ADPOW APT83GU30S

APT83GU30B
APT83GU30S
300V
®
POWER MOS 7 IGBT
TO-247
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
D3PAK
C
G
G
C
• SSOA rated
E
E
C
• Low Gate Charge
G
• Ultrafast Tail Current shutoff
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT83GU30B_S
VCES
Collector-Emitter Voltage
300
VGE
Gate-Emitter Voltage
±20
VGEM
Gate-Emitter Voltage Transient
±30
IC1
Continuous Collector Current @
IC2
Continuous Collector Current @ TC = 100°C
ICM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
1
7
UNIT
Volts
100
TC = 25°C
Amps
83
295
@ TC = 150°C
295A @ 300V
Switching Safe Operating Area @ TJ = 150°C
Watts
543
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
300
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 45A, Tj = 25°C)
1.5
2.0
Collector-Emitter On Voltage (VGE = 15V, I C = 45A, Tj = 125°C)
1.5
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
2-2004
MIN
Rev A
Characteristic / Test Conditions
050-7465
Symbol
APT83GU30B_S
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
4385
VGE = 0V, VCE = 25V
406
Reverse Transfer Capacitance
f = 1 MHz
31
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.0
144
VCE = 150V
29
44
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 45A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
295
A
15V, L = 100µH,VCE = 300V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon1
Eon2
Eoff
308
I C = 45A
122
µJ
354
Inductive Switching (125°C)
VCC = 200V
69
VGE = 15V
355
I C = 45A
226
Turn-off Delay Time
Current Fall Time
Turn-off Switching Energy
189
6
29
R G = 20Ω
4
Turn-on Switching Energy (Diode)
ns
TBD
TJ = +25°C
5
Current Rise Time
Turn-on Switching Energy
29
R G = 20Ω
4
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
69
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 200V
5
ns
TBD
TJ = +125°C
287
6
µJ
503
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
0.23
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Countinous current limited by package lead temperature.
050-7465
Rev A
2-2004
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT83GU30B_S
60
60
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC, COLLECTOR CURRENT (A)
40
30
20
TC=25°C
10
TC=125°C
250
FIGURE 2, Output Characteristics (VGE = 10V)
16
200
150
TJ = -55°C
TJ = 25°C
50
TJ = 125°C
14
IC = 45A
TJ = 25°C
VCE = 60V
12
VCE = 150V
10
8
VCE = 240V
6
4
2
0
1
2 3 4
5 6
7
8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.5
3
2.5
IC= 90A
2
IC= 45A
1.5
IC= 22.5A
1
0.5
0
5
6 7 8 9 10 11 12 13 14 15 16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
2
IC = 90A
IC = 22.5A
1.0
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
200
1.15
180
1.05
1.0
0.95
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
IC = 45A
1.5
1.2
1.10
40 60
80 100 120 140 160
GATE CHARGE (nC)
FIGURE 4, Gate Charge
160
140
120
100
80
60
Lead Temperature
Limited
40
20
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
2-2004
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
20
Rev A
4
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
TC=25°C
10
0
0.5
1
1.5
2
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
20
TC=125°C
FIGURE 1, Output Characteristics(VGE = 15V)
300
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
30
0
0
0.5
1
1.5
2
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
TC=-55°C
40
TC=-55°C
0
100
50
050-7465
IC, COLLECTOR CURRENT (A)
50
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT83GU30B_S
400
70
VGE= 15V
60
50
40
30
20
VCE = 200V
TJ = 25°C, TJ =125°C
RG = 20Ω
L = 100 µH
10
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
80
300
VGE =15V,TJ=25°C
250
VGE =15V,TJ=125°C
200
150
100
VCE = 200V
RG = 20Ω
L = 100 µH
50
0
0
10 20 30 40 50 60 70 80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
80
350
10 20 30 40 50 60 70 80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
250
RG = 20Ω, L = 100µH, VCE = 200V
70
200
tf, FALL TIME (ns)
tr, RISE TIME (ns)
60
50
40
30
TJ = 125°C, VGE = 10V or 15V
150
100
TJ = 25°C, VGE = 10V or 15V
20
50
TJ = 25 or 125°C,VGE = 15V
10
0
0
10 20 30 40 50 60 70 80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
050-7465
20 30 40 50 60 70 80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
800
TJ =125°C, VGE=15V
600
400
200
TJ = 25°C, VGE=15V
EOFF, TURN OFF ENERGY LOSS (µJ)
1600
VCE = 200V
L = 100 µH
RG = 20Ω
1400
TJ = 125°C, VGE = 10V or 15V
1200
VCE = 200V
L = 100 µH
RG = 20Ω
1000
800
600
400
200
TJ = 25°C, VGE = 10V or 15V
0
10 20 30 40 50 60 70 80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10 20 30 40 50 60 70 80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
2000
2000
VCE = 200V
VGE = +15V
TJ = 125°C
1500
Eoff 90A
Eon2 90A
1000
Eoff 45A
500
Eoff 22.5A
0
5
Eon2 45A
Eon2 22.5A
10 15 20 25 30 35 40 45 50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
Rev A
2-2004
EON2, TURN ON ENERGY LOSS (µJ)
1000
RG = 20Ω, L = 100µH, VCE = 200V
10
VCE = 200V
VGE = +15V
RG = 20Ω
Eoff 90A
1500
1000
Eon2 90A
Eoff 45A
500
Eon2 45A
0
Eon2 22.5A
0
Eoff 22.5A
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
APT83GU30B_S
TYPICAL PERFORMANCE CURVES
350
10,000
Cies
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
300
1,000
500
Coes
100
50
Cres
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
250
200
150
100
50
0
0
50
100 150 200 250 300 350
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.9
0.20
0.7
0.15
0.5
Note:
0.10
PDM
0.3
t2
0.05
Duty Factor D = t1/t2
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
250
0.0106
0.00663F
0.0868
0.0106F
0.133
0.262F
Case temperature
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
RC MODEL
Junction
temp. ( C)
Power
(watts)
1.0
100
Fmax = min(f max1 , f max 2 )
50
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 200V
RG = 5 Ω
10
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
10
30
50
70
90
110
130
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
2-2004
10-5
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
Rev A
0.1
0.05
0
t1
050-7465
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT83GU30B_S
APT15DS30
Gate Voltage
10%
TJ = 125 C
td(on)
Collector Current
tr
V CE
IC
V CC
90%
5%
5%
10%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
td(off)
TJ = 125 C
tf
Collector Current
A
V CE
90%
IC
100uH
V CLAMP
10%
Collector Voltage
0
B
A
Switching Energy
D.U.T.
DRIVER*
Figure 24, EON1 Test Circuit
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
2-2004
Rev A
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
20.80 (.819)
21.46 (.845)
1.65 (.065)
2.13 (.084)
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
Gate
Collector
Emitter
15.95 (.628)
16.05 (.632)
Revised
4/18/95
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
050-7465
5.38 (.212)
6.20 (.244)
Collector
(Heat Sink)
Figure 23, Turn-off Switching Waveforms and Definitions
1.04 (.041)
1.15 (.045)
13.79 (.543)
13.99 (.551)
0.46 (.018)
0.56 (.022)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.22 (.048)
1.32 (.052)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
1.27 (.050)
1.40 (.055)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
13.41 (.528)
13.51 (.532)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated