AGILENT IAM-93516-BLK

Agilent IAM-93516 High Linearity
Integrated GaAs Mixer
Data Sheet
Description
Agilent Technologies’s IAM93516 is a high linearity GaAs
FET Mixer using 0.5um
enhancement mode pHEMT
technology. This device houses
in a 3x3 LPCC package. The
IAM-93516 has a built-in LO
buffer amplifier and an IF
amplification stage that serve
as an ideal solution for
reducing board space and
delivering excellent high IIP3,
gain and isolation with a low
LO drive power. The device is
designed with a differential
configuration to provide good
noise immunity. The LO port
is 50 ohm matched and can be
driven differential or single
ended. An interstage match is
introduced between the mixer
and amplifier stage to allow
device tuning at the desired
RF and LO frequency. The
interstage match can be a
simple low pass, high pass or
intermediate frequency trap.
The amplifier output port is
200 ohm matched and fully
differential. The simple
matching at the RF port
provides for optimum input
return loss, noise figure and
IIP3 performance.
Features
• DC =5V @ 111mA (Typ.)
• RF =1.91 GHz, PinRF = -10 dBm;
• LO =1.7 GHz, PinLO = 0 dBm;
• IF = 210 MHz unless otherwise
specified
The IAM-93516 is ideally
suited for frequency down
conversion for base station
radio card receiver, microwave
link receiver, MMDS,
modulation and demodulation
for receiver and general
purpose resistive FET mixer,
which require high linearity.
All devices are 100% RF and
DC tested.
• High Linearity: 23.1 dBm IIP3(typ)
Applications
• Consistent RF performance over
LO Power
• Frequency down converter for
base station radio card,
microwave link transceiver, and
MMDS
• Modulation and demodulation for
receiver
• General purpose resistive FET
mixer for other high linearity
applications
• Conversion Gain: 9.4 dB typical
• Low Noise Figure: 11.6 dB
• Wide band operation:
• 400-3000 MHz RF & LO input
• 70 – 300 MHz IF output
• Fully differential or single ended
operation
• High P1dB: 19.3 dB typical
• Low current consumption: [email protected]
111mA typical
• Excellent uniformity in product
specifications
• 3mm x 3mm x 0.9mm LPCC
package
• MTTF > 300 years[1]
• MSL-1 and Lead-free.
Pin Connections and Package Marking
Interstage Match
+VDD
MIX_OUT+ 3
5
2 RF+
1 IFA_IN+
+VDD
14
3pF
6
Amplifier
IF+
16
LO+
280 ohm
LO Buffer
7
2
LO --
13
IF -
Mixer
3pF
MIX_OUT -
Top View
10
11 RF - 12 IFA_IN -
Interstage Match
Note:
Package marking provides orientation and identification
“M2” = Device Code
“X” = Month code indicates the month of manufacture
1.0 Absolute Maximum Ratings [1]
Symbol
Parameter
Units
Absolute maximum
VD
Supply Voltage [2]
V
7
PinRF
CW RF Input Power
[2]
dBm
30
PinLO
CW LO Input Power
[2]
dBm
18
TCH
Channel Temperature
°C
150
TSTG
Storage Temperature
°C
-65 to 150
°C/W
39
θch_b
Thermal Resistance
[4]
Notes:
1. Operation of this device above any one of these parameters may cause permanent damage.
2. Determined at DC quiescent conditions and TA = 25°C.
3. Board (package belly) temperature TB is 25°C. Derate 25 mW/°C for TB > 130 °C.
4. Channel-to-board thermal resistance measured using Infra Red Imaging Method and 150o C Liquid Crystal Measurement method.
