ADPOW APT11GF120BRDQ1G

APT11GF120BRDQ1(G)
1200V
TYPICAL PERFORMANCE CURVES
APT11GF120BRDQ1
APT11GF120BRDQ1G*
®
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
FAST IGBT & FRED
TO
-2
47
The Fast IGBT is a new generation of high voltage power IGBTs. Using Non-Punch through
technology, the Fast IGBT combined with an APT free wheeling Ultra Fast Recovery Epitaxial Diode (FRED) offers superior ruggedness and fast switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 20KHz
• RBSOA and SCSOA Rated
• Ultra Low Leakage Current
G
C
E
C
• Ultrafast Soft Recovery Anti-parallel Diode
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT11GF120BRDQ1(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
25
I C2
Continuous Collector Current @ TC = 100°C
14
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
24
Switching Safe Operating Area @ TJ = 150°C
24A @ 1200V
Total Power Dissipation
Watts
156
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
MAX
5.5
6.5
2.5
3.0
Units
1200
(VCE = VGE, I C = 350µA, Tj = 25°C)
4.5
Collector-Emitter On Voltage (VGE = 15V, I C = 8A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 8A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
TYP
Volts
3.1
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
500
2
Gate-Emitter Leakage Current (VGE = ±20V)
3000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
µA
nA
12-2005
V(BR)CES
MIN
Rev A
Characteristic / Test Conditions
052-6212
Symbol
DYNAMIC CHARACTERISTICS
Symbol
APT11GF120BRDQ1(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
3
Qg
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
td(on)
tr
td(off)
tf
Eon1
tf
40
Gate Charge
10.0
VGE = 15V
65
TJ = 150°C, R G = 10Ω, VGE =
300
TJ = +25°C
285
7
VCC = 800V
5
Turn-off Delay Time
VGE = 15V
115
RG = 10Ω
46
295
I C = 8A
Current Fall Time
Eoff
Turn-off Switching Energy
µJ
485
Inductive Switching (125°C)
Current Rise Time
Turn-on Switching Energy (Diode)
ns
55
RG = 10Ω
Turn-on Delay Time
Turn-on Switching Energy
nC
100
6
Eon2
V
A
5
I C = 8A
Eon1
pF
44
7
5
UNIT
35
VCC = 800V
4
MAX
10
Inductive Switching (25°C)
Current Fall Time
Turn-off Switching Energy
td(off)
f = 1 MHz
15V, L = 100µH,VCE = 1200V
Turn-off Delay Time
Eoff
tr
90
VGE = 15V
Turn-on Switching Energy (Diode)
td(on)
620
VGE = 0V, VCE = 25V
I C = 8A
Current Rise Time
Eon2
TYP
Capacitance
VCE = 600V
Turn-on Delay Time
Turn-on Switching Energy
MIN
44
55
TJ = +125°C
ns
µJ
915
6
325
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
RθJC
Junction to Case (IGBT)
RθJC
Junction to Case (DIODE)
WT
Package Weight
MIN
TYP
MAX
.80
1.18
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6212
Rev A
12-2005
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
= 15V
TJ = -55°C
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
TJ = 25°C
20
15
TJ = 125°C
10
5
0
TJ = -55°C
20
15
10
TJ = 25°C
5
0
TJ = 125°C
0
25
13V
20
12V
15
11V
10
10V
9V
8V
5
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
25
14V
0
5
10
15
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
30
0
0
1
2
3
4
5
6
7
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
30
15V
35
25
J
10
VCE = 960V
8
6
4
2
0
10
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
IC = 16A
4
3
IC = 8A
2
IC = 4A
1
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.00
0.95
0.90
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
70
80
5.0
4.5
IC = 16A
4.0
3.5
3.0
IC = 8A
2.5
IC = 4A
2.0
1.5
1.0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0.5
0
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
35
