Description
-Write 7-bit data of LCD module version to save it to NV memory.
-The parameter ID2[6:0] is LCD Module version ID.
Refer to Applcation Note
10.2.16 WRID3 (D2h): Write ID3 Value
D2H
Inst / Para
WRID3
D/CX
0
1st Parameter
1
WRX
↑
↑
RDX
1
D17-8
-
D7
1
1
-
ID37
ID36
ID35
ID34
ID33
NOTE: “-“ Don’t care
Description
-Write 8-bit data of project code module to save it to NV memory.
-The parameter ID3[7:0] is product project ID.
Refer to Applcation Note
10.2.17 RDID4 (D3h): Read the ID4 value
D3H
Inst / Para
RDID4
D/CX WRX RDX
0
↑
1
1st Parameter
2nd Parameter
3rd Parameter
4th Parameter
5th Parameter
1
1
1
1
1
1
1
1
1
1
↑
↑
↑
↑
↑
D17-8 D7
1
-
RDID4 (Read the ID4 value)
D6
D5
D4
D3
1
0
1
0
ID417
ID427
ID437
ID447
ID416
ID426
ID436
ID446
ID415
ID425
ID435
ID445
ID414
ID424
ID434
ID444
ID413
ID423
ID433
ID443
D2
0
D1
1
D0
1
(Code)
(D3h)
ID412
ID422
ID432
ID442
ID411
ID421
ID431
ID441
ID410
ID420
ID430
ID440
-
NOTE: “-“ Don’t care
-Read the Driver IC information from mask value.
-The 1st parameter is dummy data.
Description -The 2nd parameter ID41[7:0]=”03h” is Driver IC ID code.
-The 3rd parameter ID42[7:0] is Driver IC Part number ID. (The code be define by Driver IC Vender)
-The 4th & 5th parameter ID43[7:0] & ID44[7:0] are Driver IC version ID.
Status
Default
Ver 1.5.2
Power On Sequence
S/W Reset
H/W Reset
Default Value
ID42[7:0]
ID43[7:0]
20h
01h
20h
01h
20h
01h
ID41[7:0]
03h
03h
03h
146
ID44[7:0]
00h
00h
00h
2007-12
ST7732
10.2.18 NVFCTR1 (D9h): NV Memory Function Controller 1
D9H
Inst / Para
NVFCTR1
1st Parameter
D/CX
0
1
WRX
↑
1
RDX
1
↑
NVFCTR1 (NV Memory Function Controller 1)
D17-8
D7
D6
D5
D4
D3
D2
1
1
0
1
1
0
-
-
-
-
EXTC
-
-
D1
0
D0
1
-
RDY
(Code)
(D9h)
-
NOTE: “-“ Don’t care
Description OTP Controller flag
Refer to Applcation Note
10.2.19 NVFCTR2 (DEh): NV Memory Function Controller 2
DEH
Inst / Para
NVFCTR1
st
1 Parameter
nd
2 Parameter
rd
3 Parameter
D/CX
0
1
1
1
WRX
↑
↑
↑
↑
RDX
1
1
1
1
NVFCTR1 (NV Memory Function Controller 2)
D17-8 D7
D6
D5
D4
D3
D2
1
1
0
1
1
1
1
0
1
0
1
0
0
0
0
0
1
1
1
0
1
0
0
1
D1
1
1
1
0
D0
0
0
1
1
(Code)
(DEh)
AA
0F
A5
D1
1
0
0
1
D0
1
1
0
0
(Code)
(DFh)
55
F0
5A
NOTE: “-“ Don’t care
Description
OTP Read Command
Refer to Applcation Note
10.2.20 NVFCTR3 (DFh): NV Memory Function Controller 3
DFH
Inst / Para
NVFCTR1
st
1 Parameter
nd
2 Parameter
rd
3 Parameter
D/CX
0
1
1
1
WRX
↑
↑
↑
↑
RDX
1
1
1
1
NVFCTR1 (NV Memory Function Controller 3
D17-8
D7
D6
D5
D4
D3
D2
1
1
0
1
1
1
0
1
0
1
0
1
1
1
1
1
0
0
0
1
0
1
1
0
NOTE: “-“ Don’t care
Description OTP Write Command
Refer to Applcation Note
Ver 1.5.2
147
2007-12
ST7732
10.2.21 GMCTRP1 (E0h): Gamma (‘+’polarity) Correction Characteristics Setting
E0H
Inst / Para
D/CX
GMCTRP1
0
↑
1
-
1
1
1
st
1
1
1
1
1
1
1
1
1
1
1
1
1
↑
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
1 Parameter
nd
2 Parameter
rd
3 Parameter
th
4 Parameter
th
5 Parameter
th
6 Parameter
th
7 Parameter
th
8 Parameter
th
9 Parameter
th
10 Parameter
th
11 Parameter
th
12 Parameter
th
13 Parameter
GMCTRP0 (Gamma ‘+’polarity Correction Characteristics Setting)
WRX RDX
D17-8 D7 D6
D5
D4
D3
D2
D1
D0
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
0
0
0
0
0
(Code)
(E0h)
RFP3 RFP2 RFP1 RFP0
PKP04 PKP03 PKP02 PKP01 PKP00
PKP14 PKP13 PKP12 PKP11 PKP10
PKP24 PKP23 PKP22 PKP21 PKP20
PKP34 PKP33 PKP32 PKP31 PKP30
PKP44 PKP43 PKP42 PKP41 PKP40
PKP53 PKP52 PKP51 PKP50
PKP63 PKP62 PKP61 PKP60
PKP73 PKP72 PKP71 PKP70
PKP83 PKP82 PKP81 PKP80
RFP14 RFP13 RFP12 RFP11 RFP10
OSP14 OSP13 OSP12OSP11 OSP10
OSP3 OSP2 OSP1 OSP0
NOTE: “-“ Don’t care
Negative Polarity
Description
Ver 1.5.2
Set-up Contents
RFP[3:0]
PKP0[4:0]
The voltage of V0 grayscale is selected by the variable resistor
The voltage of V3 grayscale is selected by the 32 to 1 selector
PKP1[4:0]
The voltage of V6 grayscale is selected by the 32 to 1 selector
PKP2[4:0]
PKP3[4:0]
PKP4[4:0]
The voltage of V11 grayscale is selected by the 32 to 1 selector
The voltage of V20 grayscale is selected by the 32 to 1 selector
The voltage of V31 grayscale is selected by the 32 to 1 selector
PKP5[3:0]
PKP6[3:0]
PKP7[3:0]
PKP8[3:0]
RFP1[4:0]
OSP1[4:0]
OSP[3:0]
The voltage of V43 grayscale is selected by the 16 to 1 selector
The voltage of V52 grayscale is selected by the 16 to 1 selector
The voltage of V57 grayscale is selected by the 16 to 1 selector
The voltage of V60 grayscale is selected by the 16 to 1 selector
The voltage of V1 grayscale is selected by the variable resistor
The voltage of V62 grayscale is selected by the variable resistor
The voltage of V63 grayscale is selected by the variable resistor
148
2007-12
ST7732
10.2.22 GMCTRN1 (E1h): Gamma ‘-’polarity Correction Characteristics Setting
E1H
Inst / Para
GMCTRP0 (Gamma ‘+’polarity Correction Characteristics Setting)
D/CX WRX RDX D17-8
D7 D6 D5
D4
D3
D2
D1
D0
GMCTRP1
0
↑
1
-
1
1
1
0
0
0
0
1
st
1
1
1
1
1
1
1
1
1
1
1
1
1
↑
1
1
1
1
1
1
1
1
1
1
1
1
1
-
-
-
-
PKN04
PKN14
PKN24
PKN34
PKN44
RFN14
OSN14
-
RFN3
PKN03
PKN13
PKN23
PKN33
PKN43
PKN53
PKN63
PKN73
PKN83
RFN13
OSN13
OSN3
RFN2
PKN02
PKN12
PKN22
PKN32
PKN42
PKN52
PKN62
PKN72
PKN82
RFN12
OSN12
OSN2
RFN1
PKN01
PKN11
PKN21
PKN31
PKN41
PKN51
PKN61
PKN71
PKN81
RFN11
OSN11
OSN1
RFN0
PKN00
PKN10
PKN20
PKN30
PKN40
PKN50
PKN60
PKN70
PKN80
RFN10
OSN10
OSN0
1 Parameter
nd
2 Parameter
rd
3 Parameter
th
4 Parameter
th
5 Parameter
th
6 Parameter
th
7 Parameter
th
8 Parameter
th
9 Parameter
th
10 Parameter
th
11 Parameter
th
12 Parameter
th
13 Parameter
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
(Code)
(E1h)
NOTE: “-“ Don’t care
Negative Polarity
Description
Set-up Contents
RFN[3:0]
PKN0[4:0]
The voltage of V63 grayscale is selected by the variable resistor
The voltage of V60 grayscale is selected by the 32 to 1 selector
PKN1[4:0]
The voltage of V57 grayscale is selected by the 32 to 1 selector
PKN2[4:0]
PKN3[4:0]
PKN4[4:0]
PKN5[3:0]
PKN6[3:0]
PKN7[3:0]
PKN8[3:0]
RFN1[4:0]
OSN1[4:0]
OSN[3:0]
The voltage of V52 grayscale is selected by the 32 to 1 selector
The voltage of V43 grayscale is selected by the 32 to 1 selector
The voltage of V31 grayscale is selected by the 32 to 1 selector
The voltage of V20 grayscale is selected by the 16 to 1 selector
The voltage of V11 grayscale is selected by the 16 to 1 selector
The voltage of V6 grayscale is selected by the 16 to 1 selector
The voltage of V3 grayscale is selected by the 16 to 1 selector
The voltage of V62 grayscale is selected by the variable resistor
The voltage of V1 grayscale is selected by the variable resistor
The voltage of V0 grayscale is selected by the variable resistor