2.0 Product Consistency Distribution Charts [5,6]
frequency
+3 Std
-3 Std
200
frequency
Stdev=0.74
300
180
180
150 Stdev = 0.14
150 Stdev = 0.5
120
120
+ 3 Std
-3 Std
90
60
frequency
400
+3 Std
-3 Std
90
60
100
30
30
0
0
107
108
109
110
111
112
113
114
0
8.8
9.0
9.2
9.4
9.6
9.8
21
22
23
24
Id
Figure 1. ID (mA) [7] Nominal = 111.2mA
2
Figure 2. GAIN (dB) [8] Nominal = 9.4dB
Figure 3. IIP3 (dBm) [8] Nominal = 23.1dBm
25
3.0 IAM-93516 Electrical Specifications[6,8]
TA = 25oC, DC = 5V, RF Freq = 1.91GHz, PinRF = -10dBm, LO Freq = 1.7GHz, PinLO = 0dBm (unless otherwise specified)
Symbol
Parameter and Test Condition
Units
Min.
Typ.
Max.
Device Current
mA
95.0
111.2
125.0
GC
Conversion Gain
dB
7.9
9.4
10.9
IIP3 [8]
Output Third Order Intercept Point
dBm
20.5
23.1
-
NF
SSB Noise Figure
dB
-
11.6
-
P1dB
Output Power at 1dB Gain Compression
dBm
-
19.3
-
RLRF
RF Port Return Loss
dB
-
12.0
-
RLLO
LO Port Return Loss
dB
-
20.0
-
RLIF
IF Port Return Loss
dB
-
11.0
-
ISOLL-R
LO-RF Isolation
dB
-
26.0
-
ISOLL-I
LO-IF Isolation
dB
-
20.0
-
ISOLR-L
RF-IF Isolation
dB
-
32.0
-
Id
[7]
Notes:
5. Distribution data sample size is 510 samples taken from 3 different wafers lots. Future wafers allocated to this product may have nominal values
anywhere between the upper and lower limits.
6. Measurements were made on a production test board, which represents a trade-off between optimal Gain, IIP3, NF, P1dB and isolation. Board losses
of 0.1dB at the RF input and IF amplifier output have been compensated. Balun loss of 0.57dB which was obtained from the Toko’s supplied sparameter file is also compensated. The total IF amplifier output loss is 0.67dB.
7. The device current is measured without LO signal. At LO=0dBm, the current reduces by around 6 to 7mA.
8. Gain, P1dB, isolation and return loss test conditions: FRF =1.91GHz, FLO = 1.7GHz, FIF = 210MHz, PinRF = -10dBm, PinLO = 0dBm.
IIP3 test condition: FRF1 = 1.91GHz, FRF2 = 1.89GHz, FLO = 1.7GHz, PinRF = -10dBm, PinLO = 0dBm.
4.0 IAM-93516 Typical Performance[9,10]
TA = 25oC, DC = 5V, RF Freq = 1.91GHz, PinRF = -10dBm, LO Freq = 1.7GHz (unless otherwise specified)
1nH
0.4pF
39nH
22 Ohm
18pF
40nH
1.5pF
Interstage Match
LO +
3.3nH
1000pF
Balun Transformer
Toko B4F
617DB-1018
1.5nH
IF
RF
1.5pF
3.3nH
1000pF
LO Interstage Match
1nH
39nH
0.4pF
1.5pF
22 Ohm
18pF
40nH
Figure 4. IAM-93516 demoboard schematic optimally tuned at FRF = 1.91GHz and FLO = 1.7GHz
3
10
130
125
9.8
120
Conversion Gain (dB)
115
Id (mA)
110
105
100
95
25 C
90
85 C
85
-40 C
80
-14
-12
-10
-8
-6
-4
-2
0
2
4
9.6
9.4
-40 C
9.2
8.8
6
-14
31
20.5
29
20
27
19.5
25
19
23
21
25 C
19
-6
-4
-2
-8
0
2
18
0
2
4
85 C
16.5
-14
6
-12
-10
-8
-6
-4
-2
0
2
4
6
LO Power (dBm)
Figure 8. P1dB vs. LO Power and Temperature
25
30
25 C
21
-40 C
19
85 C
25
Isolation_LO_IF (dB)
23
17
15
13
11
9
20
15
25 C
10
-40 C
85 C
7
-12
-10
-8
-6
-4
-2
0
LO Power (dBm)