IC, DC COLLECTOR CURRENT(A)
1.05
(NORMALIZED)
VGS(TH), THRESHOLD VOLTAGE
1.15
1.10
20 30 40 50 60
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
VCE = 240V
VCE = 600V
12
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 8A
C
T = 25°C
14
30
25
20
15
10
5
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
12-2005
GE
Rev A
V
APT11GF120BRDQ1(G)
40
052-6212
30
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VGE = 15V
8
6
4
2 VCE = 800V
TJ = 25°C, or 125°C
RG = 10Ω
L = 100µH
0
12
8
6
4
VCE = 800V
RG = 10Ω
L = 100µH
20
RG = 10Ω, L = 100µH, VCE = 800V
TJ = 25°C, VGE = 15V
60
50
40
TJ = 125°C, VGE = 15V
30
20
10
2500
0
20
16
12
8
4
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
800
EOFF, TURN OFF ENERGY LOSS (µJ)
= 800V
V
CE
= +15V
V
GE
R = 10Ω
G
2000
TJ = 125°C
1500
1000
500
TJ = 25°C
0
= 800V
V
CE
= +15V
V
GE
R = 10Ω
700
G
600
TJ = 125°C
500
400
TJ = 25°C
300
200
100
0
20
16
12
8
4
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
20
16
12
8
4
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
4000
2500
= 800V
V
CE
= +15V
V
GE
T = 125°C
3500
Eon2,16A
J
3000
2500
2000
1500
Eon2,8A
1000
0
Eoff,16A
Eon2,4A
500
Eoff,4A
Eoff,8A
50
40
30
20
10
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
40
70
tf, FALL TIME (ns)
tr, RISE TIME (ns)
TJ = 25 or 125°C,VGE = 15V
20
16
12
8
4
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
VGE =15V,TJ=25°C
60
80
0
12-2005
VGE =15V,TJ=125°C
80
90
2
Rev A
100
20
16
12
8
4
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
RG = 10Ω, L = 100µH, VCE = 800V
10
120
0
20
16
12
8
4
0
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
052-6212
APT11GF120BRDQ1(G)
140
10
= 800V
V
CE
= +15V
V
GE
R = 10Ω
Eon2,16A
G
2000
1500
Eon2,8A
1000
Eoff,16A
Eon2,4A
500
0
Eoff,4A
Eoff,8A
125
100
75
50
25
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
1,000
IC, COLLECTOR CURRENT (A)
Cies
P
C, CAPACITANCE ( F)
500
100
Coes
50
APT11GF120BRDQ1(G)
25
Cres
20
15
10
5
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.80
D = 0.9
0.60
0.7
0.5
0.40
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
1.00
0.3
0.20
0
t2
SINGLE PULSE
0.1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
10-5
t1
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
160
0.363
0.0432
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
F
T = 100°C
C
10
5
T = 125°C
J
D = 50 %
V
= 800V
CE
R = 4.3Ω
1
G
0
= min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
max
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
2
4
6
8
10 12 14 16
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
12-2005
0.00221
C
Rev A
0.437
Power
(watts)
T = 75°C
50
052-6212
RC MODEL
Junction
temp. (°C)
FMAX, OPERATING FREQUENCY (kHz)
100
APT11GF120BRDQ1(G)
Gate Voltage
APT15DQ120
10%
TJ = 125°C
td(on)
IC
V CC
tr
V CE
90%
5%
10%
Collector Current
5%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
Gate Voltage
td(off)
TJ = 125°C
tf
Collector Voltage
90%
10%
0
Collector Current
Switching Energy
052-6212
Rev A
12-2005
Figure 23, Turn-off Switching Waveforms and Definitions
TYPICAL PERFORMANCE CURVES
APT11GF120BRDQ1(G)
ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
APT11GF120BRDQ1(G)
Characteristic / Test Conditions
IF(AV)
Maximum Average Forward Current (TC = 127°C, Duty Cycle = 0.5)
15
IF(RMS)
RMS Forward Current (Square wave, 50% duty)
29
IFSM
Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms)
UNIT
Amps
110
STATIC ELECTRICAL CHARACTERISTICS
Symbol
VF
Characteristic / Test Conditions
MIN
Forward Voltage
TYP
MAX
IF = 8A
2.34
IF = 16A
2.83
IF = 8A, TJ = 125°C