10.2.23 AUTOCTRL (F1h): NVM and OSC control function
09H
Inst / Para
AUTOCTRL
D/CX WRX RDX
0
↑
1
st
1 Parameter
1
1
↑
D17-8
-
RDDST (Read Display Status)
D7
D6
D5
D4
D3
1
1
1
1
0
OTP
0
0
0
1
PROG
D2
0
D1
0
D0
1
(Code)
(F1h)
0
0
0
-
NOTE: “-“ Don’t care
Description
Default
Ver 1.5.2
Bit
OTP
PROG
Description
OTP programming function
Value
‘1’ = Enable OTP programming function
‘0’ = Disable OTP programming function
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value(D7~D0)
0000_1000 (08h)
0000_1000 (08h)
0000_1000 (08h)
149
2007-12
ST7732
10.2.24 OSCADJ (F2h): Internal OSC frequency control
09H
Inst / Para
OSCADJ
D/CX WRX RDX
0
↑
1
st
1 Parameter
1
1
↑
D17-8
-
D7
1
-
0
RDDST (Read Display Status)
D6
D5
D4
D3
1
1
1
0
0
0
0
0
D2
0
D1
1
D0
0
(Code)
(F2h)
OSC
SEL2
OSC
SEL1
OSC
SEL0
-
D0
1
(Code)
(F5h)
NOTE: “-“ Don’t care
Bit
OSCSEL
Description
Description
Internal
OSC
adjust function
frequency
Value
‘000’ = 120hz
‘001’ = 95hz
‘010’ = 80hz
‘011’ = 70hz
‘100’ = 60hz – default setting
Status
Power On Sequence
S/W Reset
H/W Reset
Default
Default Value(D7~D0)
0000_0100 (04h)
0000_0100 (04h)
0000_0100 (04h)
10.2.25 DISPCTRL (F5h): OTP and OSC function control
09H
Inst / Para
DISPCTRL
st
1 Parameter
D/CX WRX RDX
0
↑
1
1
1
↑
D17-8
-
D7
1
-
PDM1
RDDST (Read Display Status)
D6
D5
D4
D3
1
1
1
0
PDM0
FLM
D2
1
D1
0
C8ON EQPW1 EQPW0 EQVDD ENGS
-
NOTE: “-“ Don’t care
Bit
PDM
Description
Vcom
waveform
within porch area
FLM
EQPW
Monochrom image detection
Mono -> frame inversion
Color -> line inversion
Monochrom line detection
Mono -> OP-AMP off
Color -> OP-AMP on
Equalization level setting
EQVDD
Equalization level setting
ENGS
Gate scan direction setting
C8ON
Description
Default
Ver 1.5.2
setting
Value
‘00’ = VcomL
‘01’ = VcomH
‘10’ = GND
‘11’ = Hi-Z
‘1’ = Enable the monochrom image detection function
‘0’ = Disable the monochrom image detection function
‘1’ = Enable the monochrom line detection function
‘0’ = Disable the monochrom line detection function
‘00’ = V0(+ frame), V63(- frame)
‘01’ = V63(+ frame), V0(-frame)
‘10’ = GND(+frame), GND(-frame), ps. EQVDD=’0’
‘10’ = VDD(+frame), GND(-frame), ps. EQVDD=’1’
‘11’ = Hi-Z(+frame), Hi-Z(-frame)
‘1’ = VDD(+frame), GND(-frame) mode, ps. EQPW=’10’
‘0’ = GND(+frame), GND(-frame) mode, ps. EQPW=’10’
‘1’ = G1 ~ G162
‘0’ = G162 ~ G1
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value(D7~D0)
0001_1010 (1Ah)
0001_1010 (1Ah)
0001_1010 (1Ah)
150
2007-12
ST7732
10.2.26 DEFADJ (F6h): Default mode setting
09H
Inst / Para
DEFADJ
D/CX WRX RDX
0
↑
1
st
1 Parameter
1
1
↑
D17-8
-
D7
1
-
0
RDDST (Read Display Status)
D6
D5
D4
D3
1
1
1
0
1
0
0
0
D2
1
D1
1
D0
0
(Code)
(F6h)
1
0
TESEL
OE
-
NOTE: “-“ Don’t care
Description
Default
Ver 1.5.2
Bit
TESELOE
Description
Output mode setting of
TESEL pin
Value
‘1’ = Enable the output mode of TESEL pin
‘0’ = Disable the output mode of TESEL pin
Status
Power On Sequence
S/W Reset
H/W Reset
Default Value(D7~D0)
0100_0100 (44h)
0100_0100 (44h)
0100_0100 (44h)
151
2007-12
ST7732
11. Power structure
11.1. Driver IC Operating voltages Specification
VGH (9.4V ~ 16.1V)
AVDD
AVDD (4.95V ~ 6V)
VDD=(2.5V~3.3V)
GVDD (3.0V ~ 5.0V)
Charge Pump
Reference Voltage
VCOMH (2.5V ~ 5.0V)
Internal
Reference Voltage
AGND=0V
VCOML (-2.5V ~ 0.0V)
VCL (-2.5V ~ -2.9V)
VGL (-13.4V ~ -7.05V)
