MICROSEMI APT20GS60BRDQ1G

APT20GS60BRDQ1(G)
APT20GS60SRDQ1(G)
600V, 20A, VCE(ON) = 2.8V Typical
Thunderbolt® High Speed NPT IGBT with Anti-Parallel 'DQ' Diode
The Thunderbolt HS™ series is based on thin wafer non-punch through (NPT) technology similar to
the Thunderbolt® series, but trades higher VCE(ON) for significantly lower turn-on energy Eoff. The low
switching losses enable operation at switching frequencies over 100kHz, approaching power MOSFET
performance but lower cost.
An extremely tight parameter distribution combined with a positive VCE(ON) temperature coefficient
make it easy to parallel Thunderbolts HS™ IGBT's. Controlled slew rates result in very good noise
and oscillation immunity and low EMI. The short circuit duration rating of 10µs make these IGBT's
suitable for motor drive and inverter applications. Reliability is further enhanced by avalanche energy
ruggedness. Combi versions are packaged with a high speed, soft recovery DQ series diode.
TO
-2
47
D3PAK
APT20GS60BRDQ1(G)
APT20GS60SRDQ1(G)
Features
Typical Applications
• Fast Switching with low EMI
• ZVS Phase Shifted and other Full Bridge
• Very Low EOFF for Maximum Efficiency
• Half Bridge
• Short circuit rated
• High Power PFC Boost
• Low Gate Charge
• Welding
• Tight parameter distribution
• Induction heating
• Easy paralleling
• High Frequency SMPS
Single die
IGBT with
separate DQ
diode die
• RoHS Compliant
Absolute Maximum Ratings
Symbol
Parameter
Rating
I C1
Continuous Collector Current TC = @ 25°C
37
I C1
Continuous Collector Current TC = @ 100°C
20
I CM
Pulsed Collector Current 1
80
VGE
Gate-Emitter Voltage
SSOA
Unit
A
±30V
V
Switching Safe Operating Area
80
EAS
Single Pulse Avalanche Energy 2
115
mJ
tSC
Short Circut Withstand Time 3
10
µs
IF
Diode Continuous Forward Current
I FRM
TC = 25°C
43
TC = 100°C
26
Diode Max. Repetitive Forward Current
A
80
Thermal and Mechanical Characteristics
RθJC
Junction to Case Thermal Resistance
RθCS
Case to Sink Thermal Resistance, Flat Greased Surface
TJ, TSTG
Soldering Temperature for 10 Seconds (1.6mm from case)
WT
Package Weight
Max
Unit
-
-
180
W
-
-
0.70
Diode
Operating and Storage Junction Temperature Range
TL
Torque
IGBT
Typ
Mounting Torque (TO-247), 6-32 M3 Screw
1.35
-
0.11
-
-55
-
150
-
-
300
-
0.22
-
oz
-
5.9
-
g
-
-
10
in·lbf
-
-
1.1
N·m
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should be Followed.
Microsemi Website - http://www.microsemi.com
°C/W
°C
8-2007
Total Power Dissipation TC = @ 25°C
Min
Rev A
Parameter
052-6304
Symbol
PD
Static Characteristics
Symbol
VBR(CES)
∆VBR(CES)/∆TJ
VCE(ON)
VEC
VGE(th)
TJ = 25°C unless otherwise specified
Parameter
Collector-Emitter Breakdown Voltage
Breakdown Voltage Temperature Coeff
Collector-Emitter On Voltage 4
Diode Forward Voltage 4
∆VGE(th)/∆TJ Threshold Voltage Temp Coeff
ICES
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Dynamic Characteristics
Symbol
gfs
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Co(cr)
Reverse Transfer Capacitance
Charge Related 5
Co(er)
Reverse Transfer Capacitance
Current Related 6
Qg
Total Gate Charge
Gate-Emitter Charge
Ggc
Gate-Collector Charge
td(on)
Turn-On Delay Time
td(off)
tf
8-2007
Fall Time
Turn-On Switching Energy
Turn-On Switching Energy
9
Eoff
Turn-Off Switching Energy
10
td(on)
Turn-On Delay Time
Eon1
Unit
600
-
-
V
Reference to 25°C, IC = 250µA
-
0.60
-
V/°C
VGE = 15V
IC = 20A
TJ = 25°C
-
2.8
3.15
TJ = 125°C
-
3.25
-
TJ = 25°C
-
2.2
-
TJ = 125°C
VGE = VCE, IC = 1mA
VCE = 600V,
VGE = 0V
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Energy
8
Eon2
Turn-On Switching Energy
9
Eoff
Turn-Off Switching Energy 10
trr
Diode Reverse Recovery Time
Qrr
Diode Reverse Recovery Charge
Irrm
Peak Reverse Recovery Current
