HITACHI-METALS 2SJ389L

2SJ389 L , 2SJ389 S
Silicon P Channel MOS FET
Application
DPAK–2
4
High speed power switching
4
Features
•
•
•
•
Low on–resistance
High speed switching
Low drive current
4 V gate drive device can be driven from
5 V source
• Suitable for Switching regulator, DC – DC
converter
• Avalanche Ratings
12
2, 4
12
3
3
1
1. Gate
2. Drain
3. Source
4. Drain
3
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
–60
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±20
V
———————————————————————————————————————————
Drain current
ID
–10
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
–40
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
–10
A
———————————————————————————————————————————
Avalanche current
IAP***
–10
A
———————————————————————————————————————————
Avalanche energy
EAR***
8.5
mJ
———————————————————————————————————————————
Channel dissipation
Pch**
30
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** Value at Tc = 25 °C
*** Value at Tch = 25 °C, Rg ≥ 50 Ω
2SJ389 L , 2SJ389 S
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
–60
—
—
V
ID = –10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
IG = ±100 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
–100
µA
VDS = –50 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
–1.0
—
–2.25
V
ID = –1 mA, VDS = –10 V
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.1
0.135
Ω
ID = –5 A
VGS = –10 V *
————————————————————————
—
0.14
0.2
Ω
ID = –5 A
VGS = –4 V *
———————————————————————————————————————————
Forward transfer admittance
|yfs|
4
8
—
S
ID = –5 A
VDS = –10 V *
———————————————————————————————————————————
Input capacitance
Ciss
—
910
—
pF
VDS = –10 V
————————————————————————————————
Output capacitance
Coss
—
440
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
170
—
pF
f = 1 MHz
———————————————————————————————————————————
Turn–on delay time
td(on)
—
15
—
ns
ID = –5 A
————————————————————————————————
Rise time
tr
—
85
—
ns
————————————————————————————————
Turn–off delay time
td(off)
—
220
—
ns
VGS = –10 V
RL = 6 Ω
————————————————————————————————
Fall time
tf
—
145
—
ns
———————————————————————————————————————————
Body–drain diode forward
voltage
VDF
—
–1.0
—
V
IF = –10 A, VGS = 0
———————————————————————————————————————————
Body–drain diode reverse
recovery time
trr
—
170
—
µs
IF = –10 A, VGS = 0,
diF / dt = 50 A / µs
———————————————————————————————————————————
* Pulse Test
2SJ389 L , 2SJ389 S
Power vs. Temperature Derating
Maximum Safe Operation Area
30
20
10
I D (A)
–200
–100
–50
Drain Current
Channel Dissipation
Pch (W)
40
–10
50
100
Case Temperature
DC
–5
PW
Op
era
s
1m
=1
µs
s
0m
s(
tio
1s
Operation in
n(
ho
Tc
–2 this area is
= 2 t)
5°
limited by R DS(on)
C)
–1
150
Ta = 25 °C
–0.2
–1 –2
–5 –10 –20
–50 –100
Drain to Source Voltage V DS (V)
200
Tc (°C)
Typical Output Characteristics
Pulse Test
–10 V
(A)
–12
–8
–3.5 V
–3 V
–4
VGS = –2.5 V
0
V DS = –10 V
Pulse Test
–4 V
–5 V
–4.5 V
ID
–16
Typical Transfer Characteristics
–10
Drain Current
–20
I D (A)
0µ
–20
–0.5
0
Drain Current
10
10
–4
–8
–12
Drain to Source Voltage
–16
–20
V DS (V)
–8
–6
–4
–2
75 °C
Tc = –25 °C
25 °C
0
–1
–2
–3
Gate to Source Voltage
–4
–5
V GS (V)
2SJ389 L , 2SJ389 S
Pulse Test
-0.8
–0.6
I D = –5 A
-0.4
Pulse Test
2
1
0.2
–2 A
–0.2
–1 A
0
Static Drain to Source on State Resistance
R DS(on) ( Ω)
Static Drain to Source on State Resistance
vs. Drain Current
5
0.5
–4
–8
12
Gate to Source Voltage
0.4
0.3
–2, –1 A
I D = –5 A
0.2
V GS = –4 V
–5, –2, –1 A
0.1
–10 V
0
–40
0
40
80
120
160
Case Temperature Tc (°C)
–10 V
0.05
–1
–16
–20
V GS (V)
Static Drain to Source on State Resistance
vs. Temperature
0.5
Pulse Test
VGS = –4 V
0.1
–2
–5 –10 –20
–50 –100
Drain Current I D (A)
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |y fs | (S)
Drain to Source Saturation Voltage
V DS(on) (V)
–1.0
Drain to Source On State Resistance
R DS(on) ( Ω )
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
50
20
V DS = –10 V
Pulse Test
10
Tc = –25 °C
5
2
25 °C
75 °C
1
0.5
–0.1 –0.2
–0.5 –1 –2
–5
Drain Current I D (A)
–10
2SJ389 L , 2SJ389 S
1000
10000
500
Capacitance C (pF)
Reverse Recovery Time trr (ns)
Typical Capacitance vs.