Fig. 11.1.1 Power Booster Level
Remark
1. AVDD supply to all power source (exclude VGH, VGL)
2. Source output range: 0.1V ~ AVDD-0.1V
3. Linear Range: 0.2V ~ AVDD-0.2V (For all output voltage, but exclude VGH, VGL)
4. Above operating voltages is min range.
Ver 1.5.2
152
2007-12
ST7732
11.2 Power Booster Circuit
11.2.1 VCI1 generate frome VDD regulator
Source Output
Circuit Block
VDD
CVDD
S1
|
S396
REGP
Reference
Voltage
generator
AVDD
Gray reference
Circuit Block
(Gamma)
Vci1
REGP
AVDD
VC
[2:0}
GVDD
REGP
VRH
[4:0}
AGND
Vci1
CGVDD
CVci1
AGND
AVDD
VDD
C11
Charge Pump 1
(VDD * 2)
C12
VCOMH
REGP
VMH
[6:0}
CVCOMH
AVDD
CAVDD
AGND
Vci1
C22
VCOM
Charge Pump 2
(Vci1 * 4,5,6)
Vci1
VGH
CVGH
VCOMH
Vci1
VMA
[5:0}
C23
VGL
CVCOML
Charge Pump 2
(Vci1 * -3,-4,-5)
VCL REGP
CVGL
VGH
VDD
C21
VCL
Gate
Driver
VGL
G1
|
G162
Charge Pump 4
(VDD * -1)
Reference
Voltage
generator
CVCL
VREF
CVREF
(Option)
VDDI
CVDDI
VCC
CVCC
Fig. 11.2.1 Power Booster Structure (1)
Ver 1.5.2
153
2007-12
ST7732
11.2.2 EXTERNAL COMPONENTS CONNECTION
Pad Name
VDDI
VDD
VCC
AGND
DGND
C23P, C23N
C22P, C22N
C21P, C21N
C12P, C12N
C11P, C11N
AVDD
VCI1
VGH
VGL
VCL
VREF
GVDD
VCOMH
VCOML
Rated (Min)
Voltage
Connection
VDDI (Logic Power)
VDD (Analog Power)
Connect to Capacitor (Max 3V): VCC -------||-------- GND
Analog ground (Connect to GND)
Digital ground (Connect to GND)
Connect to Capacitor: C23P -------||--------C23N
Connect to Capacitor: C22P -------||--------C22N
Connect to Capacitor: C21P -------||--- -----C21N
Connect to Capacitor: C12P -------||--------C12N
Connect to Capacitor: C11P -------||--------C11N
Connect to Capacitor: AVDD -------||-------- GND
Connect to Capacitor: AVDD -------||-------- GND
Connect to Capacitor: VGH -------||-------- GND
Connect to Capacitor: VGL -------||-------- GND
Connect to Capacitor: VCL -------||-------- GND
Connect to Capacitor: VREF -------||-------- GND
Connect to Capacitor: GVDD -------||-------- GND
Connect to Capacitor: VCOMH-------||--------- GND
Connect to Capacitor: VCOML -------||-------- GND
Typical
capacitance value
10.0V
10.0V
10.0V
1.0 uF
1.0 uF
1.0 uF
25.0V; 16.0V*
25.0V; 16.0V*
10.0V
10.0V
10.0V
10.0V
10.0V
25.0V; 16.0V*
25.0V; 16.0V*
10.0V
10.0V
10.0V
10.0V
10.0V
1.0 uF
1.0 uF
1.0 uF
1.0 uF
1.0 uF
1.0 uF
1.0 uF
1.0 uF
1.0 uF
1.0 uF
1.0 uF
1.0 uF
1.0 uF
1.0 uF
Note: For the typical specification of capacitor, the surge voltage is 125% of rated voltage. The capacitor of rated voltage of
16V can be only used for the case of VGH < 12.8V and VGL > -12.8V to prevent from stability issue. For normal
usage, please use the capacitor of 25V rating.
Ver 1.5.2
154
2007-12
ST7732
12. Gamma structure
12.1 STRUCTURE OF GRAYSCALE AMPLIFIER
The structure of grayscale amplifier is shown as below. 13 voltage levels (VIP(N)0-VIP(N)12) between GVDD and VGS are
determined by the high/ mid/ low level adjustment registers.