-
1.75
-
3
4
5
V
-
6.7
-
TJ = 25°C
-
-
50
TJ = 125°C
-
-
1000
-
-
±100
nA
Min
Typ
Max
Unit
-
12
-
S
-
1085
-
-
100
-
-
65
-
-
95
-
VGE = ±20V
VGE = 0V, VCE = 25V
f = 1MHz
VGE = 0V
VCE = 0 to 400V
Inductive Switching IGBT and
Diode:
Turn-Off Delay Time
Eon2
tf
Rev A
Rise Time
8
td(off)
Max
VGE = 0 to 15V
IC = 20A, VCE = 300V
Eon1
tr
Typ
Test Conditions
VCE = 50V, IC = 20A
Forward Transconductance
Qge
Min
TJ = 25°C unless otherwise specified
Cies
tr
052-6304
Parameter
Test Conditions
VGE = 0V, IC = 250µA
IC = 20A
Gate-Emitter Threshold Voltage
APT20GS60B_SRDQ1(G)
TJ = 25°C, VCC = 400V,
IC = 20A
RG = 9.1Ω 7, VGG = 15V
mV/°C
µA
pF
90
-
100
-
-
8
-
-
48
-
-
8
-
-
14
-
-
130
-
-
12
-
-
TBD
-
-
295
-
-
200
-
nC
ns
µJ
-
8
-
Inductive Switching IGBT and
Diode:
-
14
-
-
145
-
TJ = 125°C, VCC = 400V,
IC = 20A
RG = 9.1Ω 7, VGG = 15V
-
23
-
-
TBD
-
-
465
-
-
300
-
-
19
-
ns
-
21
-
nC
-
2
-
A
IF = 20A
VR = 400V
diF/dt = 200A/µs
ns
µJ
TYPICAL PERFORMANCE CURVES
80
VGE = 15V
J
IC, COLLECTOR CURRENT (A)
50
TJ = 125°C
40
TJ = 150°C
30
20
10
TJ = 25°C
50
TJ = -55°C
40
30
20
10
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics
4
IC = 20A
3
IC = 10A
2
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
16
IC = 40A
IC = 20A
IC = 10A
2
1
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 5, On State Voltage vs Junction Temperature
VCE = 300V
10
8
VCE = 480V
6
4
2
0
0
VCE = 120V
12
0
20
40
60
80
100
GATE CHARGE (nC)
FIGURE 6, Gate Charge
120
40
P
Cies
100
Coes
Cres
0
100
200
300
400
500
600
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 7, Capacitance vs Collector-To-Emitter Voltage
IC, DC COLLECTOR CURRENT(A)
2000
35
30
25
20
15
10
5
0
25
50
75
100
125
150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
8-2007
3
14
Rev A
4
10
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC = 50A
FIGURE 4, On State Voltage vs Gate-to- Emitter Voltage
VGE, GATE-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
5
1000
6V
10
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
TJ = 125°C
7V
20
5
60
8V
30
80
250µs PULSE
TEST<0.5 % DUTY
CYCLE
9V
40
0
FIGURE 1, Output Characteristics
C, CAPACITANCE ( F)
50
0
0
1
2
3
4
5
6
7
VCE(ON), COLLECTER-TO-EMITTER VOLTAGE (V)
70
10V
60
052-6304
IC, COLLECTOR CURRENT (A)
TJ = 25°C
60
0
VGE = 13 & 15V 11V
T = 125°C
70
70
0
APT20GS60B_SRDQ1(G)
80
TYPICAL PERFORMANCE CURVES
180
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
10
8
VGE = 15V
6
4
2 VCE = 400V
TJ = 25°C, TJ =125°C
RG = 9.1Ω
L = 100µH
0
VGE =15V,TJ=125°C
100
VGE =15V,TJ=25°C
80
60
40
VCE = 400V
RG = 9.1Ω
L = 100µH
20
30
35
RG = 9.1Ω, L = 100µH, VCE = 400V
25
TJ = 25 or 125°C,VGE = 15V
tf, FALL TIME (ns)
tr, RISE TIME (ns)
120
0
10
20
30
40
50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
RG = 9.1Ω, L = 100µH, VCE = 400V
30
140
0
0
10
20
30
40
50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
40
160
25
20
15
20
15
TJ = 125°C, VGE = 15V
10
10
5
0
0
0
10
20
30
40
50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
700
= 400V
V
CE
= +15V
V
GE
R = 9.1Ω
1200
G
TJ = 125°C,VGE =15V
1000
800
600
400
200
0
10
20
30
40
50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
1400
TJ = 25°C,VGE =15V
SWITCHING ENERGY LOSSES (mJ)
= 400V
V
CE
= +15V
V
GE
R = 9.1Ω
600
G
TJ = 125°C, VGE = 15V
500
400
300
200
TJ = 25°C, VGE = 15V
100
0
0
10
20
30
40
50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
10
20
30
40
50
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
2000
1400
V
= 400V
CE
V
= +15V
GE
T = 125°C
J
1500
Eon2,40A
Eoff,40A
1000
Eon2,20A
500
Eoff,10A
0
Eoff,20A
Eon2 10A
,
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (mJ)
Rev A
8-2007
0
052-6304
TJ = 25°C, VGE = 15V
5
= 400V
V
CE
= +15V
V
GE
R = 9.1Ω
1200
G
Eon2,40A