Figure 9. Noise Figure vs. LO Power and Temperature
4
6
-40 C
17
Figure 7. IIP3 vs. LO Power and Temperature
5
-14
4
25 C
LO Power (dBm)
NF (dB)
-6
-4
-2
LO Power (dBm)
17.5
85 C
-8
-10
18.5
-40 C
17
-10
-12
Figure 6. Conversion Gain vs. LO Power and Temperature
P1dB (dBm)
IIP3 (dBm)
Figure 5. Current vs. LO Power and Temperature
-12
85 C
9.0
LO Power(dBm)
15
-14
25 C
2
4
6
5
-14
-12
-10
-8
-6
-4
-2
0
LO Power (dBm)
Figure 10. LO-IF Isolation vs. LO Power and Temperature
2
4
6
35
35
30
Isolation_LO_RF (dB)
Isolation_RF_IF (dB)
40
30
25 C
25
-40 C
85 C
20
25
20
25 C
-40 C
15
85 C
15
-14
-12
-10
-8
-6
-4
-2
0
2
4
10
-14
6
-12
-10
-8
-6
-4
-2
LO Power(dBm)
LO Power (dBm)
0
2
4
6
Figure 12. LO-RF Isolation vs. LO Power and Temperature
Figure 11. RF-IF Isolation vs. LO Power and Temperature
28
12
27
26
25
8
IIP3 (dBm)
Conversion Gain (dB)
10
6
4
2
0
1.6
1.7
1.8
1.9
2.0
24
23
22
LO= -3dBm
21
LO= -3dBm
LO=0dBm
20
LO=0dBm
LO=3dBm
19
LO=3dBm
2.1
18
1.6
2.2
1.7
1.8
RF Frequency (GHz)
Figure 13. Conversion Gain vs. RF Frequency and LO Power at fixed IF
frequency[11]
1.9
2
RF Frequency (GHz)
2.1
2.2
Figure 14. IIP3 vs. RF Frequency and LO Power at fixed IF frequency
[11]
45
26
24
40
Isolation_LO_IF (dB)
Isolation_RF_IF (dB)
22
35
30
LO=-3dBm
25
LO=0dBm
20
LO=3dBm
16
LO= -3dBm
14
LO=0dBm
LO=3dBm
10
1.7
1.8
1.9
2
2.1
RF Frequency (GHz)
Figure 15. RF-IF Isolation vs. RF Frequency and LO Power at fixed IF
frequency
5
18
12
15
1.6
20
2.2
1.4
1.5
1.6
1.7
1.8
1.9
LO Frequency (GHz)
Figure 16. LO-IF Isolation vs. LO Frequency and LO Power at fixed IF
frequency
2
32
0
-2
30
-6
IF_IRL (dB)
Isolation_LO_RF (dB)
-4
28
26
24
LO=-3dBm
22
1.5
1.6
1.7
1.8
-10
LO=0dBm
-12
LO=3dBm
-14
20
1.4
-8
1.9
-16
50
2
100
150
200
250
300
350
400
450
500
IF Frequency (MHz)
LO Frequency (GHz)
Figure 18. IF Return Loss vs. IF Frequency
Figure 17. LO-RF Isolation vs. LO Frequency and LO Power at fixed IF
frequency
0
0
5
-5
10
RF_IRL (dB)
LO_IRL (dB)
-10
15
20
25
-15
-20
-25
30
-30
35
0
1
2
3
4
LO Frequency (GHz)
Figure 19. LO Return Loss vs. LO Frequency
5
6
1.6
1.7
1.8
1.9
RF Frequency (GHz)
Figure 20. RF Return Loss vs. RF Frequency
Notes:
9. Results shown are based on Figure 4, which is optimally tuned for optimum conversion loss, IIP3, isolation and noise figure.
10. Balun loss of 0.57 dB @ 210 MHz have been deembedded into the IF Amplifier loss.
11. LO is low side injected for 210MHz IF frequency.
6
2
2.1
2.2
5.0 IAM-93516 Typical Harmonic Suppresion Table[12,13]
LO Harmonics
0
0
RF Harmonics
1
2
3
4
5
0.00
28.30
5.59
21.33
32.02
1
39.96
0.00
57.37
52.89
53.95
59.01
2
79.46
80.38
52.71
79.39
>90
87.51
3
>90
>90
>90
83.75
>90
>90
4
>90
>90
>90
>90
>90
>90
5
>90
>90
>90
>90
>90
>90
Figure 21. Harmonic Suppresion Table
Notes:
12. The harmonic suppression table shows the spurious signals present due to the mixing of the RF and LO at down conversion mode.