Gray Level
Voltage Formula (Positive)
Voltage Formula (Negative)
0
VINP0
VINN0
1
VINP1
VINN1
2
V1-(V1-V3)*(16/30)
V1-(V1-V3)*(18/30)
3
VINP2
VINP(N)2
4
V3-(V3-V6)*(11/30)
V3-(V3-V6)*(12/30)
5
V3-(V3-V6)*(21/30)
V3-(V3-V6)*(22/30)
6
VINP3
VINN3
7
V6-(V6-V11)*(7/30)
V6-(V6-V11)*(7/30)
8
V6-(V6-V11)*(14/30)
V6-(V6-V11)*(13/30)
9
V6-(V6-V11)*(20/30)
V6-(V6-V11)*(19/30)
10
V6-(V6-V11)*(25/30)
V6-(V6-V11)*(25/30)
11
VINP4
VINN4
12
V11-(V11-V20)*(4/30)
V11-(V11-V20)*(4/36)
13
V11-(V11-V20)*(8/30)
V11-(V11-V20)*(8/36)
14
V11-(V11-V20)*(12/30)
V11-(V11-V20)*(12/36)
15
V11-(V11-V20)*(16/30)
V11-(V11-V20)*(16/36)
16
V11-(V11-V20)*(19/30)
V11-(V11-V20)*(20/36)
17
V11-(V11-V20)*(22/30)
V11-(V11-V20)*(24/36)
18
V11-(V11-V20)*(25/30)
V11-(V11-V20)*(28/36)
19
V11-(V11-V20)*(28/30)
V11-(V11-V20)*(32/36)
20
VINP5
VINN5
21
V20-(V20-V31)*(3/30)
V20-(V20-V32)*(3/36)
22
V20-(V20-V31)* (6/30)
V20-(V20-V32)*(6/36)
23
V20-(V20-V31)* (9/30)
V20-(V20-V32)*(9/36)
24
V20-(V20-V31)* (12/30)
V20-(V20-V32)*(12/36)
25
V20-(V20-V31)* (15/30)
V20-(V20-V32)*(15/36)
26
V20-(V20-V31)* (18/30)
V20-(V20-V32)*(18/36)
27
V20-(V20-V31)* (21/30)
V20-(V20-V32)*(21/36)
28
V20-(V20-V31)* (23/30)
V20-(V20-V32)*(24/36)
29
V20-(V20-V31)* (25/30)
V20-(V20-V32)*(27/36)
30
V20-(V20-V31)* (27/30)
V20-(V20-V32)*(30/36)
31
VINP6
V20-(V20-V32)*(33/36)
32
V31-(V31-V43)*(3/36)
VINN6
33
V31-(V31-V43)*(6/36)
V32-(V32-V43)*(3/30)
34
V31-(V31-V43)*(9/36)
V32-(V32-V43)*(5/30)
35
V31-(V31-V43)*(12/36)
V32-(V32-V43)*(7/30)
36
V31-(V31-V43)*(15/36)
V32-(V32-V43)*(9/30)
Ver 1.5.2
155
2007-12
ST7732
37
V31-(V31-V43)*(18/36)
V32-(V32-V43)*(12/30)
38
V31-(V31-V43)*(21/36)
V32-(V32-V43)*(15/30)
39
V31-(V31-V43)*(24/36)
V32-(V32-V43)*(18/30)
40
V31-(V31-V43)*(27/36)
V32-(V32-V43)*(21/30)
41
V31-(V31-V43)*(30/36)
V32-(V32-V43)*(24/30)
42
V31-(V31-V43)*(33/36)
V32-(V32-V43)*(27/30)
43
VINP7
VINN7
44
V43-(V43-V52)*(4/36)
V43-(V43-V52)*(2/30)
45
V43-(V43-V52)*(8/36)
V43-(V43-V52)*(5/30)
46
V43-(V43-V52)*(12/36)
V43-(V43-V52)*(8/30)
47
V43-(V43-V52)*(16/36)
V43-(V43-V52)*(11/30)
48
V43-(V43-V52)*(20/36)
V43-(V43-V52)*(14/30)
49
V43-(V43-V52)*(24/36)
V43-(V43-V52)*(18/30)
50
V43-(V43-V52)*(28/36)
V43-(V43-V52)*(22/30)
51
V43-(V43-V52)*(32/36)
V43-(V43-V52)*(26/30)
52
VINP8
VINN8
53
V52-(V52-V57)*(5/30)
V52-(V52-V57)*(5/30)
54
V52-(V52-V57)*(11/30)
V52-(V52-V57)*(10/30)
55
V52-(V52-V57)*(17/30)
V52-(V52-V57)*(16/30)
56
V52-(V52-V57)*(23/30)
V52-(V52-V57)*(23/30)
57
VINP9
VINN9
58
V57-(V57-V60)*(8/30)
V57-(V57-V60)*(9/30)
59
V57-(V57-V60)*(18/30)
V57-(V57-V60)*(19/30)
60
VINP10
VINN10
61
V60-(V60-V62)*(12/30)
V60-(V60-V62)*(14/30)
62
VINP11
VINN11
63
VINP12
VINN12
Ver 1.5.2
156
2007-12
ST7732
13. Example Connection with Panel direction and Different Resolution
13.1 Application of connection with panel direction
Case 1: (This is default case)
- 1st Pixel is at Left Top of the panel
- RGB filter order = RGB
1st pixel
IC (Bump down)