2.00
UNIT
Volts
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
MIN
TYP
MAX
UNIT
trr
Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C
F
F
R
J
-
21
trr
Reverse Recovery Time
-
240
Qrr
Reverse Recovery Charge
-
260
-
3
-
290
ns
-
960
nC
-
6
-
130
ns
-
1340
nC
-
19
Amps
IRRM
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IF = 15A, diF/dt = -200A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
VR = 800V, TC = 25°C
Maximum Reverse Recovery Current
trr
IRRM
IF = 15A, diF/dt = -200A/µs
IF = 15A, diF/dt = -1000A/µs
VR = 800V, TC = 125°C
Maximum Reverse Recovery Current
ns
nC
-
-
Amps
Amps
D = 0.9
1.00
0.7
0.80
0.60
0.5
0.40
0.3
Note:
PDM
t1
t2
0.20
0.1
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.05
10-4
10-3
10-2
10-1
1.0
RECTANGULAR PULSE DURATION (seconds)
FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION
RC MODEL
Junction
temp. (°C)
0.676
0.00147
0.504
0.0440
Power
(watts)
Case temperature. (°C)
FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL
12-2005
10-5
Rev A
0
SINGLE PULSE
052-6212
ZθJC, THERMAL IMPEDANCE (°C/W)
1.20
trr, REVERSE RECOVERY TIME
(ns)
TJ = 175°C
50
TJ = 125°C
40
TJ = 25°C
30
TJ = -55°C
20
10
1
2
3
4
5
VF, ANODE-TO-CATHODE VOLTAGE (V)
Figure 25. Forward Current vs. Forward Voltage
0
Qrr, REVERSE RECOVERY CHARGE
(nC)
2500
T = 125°C
J
V = 800V
R
30A
2000
1500
15A
1000
7.5A
500
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 27. Reverse Recovery Charge vs. Current Rate of Change
Kf, DYNAMIC PARAMETERS
(Normalized to 1000A/µs)
1.2
trr
1.0
trr
0.8
Qrr
CJ, JUNCTION CAPACITANCE
(pF)
7.5A
150
100
25
T = 125°C
J
V = 800V
30A
R
20
15
15A
10
7.5A
5
0
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE (A/µs)
Figure 28. Reverse Recovery Current vs. Current Rate of Change
35
Duty cycle = 0.5
T = 175°C
J
30
20
15
5
0
80
12-2005
15A
200
10
25
50
75
100
125
150
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Dynamic Parameters vs. Junction Temperature
Rev A
250
25
0.2
052-6212
30A
300
0
200
400
600
800 1000 1200
-diF /dt, CURRENT RATE OF CHANGE(A/µs)
Figure 26. Reverse Recovery Time vs. Current Rate of Change
IRRM
0.4
70
60
50
40
30
20
10
0
R
0
Qrr
0.6
0.0
T = 125°C
J
V = 800V
350
50
IRRM, REVERSE RECOVERY CURRENT
(A)
0
APT11GF120BRDQ1(G)
400
IF(AV) (A)
IF, FORWARD CURRENT
(A)
60
1
10
100 200
VR, REVERSE VOLTAGE (V)
Figure 31. Junction Capacitance vs. Reverse Voltage
0
25
50
75
100
125
150
175
Case Temperature (°C)
Figure 30. Maximum Average Forward Current vs. CaseTemperature
TYPICAL PERFORMANCE CURVES
APT11GF120BRDQ1(G)
Vr
diF /dt Adjust
+18V
APT10078BLL
0V
D.U.T.
30µH
trr/Qrr
Waveform
PEARSON 2878
CURRENT
TRANSFORMER
Figure 32. Diode Test Circuit
1
IF - Forward Conduction Current
2
diF /dt - Rate of Diode Current Change Through Zero Crossing.
3
IRRM - Maximum Reverse Recovery Current.
4
trr - Reverse Recovery Time, measured from zero crossing where diode
current goes from positive to negative, to the point at which the straight
line through IRRM and 0.25 IRRM passes through zero.
5
1
4
Zero
5
3
0.25 IRRM
2
Qrr - Area Under the Curve Defined by IRRM and trr.
Figure 33, Diode Reverse Recovery Waveform and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
(Cathode)
20.80 (.819)
21.46 (.845)
3.55 (.138)
3.81 (.150)
4.50 (.177) Max.
1.01 (.040)
1.40 (.055)
Gate
Collector
(Cathode)
Emitter
(Anode)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
12-2005
1.65 (.065)
2.13 (.084)
Rev A
2.21 (.087)
2.59 (.102)
19.81 (.780)
20.32 (.800)
052-6212
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)