13. Test conditions
a. RF = 1.91GHz @ -10dBm
b. LO = 1.7GHz @ 0 dBm
c. RF and LO Intermodulation Harmonics are referenced to the signal level produced by the down converted IF signal at 210MHz at the IF amplifier
output
d. LO Harmonics are referenced to the signal level of the LO signal at 1.7GHz at the IF amplifier output.
6.0 IAM-93516 Pin Description
Pin
Name
Description
1, 12
IFA_IN+ / IFA_IN-
IF Amplifier inputs. This is the signal output from the Mixer/IF Amplifier
interstage match. (See product application note)
2, 11
RF+ / RF-
RF differential signal input. Simple matching is required for good RF
return loss. (See product application note)
3, 10
MIX_OUT+ / MIX_OUT-
Signal at mixer output.This signal will be fed into the Mixer/IF Amplifier
interstage match. (See product application note)
4,9, 15
GND
Ground connection. For normal operation, all electrical grounds must be
connected together.
5
VDD1
DC Power supply for the mixer circuit.
6, 7
LO+ / LO -
50 Ohm Local oscillator input. The local oscillator can be driven
differential or single ended.
8
NC
No contact.
13, 16
IF + / IF-
200 Ohm differential amplifier output. A 4:1 balun is required to convert
the differential output to single ended. (See product application note)
14
VDD2
DC Power supply for the IF amplifier circuit.
7
PCB layout and Stencil Design
LPCC 3x3 Package Dimensions
D2
D
D2
2
D
2
INDEX AREA
(D/2 X E/2)
k
e
E2
2
E
2
E2
E
e
2
Bottom View
Top View
A
A3
A1
SEATING PLANE
Side View
PACKAGE
REF.
A
D
D2
E
E2
e
A1
A3
k
1GL 3X3-0.50
MIN.
0.80
2.90
1.70
2.90
1.70
0
NOM.
0.90
3.00
1.80
3.00
1.80
0.50 BSC.
0.02
0.20 REF.
0.20
DIMENSIONS ARE IN MILLIMETERS
8
MAX.
1.00
3.10
1.90
3.10
1.90
0.05
Device Orientation
REEL
CARRIER
TAPE
USER
FEED
DIRECTION
COVER TAPE
Tape Dimensions
2.0±0.1
0.3±0.05
[1]
4.0±0.1
[2]
1.75±0.1
1.55±0.05
[1]
5.5±0.1
CL
1.6±0.1
3.3±0.1
12.0±0.3
R 0.3
Typical
1.55±0.1
8.0±0.1
Note:
I. Measured from centerline of sprocket hole to centerline of pocket.
II. Cumulative tolerance of 10 sprocket hole is ± 0.20 .
III. Measured from centerline of sprocket hole to centerline of pocket.
IV. Other material available.
V. All dimension in millimeter unless otherwise stated.
9
3.3±0.1
Part Number Ordering Information
Part Number
No. Of Devices
Container
IAM-93516-TR1
1000
7" Reel
IAM-93516-TR2
5000
13" Reel
IAM-93516-BLK
100
Antistatic Bag
www.agilent.com/
semiconductors
For product information and a complete list
of distributors, please go to our web site.
For technical assistance call:
Americas/Canada: +1 (800) 235-0312
or (408) 654-8675
Europe: +49 (0) 6441 92460
China: 10800 650 0017
Hong Kong: (+65) 6756 2394
India, Australia, New Zealand: (+65) 6755 1939
Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)
Korea: (+65) 6755 1989
Singapore, Malaysia, Vietnam, Thailand,
Philippines, Indonesia: (+65) 6755 2044
Taiwan: (+65) 6755 1843
Data subject to change.
Copyright © 2005 Agilent Technologies, Inc.
May 9, 2005
5989-2800EN