LCD Front side
CF Glass
TFT Glass
Case 2:
- 1st Pixel is at Left Top of the panel
- RGB filter order = BGR
1st pixel
IC (Bump down)
LCD Front side
CF Glass
TFT Glass
Case 3:
Ver 1.5.2
157
2007-12
ST7732
- 1st Pixel is at Righ Bottom of the panel
- RGB filter order = RGB
IC (Bump down)
LCD Front side
CF Glass
1st pixel
TFT Glass
Case 4:
- 1st Pixel is at Righ Bottom of the panel
- RGB filter order = BGR
IC (Bump down)
LCD Front side
CF Glass
1st pixel
TFT Glass
Ver 1.5.2
158
2007-12
ST7732
13.2 Application of connection with Different resolution
Case 1 of Resolution (128RGB x 160) (GM1, GM0 = “00”)
RAM size=128 x 160 x 18-bit (Used)
Display size = 128RGB x 160
1). Example for SMX=SMY=’0’
(0, 0)
1st pixel
(127, 159)
2). Example for SMX=SMY=’1’
ST7732 (bump down)
G161
G3
S7
S390
G2
G160
(0, 0)
00h 01h 02h
7Eh 7Fh 83h
P1
P2
P3
P126
P127
00h
P128
G1
01h
G2
1st pixel
02h
G3
G4
G157
G158
(127, 159)
G159
9Fh
G160
A1h
- Display direction control (S/W)
- X-Mirror control by MX
- Y-Mirror control by MY
- XY-Exchange control by MV
Ver 1.5.2
- Direction default setting (H/W)
SMX = '1'
SMY = '1'
SRGB = '0'
159
2007-12
ST7732
Case 2 of Resolution (120RGB x 160) (GM1, GM0 = “01”)
RAM size=120 x 160 x 18-bit (Used)
Display size = 120RGB x 160
1). Example for SMX=SMY=’0’
(0, 0)
1st pixel
(119, 159)
2). Example for SMX=SMY=’1’
ST7732 (bump down)
G161
G3
S7
S366
G2
G160
(0, 0)
00h 01h 02h
77h 7Fh 83h
P1
P2
P3
P118
P119
00h
P120
G1
01h
G2
02h
1st pixel
G3
G4
G157
G158
(119, 159)
G159
9Fh
G160
A1h
- Display direction control (S/W)
- X-Mirror control by MX
- Y-Mirror control by MY
- XY-Exchange control by MV
Ver 1.5.2
- Direction default setting (H/W)
SMX = '1'
SMY = '1'
SRGB = '0'
160
2007-12
ST7732
Case 3 of Resolution (132RGB x 162) (GM1, GM0 = “11”)
RAM size=132 x 162 x 18-bit (Used)
Display size = 132RGB x 162
1). Example for SMX=SMY=’0’
G 162
G 161
G R A M s i z e (132x 162x 18-b i t s )
G1
(0,0)
00h 02h --- --- --- --- --- 7Fh 83h
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
|
|
|
9Fh
A1h
ST7732 (Bump Down)
S1
S 396
D1 D2 -- -- -- -- --
G2
D127 D128
G1
G2
G3
|
|
|
|
|
|
|
|
|
|
|
G158
(0,0)
(131,161)
G4
|
|
|
|
|
|
|
|
|
|
|
G159
1 st P ixel
G161
G162
(131,161)
- Display direction control (S/W)
- Direction default setting (H/W)
- X-Mirror control by MX
- Y-Mirror control by MY
- XY-Exchange control by MV
SMX = ’0’
SMY = ‘0’
SRGB = ‘0’
2). Example for SMX=SMY=’1’
G 162
G 161
G R A M s i z e (132x 162x 18-b i t s )
G1
00h 02h --- --- --- --- --- 7Fh 83h
00h
01h
02h
|
|
|
|
|
|
|
|
|
|
|
|
|
9Fh
A1h
Ver 1.5.2
ST7732 (Bump Down)
S1
S 396
D1 D2 -- -- -- -- --
G2
D127 D128
G1
G2
G3
|
|
|
|
|
|
|
|
|
|
|
G158
(0,0)
(131,161)
(131,161)
1 st P ixel
G4
|
|
|
|
|
|
|
|
|
|
|
G159
G161
G162
- Display direction control (S/W)
(0,0)
- Direction default setting (H/W)
- X-Mirror control by MX
- Y-Mirror control by MY
- XY-Exchange control by MV
SMX = ’1’
SMY = ‘1’
SRGB = ‘0’
161