Drain to Source Voltage
Body–Drain Diode Reverse
Recovery Time
200
100
50
20
V DD = –50 V
–25 V
–10 V
–100
0
V GS
80
20
40
60
Gate Charge Qg (nc)
–10
–20
–30
-40
–50
Drain to Source Voltage V DS (V)
–8
V GS (V)
1000
–12
–16
–20
100
500
Switching Time t (ns)
V DS
–60
–80
–4
I D = –10 A
VGS = 0
f = 1 MHz
Switching Characteristics
0
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
–40
Crss
100
0
Dynamic Input Characteristics
–20
Coss
300
100
10
–0.1 –0.3
–1 –3
–10 –30 –100
Reverse Drain Current I DR (A)
V DD = –10 V
–25 V
–50 V
Ciss
1000
300
di / dt = 50 A / µs
VGS = 0, Ta = 25 °C
0
3000
V GS = –10 V, V DD = –30 V
PW = 5 µs, duty < 1 %
t d(off)
200
100
tf
50
tr
20
10
–0.1 –0.2
t d(on)
–0.5 –1 –2
–5
Drain Current I D (A)
–10
2SJ389 L , 2SJ389 S
Reverse Drain Current vs.
Source to Drain Voltage
Maximun Avalanche Energy vs.
Channel Temperature Derating
Repetive Avalanche Energy E AR (mJ)
–20
Reverse Drain Current I DR (A)
Pulse Test
–16
–12
–8
V GS = –10 V
–5 V
0, 5 V
-4
0
–0.4
–0.8
–1.2
Source to Drain Voltage
–1.6
10
–2.0
I AP = –10 A
V DD = –25 V
duty < 0.1 %
Rg > 50 Ω
8
6
4
2
0
25
50
V SD (V)
75
100
125
150
Channel Temperature Tch (°C)
Avalanche Test Circuit and Waveform
V DS
Monitor
EAR =
L
1
2
• L • I AP •
2
I AP
Monitor
VDSS
VDSS – V DD
V (BR)DSS
I AP
Rg
D. U. T
V DS
VDD
ID
Vin
–15 V
50Ω
0
VDD
2SJ389 L , 2SJ389 S
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance
γ s (t)
3
Tc = 25°C
1
D=1
0.5
0.3
0.1
0.2
0.1
0.05
θ ch – c(t) = γ s (t) • θ ch – c
θ ch – c = 4.17 °C/W, Tc = 25 °C
0.02
e
uls
1
0.03
0.0
PDM
P
ot
D=
h
1s
PW
T
PW
T
0.01
10 µ
100 µ
1m
10 m
Pulse Width
100 m
10
PW (S)
Switching Time Test Circuit
Waveforms
Vout
Monitor
Vin Monitor
1
Vin
10%
D.U.T.
RL
90%
Vin
–10 V 50Ω
V DD
= 30 V
90%
90%
Vout
td(on)
10%
10%
tr
td(off)
tf