1000
800
Eoff,40A
600
400
Eon2,20A
Eoff,20A
200
0
Eon2,10A
Eoff,10A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
APT20GS60B_SRDQ1(G)
100
100
I
CM
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
ICM
10
VCE(on)
13µs
100µs
1ms
1
10ms
100ms
0.1
DC line
TJ = 125°C
TC = 75°C
10
VCE(on)
13µs
100µs
1ms
1
0.1
1
10
100
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
Figure 17, Forward Safe Operating Area
10ms
100ms
TJ = 150°C
TC = 25°C
DC line
Scaling for Different Case & Junction
Temperatures:
IC = IC(T = 25°C)*(TJ - TC)/125
C
1
10
100
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
Figure 18, Maximum Forward Safe Operating Area
0.70
0.9
0.60
0.7
0.50
0.40
0.5
Note:
0.30
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.80
0.3
0.20
t2
SINGLE PULSE
0.1
0.05
0.10
0
t1
10-5
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.00169
0.0602
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
Figure 20, Transient Thermal Impedance Model
T = 100°C
C
100
T = 75°C
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
C
T = 125°C
J
T = 75°C
C
D = 50 %
= 400V
V
CE
R = 9.1Ω
50
0
G
0
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
5
10 15 20 25 30 35 40
IC, COLLECTOR CURRENT (A)
Figure 21, Operating Frequency vs Collector Current
8-2007
0.305
150
Rev A
0.396
Dissipated Power
(Watts)
200
052-6304
TC (°C)
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
250
APT20GS60B_SRDQ1(G)
Gate Voltage
APT15DQ60
10%
TJ = 125°C
td(on)
Collector Current
90%
tr
V CE
IC
V CC
5%
A
10%
5%
Collector Voltage
Switching Energy
D.U.T.
Figure 23, Turn-on Switching Waveforms and Definitions
Figure 22, Inductive Switching Test Circuit
Gate Voltage
TJ = 125°C
90%
td(off)
Collector Voltage
90%
tf
10%
0
Collector Current
Switching Energy
Figure 24, Turn-off Switching Waveforms and Definitions
FOOT NOTE:
052-6304
Rev A
8-2007
1
2
3
4
5
6
Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
Starting at TJ = 25°C, L = 224µH, RG = 25Ω, IC = 20A
Short circuit time: VGE = 15V, VCC ≤ 600V, TJ ≤ 150°C
Pulse test: Pulse width < 380µs, duty cycle < 2%
Co(cr) is defined as a fixed capacitance with the same stored charge as Coes with VCE = 67% of V(BR)CES.
Co(er) is defined as a fixed capacitance with the same stored energy as Coes with VCE = 67% of V(BR)CES. To calculate Co(er) for any value of
VCE less than V(BR)CES, use this equation: Co(er) = -3.43E-8/VDS^2 + 1.44E-8/VDS + 5.38E-11.
7 RG is external gate resistance, not including internal gate resistance or gate driver impedance (MIC4452).
8 Eon1 is
IGBT turn-on switching loss. It is measured by clamping the inductance with a Silicon Carbide Schottky diode.
9 Eon2 is the inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on energy.
10 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
APT20GS60B_SRDQ1(G)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
(Cathode)
e1 SAC: Tin, Silver, Copper
5.38 (.212)
6.20 (.244)
Drain
(Heat Sink)
TO-247 Package Outline
D3 Pak Package Outline
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.41 (.528)
13.51(.532)
13.79 (.543)
13.99(.551)
1.01 (.040)
1.40 (.055)
Gate
Collector (Cathode)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
Emitter (Anode)
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Emitter (Anode)
Collector (Cathode)
Gate
Dimensions in Millimeters (Inches)
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads (Cathode)
are Plated
8-2007
1.65 (.065)
2.13 (.084)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
Rev A
19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
052-6304
0.46 (.018)
0.56 (.022) {3 Plcs}
0.40 (.016)
0.79 (.031)
5,256,583 4
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
Microsemi
Revised
8/29/97