2007-12
ST7732
13.3 MicroProcessor Interface applications
13.3.1 8080-Seriers MCU + SPI Interface (RCM = ‘0x’, P68=’0’, IM2=’1’)
13.3.1.1 8080-Series MCU Interface for 8-bit data bus (IM1, IM0=”00”)
ST7732
Host
RESX
TE
RESX
TE
SCL
SDA
D/CX(SCL)
WRX(R/WX)
RDX(E)
D7 to D1
D0
“0”
“0”
Note:
RCM = ‘0x’
IM2=’0’, SPI I/F
IM2=’1’, MCU I/F
“0”
“00”
IM2
D/CX
WRX
RDX
D7 to D1
D0
D15 to D8
D17 to D16
P68
IM1,IM0
IM2
VS, HS, DE
PLCK
DGND
Fig. 13.3.1.1 8080-Series MCU Interface for 8-bit data bus
13.3.1.2 8080-Series MCU Interface for 16-bit data bus (IM1, IM0=”01”)
ST7732
Host
RESX
TE
RESX
TE
SCL
SDA
D/CX(SCL)
WRX(R/WX)
RDX(E)
D7 to D1
D0
D15 to D8
“0”
Note:
RCM = ‘0x’
IM2=’0’, SPI I/F
IM2=’1’, MCU I/F
“0”
“01”
IM2
D/CX
WRX
RDX
D7 to D1
D0
D15 to D8
D17 to D16
P68
IM1,IM0
IM2
VS, HS, DE
PLCK
DGND
Fig. 13.3.1.2 8080-Series MCU Interface for 16-bit data bus
Ver 1.5.2
162
2007-12
ST7732
13.3.1.3 8080-Series MCU Interface for 9-bit data bus (IM1, IM0=”10”)
ST7732
Host
RESX
TE
RESX
TE
SCL
SDA
D/CX(SCL)
WRX(R/WX)
RDX(E)
D8 to D1
D0
“0”
“0”
Note:
RCM = ‘0x’
IM2=’0’, SPI I/F
IM2=’1’, MCU I/F
“0”
“10”
IM2
D/CX
WRX
RDX
D8 to D1
D0
D15 to D9
D17 to D16
P68
IM1,IM0
IM2
VS, HS, DE
PLCK
DGND
Fig. 13.3.1.3 8080-Series MCU Interface for 9-bit data bus
13.3.1.4 8080-Series MCU Interface for 18-bit data bus (IM1, IM0=”11”)
ST7732
Host
RESX
TE
RESX
TE
SCL
SDA
D/CX(SCL)
WRX(R/WX)
RDX(E)
D7 to D1
D0
D17 to D8
Note:
RCM = ‘0x’
IM2=’0’, SPI I/F
IM2=’1’, MCU I/F
“0”
“11”
IM2
D/CX
WRX
RDX
D7 to D1
D0
D17 to D8
P68
IM1,IM0
IM2
VS, HS, DE
PLCK
DGND
Fig. 13.3.1.4 8080-Series MCU Interface for 18-bit data bus
Ver 1.5.2
163
2007-12
ST7732
13.3.2 6800-Seriers MCU + SPI Interface (RCM = ‘0x’, P68=’1’, IM2=’1’)
13.3.2.1 6800-Series MCU Interface for 8-bit data bus (IM1, IM0=”00”)
ST7732
Host
RESX
TE
RESX
TE
SCL
SDA
D/CX(SCL)
WRX(R/WX)
RDX(E)
D7 to D1
D0
“0”
“0”
Note:
RCM = ‘0x’
IM2=’0’, SPI I/F
IM2=’1’, MCU I/F
“1”
“00”
IM2
D/CX
R/WX
E
D7 to D1
D0
D15 to D8
D17 to D16
P68
IM1,IM0
IM2
VS, HS, DE
PLCK
DGND
Fig. 13.3.2.1 6800-Series MCU Interface for 8-bit data bus
13.3.2.2 6800-Series MCU Interface for 16-bit data bus (IM1, IM0=”01”)
ST7732
Host
RESX
TE
RESX
TE
SCL
SDA
D/CX(SCL)
WRX(R/WX)
RDX(E)
D7 to D1
D0
D15 to D8
“0”
Note:
RCM = ‘0x’
IM2=’0’, SPI I/F
IM2=’1’, MCU I/F
“1”
“01”
IM2
D/CX
R/WX
E
D7 to D1
D0
D15 to D8
D17 to D16
P68
IM1,IM0
IM2
VS, HS, DE
PLCK
DGND
Fig. 13.3.2.2 6800-Series MCU Interface for 16-bit data bus
Ver 1.5.2
164
2007-12
ST7732
13.3.2.3 6800-Series MCU Interface for 9-bit data bus (IM1, IM0=”10”)
ST7732
Host
RESX
TE
RESX
TE
SCL
SDA
D/CX(SCL)
WRX(R/WX)
RDX(E)
D8 to D1
D0
“0”
“0”
Note:
RCM = ‘0x’
IM2=’0’, SPI I/F
IM2=’1’, MCU I/F
“1”
“10”
IM2
D/CX
R/WX
E
D8 to D1
D0
D15 to D9
D17 to D16
P68
IM1,IM0
IM2
VS, HS, DE
PLCK
DGND
Fig. 13.3.2.3 6800-Series MCU Interface for 9-bit data bus
13.3.2.4 6800-Series MCU Interface for 18-bit data bus (IM1, IM0=”11”)
ST7732
Host
RESX
TE
RESX
TE
SCL
SDA
D/CX(SCL)
WRX(R/WX
)
RDX(E)
D7 to D1
D0
D17 to D8
Note:
RCM = ‘0x’
IM2=’0’, SPI I/F
IM2=’1’, MCU I/F
“1”
“11”
IM2
D/CX
R/WX
E
D7 to D1
D0
D17 to D8
P68
IM1,IM0
IM2
VS, HS, DE
PLCK
DGND
Fig. 13.3.2.4 6800-Series MCU Interface for 18-bit data bus
Ver 1.5.2
165
2007-12
ST7732
13.3.3 RGB Interface (RCM = ‘1’)
13.3.3.1 RGBInterface for 6-bit Data Width
ST7732
Host
RESX
TE
RESX
TE
CSX
D/CX(SCL)
SDA
CSX
SCL
SDA
VS
VS
HS
DE
PCLK
D7 to D2
“0”
“0”
Note:
RCM = ‘1x’
3Ah=”E0h”
HS
DE
PLCK
D7 to D2
D17 to D8
D1 to D0
P68, IM2
IM1,IM0
WRX(R/WX)
RDX(E)
DGND
Fig. 13.3.3.1 RGB Interface for 6-bit data width
13.3.3.2 RGBInterface for 16-bit Data Width
ST7732
Host
RESX
TE
RESX
TE
CSX
D/CX(SCL)
SDA
CSX
SCL
SDA
VS
VS
HS
DE
PCLK
D5 to D1
D11 to D6
D17 to D13
HS
DE
PLCK
D5 to D1
D11 to D6
D17 to D13
“0”
Note:
RCM = ‘1x’
3Ah=”50h”
D0, D12
P68, IM2
IM1,IM0
WRX(R/WX)
RDX(E)
DGND
Fig. 13.3.3.2 RGB Interface for 16-bit data width
Ver 1.5.2
166
2007-12
ST7732
13.3.3.3 RGBInterface for 18-bit Data Width
ST7732
Host
RESX
TE
RESX
TE
CSX
D/CX(SCL)
SDA
CSX
SCL
SDA
VS
VS
HS
DE
PCLK
D5 to D0
D11 to D6
D17 to D12
HS
DE
PLCK
D5 to D0
D11 to D6
D17 to D12
Note:
RCM = ‘1x’
3Ah=”60h”
P68, IM2
IM1,IM0
WRX(R/WX)
RDX(E)
DGND
Fig. 13.3.3.3 RGB Interface for 18-bit data width
Ver 1.5.2
167
2007-12
ST7732
14. Revision History
ST7732 Specification Revision History
Version
Date
0.x
1.0
Description
Preliminary version
2007/05/16
First issue
1.1
2007/06/12
Modify timing of 3-SPI and 4-SPI. (8.3, p-23; 8.4, p-24)
Modify display off function. (10.1.18, p-120)
Add notes of 262K read function (10.1.23, p-125; 10.1.33, p-135)
Modify cap. rating voltage (11.2.2, p-155)
1.2
2007/07/10
Remove RGBSET command 2Dh (10.1.24 p-106, p-125)
1.3
2007/08
Modify timing of CSX hold time for all I/F(8.1, p-21; 8.2, p-23; 8.4, p-24)
Modify the power system diagram(11.2.1, p-154)
Correct the typo of component table(11.2.2, p-155)
1.3.1
2007/08
Modify component table(11.2, p-154,155)
1.4
2007/09
1.5
2007/10
1.5.1
2007/11
1.5.2
2007/12
Ver 1.5.2
Revise the waiting time of HW reset(9.18.2 P91)
Revise the description of command 01h, 10h,11h, 28h (10.1.2 P111; 10.1.11
P116; 10.1.12 P117; 10.1.18 P120)
Modify the description of power on/off sequence(9.15 P84)
Remove table 9.18.3.1 reset input timing(9.18.3 P90)
Modify the figure of reset timing (9.18.3 P90)
Modify the waiting time of SWReset to 120ms (10.1.2 P110)
Modify the waiting time of SLPout mode to 120ms (10.1.12 P116)
Modify SHUT description (6.3 P16)
Modify TESEL description (6.3 P17)
Modify RGB Mode2 power on sequence on figure 9.9.15 and table 9.9.6.4
(9.9.6.4 P60)
Modify supported 6-bits, 16-bits, 18-bits RGB interface (2 P1)
Modify the Figure of RGB Interface for 6-bit data width(fig.13.3.3.1 P166)
Modify the Figure of RGB Interface for 16-bit data width(fig.13.3.3.2 P166)
Modify the Figure of RGB Interface for 18-bit data width(fig. 13.3.3.3 P167)
168
2007-12